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Abstract

The Marne Light-Mixed Layer experiment took place in the sub-Arctic North

Atlantic ocean, approximately 275 miles south of Reykjavik, Iceland. The field

program included a central surface mooring to document the temporal evolution of

physical, biological and optical properties. The surface mooring was deployed at

approximately 59°N, 21°W on 29 April 1991 and recovered on 6 September 1991.

The Upper Ocean Processes Group of the Woods Hole Oceanographic Institution

was responsible for design, preparation, deployment, and recovery of the mooring.

The Group's contribution to the field measurements included four different types

of sensors: a meteorological observation package on the surface buoy, a string of

15 temperature sensors along the mooring line, an acoustic Doppler current pro-

fier, and four instruments for measuring mooring tension and accelerations. The

observations obtained from the mooring are sufcient to describe the air-sea fluxes

and the local physical response to surface forcing. The objective in the analysis

phase wil be to determine the factors controllng this physical response and to

work towards an understanding of the links among physical, biological, and optical

processes. This report describes the deployment and recovery of the mooring, the

meteorological data, and the subsurface temperature and current data.
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1 Introduction

The Marine Light-Mixed Layer (MLML) field program was conceived as a part

of the Marine Bioluminescence and Upper Ocean Physics Accelerated Research

Initiative sponsored by the Offce of Naval Research, and was predicated on the

concept that temporal and spatial vaiabilty in the marne ecosystem are intimately

related to physical processes. The Upper Ocean Processes Group (UOPG) at WHOI

took responsibilty for the design, deployment, and recovery of an instrumented

surface mooring which served as the focal point for the field program. The long-term

goal of our work in the MLML program is to develop an improved understanding of

upper ocean physical processes and the links among physical, biological, and optical

processes. In particular, we are interested in the horizontal and vertical structure

of density and velocity in the upper ocean and the response of those fields to heat

and momentum fluxes at the sea surface.

I
i .

From the MLML mooring we have obtained observations suffcient to describe

the air-sea fluxes and the local physical response to surface forcing. During the

analysis phase, effort wil be concentrated on determination of the factors control-

ling this physical response and consideration of of the links between the physical,

and bio-optical components of the seasonal cycle in the high-latitude North At-

lantic. The primary objectives of this work are: (1) to document the upper ocean

response to surface forcing and determine the controllng factors in the restratifi-

cation and mixed layer deepening processes, (2) to assess the relationship between

physical forcing and the bio-optical properties of the water column, in particular

the relationship between the onset of restratification and the spring bloom of phy-

toplankton, and (3) to determine the extent to which bio-optical properties can

be predicted given knowledge of the physical forcing and to consider the feedback

between physical and bio-optical properties in the development of a mixed layer

1



modeL. These objectives wil be addressed in close collaboration with the other

MLML principal investigators.

In order to understand the link between physical forcing and bio-optical var-

ability we must first know the surface forcing. This forcing consists of wind stress

and the sensible, latent, and radiative heat fluxes, which can be computed from

the meteorological variables recorded on the mooring using bulk aerodynamic for-

mulae. Given this record of surface forcing, we wish to document the upper ocean

response and determine the controllng factors in the restratification and deepening

processes. The deep winter mixed layer at the MLML site (Robinson et ai., 1979;

Levitus, 1982) results from convective mixing due to surface heat loss combined with

strong wind forcing. Of particular interest is the spring restratification process, pre-

sumably driven by net heating during periods of weak wind forcing. Several studies

have been devoted to the seasonal evolution of temperature and current structures

in the upper ocean at temperate latitudes (e.g., Briscoe and Weller, 1984, as par

of the LOng Term Upper Ocean Study experiment, and Dickey et ai., 1991, as par

of the Biowatt experiment). However, there have been few intensive studies of the

springtime transition of the mixed layer and restratification of the upper water col-

umn and even fewer comparable observational programs at latitudes higher than

45°N. The temperature and velocity measurements from the MLML mooring doc-

ument the upper ocean response at a high latitude site with unprecedented vertical

(20 m intervals over the upper 300 m) and temporal (1-15 min) resolution.

This report describes the deployment and recovery of the mooring, the meteo-

rological data, and the subsurface temperature and current data.
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2 Mooring Deployment and Recovery

2.1 The MLML Mooring

The MLML experimental site (Figure 1) is in a region characterized by high

winds, large waves, and strong currents. This severe environment represented a

challenge to our abilty to make detailed measurements of local atmospheric forcing

and the biological, optical, and physical variabilty of the upper ocean. The process

of meeting this challenge began in 1989 with the design and deployment of the

MLML pilot mooring. The pilot mooring remained on station for 10 weeks, after

which the failure of a component in the mooring line (a pear-ring link) caused the

surface buoy to go adrift and the mooring line to sink to the bottom. The surface

buoy was recovered soon afterwards and the sub-surface portion of the mooring

was recovered in July of 1990. Analysis of data from the buoy and consideration

of the mooring design indicated that both the static tension and cyclic loading on

the mooring hardware were higher than anticipated, resulting in the component

failure. The 1991 mooring was designed both to minimize the static tension along

the mooring line and to survive peak tensions in excess of those observed on the

pilot mooring.

Benefiting from extensive evaluation of the performance of the pilot mooring,

the 1991 MLML mooring (Figure 2) proved to be a reliable severe-environment plat-

form from which 131 days of surface and sub-surface data were collected between

29 April and 6 September of 1991. The critical design elements of the 1991 moor-

ing included upgraded hardware designed to survive cyclic loading, an increase in

scope (the ratio of the slack length of the mooring to the water depth) to minimize

static tension, and a compliant element which allowed the mooring to be "tuned"

so that the resonant frequency was outside of the surace wave band. The 1991

3
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Figure 1: The MLML mooring site at 59.5°N, 21°W is shown along with a grid rep-
resenting the shipboard survey region. The site at 59°N, 19°W is Ocean Weather
Station India (OSWI) were the data of Lambert and Hebenstreit (1985) were col-
lected.
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15 310

50 m

70 m

90 m

2100 m

3 meter Discus Buoy

with 2 VAWRs and

Argos Telemetry

5.57 M 3/4" CHAIN

MVMS
5.52 M 1/2" WIRE

BOMS
7.54 M 1/2" WIRE

MVMS
5.52 M 1/2" WIRE

BOMS
2.2 M 3/4" CHAIN

MOORDEX
3.47 M 3/4" CHAIN

MVMS

ADCP
4.07 M 3/4" CHAIN
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7.5 M 1/2" WIRE
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17.1 M 1/2" WIRE
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510M7/15"WIRE
500 M 3/8" WIRE

500 M 3/8" WIRE

500 M 3/8" WIRE

Engineering Instrument
100 M 3/8" WIRE

530 M 7/8" NYLON SPLICED TO

570 M 1-1/8" POLYPROPYLENE

(2) 17" GLASS BALLS

Engineering Instrument
(80) 17" GLASS BALLS ON 1/2" CHAIN

Figure 2: Schematic diagram of the 1991 MLML surface moonng. Intruent
acronyms are described in the text.
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mooring was of compound (wire, nylon, and polypropylene) construction, using a

10 foot diameter discus as a surface float. The scope of the mooring was 1.25. The

mooring used the so-called "inverse catenar" design, wherein a section of nega-

tively buoyant nylon is spliced to a section of positively buoyant polypropylene just

above the flotation balls. At low current speeds, the nylonjpolypro section takes

on an "S" shape (Figure 2). This allows scopes significantly greater than one while

eliminating the possible tangling problem of slack line hanging down and fouling

lower components in low currents.

2.2 Instrumentation

Our responsibilty for instrumentation on the mooring included the meteoro-

logical measurements and the current and temperature measurements below about

100 m depth. Instrumentation prepared by the UOPG included two Vector Aver-

aging Wind Recorders (VAWR), 15 Submersible Temperature Loggers (STL), an

Acoustic Doppler Current Profiler (ADCP), three engineering instruments, and a

tensiometer.

Complementar instrumentation in the upper 100 m deployed by other MLML

investigators included five Multi-Variable Moored Systems (MVMSs; T. Dickey,

University of South~rn California (USC) and J. Mara, Lamont-Doherty Geologi-

cal Observatory (LDGO)), three Bio-Optical Moored Systems (BOMSj R. Smith,

University of California, Santa Barbara (UCSB)), and a moored bioluminescence

sensor (MOORDEX; J. Case, UCSB). The MVMSs provide point measurements

of horizontal velocity and temperature in addition to bio-optical variables, and we

include those velocity and temperature measurements in this report. No other data

from the USC, LDGO, or UCSB instruments are included.
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. Instrumentation on the surface buoy included two VA WRs, an engineering in-

strument for sampling tension and vertical acceleration, a BOMS, and a dissolved

oxygen sensor. A communications module was included to allow the VAWR to trans-

mit meteorological data via ARGOS satellte. Two ARGOS antennas were mounted

on the buoy tower. Each transmitted data from one of the VA WRs and also provided

buoy position data. Another ARGOS transmitter in the buoy well was connected to

a flat, deck-mounted antenna. Besides telemetering instantaneous values of buoy

tension and battery voltage, this transmitter system was meant to be the backup

buoy location device if heavy seas broke off the tower-mounted antennas. An addi-

tional backup ARGOS transmitter was mounted on one leg of the three-legged bridle

below the buoy. It was mounted upside down and activated by a mercury switch in

the event that the mooring broke at or near the bridle and the buoy turned upside

down.

Two engineering instruments were placed on the mooring, one at a position 100

meters above the wire/nylon interface and the other just above the glass bal section.

They measured tension, inclination, temperature and depth. One char-recording

tensiometer was placed between the glass bals and the release.

One VA WR was scheduled for deployment on the MLML buoy by Marra. To

ensure that surface forcing data was collected successfully, we proposed a second

VAWR for installation on the buoy. In addition to the ARGOS telemetry, the

VAWRs recorded data internally at 15 min intervals. Both VAWRs were outfit-

ted with sensors for the measurement of wind speed (WS), wind direction (WD),

sea-surace temperature (SST), air temperature (AT), incoming shortwave radiation

(SW), barometric pressure (BP), relative humidity (RH), and incoming longwave

radiation (LW). The sensor specifications for the VAWR are given in Table 1.

7



Parameter Sensor Range Comments

Wind Speed Gil 3-cup 0.2-50 m/s Vector-averagig
Anemometer
R.M. Young
Model12170C
100 cm/rev

Wind Direction Integr Vane 0-360° Vector-averagig
wI Vane follower
WHOI I EG&G

Shon wave Pyometer 0-1400 wans/m2 Average system
Radiation Eppley

Model: 8-48

Long wave Pyrgeometer 0-700 watts/m2 Average system
Radiation Model: PIR

Relative Humidity Varble 0-100% 3.5 sec sample
Dielectrc
Conductor
Vaisaa Humicap

Barmetrc Quam Crysta 0-1034 mb 2.5 see sample
Pressure Digiqua (Burt taen midway

Parscientific thugh avg. period)
Model: 215

Sea Temperatu Thermstor -5 to +30°C 1/2 tie averge
.Therometres Meaured durg fit
4K (g 25° C hal of avg. period.

Ai Temperatu Thermstor -10 to +35° C 1/2 tie averge
Yellow Springs Meaured durg 2nd
#4034 hal of avg. period.
5K(g 25°C

Table 1: Sensor specifications for the Vector Averaging Wind Recorder (VAWR).
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sensor height (m) separation (m)

SW /LW 3.6 0.1

WS 3.5 1.1

WD 3.2 1.1

AT/RH 2.8 0.2
BP 2.5 0.6
SST (SN 184) -1.0
SST (SN 706) -2.0

Table 2: Height above the buoy waterline is shown for sensors on the two MLML
VAWRs. Horizontal separation is given for sensors at the same height on both
VAWRs.

All of the VAWR sensors, except SST, were attached to the discus buoy tower.

The two SST sensors were attached to the buoy bridle at depths of approximately

1 m and 2 m. The buoy tower was a tripod design, with the distance between

legs tapering from about 2.5 m at the buoy deck to 0.6 m at the upper platform

(Figure 3).

The two VAWR pressure housings were supported by an intermediate platform

at about 1.5 m height, and the sensors were clustered around the upper platform

at about 3 m height. Sensor positions with respect to the water line are given in

Table 2.

All of the meteorological sensors were calibrated both before and after the

experiment and "ground truth" measurements were made prior to deployment and

recovery of the buoy. The calibrations are discussed in Section 3 and the chronology

of the ground truth testing is given in Appendix 2.

Through the efforts of other MLML investigators, the upper 100 meters of the

mooring was instrumented with five MVMSs, three BOMS, and the MOORDEX

9



swfLW SW/LW

1.5 m

WS WS

WD WD
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BUOY 'DECK

Figure 3: Schematic diagram of the meteorological sensor tower on the 1991 MLML
buoy. The buoy deck is approximately 0.4 m above the water line. Sensor acronyms
are described in the text.
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(Figure 2). The MVMSs were deployed at 10 m, 30 m, 50 m, 70 m and 90 m depth

and the BOMS at at 20 m, 40 m and 60 m depth. These instruments provided

temperature data at 10 m intervas (except at 80 m) and currents at 20 m intervas

between 10 m and 90 m depth. UOPG instrumentation (15 temperature loggers

and an ADCP) was deployed to supplement these measurements and extend the

range of current and temperature observations to cover the full range of expected

mixed layer depths.

The fifteen Submersible Temperature Loggers (STLs) were acquired from Richard

Brancker Research Ltd. in Canada. These are self-contained instruments which

record internally to solid state memory. Ten of the loggers were Model XL-I00 and

five were Model XX-I05. The two models differ in their temperature precision and

pressure case design. The XX-I05 has increased precision compared to the XL:.I00,

but over a reduced temperature range. The XL-lOO pressure case is rated to 1000 m

and uses an externally mounted thermistor, while the XX-105 pressure case is rated

to 7500 m and has the thermistor mounted internally. We worked with the manu-

facturer to modify the XL-I00 and XX-I05 units to have similar temperature range

and precision. For the XL-I00, the original YSI 44203 thermistor was replaced by a

YSI 44033, resulting in a precision of 0.012°C over a range of -5 to 30°C. The resis-

tors of the XX-I05 bridge circuit were chosen to give a nominal precision of 0.004°C

over a range of 3.5 to 33°C (the actual precision vares slightly with temperature

from 0.002° at the low end to 0.007° at the high end). The stated accuracy of the

STLs is O.OI°C. During calibration tests at WHOI we found the XL-lOO units met

this specification, while the XX-I05 units typically performed somewhat better (e.g.

0.005°C).

The STLs were attached to the mooring wire using a hinge-type clamp which

was tightened around the wire. One STL was placed at 80 m depth to continue the

10 m temperature spacing down to 90 m. The remaining 14 sensors were placed at

11



16 m intervals between 102 m and 310 m depth to match the center points of the

averaged ADCP depth cells (see explanation below).

The ADCP was a 150 kHz, self-contained unit manufactured by RD Instru-

ments in San Diego. Outfitted with pendulum tilt sensors, a flux gate compass,

and 20 Mbytes of solid state memory, the instrument was clamped to a load cage

with the transducers pointing downwards from a depth of 54 m. Four transduc-

ers transmitted acoustic energy along narrow beams (approximately 40 half-power

beam width) insonifying a volume of fluid determined by the beam width, the du-

ration of the acoustic pulse, and the distance from the transducers. Backscattered

energy from the insonified volume arrives at the transducers with a Doppler shift

proportional to the average speed of the scatterers in the volume. To the extent

that the scatterers are advected with the fluid, Doppler shifts estimated at suc-

cessive times after transmission provide a profile of water velocity as a function of

distance along the beam.

For MLML, the ADCP was configured to send out pulsed transmissions at one

second intervals for a period of 60 s. This sequence of 60 transmissions, called an

ensemble, was repeated at 15 min intervals. Values of velocity in earth coordinates,

echo amplitude, and data quality parameters for each beam, along with heading,

tit, and temperature data were averaged for each ensemble and recorded to mem-

ory. The precision of velocity estimates from ADCPs depends principally on the

operating frequency and the pulse length. For MLML the estimated precision of

the 15 min average horizontal velocities is about 2 cm/s.

The backscattered signal from each transmission is processed over equally

spaced time intervals corresponding to successively deeper insonified volumes known

as depth cells (the depth cell length is the vertical component of the insonified vol-

ume). For MLML, data were processed over time intervals corresponding to a 8 m

12



depth cell, while the nominal depth resolution of the transmitted pulse was 16 m.

Thus, the data were oversampled in depth and successive depth cells are not inde-

pendent. Forty depth cells were recorded for each transmission, giving a profiing

interva of 320 m. The first depth cell recorded was centered at a depth of 66 m

and the center of the last cell was at a depth of 378 m. Prior to analysis, the data

is usually averaged over two depth cells so that the sampling interva matches the

16 m depth resolution. Considering the two-cell average ADCP data we see that

the 102 m STL is at the center of the third averaged cell, the 118 m STL at the

center of the fourth averaged cell, etc., down to the 310 m STL which is at the

center of the 16th averaged cell.

2.3 Deployment
i
\ .

The ship used for the deployment cruise was the R/V ENDEAVOR, operated by

the University of Rhode Island, which sailed out of Reykjavik, Iceland for the MLML

experiment. The UOPG scientific party arrived in Reykjavik on 22 April 1991 to

begin cruise preparations. The ENDEAVOR sailed at mid-day on Saturday, 27 April

1991, arriving at the launch site approximately 275 miles south of Reykjavik at

0420 Z, 29 ApriL. Winds were out of the northeast at 15 gusting to 25 knots. The

sea state was 5, with an 8-foot swell, as estimated by the bridge. A CTD was taken

to 275 meters at 0500 Z to document pre-deployment vertical structure (Figure 4).

The acoustic release lowering was done to 750 meters.

The mooring launch commenced after breakfast on 29 April, with the entire

launch operation taking just under eight hours to complete. The anchor went over

the side at 1542:30 Z and hit bottom at 1603:52, giving an average descent rate

of 132 meters per minute. At the time of anchor launch, GPS was down, so we

elected to do the acoustic survey of anchor position using Loran-C. Later, when

13
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deployment of the MLML mooring
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GPS was back up, we calculated the offset between GPS and Loran-C. The Loran-

C position was 0.44 Nautical miles away and bearng 0060 from GPS position. The

fial position of the anchor was calculated using this offset (Figure 5), giving 590

35.61'N latitude, 200 57.85'W longitude. The water depth at the anchor site was

determined to be 2822 m. After the anchor surey, the ship approached the surface

buoy to log its position and take some video footage. The Buoy position was about

1.2 miles northeast of the anchor.

At 1758 Z on 29 April we launched a Metocean drifter buoy number 14314,

given to us by the U. S. Navy (Naval Oceanographic Command) at Keflavik, Ice-

land. Position of the drifter launch was 590 34.6'N, 200 57.2'W. Having completed

deployment operations, the ENDEAVOR left the MLML site and returned to Reyk-

javik on 1 May 1991.

There was interest in documenting the watch circle of the large-scope MLML

mooring, which would also aid in determining the safe approach distance to the

anchor position for ships working in the area. From the water depth and a scope

of 1.25 the horizontal excursion for the buoy is estimated at 2.1 km (1.1 n-mi).

However, since the scope is defined using the slack length of the mooring, we must

account for the stretch of the synthetic components under load. Assuming that

the 1300 m of nylon and polypropylene stretches 15% gives a maximum horizontal

excursion to 4.7 km (2.5 n-mi). Buoy positions determined from ARGOS telemetry

for the period 1-9 May are shown in Figure 6. These positions have accuracy of

about 350 m (0.2 n-mi). The plot shows that the buoy is typically found between

the slack-length excursion and the maximum excursion.
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Figure 5: The MLML-91 mooring anchor position, determined from Loran-C fixes
while GPS was down, and later adjusted using GPS (see text). The position of the
anchor was determined to be 590 35.6lN, 200 57.85'W.
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2.4 Recovery

The R/V ENDEAVOR sailed from Reykjavik, Iceland for the mooring recovery

at 1030 Z, 5 September 1991. The weather forecast called for flat seas for several

days, an unusual occurrence at the MLML site, but very good news for the mooring

recovery team. A cal was made to WHOI just before the ship sailed to check

the VA WR ARGOS telemetry data from the mooring, confrming that the highest

barometric pressure and lowest wind speeds of the entire experimental record were

being observed.

On the morning of 6 September ENDEAVOR arrived at the mooring site. En-

route to the mooring in calm seas (sea state 1), the buoy was seen on radar at a

distance of six miles. At 1100 Z, the buoy was sighted visually at three miles. The

ENDEAVOR hove-to 1/4 mile downwind of the buoy for a half-hour of meteorological

ground truth measurements. These data appear in Appendix 2. At least a hun-

dred seagulls were seen around the buoy, mostly swimming, but some perched on

the deck with one sitting on top of the BOMS sensor. The deck of the buoy was

covered with a greenish algae/weed growth, indicating it had been awash a good

bit. Sensors appeared to be undamaged and looked like new. A CTD was taken to

400 meters before the mooring recovery (Figure 7).

The acoustic release was fired at 1250 Z on 6 September and the mooring began

its ascent. The recovery went smoothly, with the mooring and all instruments

aboard by 1800 Z. Recovery was slowed by the TSE winch not having enough drum

capacity to hold all of the mooring; operations had to be stopped midway through

to offspool wire so that the rest of the mooring could be hauled in.

The condition of al instruments on recovery was good, with two exceptions.

The MVMS at 10 meters was covered with a black, oily fotÙing. The transmissome-

ter of this instrument was missing, with broken cable hanging loose, and the MVMS
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Figure 7: CTD cast taken from R/V ENDEAVOR on 6 September 1992, just prior
to recovery of. the MLML mooring
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at 50 meters had a broken Oxygen probe. The Argos transmitter on the buoy bridle

was severely corroded in the mid-section of its pressure case.. It was hypothesized

that this was due to the lack of a neoprene pad on the bottom mounting bracket

base plate, allowing the aluminum case to directly touch the bracket. The mooring

hardware and wire rope looked in good shape. None of the STL brackets showed

any signs of slippage on the wire rope. The nylon had three small wuzzles all within

100 m of the nylonjpolypro splice. The wuzzles may have been caused by the nylon

going slack and then throwing a loop and tightening itself on the loop.

The ship left the MLML site after recovery operations were complete, arriv-

ing outside Reykjavik harbor early on 8 September. Personnel from LDGO and

Mark Grosenbaugh from WHOI departed on the pilot boat, while the rest of the

science party remained onboard, sailing south to track down and recover the surface

float from the North-West mooring of the Subduction Experiment array which had

gone adrift. After recovering the drifting portion of the Subduction mooring on 15

September, ENDEAVOR arrived at WHOI on 23 September, 1992.
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3 Data Presentation

The surface meteorological varables, air-sea fluxes, upper ocean temperatures,

and upper ocean currents observed from the MLML mooring are presented in this

section. The observations come primarly from the UOPG instruments on the moor-

ing (two VAWRs, the STLs, and the ADCP), but measurements of currents and

temperature from the MVMSs are also included. The principal means of presenta-

tion is a series of figures and tables which are described in the text and presented

at the end of the section.

3.1 Meteorological Variables

The VA WR data tap~s were read for each instrument resulting in files con-

taining time and eight meteorological vaiables: Wind speed (WS), wind direction

(WD), sea-surace temperature (SST), air temperature (AT), incoming shortwave

radiation (SW), barometric pressure (BP), relative humidity (RH), and incoming

longwave radiation (LW). The longwave radiation measurements from MLML are

discussed in Dickey et al. (1993) and wil not be presented here.

A small number of obviously bad points (less than 0.2% of the samples) were

edited out by hand and replaced by linearly interpolated values. In order to elim-

inate data from periods prior to deployment and after recovery of the mooring, a

de-facto definition of MLML-91 start and end dates was made. The resulting files

had 12384 15 min samples starting on 4/30/91 00:15 (yearday 120.0052) and ending

on 9/05/91 23:45 (yearday 248.9948).

Time series of meteorological variables recorded by the two VA WRs on the

MLML mooring are shown in four sections in Figure 8a-d. The data presented are

at the 15 min intervals recorded by the instrument, with no additional averaging
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variable mean difference std dev

WS (m/s) -0.03 (0.4%) 0.21 (4.8%)
WD (0) -4.60 3.74
SST _1 (OC) +0.027 0.050
SST-2 (OC) -0.036 0.467
AT (OC) +0.002 0.083
SW (W 1m2) -3.15 (1.8%) 5.16 (11 %)

BP (mb) -0.22 0.18
RH (%) -1.11 0.81

Table 3: Statistics of the difference between measurements of like vaiables for the
two VA WRs are shown. Statistics of the difference expressed as a percent of the
two-sensor mean are also shown for some varables. SST _1 is the period of good
performance, SST -2 the period of bad performance.

applied. Observations from VA WR Serial Number ('SN) 184 are shown as a solid

line, observations from SN 706 as a dashed line. The extent to which the two lines

are indistinguishable is a fist-order indication of the quality of the measurements.

The only discrepancies discernible in these plots are in the relative humidity and

the sea surface temperature.

Time series of the differences (SN 184 - SN 706) between varables observed

by the two VA WRs are shown in four sections in Figure 9a-d. These time se-

ries, and their statistics (Table 3), allowed evaluation of VAWR performance. The

best performing sensor for each varable was chosen to form the "best available"

meteorological data from which to compute air-sea fluxes.

Estimates of the accuracy (difference between observed and true value), pre-

cision (repeatability of successive readings), and resolution (smallest change de-

tectable by the sensor) for the VAWR are presented by Weller et aI., 1990. Values

from their Table 3 are quoted in the discussion below. The sensors on the two
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VA WRs were in close enough proximity that we expected experiment-long mean

differences greater than the sensor accuracy to be indicative of calibration biases.

The observed differences at 15 min intervals can be effected by true small-scale

spatial varability in the measured quantity. Thus, it would be unlikely that the

standard deviation of the differences would be as small as the sensor precision (the

precision is the "best case" repeatability under controlled conditions). Stil, we ex-

pected the standard deviation to be near the estimated sensor accuracy for most

vaiables.

The wind speed difference had a mean of 0.03 mls and a standard deviation of

0.2 m/s. The standard deviation of the difference expressed in terms of a percent

of the wind speed was 5%. The wind direction difference had a mean of 50 and

a standard deviation of 40. This compares with an estimated accuracy of 2% for

wind speed and 30 for wind direction. We concluded that the wind sensors were

performing within tolerable bounds, although there was probably a small compass.

calibration bias resulting in the mean difference two degrees larger than the esti-

mated accuracy. From the information avalable, it was not possible to know which

sensor had the larger directional error. Instead we accepted a directional uncer-

tainty of about 50 and chose SN 184 for wind speed and direction based on its more

"reasonable" performance during the strong wind event on 20-21 May.

Sea surface temperature was the variable with the most obvious measurement

problem. It can be seen from the plots that the difference is small up until about

21 May and after 1 August. During this "good" period, the mean and standard

deviation of the difference are 0.030 and 0.050, respectively. The pre and post

deployment calibrations indicated both sensors to be accurate within 0.0050 or less,

quite reasonable given the estimated accuracy of 0.0040. The observed difference

statistics about an order of magnitude larger than the estimated accuracy may be

explained by the fact that the two sensors were separated by 1 m in the vertical.

23



The vertical variability of temperature near the sea surface presumably contributed

to observed differences on the order of 0.010.

During the "bad" period between 22 May and 31 July, the standard deviation

of the difference increased to 0.50 and peak differences of of up to 20 were observed.

A sensor malfunction of some type is indicated, but the problem was transient in

the data and did not show up the post deployment calibrations or electronics checks.

Both SN 184 and 706 appeared to be effected. As a result it was not possible to

determine the cause of the problem or to isolate the problem to a single sensor.

Instead, we chose the SST from SN 706, which showed fewer sharp jumps than

SN 184, and used the temperature from the MVMS at 10 m as a benchmark for

correction.

It was found that with two ad-hoc adjustments to the SN 706 SST, we could get

good agreement with the 10 m temperature. The first adjustment was made on day

151 where SST mysteriously jumps down by about a degree, and the second on day

168 where it jumps back up again. After several trials the fial adjustments were

b.Ti = +0.920 between yearday 151.1927 and 151.3281, and b.T2 = -0.64 between

yearday = 168.3906 and 168.5990. These adjustments were done after the initial

calibration adjustments (described in Section 3.3) were completed. This adjusted

record from SN 706 was used for SST.

Air temperature showed a mean difference of 0.002°e and a standard deviation

of 0.08°e. The observed mean difference indicates no biasing problems, given the

estimated accuracy of 0.008°e. Similar to the situation for SST during its period of

good performance, the standard deviation is significantly larger than the estimated

accuracy. Simple regressions were used without success in an attempt to fid a

relationship between the air temperature difference, low wind speed, and high in-

solation. There was no evidence of electronics problems for either sensor, and the
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pre and post deployment calibrations for both sensors were within the estimated

accuracy. Under the assumption that the observed differences were the result of

small-scale variabilty in the true air temperature, which we would like to average

out, the mean value of AT from SN 184 and 706 was used.

Short wave radiation showed a mean difference of 3 W 1m2 (2%) and a standard

deviation of 5 W 1m2 (11%). The mean difference is acceptable given the estimated

accuracy of 3%. However, from the plots it appears that the large standard deviation

is the result of an error in one (or both) of the sensors which is proportional to the

magnitude of insolation. Calbration data showed that the SW sensor for VA WR

SN 184 had a significant post deployment calibration error (about 4%) which could

have accounted for the observed differences, while SN 706 performance was within

specifications. Thus, we chose to use the SW data from SN 706.

Barometric pressure showed a mean difference and standard deviation both

equal to 0.20 mb. This value is actually slightly less than the estimated accuracy

of 0.26 mb. In addition, pre and post calibrations for both instruments indicated

excellent performance. Since both sensors performed equally well, the choice of the

"best" sensor is arbitrary. We chose to use the BP data from SN 706.

Relative humidity showed a mean difference and standard deviation both equal

to 1 %. This value is less than the estimated accuracy of 3%, and we can conclude

that both instruments within their specifications. However, from the plots it can

be seen that the observed difference is principaly due to a high-humidity bias, with

SN 706 reading approximately 2% higher than SN 184 for RH greater than 90%.

It was found that SN 706 performed better than SN 184 in both pre and post

calibration tests, particularly in the RH range between 80% and 95%. Thus, the

RH measurements from SN 706 were chosen for the final data set.
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The fial meteorological data set, determined to be the best available observa-

tions from the two VAWRs in the manner described above, is shown in nine sections

in Figure IDa-i. Note that the 14 day section intervals do not divide evenly into the

129 day experimental period. Rather than begin a tenth section, the ls.t three days

are not shown. The original 15 min data have been smoothed over four hours and

plotted every two hours. The variables are the same as those shown in Figure 8,

except here AT (solid) and SST (dashed) have been combined in one paneL.

3.2 Air-Sea Fluxes

The fluxes of momentum, sensible heat, and latent heat for the MLML site

were computed from the meteorological varables shown in Figure 10 using bulk

aerodynamic formulae of Large and Pond (1981; 1982). Several steps were necessar

to go from the raw meteorological variables to the momentum flux and total heat

flux. The most involved of these is the estimation of outgoing longwave radiation

from the sea surface, including a correction for cloud cover.

The outgoing longwave radiation can be estimated by assuming that the earth

is nearly a black-body radiator and accounting for the presence of clouds. A review

- of several such approaches is given by Fung (1984). We used a formulation for LW

as a function of SST, AT, and the mixing ratio from Clark et aI. (1974). Corrections

for slight departures from black-body behavior are included. Also included in this

formulation is a cloud correction function F(n), where n is the cloud fraction,

a number between zero (no clouds) and one (complete cloud cover). We used the

expression F( n) = 1 - b * n2 where b is an empirical parameter which vares

with latitude from about 0.5 at the equator to 0.8 at 800N (see Fug, 1984). The

diffculty is in determining the cloud fraction n.
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The approach taken was to compute the clear sky shortwave radiation from

astronomical theory (List, 1984) and estimate the cloud cover by comparing the

computed clear sky vaue to the observations. The principal steps in this pro-

cess are outlined below. The shortwave radiation record was corrected for a smal

rught-time bias by subtracting a rught-time mean of 5.49 W 1m2 from all data. A

theoretical estimate of clear sky shortwave radiation for the MLML site was made

using the formulations of List (1984). The theoretical values were "tuned" to be

a good match to the sunruest days of the experiment by picking an albedo of 0.06

and an atmospheric transmission coeffcient of 0.77. The cloud fraction was then

estimated from the ratio of observed to theoretical shortwave radiation and checked

for consistency, i.e., a sensible distribution between zero (sunniest day) and one

(cloudiest day). This techruque, of course, works only during the day. Night-time

vaues of cloud cover were estimated by linear interpolation between the nearest two

daytime values. After interpolation, the cloud fraction record was smoothed over

30 hours to reduce sensitivity to the day Inight transitions.

The observed meteorological variables and the cloud fraction estimate are used

as input to a flux computation routine. Output from the irutial flux computation

includes stabilty, wind stress, sensible and latent heat flux, and cloud corrected

longwave radiation. Along with the observed shortwave radiation this forms a sur-

face flux time series for MLML which is complete except for precipitation. As a

fial step, the heat flux components are combined to form the total heat flux.

The MLML bulk fluxes are presented in Figure lla-i. The fluxes are computed

from the 15 min meteorological variables, but have been smoothed over four hours

prior to plotting. The five panels show (from top to bottom) sensible (solid) and

latent (dashed) heat flux, shortwave (solid) and cloud corrected longwave (dashed)

radiation, total heat flux, wind stress magnitude, and wind direction. The sign of
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SN model depth pre post data recovery

2535 XL-I00 80 y y good data
2539 XL-I00 102 y y good data
2538 XL-lOO 118 Y n good data, failed during post-cal
2534 XL-I00 134 y n no data, quit before deployment
2540 XL-I00 150 y y good data
2533 XL-I00 166 y y good data

3263 XX -105 182 y Y good data
2536 XL-I00 198 y y good data
2541 XL-I00 214 y y good data
3299 XX-I05 230 y y good data
3291 XX-I05 246 y y good data
3301 XX-I05 262 y n no data, water leak

2542 XL-I00 278 y n no data, scrambled EPROM
3264 XX -105 294 y n partial record, water leak
2537 XL- 100 310 y y good data

Table 4: Tabulation of instrument serial numbers, depth of deployment, and data
recovery for the Brancker Submersible Temperature Loggers. Pre and post indicate
pre-deployment and post-deployment calibrations, respectively.

sensible, latent and total heat fluxes as presented here are positive for a heat gain

by the ocean.

3.3 Upper-Ocean Temperature

Complete records of high quality temperature data were obtained from 11 of

the 15 STLs, a partial record was obtained from the 12th instrument, and no data

were recovered from the remaining three (Table 4).

The three failures left gaps in the temperature record at 134 m depth and be-

tween 246 m and 310 m depth. Instrument SN 2538 failed during post calibration

and was later repaired; good data were obtained during the deployment. SN 2534
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and 2542 sufered from a ribbon cable chafng problem which was determined to

be generic to the Model XL-I00. This problem was corrected for XL-100s deployed

after MLML. SN 3301 and 3264 were found to have small amounts of water (ap-

proximately one tablespoon) in the pressure case upon recovery. SN 3301 lost all

data due to flooding, but a partial record (the first 90 days) was recovered from SN

3264.

The ten STLs which had post deployment calbrations were found to be ex-

tremely stable, i.e., the mean difference in observed temperature using the pre and

post calibration constants was 0.0050 or less, comparable to the instrument accu-

racy. This made the choice of pre or post deployment calibration coeffcients for

these units arbitrary. Due to the lack of post calibration for SN 2538 and 3264, the

pre calibration coeffcients were used for all .instruments.

Temperature data were also obtained from the USC and Lamont MVMSs de-

ployed between 10 m and 90 m. In order to be compatible with our STL sampling

interva the USC raw data, originally sampled at 1 min intervals, were averaged to

15 min. Similarly, the Lamont data, originally sampled at 4 min, were averaged

to 15 min intervals. Calibrations were not available for any of the USC or Lamont

temperature sensors.

The USC records were complete, and no further processing was required. The

Lamont temperature records at 30 m and 90 m had a gap between 27 July and

26 August. This segment was filled using linear interpolation between the nearest

neighbors in the vertical, i.e., 30 m data were filled using USC MVMSs at 10 m

and 50 m, 90 m data were filled using STLs at 80 m and 102 m. The Lamont

70 m temperature record stopped on 30 June. The missing 70 m data were also

filed by interpolation, using the MVMS at 50 m and the STL at 80 m. During the

processing of the Lamont temperature records, we took the opportunity to fill in
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the missing data from the 294 m STL, interpolating between the STLs at 246 m

and 310 m.

It was clear from the initial CTD cast (Figure 4) that the water column was

fairly well mixed at the start of the deployment. The CTD temperatures were

within about O.I°C from the surface to 300 m, with a mean of about 8.130°C.

The temperatures observed on the mooring were very stable immediately following

deployment, after which significant surface waring began. Thus, we chose to

compare mooring temperatures averaged over the fist 8 hrs of 30 April to the

expected values based on the CTD cast. Instruments with good pre and post

deployment calibrations are shown in Figure 12 as circles, and are in good agreement

with the CTD profile. Instruments without good calibrations are shown as crosses

in the figure, and all but the Lamont 90 m MVMS appear suspect due to poor

agreement with the CTD cast and the appearance of strong temperature inversions

with depth.

As a first attempt at an ad-hoc "adjustment" of the temperature sensors with

suspect calibrations, we forced their initial values to agree with the average of

the STLs. The depth-mean from 80 m to 246 m of the STL 8 hr averages was

8.1304°C. The 8 hr averages for the other 7 sensors, and the adjustments used

to bring their means into agreement with the STLs, are given in Table 5. The

adjustment was applied as an additive constant to all temperatures in the record

for a given instrument.

The processing steps described above resulted in time series of temperature at

17 depths between the surace and 310 m depth (Table 6).

The temperatures are plotted as overlapped time series in Figure 13a-i. The

surface data are shown as a solid line, the 10 m data as a dashed line, etc., with

successive depths alternating as solid and dashed. These data were averaged over
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source depth 8-hr mean adjustment

VAWR 0 8.1205 +0.0099
USC MVMS 10 8.1091 +0.0213
Lamont MVMS 30 8.1791 -0.0487
USC MVMS 50 8.0964 +0.0340
Lamont MVMS 70 8.0568 +0.0736
Lamont MVMS 90 8.1409 -0.0105
Brancker STL 294 8.0198 +0.1106

Table 5: Temperature adjustments used to bring the seven instruments with
un-reliable calbrations into agreement with the STLs between 80 m and 246 m.
Mean temperat_ures over the first eight hours of 30 April were used in the compar-
isons.

2 hr prior to plotting. Note the occurrence of small, but persistent temperature

inversions between the surface and 10 m depth (e.g. 5-7 May, 28-31 May). These

are presumably not real, but rather a result of imperfect correction of the VAWR
i

SST record. Inversions at other depths can occasionally be seen, which may be the

result of the crude nature of the temperature adjustments described above.

The temperature data are shown vs. depth and time as contour plots in Fig-

ure 14a-i. The data were averaged over 18 hr prior to contouring.

lr

3.4 Upper-Ocean Currents
¡,

,N
~ \

A complete record of currents was obtained from the RDI ADCP. Currents in

earth coordinates (i.e. rotated from a coordinate system relative to the instrument

into a geographical coordinate system using the measured pitch, roll and heading)

were averaged to create time series in 16 m depth cells between 86 m and 310 m

(Table 6). The ADCP recorded one profie (an average of 60 transmissions) every
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depth temperature currents

0 VAWR 706
10 USC MVMS USC MVMS
30 Lamont MVMS Lamont MVMS
50 USC MVMS USC MVMS
70 Lamont MVMS Lamont MVMS
80 Brancker STL
90 ADCP (86 m)

102 Brancker STL ADCP
118 Brancker STL ADCP
134 ADCP
150 Brancker STL ADCP
166 Brancker STL ADCP
182 Brancker STL ADCP
198 Brancker STL ADCP
214 Brancker STL ADCP
230 Brancker STL ADCP
246 Brancker STL ADCP
262 ADCP
278 ADCP
294 Brancker STL ADCP
310 Brancker STL ADCP

Table 6: The sensors used to provide temperature and current data at a given depth

are shown. If no sensor is shown then no data were available at that depth ( except

for the 90 m temperature which was available, but not used due to an unresolved
timing problem).
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15 minutes. The earth-coordinate current profiles were computed on a ping-by-ping

basis by the ADCP, so no further processing was necessary. Although the ADCP

passed all pre and post deployment diagnostic tests, no laboratory calbration of the

ADCP currents was possible. Instead, the ADCP currents at 86 m were compared

statistically to the MVMS currents at 50 and 70 m. The comparison showed rms

differences in speed of 2-3 cmjs, and in direction of about 70. Since these differ-

ences were near the expected instrumental error level and comparable to differences

between the 50 m and 70 m MVMS records, it was concluded that the ADCP was

performing properly. Coherence between the ADCP and MVMSs was significant

out to a frequency of about 0.3 cph where the ADCP spectra reached a noise floor.

Currents were also obtained from the USC and Lamont MVMSs at 10, 30, 50,

and 70 m (Table 6). As with the temperature data, the 1 min USC samples and 4

min Lamont samples were averaged to 15 min to be compatible with our nominal

sampling interval. The current records from the two USC instruments and the

70 m Lamont instrument were complete, and no further processing was done. The

Lamont record from 30 m stopped on 9 July due to a broken rotor. The missing

data were filled using linear interpolation between the 10 m and 50 m USC MVMSs.

The Lamont MVMS at 90 m recorded good data only for the first three days of

the deployment due to a compass problem, and was eliminated from any further

processing. Instead, the ADCP currents from the 86 m depth bin were used.

Figures 15a-i and 16a-i show the east and north velocity components from 11

depths as overplotted lines. Time series from the MVMSs at 10, 30, 50, and 70 m

are shown along with ADCP data from bins at 86, 102, 118, 150, 182, 214, and

246 m. Data were smoothed over 8 hr prior to plotting. In order to distinguish

data from different depths, a variety of line types is used. The 10 m data is plotted

as a solid line and data from 30, 50, and 70 m use progressively longer dashes, At

102 m and below all lines are solid. The currents below 100 m have little varation
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with depth and form a "clump" of solid lines. When there is substantial shear in the

upper 100 m the solid 10 m line and the dashed lines at 30, 50 and 70 m separate

from the clump of solid lines from 102 m and below.

Figure 17a-i shows currents at selected depths between 10 m and 250 m as

vector stick plots. The nine panels, from top to bottom, show data from 10, 30,

50, 70, 86, 118, 150, 198, and 246 meters. A stick pointing upwards represents a

current towards the north. These data were averaged over 8 hr prior to plotting.
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Appendix 1: Cruise Participants

WHOI Participants on Deployment Cruise:

George Tupper
Wil Ostrom

Bryan Way
Paul Bouchard
Carleton Grant

WHOI Participants on Recovery Cruise:

Mark Grosenbaugh

George Tupper
Larry Costello

Wil Ostrom

Carleton Grant
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Appendix 2: Chronological Log

The UOPG scientific party arrived at the agent's in Reykjavik at 0900Z, 22

ApriL. The shipping agent for the cruise was the Iceland Steamship Company (Eim-

skip), who provided very good support in general, although we did have to wait 1/2

day for our container to be delivered to our working area. The working area itself

was excellent, a portion of a large warehouse, about 30 feet from where the ship

was tied up. Workbenches were 4 x 8 sheets of plywood set on stacks of pallets.

Power was supplied by a long extension cord and was 220 volts, 50 cycles. We had

brought a step-down transformer and all equipment seemed to work fine on 110V

50 cycles. By the end of the day our container was unloaded and the electronics

test stations were set up and running.

A magnetic survey was done by George Tupper outside the warehouse in an

attempt to find a good location for buoy spins. Unfortunately, the magnetic vari-

abilty was very strong. The magnetic heading to a visual reference point varied by

25 degrees over a distance of 30 feet. It was assumed that this variation was caused

by the pilings under the dock. Since the overhead door opening was high enough to

get a fully instrumented discus buoy through, We decided to do the spins indoors,

sighting through the open door on a small lighthouse which appeared to be 1-2

miles away and had a bearing of 035 degrees magnetic. The magnetic variabilty

indoors was significantly better than on the dock, with a typical variation of 2-3

degrees over a distance of 10 feet The resulting compass variation (Figure 18) didn't

come out quite as well as we would have liked, but we decided not to attempt any

corrective action since the local conditions were less than ideal and the spins done

at Woods Hole with the same instruments and the same buoy were good.

During pre-cruise checkout, Bryan Way found a high current drain in VAWR

SN 706. He found a bad FSK Modem Controller, replaced it, and both VAWRs
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were up and running. While the spins were in progress, Bryan noticed that VA WR

SN 184 was outputting data through the Argos package every 3-5 seconds (should

be once every 15 ininutes). After the spins were completed, he found a bad O.C.

controller in the Argos package. He replaced that and fixed the problem.

There were a few problems with the documentation of the buoy tension package

and George spent some time making sure things were right before installing it into

the buoy. The final check was to hook the tensiometer to an upright roof support

and pull on it with a forklift to see that tension really was working.

At 1500Z on 26 April, the buoy was moved outside, where the air temperature

was about 4°C, and the wind was estimated at 15-20 knots from the east. At 1624Z,

the two sea temp thermistors were put into an ice bucket and left there overnight.

The buoy was on the ship from midday 27 April til midday 29 ApriL. Ground truth

measurements were made near the buoy with hand-held standards. A chronology

of important events during deployment and recovery operations and documentation

of ground truth data follows.

26 April 1991

0850Z Begin buoy compass spin.

1022Z Finish spin (see Figure 17).

1029Z Chart-recorder tensiometer (SN 278) turned on.

1105Z Pulled 500 Lbs on tensiometer 278 for one minute.

1500Z Discus buoy moved from indoors to outdoors (Outside air temp = +4°C).

1624Z Both VAWR Sea Temp probes placed in bucket of ice water, remained in

water overnight.
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1600Z Begin pre-deployment ground truth observations.

WSPD
(m/s)

BP
(mb)

RH
(%)

AT
(C)

1600Z (26 April)
1800Z
1915Z
2248Z
0730Z (27 April)

7-10
5-8
5-8
1-2
1-2

995.4 69.0 +5.5

993.2 75.5 +4.6

992.4 77.4 +4.7

989.5 78.9 +5.2

986.5 68.8 +6.0

28 April 1991

1230Z Continued ground truth observations, note that comparison with buoy speed

wil not be valid because at this time the buoy is on its side on the deck of

the ENDEAVOR.

WSPD
(m/s)

BP
(mb)

RH AT
(%) (C)

1230Z
1630Z

1014.4 46.0 7.4
1016.6 47.9 8.3

6 September 1991

1130Z Begin pre-recovery ground truth observations. Measurements made with

hand-held sensors onboard ENDEAVOR approximately 1/4 mile downwind

from buoy. Ship's sail data also recorded.

113



Hand-held I Endeavor SAIL

Wet Dry BP
I BP

RH
(C) (C) (mb) (%)-(mb)

1130Z 13.50 14.4 1036.3 1035.5 93.4

1135Z 13.45 14.7 1036.3 1035.2 93.4

1140Z 13.40 14.5 1036.2 1035.2 93.4

1145Z 13.45 14.6 1036.2 1035.2 93.3

1150Z 13.40 14.3 1036.2 1035.1 93.3

1155Z 13.40 14.3 1036.2 1035.3 93.3

1200Z 13.40 14.3 1036.2 1035.2 93.2

1250Z Acoustic Release fired.

1900Z All mooring instrumentation, wire, and hardware aboard.

7 September 91

1302Z Ice-water bag held against lower thermistor on bridle (VAWR SN 706).

1334Z Ice bag off lower thermistor, transferred to upper thermistor (VAWR SN

184).

1415Z Ice bag off upper thermistor.

18 September 91

1221:00Z Pull on bridle tensiometer with come-along

1222:00Z Loosen come-along

1223:30Z Pull on bridle tensiometer with come-along

1223:00Z Loosen Com-along
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1723Z 15 Temperature loggers from MLML mooring into walk-in reefer.

1840Z 15 Temperature loggers out of reefer, back in main lab.

22 September 91

1213:50- 1218Z Two MLML engineering instruments turned vertical (before and

after this period they were stored horizontally).

1227Z 12 Subduction NW Temperature loggers into walk-in Reefer.

1401Z 12 Subduction NW Temperature loggers out of walk-in, back in main lab.

..
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Figure 18: Data from the pre-deployment buoy spin in Reykjavik, Iceland are shown.
Compass readings from the two VAWRs (SN 184 and 706) are compared to a sighting
point at a bearing of 0350.
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