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The propagation of weakly dispersive modal pulses is investigated using data collected during the

2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal

pulses are characterized by weak dispersion- and scattering-induced pulse broadening; such modal

pulses experience minimal propagation-induced distortion and are thus well suited to communica-

tions applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dis-

persive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly

dispersive modal pulse, a transmitted communications signal can be recovered without performing
channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions

have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are

estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR)

and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR

result in larger BERs. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4820882]

PACS number(s): 43.30.Bp, 43.60.Ac, 43.60.Dh, 43.60.Ek [AMT] Pages: 3386–3394

I. INTRODUCTION

Certain modal pulses (broadband distributions of

energy with fixed mode number) exhibit little dispersion-

and scattering- induced pulse broadening (Brown and

Udovydchenkov, 2013; Udovydchenkov and Brown, 2008).

Such modal pulses are referred to here as weakly dispersive

modal pulses. Using communications terminology, a signal

consisting of a sequence of symbols (sometimes referred to

as bits or digits) that is carried by a weakly dispersive modal

pulse exhibits little inter-symbol interference (ISI); weakly

dispersive modal pulses are thus potentially useful in com-

munications applications. The utility of weakly dispersive

modal pulses in communications applications is investigated

experimentally in this paper. Specifically, data collected dur-

ing the long-range ocean acoustic propagation experiment

(LOAPEX) is analyzed here to investigate whether a trans-

mitted communications signal can be recovered at ranges of

50, 250, and 500 km without performing channel equaliza-
tion by extracting the signal carried by a weakly dispersive

modal pulse.

Details of the LOAPEX experiment, which was con-

ducted in the eastern North Pacific Ocean in 2004, are

described in Mercer et al. (2005, 2009). The data analyzed

here consists of wave fields excited by broadband transmis-

sions in the 50 to 100 Hz band from a ship-suspended com-

pact source, and which were recorded on a shallow vertical

line array (SVLA) of hydrophones. The array, which was

centered near the sound channel axis, had 40 receiving

elements with 35 m spacing, covering depths between

approximately 350 and 1750 m. The transmitted signals were

phase-coded m-sequences, 1023 digits long with 75 Hz car-

rier frequency, and two cycles of the carrier frequency per

digit. The receptions were sampled at 1200 Hz. In most

applications involving m-sequences, match-filtering (pulse
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compression) of the recorded signals is performed to obtain

the impulse response while simultaneously improving the

signal-to-noise ratio (SNR). In contrast, in this paper no

pulse compression is performed. Instead, the m-sequence

transmissions are treated as a binary communication

sequence; we investigate whether this binary information

can be recovered at the receiving array without relying on

knowledge of the transmitted signal. In this paper only trans-

missions from stations T50, T250, and T500 (approximately

44.7, 244.7, and 484.7 km away from the SVLA, respec-

tively) are considered. The design of the SVLA allows reso-

lution of the lowest ten or so normal modes at 75 Hz. Here

we consider only near-axial transmissions (source at approx-

imately 800 m depth) because those transmissions strongly

excite the lowest order modes, which are the focus of this

paper.

Channel equalization is not considered in this paper, pri-

marily because a discussion of that topic would detract from

our focus on some interesting propagation physics. In other

words, this paper should be thought of as a paper about prop-

agation physics that happens to be motivated by communica-

tions applications. From a communications perspective the

question investigated here—What is the maximum range at

which a communications signal can be recovered without

performing channel equalization?—is both interesting and

important. We note also in this regard that the LOAPEX

experiment was not designed as a communications experi-

ment. It is of course possible to use one or more m-sequence

receptions, together with knowledge of the transmitted

m-sequence, to train an equalizer, and then apply that equal-

izer to subsequent m-sequence receptions in an attempt to

recover the m-sequence. That procedure will not be further

discussed.

Prior studies of underwater communication at long

range in the deep ocean include those of Freitag and

Stojanovic (2001), Song et al. (2009), and Song and

Dzieciuch (2009). Unlike the present study, those efforts

focused on some form of adaptive equalization. We note

also that Morozov et al. (2008) have previously argued that

it may be advantageous to perform mode-processing prior to

performing equalization. That suggestion is supported by the

results presented here, with the caveat that we recommend

focusing on the special class of modal pulses that qualify,

approximately at least, as weakly dispersive.

The remainder of the paper is organized as follows. In

Sec. II weakly dispersive modal pulses are briefly described

and the advantages of using these pulses in communication

applications are noted. Section III outlines the processing

algorithm used in the data analysis, which allows estimation

of bit error rates (BERs). Section IV presents the results of

this study and summarizes the observed BER trends as a

function of transmission range and mode number. In Sec. V

the effects of SNR and modal pulse spread on BER are con-

sidered. Conclusions are given in Sec. VI.

II. WEAKLY DISPERSIVE MODAL PULSES

The properties of weakly dispersive modal pulses and

their relevance to underwater communication applications

are described by Brown and Udovydchenkov (2013). A brief

summary is given here. Modal pulses are broadband

contributions to a wave field corresponding to a fixed mode

number. The term weakly dispersive modal pulse is used

here to describe a modal pulse which exhibits only small dis-

persion- and scattering-induced distortion. Dispersion- and

scattering-induced contributions to modal pulse time spreads

(Udovydchenkov and Brown, 2008) are 2p(Df/f0)(jb(I)jI/
R(I))r and 4p3/2(B/3)1/2(jb(I)j/R(I))r3/2, respectively. Here f0
is the center frequency, Df is the bandwidth, r is the range,

b(I) is the waveguide invariant, R(I) is the ray or mode

double-loop distance, I is the action variable, and B is the

diffusivity of energy in action (primarily due to internal-

wave-induced sound speed fluctuations). The action,

frequency, and mode number m satisfy an asymptotic quanti-

zation condition; in typical deep ocean environments

2pI¼m� 1/2, m¼ 1,2,… . Weakly dispersive modal pulses

can be of two types. The first type consists of the lowest

order modes. Low-order modes have small I and hence small

dispersive time spreads. In deep ocean environments low

order modes have small scattering-induced time spreads

because near-axial internal-wave-induced sound speed fluc-

tuations (and hence also typical values of B) are small; see

Virovlyansky et al. (2007), Makarov et al. (2010), and

Udovydchenkov et al. (2012) for a more detailed discussion

of near-axial sound scattering. The second type of weakly

dispersive modes consists of those modes for which the

waveguide invariant parameter b is close to zero (Brown and

Udovydchenkov, 2013). The corresponding modal pulses

qualify as weakly dispersive because both the dispersive-

and scattering-induced contributions to time spreads are pro-

portional to b.

In the mid-latitude eastern North Pacific Ocean envi-

ronment modes with b¼ 0 are typically those with mode

numbers between 20 and 30 at frequencies near 75 Hz

(Udovydchenkov et al., 2012). Unfortunately, those modes

are not resolved by the SVLA. Thus, it is not possible to test

their utility for communication applications using LOAPEX

measurements. For that reason, only the first type of weakly

dispersive modal pulses is considered in this paper.

As we have noted, dispersive- and scattering-induced

contributions to modal pulse time spreads grow with trans-

mission range approximately like r and r3/2, respectively.

Also, dispersive spreads are proportional to m� 1/2. These

dependencies on r and m reveal that weakly dispersive con-

ditions are better satisfied at short r and small m. At short

ranges, the first few (corresponding to the lowest m-values)

modal pulses are expected to behave like weakly dispersive

modal pulses, while at larger ranges, only the m¼ 1 modal

pulse is expected to behave like a weakly dispersive modal

pulse. Distortions of modal pulses with m> 1 due to disper-

sion and scattering are expected to be stronger at long

ranges, than the distortions of the m¼ 1 modal pulse. These

expectations will be tested using LOAPEX observations.

Figure 1 illustrates, using LOAPEX observations, why

low order modal pulses are useful for communication at long

ranges. In this figure the upper row shows absolute wave

field intensities at three fixed ranges as a function of depth

and time. The transient source used to produce that figure,
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consisting of two cycles of a 75 Hz carrier, may be thought

of as a single digit of a communications signal. The second

row shows wave field intensities measured on a hydrophone

at 800 m depth, which is near the sound channel axis. It is

clear that at this or any other depth the arrival structure is

complicated by the presence of many multipath arrivals,

associated pulse broadening due to scattering, and interfer-

ence of energy propagating along different paths. From a

communications standpoint, these effects will result in

strong ISI, making interpretation of a received communica-

tions signal difficult. From a modal perspective, most modal

pulses are subject to strong dispersion- and scattering-

induced pulse broadening, which also leads to strong ISI.

But weakly dispersive modal pulses are special in this

regard. This is illustrated in the two bottom rows of Fig. 1,

which show the range evolution of modal pulses correspond-

ing to the m¼ 1 mode (third row) and the m¼ 9 mode (bot-

tom row). The m¼ 1 modal pulse exhibits little temporal

spreading (at least within 20 dB of the peak) as range

increases, because that is a weakly dispersive modal pulse.

The propagation-induced modal pulse broadening Dt for

mode m¼ 1 is approximately 0.03 s at T50, 0.03 s at T250,

and approximately 0.04 s at T500 [see Sec. V for the defini-

tion of propagation-induced modal pulse broadening and

also see Sec. IV (B) in Udovydchenkov et al. (2012) for

details on estimation of modal group time spreads]. In

contrast, the temporal spread of the m¼ 9 modal pulse

increases significantly with increasing range. The estimated

propagation-induced modal pulse broadenings for mode

m¼ 9 are 0.04 s at T50, 0.07 s at T250, and 0.23 s at T500—

a factor of 6 increase at T500. From a communications per-

spective, a consequence is that the m¼ 9 modal pulse will

exhibit much more ISI than the m¼ 1 modal pulse.

III. DATA PROCESSING

We turn our attention now to testing, using LOAPEX

observations, the expectation that weakly dispersive modal

pulses are capable of carrying information to long range with-

out significant ISI. The algorithm used to estimate BERs is

now described. It is emphasized that our objective is to test

FIG. 1. (Color online) (Top row) LOAPEX wave field intensities after pulse compression as a function of time and depth for T50, T250, and T500 transmis-

sions. (Second row) Wave field intensities as a function of time recorded at approximately 800 m depth corresponding to the receptions shown in the upper

row. (Third row) Range evolution of an m¼ 1 modal pulse. (Bottom row) Range evolution of an m¼ 9 modal pulse. Normalized modal amplitudes are shown

for both modal pulses.
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the just-stated expectation, rather than to develop an optimal

processing algorithm for communications applications.

After all timing and motion corrections were applied,

mode filtering of acoustic wave fields was performed.

Details are as described in Udovydchenkov et al. (2012)

except that the match-filtering step was omitted here because

the transmitted m-sequence is treated as a communication

sequence. Using this process, carrier-modulated amplitudes

am(t) of the first ten modal pulses were constructed. Higher-

order modes were not considered because they are not

resolved by the SVLA. The challenge is to recover the trans-

mitted binary sequence from a modal pulse am(t). To extract

the binary sequence from am(t) the following procedure was

used. First, the signal was bandpass filtered between 50 and

100 Hz and then complex demodulated to baseband.

Instantaneous phase Ym(t) and envelope signal Am(t) time se-

ries were computed for each transmission using a zero-phase

forward-and-reverse fifth order low pass Butterworth filter

(Parks and Burrus, 1987; Oppenheim et al., 1999). Discrete

samples of the phase Ym(t) (sampled at 1200 Hz) were

grouped into bins containing 32 samples (one digit is two

cycles of the carrier; in the signal sampled at 16 times the

carrier one digit contains 32 samples), and values within

each bin were averaged. Because the transmitted sequence

was a binary sequence, only the sign was retained after aver-

aging. (For convenience we shall refer to the bits as þ and �
bits, corresponding to the sign of the phase modulation angle

of the transmitted binary sequence.) Binary sequences

derived from each transmission for each m-value were com-

pared with the transmitted sequence bit-by-bit. The BER is

the fraction (often expressed as a percentage) of the 1023

transmitted bits that are incorrectly identified. The zero-

crossings of Ym(t) identify the times at which the phase po-

larity of successive incoming digits is reversed. The number

of samples between any two zero-crossings should be a mul-

tiple of 32.

To implement this algorithm one needs to synchronize

the incoming signal with the binary sequence. In other

words, it is necessary to find the reference point in time at

which a digit begins. Two considerations need to be taken

into account. First, it is necessary to know how to group

samples into bins of 32, i.e., to identify which of the 32 sam-

ples is the closest to the beginning of the digit. This can be

accomplished by circularly shifting the received signal by k
samples, where k is an integer between 0 and 31. In practice

one also needs to make sure that the synchronization time is

not off by more than one digit, so in the actual implementa-

tion we varied k between �32 and 64. The second problem

is to synchronize the initial phase, because the beginning of

a digit, in general, does not coincide with a sampling point.

This can be accomplished by shifting the phase of the signal

by u0, which can vary between �p and p. We did not

attempt to find an efficient method to estimate k and u0

(which likely can be done from an analysis of incoming

receptions). Instead, a brute force search that minimizes

BERs was implemented to determine k and u0 for each

am(t).
The main steps involved in the implementation of the

demodulation algorithm are illustrated in Fig. 2. This figure

shows three examples of mode 1 modal pulses at ranges of

approximately 50 km (top panel), 250 km (middle panel),

and 500 km (bottom panel). The modal pulse a1(t) is shown

with a thin solid line, and the phase function Y1(t) is shown

with a thick solid line. The idealized transmitted square

wave bit stream is shown with a thick gray line, and digits

recovered from data are shown with dots. In the examples

shown in Fig. 2, at all three ranges, the first 75 digits of the

transmitted m-sequence were recovered with no errors. In

fact, in the three examples shown all 1023 digits were recov-

ered with no errors.

IV. RESULTS

The results of processing all 75 Hz T50, T250, and T500

LOAPEX transmissions are summarized in Table I. That ta-

ble shows BERs for all transmissions for the first ten modes.

Three sets of BERs are listed, corresponding to processing

each transmission separately, coherent averaging over 5 min

(over 11 transmissions), and coherent averaging over 15 min

(over 33 transmissions). Five minute averaging was chosen

as a conservative estimate of the coherence time for these

signals, and was also based on convenience (each file con-

tains 5 min of data). Fifteen minute averaging was chosen as

the longest interval that could reasonably be processed

coherently; because of the recording schedule, averaging

over longer times would often require averaging transmis-

sions more than 1 h apart. For each transmission scenario

four sets of results are shown. Those are the number of trans-

missions with BERs: Equal to zero; between 0% and 1%;

between 1% and 10%; and higher than 10%. Table I shows,

for example, that among 330 individual T50 receptions of

mode 1, all receptions have BERs less than 10%, among

which 291 have zero BER, 32 have BERs between 0% and

1%, and 7 transmissions have BERs between 1% and 10%.

Table I shows that low BERs are achievable at ranges as

long as 500 km. In fact, for mode 1 about 6.5% of transmis-

sions have zero BERs and around 72% of transmissions have

BERs less than 10%.

Two important trends can be seen in Table I. First,

BERs increase with increasing range. And second, BERs

generally increase as mode number increases. At 50 km,

BERs are small for m� 3, substantially larger for modes 4

and 5, and very large for m� 6. At 250 km, BERs are clearly

lowest for m¼ 1, and significantly larger for modes 4 and 5

than at T50. At T500 most error-free transmissions occur for

m¼ 1, but many transmissions for all m� 3 have BERs less

than 10%. In contrast, at T500 BERs are seen to be very

large for all m� 4. All these observations are consistent with

the expectations stated earlier, based on theoretical argu-

ments. These results are also consistent with prior data anal-

ysis [see Fig. 3(c) in Udovydchenkov et al. (2012)], which

suggests that three lowest number modes are expected to be

weakly dispersive: Mode 1 due to a small value of the action

I, and modes 2 and 3 due to a small absolute value of the

waveguide invariant b. Note also that short time coherent

averaging generally helps (presumably by increasing SNR),

but the trends just noted hold for both individual receptions

and coherently averaged receptions.
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A different way to summarize our results is shown in

Fig. 3. In that figure, in-phase components of discrete sam-

ples of am(t) are plotted vs the corresponding quadrature

components. In such constellation plots [see, e.g., Freitag

and Stojanovic (2001) and Song et al. (2009)] good perform-

ance in recovery of a binary sequence corresponds to a clear

separation between two sets of points; in our case the divid-

ing line between þ and � bits is the horizontal axis. If one

focuses only on the position of points relative to that divid-

ing line (ignoring the sometimes multimodal distributions),

the exact same trends that were noted in our discussion of

Table I are seen in Fig. 3.

The multimodal distributions in Fig. 3 require some ex-

planation. The phase modulation angle of the transmitted

m-sequence was #0 ¼ tan�1ð
ffiffiffiffiffiffiffiffiffiffi
1023
p

Þ � 88:2�. Recall that

each transmitted digit consists of two cycles of the 75 Hz

carrier. Ideally, all transmitted digits have the same ampli-

tude and the phase shifts instantaneously between 6#0.

Thus, ideally any sequence of þ and � bits corresponds to

two-point constellation plots, with the two points falling

almost on the vertical axis, one above and one below (and

equidistant from) the horizontal axis. In reality, however, the

phase of the source does not change instantaneously when

transitioning between þ and � bits, and full amplitude is

realized only after multiple repetitions of a bit, e.g., þ þ

þþ. Thus, for any physically realizable source (including of

course the LOAPEX source) þ bits in the sequence

�þ�þ�þ� will be noticeably different than the second,

third, and fourth þ bits in the sequence �þ þ þ þ. We

have confirmed this behavior using T50 mode 1 receptions.

The exact response of the LOAPEX source is not known, but

the qualitative features of the complicated distributions seen

in Fig. 3, especially at the shorter ranges where SNR is high-

est, are not surprising. An example of imperfect detection is

demonstrated in Fig. 4. Modal pulse processing for m¼ 1 of

another T50 reception is shown in the bottom panel. The

upper panel is the same as the upper panel in Fig. 2 with

expanded time axis. Three single-bit errors occurred around

31.50, 31.87, and 32.08 s within the reception interval

shown. The erroneously detected bits are labeled with bold

“�” symbols. Black lines and dots have the same meaning

as in Fig. 2. In all three instances erroneously detected bits

are isolated, i.e., surrounded by bits of the opposite sign.

V. SNR AND ISI

It is useful to identify the dominant factors that contrib-

ute to errors in extracted bit streams. In this section we con-

sider the influence of SNR and modal pulse broadening

(which leads to ISI) on BERs. SNR was estimated for every

FIG. 2. Examples of T50 (top panel), T250 (middle panel), and T500 (bottom panel) modal pulse processing for m¼ 1. The thin black line shows mode 1 am-

plitude a1(t); the thick black line shows the phase function Y1(t); the thick gray line is the idealized transmitted square wave (with unit amplitude); the black

dots show the bits recovered from the phase function. The horizontal axis is absolute arrival time. The vertical axis on each panel shows phase function values

Y1(t) (which vary between �p and p), on which normalized modal amplitude arrivals a1(t) are superimposed in arbitrary units.
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transmission and every mode number from the ratio of

modal amplitudes computed using active source data to

modal amplitudes computed using recordings with the

source turned off. The average SNR was estimated for each

5 min block of data. Quantification of pulse broadening and

ISI is less obvious. To motivate the ISI measure that we

TABLE I. Summary of BERs observed in the LOAPEX transmissions from stations T50, T250, and T500 for each of the first 10 modes. The entries summa-

rize the results obtained for individual transmissions, transmissions coherently averaged over 5 min, and transmissions coherently averaged over 15 min. The

number of transmissions with BER¼ 0, BER between 0% and 1%, BER between 1% and 10%, BER greater than 10%, and the total number of transmissions

are listed for each transmission scenario.

Transmission station T50 T250 T500

Averaging times (min) 0 5 15 0 5 15 0 5 15

Mode BERs

1 0 291 30 10 249 26 10 30 10 3

0% to 1% 32 0 0 51 5 0 71 3 1

1% to 10% 7 0 0 63 2 1 232 21 8

>10% 0 0 0 0 0 0 129 8 2

Total 330 30 10 363 33 11 462 42 14

2 0 313 30 10 11 14 7 0 1 1

0% to 1% 17 0 0 74 12 3 24 5 1

1% to 10% 0 0 0 275 7 1 238 28 10

>10% 0 0 0 3 0 0 200 8 2

Total 330 30 10 363 33 11 462 42 14

3 0 244 30 10 43 8 2 1 6 3

0% to 1% 80 0 0 54 4 2 76 13 3

1% to 10% 6 0 0 260 21 7 286 16 6

>10% 0 0 0 6 0 0 99 7 2

Total 330 30 10 363 33 11 462 42 14

4 0 12 9 4 0 0 0 0 0 0

0% to 1% 100 17 4 1 1 1 0 0 0

1% to 10% 218 4 2 280 30 10 33 8 4

>10% 0 0 0 82 2 0 429 34 10

Total 330 30 10 363 33 11 462 42 14

5 0 185 30 10 3 6 4 0 0 0

0% to 1% 135 0 0 30 13 3 0 0 0

1% to 10% 10 0 0 237 6 2 0 0 0

>10% 0 0 0 93 8 2 462 42 14

Total 330 30 10 363 33 11 462 42 14

6 0 8 5 3 0 0 0 0 0 0

0% to 1% 96 18 6 0 1 0 0 0 0

1% to 10% 219 7 1 77 11 4 0 0 0

>10% 7 0 0 286 21 7 462 42 14

Total 330 30 10 363 33 11 462 42 14

7 0 0 0 0 0 0 0 0 0 0

0% to 1% 0 0 0 0 0 0 0 0 0

1% to 10% 304 30 10 0 0 0 0 0 0

>10% 26 0 0 363 33 11 462 42 14

Total 330 30 10 363 33 11 462 42 14

8 0 0 0 0 0 0 0 0 0 0

0% to 1% 0 2 1 0 0 0 0 0 0

1% to 10% 330 28 9 0 1 0 0 0 0

>10% 0 0 0 363 32 11 462 42 14

Total 330 30 10 363 33 11 462 42 14

9 0 0 0 0 0 0 0 0 0 0

0% to 1% 13 14 8 0 0 0 0 0 0

1% to 10% 317 16 2 0 0 0 0 0 0

>10% 0 0 0 363 33 11 462 42 14

Total 330 30 10 363 33 11 462 42 14

10 0 0 3 2 0 0 0 0 0 0

0% to 1% 24 11 4 0 0 0 0 0 0

1% to 10% 259 15 4 0 0 0 0 0 0

>10% 47 1 0 363 33 11 462 42 14

Total 330 30 10 363 33 11 462 42 14
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employ, we note first that there are three contributions to

modal pulse time spreads (Udovydchenkov and Brown,

2008): The reciprocal bandwidth; a dispersive spreading

term, and a scattering-induced spreading term. The three

terms combine approximately in quadrature. The reciprocal

bandwidth is the duration of a single digit of the transmitted

sequence, which is unrelated to pulse broadening and ISI. In

contrast, the dispersive and scattering terms lead to pulse

broadening and ISI. (Recall that those terms were discussed

earlier and that weakly dispersive modal pulses are special

modal pulses for which both the dispersion and scattering

terms are near zero.) Because the three contributions com-

bine approximately in quadrature, it is natural to define, and

use as a measure of anticipated ISI, the propagation-induced

pulse broadening as Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2

total � Dt2
bw

p
. Here Dttotal is the

data-based estimate of modal group time spread [see Sec.

IV (B) in Udovydchenkov et al. (2012) for details on estima-

tion of Dttotal], and Dtbw is the reciprocal bandwidth contri-

bution to the total modal group time spread; the assumed

numerical value of Dtbw was 0.053 s (Udovydchenkov and

Brown, 2008; Udovydchenkov et al., 2012). For

communications applications a useful quantitative definition

of a weakly dispersive modal pulse is one for which Dt
� Dtbw. Note that consistently with our definition of Dtbw,

for the signal used in the experiment, Dtbw is approximately

twice the duration of the transmitted digit (0.0267 s).

Figure 5 shows BER, SNR, and propagation-induced

modal pulse spread for the first three modes as a function of

experimental time. Each data point corresponds to a 5 min

average. BER error bars correspond to one standard devia-

tion. No error bars are shown for SNR and Dt. The plotted

times are relative to the time of the first analyzed data file

for each transmission type. Figure 5 shows that BERs tend to

cluster in time, but the dependence of BER on SNR and Dt
is not clear in that figure. Figure 6 shows plots of BER vs

SNR and BER vs Dt for all individual receptions of the first

three modes. That figure shows that BER generally decreases

with increasing SNR, and that BER generally decreases with

decreasing Dt. But there is a great deal of scatter in both

plots so neither SNR nor Dt alone can account for trends in

BER. Instead, a combination of these factors—and possibly

others—appear to be relevant. Consider now some special

FIG. 3. Examples of T50 (top row), T250 (middle row), and T500 (bottom row) constellation plots for modes 1 through 10. þ and � bits are well-resolved if

the horizontal axis separates the constellations into two well-defined groups, as is the case for modes 1, 2, and 3 at T50, and mode 1 at T250 and T500.

FIG. 4. Modal pulse processing for m¼ 1 without errors (top panel) and with errors (bottom panel). The top panel is the same as the upper panel of Fig. 2 with

expanded time axis and is shown here for convenience. The bottom panel curves show processing steps for another T50 transmission recorded during hour 8

(see Fig. 5 for BER estimates at this hour). Three single-bit errors occurred during the reception window shown. The erroneously identified bits are plotted

with bold x symbols.
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cases shown in Fig. 5. At T50 BERs are near zero every-

where except during transmission hour 8, where a few

transmissions have BERs between 1% and 10%. At T250

modes 2 and 3 have high BERs during hours 8 and 9; that

is likely due to the absence of mooring navigation data dur-

ing those hours. At T50 BERs are lower during hour 8 for

mode 2 than for mode 1 because mode 2 is more strongly

excited than mode 1. At T250 the SNR for mode 2 is

lowest for the earliest and latest transmissions; correspond-

ingly, BERs are highest during the first few and last few

hours. Similar trends can be noted between Dt and BER:

Generally, an increase in Dt leads to a higher BER. An

example is mode 3 at T500, where both Dt and BER reach

maxima at hour 8. Another example is mode 3 at T250 for

hours 4 through 6; with SNR nearly constant, BER

decreases with decreasing Dt.

FIG. 5. Data-based estimates of BER, SNR, and modal pulse spread (Dt) as a function of experimental time for mode numbers 1, 2, and 3. Mean values and

one standard deviation are shown for BER estimates. Only mean values are shown for SNR and Dt estimates.

FIG. 6. BER vs SNR and BER vs Dt (propagation-induced modal pulse spread, as described in the text) for mode numbers 1, 2, and 3 for all unaveraged T50,

T250, and T500 receptions.
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VI. CONCLUSIONS

Motivated by potential communications applications,

the propagation of weakly dispersive modal pulses in a

deep ocean sound channel has been investigated experi-

mentally. It has been shown that, without adaptive equal-

ization, channel impulse response estimation, or any form

of receiver training, communication using weakly disper-

sive modal pulses at a rate of 37.5 bps is stable at a range

of 50 km, generally works at 250 km, and sometimes

works at 500 km. For mode 1 at 500 km range, 6.5% of

transmissions had no errors, and 72% of transmissions had

BERs less than 10%. At 250 and 500 km range, coherent

averaging over 5 or 15 min led to a reduction of BERs.

Low BERs were shown to be associated with high SNR

and small propagation-induced modal pulse time spread

(which leads to low ISI). The results presented are in

good qualitative agreement with the theoretically predicted

dependencies on mode number and range that we have

noted.

From a communications perspective, the results reported

here serve as a “proof of concept” rather than an attempt to

develop an optimal processing scheme. In communications

applications the results presented here could almost certainly

be improved significantly by incorporating some form of

channel equalization in the signal processing performed.

Consistent with our more narrow focus of elucidating the

physics of weakly dispersive modal pulses in a deep ocean

sound channel, we have chosen not to consider equalization

in this paper. If equalization is performed after extracting

modal pulses, it is natural to focus on those mode numbers

corresponding to weakly dispersive modal pulses; the

demands on the equalization filter are lowest for that special

class of modal pulses.
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