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ABSTRACT

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and

turbulence over large sections at unprecedentedhorizontal resolution.Where reflections follow isopycnals, their

displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope

spectrum method. However, many issues must be considered when using seismic images for estimating tur-

bulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic

images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field

surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence

estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral

characteristics of internalwaves and turbulence show that reflector slope spectra accurately reproduce isopycnal

slope spectra out to horizontal wavenumbers of;0.04 cpm, corresponding to horizontal wavelengths of 25 m.

Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and

restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope

spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a par-

ticular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from

seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable

current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence

dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.

1. Introduction

Turbulence in the ocean is an important mechanism

for transporting momentum and heat and dispersing

nutrients, pollutants, and small organisms. The principal

measure of oceanic turbulence is the dissipation rate of

turbulence kinetic energy « per unit mass, which in-

volves work against buoyancy and the loss of mechanical

energy to heat energy through turbulent motions and

has units of watts per kilogram. Dissipation can be re-

lated to vertical eddy diffusivity Kr (Osborn 1980). In

the ocean’s interior, turbulence is primarily driven by

breaking of internal waves and hydraulic phenomena

(Wunsch and Ferrari 2004) and is largely responsible for

the vertical mixing that maintains the global overturning

circulation (e.g., Munk and Wunsch 1998). To close

global mixing budgets, a global averageKr of 10
24 m2 s21

is required—yet studies of ocean mixing in the open-

ocean thermocline tend to find values an order of mag-

nitude too low (e.g., Ledwell et al. 1993). This mismatch

suggests that ocean mixing may be largely controlled by

‘‘hot spots’’ of mixing controlled by enhanced atmo-

spheric forcing and the impingement of tidal and deep-

reaching currents on topography, including seamounts

(Lueck and Mudge 1997; Toole et al. 1997), midocean

ridges (St. Laurent and Garrett 2002), island chains
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(Rudnick et al. 2003), and rough seafloor (Naveira

Garabato et al. 2004; Polzin et al. 1997).Despite its central

importance to ocean mixing, turbulence is challenging

to quantify and characterize over large sections of the

ocean because it is patchy in space and intermittent in

time (Ivey et al. 2008). In this paper we examine the

efficacy of a new method for characterizing turbulence:

seismic reflection images of oceanic fine structure.

Seismic oceanography (SO) is a relatively new ap-

proach to imaging oceanic thermohaline fine structure

with low-frequency (;20–200 Hz) acoustic reflections

collected during marine seismic reflection profiling

(Holbrook et al. 2003). The physical basis for seismic

oceanography has been well established by several stud-

ies that combined seismic surveys with simultaneous in

situ measurements of temperature, salinity, and density

(Nakamura et al. 2006; Nandi et al. 2004; Sallar�es et al.

2009): weak, but clear, reflections from within the water

column come from vertical changes in (primarily) sound

speed and (secondarily) density. Over the past few

years, numerous studies have demonstrated the ability

of seismic imaging to detect and map major features

in the ocean, including fronts (Holbrook et al. 2003;

Mirshak et al. 2010; Sheen et al. 2009), internal waves

(Holbrook and Fer 2005; Krahmann et al. 2008), eddies

and warm-core rings (Biescas et al. 2008; Ruddick et al.

2009; Yamashita et al. 2011), thermohaline staircases

(Biescas et al. 2010; Fer et al. 2010), lee waves (Eakin

et al. 2011), and internal tide beams (Holbrook et al.

2009). SO has several unique capabilities, including the

ability to image fine structure over large sections of the

ocean and to full ocean depth, provided that sufficient

fine structure is present to produce reflections. But per-

haps the greatest advantage provided by seismic reflection

images in the ocean is the dense lateral sampling of

the data: typical seismic images provide seismic traces

(vertical profiles of reflected amplitude) at 6.25-m

spacing. [We note that horizontal resolution, as opposed

to sampling, in migrated seismic reflection images is

conservatively estimated as half the effective seismic

wavelength (Claerbout and Fomel 2006), or ;20 m for

a sound speed of 1500 m s21 and a dominant frequency

of 40 Hz.] This horizontal sampling is unique among

oceanographic measurement techniques, apart from

horizontally towed instruments (e.g., Katz 1975; Moum

et al. 2002), which are typically restricted to a very

limited depth range.

A major challenge of seismic oceanography is to ex-

tract from the seismic images reliable quantitative in-

formation about the internal wave and turbulence fields.

Holbrook and Fer (2005) first showed that horizontal

wavenumber kx spectra of tracked seismic reflectors

mimic the Garrett–Munk spectrum and thus carry

information about the internal wave field. Subsequent

work has corroborated the sensitivity of the seismic

method to internal waves (Krahmann et al. 2008), al-

though wavenumber spectra may be distorted in the

presence of strong currents (Vsemirnova et al. 2009). At

the highest wavenumbers accessible to seismic imaging,

turbulence may also be detectable: Holbrook and Fer

(2005) pointed out an apparent kx
25/3 subrange in their

spectra and speculated that this might indicate turbu-

lence dissipation; this was supported using slope spectra

by Klymak and Moum (2007b). Sheen et al. (2009) ap-

plied Klymak and Moum’s slope spectra method to

seismic images and interpreted spatial variations in tur-

bulence dissipation on a seismic section in the Southern

Ocean. The basis of this approach is the model proposed

by Klymak and Moum (2007a,b, hereinafter KM07) re-

lating horizontal slope spectra to turbulence dissipation

via a Batchelor spectrum. KM07 showed that turbulence

can have a signature that extends to surprisingly long

horizontal wavelengths, up to several hundred meters in

the case of high turbulence levels—wavelengths easily

captured by seismic images.

Here we assess the use of horizontal wavenumber

information to extract estimates of turbulence dissipa-

tion from seismic reflection images. Our study includes

full-wavefield synthetic tests of the sensitivity of seismic

data in the kx domain, an analysis of the effects of ran-

dom and shot-generated noise, and the first corrobora-

tion of seismically derived turbulence estimates against

measurements from collocated, in situ oceanographic

data. Using new approaches to estimate horizontal

wavenumber content directly from the seismic data and

via tracked reflections, we show that seismically derived

horizontal slope spectra often show a clear turbulence

slope and provide estimates of vertical diffusivity in the

expected range (;5 3 1024 m2 s21), provided that

harmonic noise is minimal and that nonrandom noise is

removed. A comparison ofKr derived from seismic data

to that derived from 10-m shear measured on coincident

expendable current profilers (XCPs) shows good agree-

ment. These results demonstrate that seismic oceanogra-

phy can provide a useful tool to remotely quantify mixing

processes in the ocean.

2. Background

Recent work by KM07 on horizontal thermistor tows

shows that, in contrast to vertical strain spectra, hori-

zontal isopycnal slope spectra are sensitive to turbulence

at surprisingly low horizontal wavenumbers. The slope

spectra are formed from the horizontal gradient of

vertical isopycnal displacement zx by multiplying the

vertical isopycnal displacement spectra fz by (2pkx)
2,
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where kx is the horizontal wavenumber. The kx slope

spectrumatwavenumbers between about 1023 and 108 cpm
contains two distinct subranges: a ‘‘red’’ subrange at

lower kx dominated by internal waves and a ‘‘blue’’

subrange at higher kx dominated by turbulence dissi-

pation. Following the Garrett–Munk (GM) internal

wave formalism, using the Garrett and Munk (1975,

hereinafter GM75) model, the spectral levels in the in-

ternal wave subrange decrease proportionately to fre-

quency content. KM07 show spectral slopes in the

internal wave regime between 21 and 0, and suggest

that spectra are fit to20.5 slope, consistent with GM75:

BIW
z
x
(kx)’f0k

20:5
x , (1)

where BIW
zx

is the slope spectrum in the internal wave

subrange, and f0 is an amplitude that depends on

stratification, energy level, and the internal wave field’s

frequency content.

In the turbulence subrange, the spectral level depends

on the level of dissipation (and thereforeKr), according

to Eq. (12) of Klymak and Moum (2007b):

BTurb
z
x

(kx)5 4p
G«

N2
0

[CT«
21/3(2pkx)

1/3

1 qn1/2«21/2(2pkx)] (cpm
21) , (2)

where BTurb
zx

is the slope spectrum in the turbulence

subrange, « is the turbulence dissipation rate, G is an

empirical constant set to 0.2 (Osborn 1980), CT is a

constant set to 0.4, N0 is the mean buoyancy frequency,

q is an empirical constant set to 2.3, and v is the viscosity

of seawater. The right-hand side of (2) contains two

terms that describe turbulence: an inertial-convective

subrange, which is dependent only on dissipation and

wavenumber, and an inertial-diffusive subrange, which

also depends on the viscosity of seawater. At the

wavenumbers relevant to seismic imaging, the inertial-

convective subrange dominates, producing slope spectra

that are proportional to kx
1/3 (Klymak and Moum 2007b),

according to the second term in Eq. (2), as will be seen

below.

The KM07 model provides a sound basis for inter-

preting kx slope spectra derived from seismic reflection

images. The turbulence subrange extends to surprisingly

large horizontal wavelengths (.100 m); these are spa-

tial scales easily resolved in reflection images of fine

structure. Here, we investigate the applicability of the

KM07model to seismic images, with special attention to

pitfalls in seismic acquisition and processing that must

be avoided in order to produce reliable slope spectra

from seismic images.

3. Methods

a. Seismic data acquisition and processing

The field seismic data analyzed here come from two

seismic surveys, both conducted by the R/V Marcus

Langseth, a specialized seismic vessel. Data from off-

shore Nicaragua (Fig. 1) were acquired in March 2008

using a 6-km-long, 480-channel hydrophone streamer,

with hydrophone groups spaced at 12.5 m. The seismic

source was an 18-element, 3300-in.3 air gun array. Line

SO-1 was acquired as a dedicated seismic oceanography

FIG. 1. Locationmaps for seismic data shown in this paper; bathymetry is contoured at 1000 m. (a) Locationmap of

line SO-1, offshore Nicaragua, showing locations of XBTs (solid circles) and XCPs (yellow squares). (b) Location

map of lines acquired in Luzon Straits of South China Sea, showing locations of XBTs (open circles). Data from parts

of lines 5 and 7 (denoted by red lines) are shown in this paper.
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line, with two modifications to the acquisition plan de-

signed to enhance water-column reflection imaging: 1)

a shot spacing of 25 m, which minimizes harmonic noise,

as will be discussed below; and 2) a sample rate of 0.001 s,

giving a Nyquist frequency of 500 Hz. In addition, ex-

pendable instruments [23 expendable bathythermographs

(XBTs), three XCPs, and one expendable conductivity–

temperature–depth (XCTD) probe] were deployed along

the line at;1-km intervals during seismic acquisition to

record ocean temperature, salinity, and current data.

The South China Sea data (Fig. 1) were acquired in

summer 2009 using a 6-km-long, 465-channel hydro-

phone streamer and a 36-element, 6600-in.3 air gun array

as the sound source. We present data from two lines in

this paper; line 5 was acquired using a 50-m shot spacing

and line 7 using a 150-m shot spacing. Coincident tem-

perature data were acquired on both lines using XBTs,

which were deployed during seismic shooting at spacing

of approximately 10 km.

Seismic data acquired here were processed through

a standard processing flow, including velocity analysis,

common midpoint stacking, and poststack migration.

Migrated stacks of the lines discussed here are shown in

Fig. 2. A complete review of seismic processing methods

is beyond the scope of this paper, but useful summaries

can be found in standard textbooks (e.g., Sheriff and

Geldart 1995; Yilmaz 1987). Ruddick et al. (2009) sum-

marize the basics of seismic processing for an oceano-

graphic audience. Velocity moveout analyses were

conducted by hand in order to provide the best possible

images (Fortin and Holbrook 2009). For the purposes of

creating horizontal wavenumber spectra, particular at-

tention must be paid to frequency-domain filters. Prior

to stacking, we applied a minimum-phase, trapezoidal

bandpass filter with corner frequencies of 20–30–80–

90 Hz. As will be discussed further below, we found that

it is important to apply the filters prior to stacking and

migration in order to minimize random noise at high kx.

Given the tow depth of the guns and streamer at 6 m, the

first ‘‘ghost notch’’ in the frequency spectrum occurs at

125 Hz, beyond our passband. No lateral smoothing

of the data was performed, as this would strongly affect

kx spectra. Amplitudes were corrected for spherical di-

vergence. Depths were calculated by converting two-

way travel times to depth assuming a constant velocity of

1500 m s21.

b. Calculation of synthetic seismograms

To test whether seismic reflection images can faith-

fully reproduce isopycnal displacements in a turbulent

ocean, we simulated seismic wave propagation through

a synthetic ocean sound speed model containing char-

acteristics of internal waves and turbulence. The model

does not include the physics of internal wave generation

or propagation or of turbulence; rather, it merely creates

displacements of isotachs that mimic the spectral char-

acteristics of internal waves and turbulence according

to the KM07 model. While full physical modeling of

these processes at the scales appropriate to seismic

waveform modeling would be worthwhile, the present

simulation is sufficient to determine whether seismic

data at typical wavelengths are capable of faithfully

capturing isotach (and therefore isopycnal) displace-

ments with the length scales characteristic of internal

waves and turbulence. The model includes internal

wave displacements for a spectrum with Garrett–Munk

frequency content at 3 times the GM energy; turbulent

displacements are created by simulating the inertial-

convective (kx
25/3) subrange with a user-defined scale

factor that can set turbulent energy independently of

internal wave energy.

FIG. 2. Migrated stacks of seismic cross sections used in this

paper; horizontal axis is distance along ship track. Data are plotted

so that positive-amplitude returns (peaks) are blue and negative-

amplitude returns (troughs) are red. Boxes show portions of seis-

mic sections shown in zooms in later figures; numbers in boxes refer

to figure number. (a) South China Sea, line 7. (b) South China Sea,

line 5. (c) Offshore Nicaragua, line SO-1.
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The sound speed model comes from an XCTD probe

deployed during a seismic survey in the Norwegian Sea

(and discussed byNandi et al. 2004), shown in Fig. 3. The

purpose of the synthetic modeling is to show that, for

typical acquisition parameters and geometry, seismic

images are capable of resolving the horizontal wave-

number characteristics associated with oceanic turbu-

lence. A site-specific initial sound speed structure thus

does not affect the generality of the results. Weak sound

speed inversions corresponding to thermohaline in-

trusions are visible in the depth range of ;100–500 m.

To limit the computational intensity of the model, we

limited the model to a region about 200 m in thickness

centered on 300-m depth. We created an 8-km-long

synthetic sound speed model by repeating the sound

speed profile of Fig. 3a at 8-m intervals across the model

space, then displacing sound speed values by a vertical

distance specified by the KM07 model at each model

grid point, over a range of turbulence values, and in-

terpolating the values onto a constant depth interval of

1 m. (We note that our methodology does not take into

account slight differences between isotherms and iso-

pycnals that may occur for thermohaline intrusions.)

The synthetic seismic section was created by propa-

gating a wave field through the synthetic wave-speed

model (Fig. 3b). We used a pseudospectral algorithm

(Kosloff and Baysal 1982) to propagate the wave field

generated by ‘‘exploding reflector’’ sources (Loewenthal

et al. 1976), which are sources located at every point in

the model, each initiating at time zero and each with an

amplitude equal to the local seismic impedance contrast.

The simulated seismic wave field, as extracted from the

surface nodes of the model, replicates a stacked, zero-

offset reflection section and includes lateral seismic

wave propagation effects and internal multiple re-

flections. We then migrated this synthetic, zero-offset

seismic section to place reflectors in their proper spatial

positions (x and z) using a one-dimensional, depth-

varying, wave-speed profile defined by the average

seismic wave speed at each depth (Gazdag 1978). This

modeling approach represents a good balance between

overly simplistic convolution methods and a fully re-

alistic simulation of field seismic data. The latter would

require simulation of individual shots across the 24-km

extent of the model, prestack processing, and stacking.

A full-blown synthetic test of this type would be useful

for exploring the impact of lateral smearing that may

occur through the stacking process. However, the pres-

ent work aims to explore the potential of utilizing the

wavenumber spectra of fine structure intrinsically re-

corded in perfectly processed reflection seismic data. A

comparison of the migrated seismic section to the iso-

pycnals shows that reflector displacements track iso-

pycnal displacements well (Fig. 4), thus demonstrating

the efficacy of the seismic reflection method to produce

estimates of isopycnal displacement.

c. Horizontal slope spectra of seismic data

Previous efforts to extract horizontal wavenumber

information from seismic images of oceanic fine struc-

ture have used tracked seismic reflectors to do so

(Holbrook and Fer 2005; Krahmann et al. 2008; Sheen

FIG. 3. (a) Sound speed profile fromXCTDprobe 51 in theNorwegian Sea (Nandi et al. 2004), used to create sound

speed section for calculation of synthetic seismograms. (b) Sound speed section created by starting with sound speed

profile from profile in (a) over depths of 202–400 m and applying displacements that simulate the spectral charac-

teristics of internal waves and turbulence, for moderate turbulence (corresponding to a diffusivity of ;2 3 1024

m2 s21). Color scale shows sound speed (m s21).

AUGUST 2013 HOLBROOK ET AL . 1771



et al. 2009). While this approach is necessary in order to

estimate vertical displacement spectra, it is indirect, in

that it relies on an extracted or interpreted quantity

(tracked reflectors). A useful way tomore directly assess

the horizontal wavenumber content of seismic reflection

data—and in particular to identify noise contamination—

is to calculate kx spectra directly from the seismic data,

rather than from tracked horizons. We accomplish this

by 1) calculating the kx spectrum (periodogram) of the

seismic reflection amplitudes at each depth level of the

image, 2) multiplying the kx spectrum by (2pkx)
2 to

produce a slope spectrum, and then 3) averaging the

slope spectra from each depth level to produce a mean

kx spectrum of the given image (Fig. 5).

Horizontal slope spectra calculated directly from

seismic data generally show very clear and sharp cutoffs

from an internal wave subrange to a turbulence sub-

range. In many cases (though not all), the turbulence

subrange shows slopes very close to the predicted kx
1/3

slope for turbulence dissipation (Fig. 5). The transition

in spectral slope usually occurs between kx values of

0.005 and 0.01 cpm (horizontal wavelengths of 100–

500 m), similar to the transitions observed in isopycnal

slope spectra data in KM07. The positive spectral slope

seen in Fig. 5 cannot be due to random noise, which

would be flat (white) in a kx spectrum and thus have

a slope of kx
2 in a slope spectrum. The observed sharp

change in spectral slope in Fig. 5 provides strong cir-

cumstantial evidence that seismic data contain in-

formation about turbulence as well as internal waves.

(The drop-off at high wavenumbers is due to frequency

filtering of the seismic data from 30 to 80 Hz, as will be

described in detail in the following section.)

In datasets we have analyzed, the sharp change in

slope of kx slope spectra is a nearly ubiquitous feature.

Frequently, however, the observed slope of the ‘‘tur-

bulence’’ subrange slightly exceeds kx
1/3, though it is

clearly not a kx
2 noise slope (Fig. 6). The reasons for this

are not entirely clear, though we can speculate about

several possibilities. First, sources of nonrandom noise

(e.g., harmonic shot-generated noise, section 3e below)

may contaminate the spectra. This possibility is cor-

roborated by the observation that tracked reflector

slope spectra often have slopes closer to kx
1/3 even when

the seismic data transforms show higher slopes, as dis-

cussed further in section 3f. Second, our imaging as-

sumes stationary targets; if strong currents are present at

depth, then they will distort kx spectra (Vsemirnova

et al. 2009). However, we consider this effect to be an

unlikely source of the enhanced slopes because 1) cur-

rents in a 300-m-thick section would not be expected to

be entirely in one direction and 2) we rarely see turbu-

lence subrange slopes lower than the expected kx
1/3.

Horizontal slope spectra calculated directly from

seismic data provide a profitable view of the spectral

characteristics of a seismic dataset, especially the noise

characteristics. Such ‘‘data transforms’’ should be cal-

culated before proceeding with reflector tracking to

determine whether a given seismic oceanography data-

set is amenable to meaningful reflector slope spectra.

d. Suppression of random noise

Random noise affects all seismic datasets and must be

taken into account when examining kx spectra. ‘‘White

noise’’ is flat in kx spectra and therefore appears with

a distinctive kx
2 slope in slope spectra. The level of

random noise in a dataset can be characterized by the

signal-to-noise (S/N) ratio, which for any two adjacent

seismograms can be defined as

S

N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jcj

ja2 cj

s
, (3)

where c is the maximum value of the cross correlation of

the two traces and a is the zero-lag autocorrelation value

of the first trace. To estimate S/N for a section of data,

we calculate S/N for every adjacent pair of traces using

the equation above and then calculate the median S/N

value for the section.

Because seismic air gun sources are bandlimited (Fig. 7),

with useful signal strength between ;10 and 150 Hz

(the details depend on the particular source array and

towing depth), S/N varies as a function of frequency in

seismic datasets. The appearance of a seismic image and

its kx characteristics depend on the frequency bands

FIG. 4. Synthetic seismic section created by simulating seismic

propagation through the sound speed model shown in Fig. 3.

Seismic section is plotted so that positive-amplitude returns

(peaks) are black and negative-amplitude returns (troughs) are

white. Red lines are isopycnals from sound speed model of Fig. 3.

Note the good correspondence between the displacements of re-

flections and isopycnals.
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contained in the image (Fig. 8). Before calculating kx
slope spectra for a particular dataset, then, it is impor-

tant to filter out frequency bands that are contaminated

by random noise. To determine optimum frequency

bands for horizontal wavenumber analysis for line SO-1,

we applied a sequence of frequency bandpass filters to

a representative panel of data (Fig. 8) and calculated kx
slope spectra (data transforms) for each panel (Fig. 9).

We used a zero-phase, trapezoidal filter; passbands are

10 Hz in width, with 10-Hz-wide drop-offs (e.g., the

‘‘25Hz’’ curve in Fig. 9 represents the result of a 20–30-Hz

passband, with a lowcut at 10 Hz and a highcut at 40 Hz).

After frequency filtering, kx slope spectra were calculated

for each passband using the method described in the

previous section. The results enable analysis of the hori-

zontal wavenumber characteristics of different frequency

components of the seismic images.

The passband analysis shows that different frequency

components are sensitive to different parts of the kx
spectrum (Fig. 9). Lower seismic frequencies carry in-

formation about internal waves in the lower horizontal

wavenumbers but are relatively insensitive to higher

wavenumbers and thus less informative about turbu-

lence. Higher seismic frequencies, in contrast, are sen-

sitive to shorter horizontal length scales and thus more

sensitive to turbulence than lower frequencies, but they

FIG. 5. (a) Zoom of seismic data from South China Sea line 5, from x 5 20–30 km (full line is shown in Fig. 2).

(b) Horizontal wavenumber kx spectrum calculated directly from seismic data, by calculating a 2D Fourier transform

of the seismic section, multiplying by (2pkx)
2, and summing spectral levels at each kx value. ‘‘Amp’’ is the amplitude

value of seismic data (arbitrary units). Straight lines show slopes that would be present because of turbulence, in-

ternal waves, and noise. Note clear kx
1/3 subrange above wavenumbers of;0.005 cpm. The S/N ratio of this section of

data is 6.9. (c) Seismic image showing tracked reflections (black lines) from the same section shown in (a). (d) Slope

spectrum calculated from tracked reflections using a 256-point Fourier transform. Vertical lines show 95% confi-

dence interval. Blue line shows turbulence fit; yellow line is internal wave subrange fit; and green line is example noise

slope. Note the similarity of the reflector-based slope spectrum to the kx spectrum calculated from a 2D Fourier

transform of the data (b).
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carry little information about internal waves. These

characteristics are expected, given that seismic wave-

length is inversely proportional to frequency. Conse-

quently, in using seismic data to estimate turbulence, it is

important to use the highest possible frequencies that

still have sufficient signal but not such high frequencies

that random noise dominates.

Before selecting frequency ranges for filtering of

seismic images prior to calculating kx slope spectra,

passband analysis similar to that done in Fig. 9 should

be done to determine which frequencies will be useful

for that dataset. For line SO-1, frequencies above

80 Hz become noise dominated at high wavenumbers

in slope spectra (curves 85, 95, and 105 in Fig. 9). The

S/N ratios of each frequency band (Table 1) show that

passbands with S/N values below about 4 will be too

noise dominated to produce reliable values in the

turbulence subrange. An example of noise-dominated

data from South China Sea line 5 (Fig. 10) has an

S/N ratio of 4.3, and the slope spectrum shows a clear

kx
2 slope over wavenumbers above 0.006 cpm. For the

SO-1 line, the analysis in Fig. 9 suggests that a fre-

quency range of 30–80 Hz provides both a high S/N

ratio (8.3 for the entire section) and good sensitivity in

the turbulence subrange. Lower frequencies have

slightly higher S/N ratios, but they lack sensitivity at

the higher wavenumbers necessary to characterize the

turbulence subrange.

FIG. 6. (a) Zoom of seismic data from South China Sea line 5, from x5 40–50 km. (b) Horizontal wavenumber kx
spectrum calculated directly from seismic data, as in Fig. 5. In comparison to Fig. 5, here the internal wave subrange is

more prominent, while the turbulence subrange has a slope closer to kx
1 above wavenumbers of;0.02 cpm. The S/N

ratio of this section of data is 6.2. (c) Seismic image showing tracked reflections (black lines) from the same section

shown in (a), for a Fourier transform length of 256 points. White lines show reflector tracks for a Fourier transform

length of 64 points. (d) Slope spectrum calculated from tracked reflections using a 256-point Fourier transform.

Vertical lines show 95% confidence interval. Blue line shows turbulence fit, yellow line is internal wave subrange fit,

and green line is example noise slope. Dashed lines show slope spectra for Fourier transforms of length 128 points

(red), 64 points (cyan), and 32 points (green). Note the similarity of the reflector-based slope spectrum to the kx
spectrum calculated from the 2D Fourier transform of the data (b).

1774 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



It should be noted that the spectral levels of kx slope

spectra calculated directly from seismic images are

strongly dependent on the frequency band of the seismic

images. The dependence on frequency is much less when

spectra are calculated from tracked reflectors, as will be

seen below. Nevertheless, it is critical to conduct careful

frequency and S/N analysis of the data prior to tracking

reflectors, to ensure that spectra are not unduly con-

taminated by noise.

e. Suppression of harmonic shot-generated noise

An important, but generally overlooked, source of

nonrandom noise in seismic data comes from the geom-

etry of the seismic survey. This noise, which is especially

significant when viewing seismic data in the horizontal

wavenumber domain, exists at discrete wavenumbers

related to the shot spacing at which the seismic data

were acquired in the field. (Shot spacing is the horizontal

distance between successive firings of the sound source,

typically an array of air guns.) Specifically, the shot

spacing creates harmonic noise at integer multiples of

the shot spacing wavenumber. Denser shot spacing

produces data with higher ‘‘fold,’’ which is the number

of seismic traces that image the same common midpoint

(CMP) and are summed to make the final stacked trace.

Shot spacing Ds, the numberN of channels in the seismic

FIG. 7. Frequency spectrum of data on line SO-1 (dashed line;

data section shown in Fig. 8) and South China Sea line 5 (solid line;

data section shown in Fig. 5). Peak seismic frequency is approxi-

mately 30–40 Hz; useful signal is limited to ,100 Hz.

FIG. 8. Section of data from line SO-1, showing (top) unfiltered

migration and (bottom) migration filtered from 40 to 80 Hz.

Note the enhanced detail in (bottom) due to filtering out of low

frequencies.

FIG. 9. Horizontal wavenumber (kx) slope spectra of different

frequency passbands for offshore Nicaragua line SO-1. Passbands

are 10 Hz in width, and the center frequency of each passband is

labeled (e.g., 25 5 20–30 Hz passband, etc.). Solid blue line rep-

resents the preferred passband of 30–80 Hz.

TABLE 1. S/N ratios of seismic data in passbands shown in Fig. 9.

Frequency band (Hz) S/N

20–30 7.7

30–40 7.8

40–50 7.0

50–60 6.1

60–70 5.3

70–80 4.1

80–90 2.9

90–100 1.7

100–110 1.2

30–80 8.3
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streamer, and the receiver spacing Dx define the seismic

fold F as 5NDx/(2Ds). Here, we discuss the cause,

consequence, and suppression of harmonic kx noise on

seismic slope spectra using two examples from the South

China Sea: the relatively high-fold line 5, which has

a shot spacing of 50 m, and the lower-fold line 7, which

has a shot spacing of 150 m.

Along horizontal reflections, slight changes in the

amplitude or arrival time of reflected energy on adjacent

CMPs (stacked traces) create harmonic wavenumber kx
noise. These amplitude fluctuations are entirely an ar-

tifact of survey shot spacing. The choice of shot spacing

in a seismic survey is a compromise between the desire

for high fold, which requires short shot spacing, and the

desire to minimize reverberations, which requires long

shot spacing. (The minimum boat speed required to

keep the streamer trim, typically ;5 kt, also places a

practical constraint on the minimum shot spacing that

can be achieved.) Spatial sampling for seismic reflection

surveys is determined by the receiver spacing, as CMP

spacing DCMP is half the receiver spacing. The number of

CMPs between each shot NCMP) is NCMP 5DS/DCMP.

Because DCMP is 6.25 m for data presented here, in the

case of line 5, eight CMPs are produced between shots,

so that the near-offset traces in every eight adjacent

CMP gathers are from different receiver numbers on the

streamer (the eight nearest to the source). This causes

a periodic change in seismic amplitudes, which repeats

every eight traces.

The harmonic shot spacing noise can be distinguished

from signal in the frequency–wavenumber ( f–k) domain

by passing data g(t, x) through a two-dimensional fast

Fourier transform (FFT):

G( f ,k)5FxfFt[g(t, x)]g , (4)

G( f , k)5Fx[G( f , x)] , (5)

where Ft and Fx are the FFTs across time t and distance

x; G( f, k) is the complete 2D FFT. CMPs with identical

near-offset receiver number and ray geometry occur at

the shot spacing h. Noise spikes ks affect all frequencies

with amplitudes proportional toG(f) as an effect of g(t, x)

bandpass filtering, but occur only at regular wavenumber

harmonics.

The primary cause of harmonic noise is the decay of

amplitude DACMP with longer raypaths and changing

reflection geometries, which produces a periodicity of h

in the amplitude of the near traces on adjacent CMP

gathers:

FtfFx[g(t, x)s(x)]g5Ft[G(k)Sk] , (6)

G( f ,k)5G( f )

�
�
‘

n50

anG(k2 nk0)

�
, (7)

where s(x) is a sawtooth function that describes the de-

cay in amplitude and an is the coefficient for the Fourier

FIG. 10. (a) Noise-dominated data from South China Sea line 5 (data section from x5 90–100 km), filtered from 30

to 60 Hz. (b) Data transform of section shown in (a), in kx domain (bold black line). Gray lines show required slopes

of turbulence, internal waves, and noise according to KM07 model. Note clear kx
2 slope at wavenumbers above

;0.006 cpm, indicating dominance of noise at these wavenumbers. S/N ratio of this section is 4.4, substantially lower

than in the data sections of Figs. 5 and 6.

1776 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



expansion of an [s(x)]. Additional harmonic noise may

be present if normal moveout (NMO) corrections are

not comprehensive, or if, as in the case of the direct

arrival, there are other travel time effects on adjacent

CMPs.

This harmonic noise is easily visible at shallow depth

on seismic images as high-angle ‘‘cross hatching’’ (Fig. 11).

Though present at all depths, the noise weakens with

depth, as raypaths for adjacent CMPs become more

similar. The harmonic impulses follow from the fact that

the series expansions of an is periodic; this results in

a line spectrum with harmonics at ks 5 n/h, where n is

any integer, and G( f) occur at several wavenumbers

and are additive; a larger h results in a more severely

contaminated dataset. For the two examples used in this

paper, with shot spacings of 50 and 150 m, the first oc-

currence of G( f) is at 0.02 (Fig. 12) and 0.006 67 cpm

(Fig. 13), respectively, with further noise spikes visible at

the integer harmonics (Figs. 12 and 13).

To remove these harmonics, we apply a kx domain

filter designed to suppress the noise spikes, as follows.

First, the data are transformed into the 2D Fourier

domain as described above. When the sum of the ab-

solute value of all frequencies for individual wave-

numbers is plotted, G( f) becomes apparent (Figs. 12

and 13). Noise spikes at kx 5 ks are reduced by domain

passing a bandstop notch filter centered over the spike in

the wavenumber domain over all frequencies (Fig. 12,

FIG. 11. Effect of kx filtering on seismic data, showing improved clarity and lateral continuity of shallow seismic reflections after removal

of harmonic noise using the filter shown in Fig. 12. (a) Portion of original seismic section from South China Sea line 5. (b) Section after kx
filtering. (c) Harmonic noise removed by the filtering, calculated as the difference between sections (a) and (b). Inset in (c) shows a zoom

of the harmonic noise (black box); here, the fundamental mode of the noise is visible, with lateral spacing of 50 m.

FIG. 12. Horizontal wavenumber kx spectrum of seismic data shown in Fig. 11, produced by

summing the 2D Fourier ( f–kx) spectrum along the f axis. Gray and black lines show data

before and after application of the kx notch filter, respectively. Prominent peak at kx5 0.02 cpm

is the expression of amplitude changes in the CMP domain due to the shot spacing [0.02 cpm5
1/(50 m)]; second noise peak at60.04 cpm is the first harmonic. Inset shows the shape of the kx
filter (black dashed line) applied to suppress noise peaks.
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inset). The filtering process first isolates a spike and a

variable amount of signal about the spike corresponding

to the dimensions of the filter. The amplitudes of the

isolated wavenumbers are detrended. Filtering is then

done in the Fourier domain by multiplying the de-

trended amplitudes by the filter, which itself has a broad

passband on either side of exponential transition bands

(Fig. 12). The 2D inverse FFT is then calculated to re-

cover the filtered seismic data (Fig. 11). The difference

between filtered and unfiltered seismic data highlights

the removed noise (Fig. 11). Unlike standard f–k filters,

this technique effectively removes the harmonic com-

ponent from the high-fold dataset without eliminating

high wavenumber data.

On the lower-fold dataset from line 7, the harmonic

noise spikes are more closely spaced and begin at lower

wavenumbers (Fig. 13). Because of the severity of the

harmonic noise spikes, several successive applications of

the filter are required to suppress the noise spikes (we

used three iterations here). On these data, the filter is

clearly less effective: spikes have been suppressed but

remnants of the spikes are present near kx 5 ks (Fig. 13).

Moreover, the close spacing of the spikes raises ques-

tions about whether the underlying signal can be iso-

lated. Clearly, caution must be used before interpreting

slope spectra on seismic datasets acquired with coarse

shot spacing. We discuss this further below.

To assess the effect of the kx filter on slope spectra, we

compare the kx slope spectra of seismic data before and

after filter application. Figure 14 shows this comparison

for a portion of South China Sea line 7, before and after

three iterations of the filter. The filter effectively re-

moves the spikes associated with the harmonic noise

(gray line, Fig. 14) and leaves the underlying signal

FIG. 13. The kx spectrumof seismic data fromSouthChina Sea line 7, plotted as in Fig. 12, but

only positive kx are shown. These data were acquired with a coarse shot spacing of 150 m. This

produces a primary noise spike at kx5 [1/(150 m)]5 0.0067 cpm, with harmonic noise spikes at

integer multiples thereof. Three iterations of the filter were applied to produce the bold line.

FIG. 14. (a) Portion of low-fold seismic data from South China Sea line 7 after kx filtering. (b) Slope spectrum

calculated directly from seismic data before (gray) and after (black) three iterations of kx filter. Harmonic noise

spikes are effectively removed by the filter. Dashed lines show required slopes of internal wave and turbulence

subranges from the KM07 model.
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unchanged. The internal wave subrange is unaffected by

the filter; above wavenumbers of 0.01 cpm (wavelengths

less than 100 m), the filtered slope spectrum has a slope

very close to the expected turbulence subrange of (kx)
1/3.

These results suggest that kx filtered seismic data can be

used to extract quantitative slope spectral estimates

from the internal wave subrange, and possibly from the

turbulence subrange. However, residual harmonic noise

in the turbulence subrange suggests that caution should

be used in interpreting turbulence values from low-fold

seismic data.

f. Reflector slope spectra

Horizontal wavenumber spectra calculated from the

seismic data (e.g., Fig. 5b) accurately represent the

horizontal wavenumber content inherent in the seismic

images, but they cannot provide turbulence estimates

directly, as they cannot be readily scaled to represent

displacement spectra, for several reasons. First, the seis-

mic data values recorded in the x–t domain are seismic

amplitudes, not meters of vertical displacement. There-

fore, to achieve displacement spectra in the horizontal

wavenumber domain, we must first extract vertical dis-

placement profiles from the seismic images, which we

accomplish by tracking reflections (as described below).

Second, the kx spectra derived directly from seismic data

will be influenced by seismic amplitudes, for reasons that

have nothing to dowith vertical displacements. Reflection

strength in a seismic section is primarily a function of the

size of the temperature ‘‘step’’ responsible for generating

the reflection (modulated by convolution with the source

signal). Upon Fourier transform, strong reflections will

thus have undue influence in the spectral domain. Finally,

regions dominated by noise will affect data transforms but

are readily excluded by tracking algorithms, which rely on

similarity of adjacent seismic traces to accomplish the

tracking.

A key assumption in using tracked reflections to ex-

tract kx spectra is that the reflectors follow isopycnals—

that is, that displacements in reflectors represent isopycnal

displacements. Permanent fine structure due to features

such as intrusions or thermohaline staircases will appear

as seismic reflections. While these features have slight

slopes with respect to the density surfaces (see, e.g.,

Ruddick 1992), the slope spectra will be dominated by

the wave and turbulence part in the wavenumber range

studied here. When fine structure is reversible, for ex-

ample, caused by internal wave strains, the displace-

ments in reflectors may not be indicative of isopycnal

displacements. Of critical importance is the time scale

over which fine structure persists, in comparison to the

time scale over which displacements are imparted by the

ambient internal wave and turbulence fields. If fine

structure persists over sufficiently long time scales, then

even reversible fine structure will record the ambient

displacement fields.

We can assess whether reflections follow isotherms in

the data used here, since both surveys included co-

incident temperature data from expendable instruments

deployed during seismic shooting. Reflection images

from South China Sea line 5 and Nicaragua line SO-1,

together with temperature data and isotherms calcu-

lated from XBT drops, are shown in Figs. 15 and 16,

respectively. In both surveys, temperature profiles show

little evidence for intrusions, as temperature inversions

are rare; rather, temperature fine structure largely con-

sists of high-gradient ‘‘steps’’ separating layers of lower

vertical temperature gradient. Nevertheless, both data-

sets show reflections that, with few exceptions, follow

isotherms. In the South China Sea section, several strong

reflections follow isotherms over lateral distances up to

10 km (e.g., the reflection following the 158C isotherm in

Fig. 15). A few reflections may cross isotherms, such as

the short reflection labeled ‘‘C’’ and the reflection im-

mediately above it. However, even some instances

where, at first glance, reflections appear not to follow

isotherms may be artifacts of the XBT spacing and

temperature contouring. For example, the reflection

connecting points ‘‘A’’ and ‘‘B’’ in Fig. 15 appears to

FIG. 15. Portion of South China Sea line 5 seismic section,

showing locations of XBT drops (white dashed lines), temperature

profiles (blue lines), isotherms (green lines, labeled in 8C), and
vertical temperature gradients (red solid lines). Dashed red line

and points A, B, and C are discussed in the text. Reflections gen-

erally follow isotherms closely. Note the close correspondence

between seismic reflections and areas of strong vertical temperature

gradient dT/dz. Isotherms were calculated using temperature–depth

data from all XBTs on the line (Fig. 1), using the ‘‘blockmean’’ and

‘‘triangulate’’ functions in Generic Mapping Tools (Wessel and

Smith 1991), which perform block averaging and optimal Delauney

triangulation (Watson 1982).
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cross the 98C isotherm in the middle of the section

shown. However, since no temperature data exist be-

tween the two nearest XBTs, the temperature contours

are necessarily smoother than the true isotherms. The

dashed red line in Fig. 15 shows a reasonable in-

terpretation of the 98C isotherm, hand drawn so as to

intersect the 98C value at the XBTs while still following

the entire reflection. This is a universal situation in

comparing in situ temperature data to seismic sections:

since the seismic images have lateral resolution far su-

perior to that of even the densest XBT surveys, re-

flections show short-wavelength fluctuations that cannot

be captured by theXBT surveys. In general, in the South

China Sea line analyzed here, reflections principally

appear to follow isotherms.

The offshore Nicaragua dataset has more densely

spaced XBTs, so the relationship between reflectors and

isotherms is less ambiguous. On this section, reflections

appear generally parallel to isotherms at lateral scales of

;1 km (Fig. 16). At longer length scales, however, some

fine structure may be slightly inclined with respect to

isotherms. The strong reflection following the 98C iso-

therm at ;27.5 km, for example, appears to be slightly

more strongly inclined downward to the left of the sec-

tion. Over a lateral distance of ;5 km, the reflection

departs from the 98C isotherm by about 15 m. However,

in calculating slope spectra, we generally use reflectors

of length 128 or 256 traces, that is, with a maximum

length of 1.6 km. Over these lateral scales, with rare

exceptions, we see little evidence that reflectors depart

significantly from isotherms in our datasets.

Before producing slope spectra, we need to track re-

flections in the seismic data. Various approaches to re-

flector tracking have been used, including user-guided

amplitude tracking (Holbrook and Fer 2005) and cross-

correlation methods (Krahmann et al. 2008). We tracked

reflections in the seismic data using an approach that

relies on the instantaneous phase angle f from the

Hilbert transform (e.g., Yilmaz 1987), a seismic attribute

that highlights reflection continuity (Barnes 2007). We

contoured the 0.6 value of cos(f), which is a smooth

function that eliminates the p/2 phase angle disconti-

nuities present in f itself. The contours were then di-

vided into continuous reflector segments of minimum

length n data points, where n5 32, 64, 128, or 256. Tests

on synthetic data show that this approach produces ac-

curate reflector tracks that are more reliable than

tracking reflection amplitudes and less time consuming

to produce than user-guided picks. An example of the

reflectors’ tracks produced by this method is shown in

Fig. 5c.

We produce ‘‘reflector slope spectra’’ from tracked

seismic reflections as follows. Tracked reflections are

divided into half-overlapping segments of length n

points, where n is the length of the Fourier transform

and is detrended prior to Fourier transformation. We

calculated spectra for several choices of n (32, 64, 128,

and 256), corresponding to reflector segment lengths of

200–1600 m. Following KM07, reflector slope spectra

fRx are calculated as fRx 5 (2pkx)
2fR, where fR is the

displacement power spectrum, calculated as in Holbrook

and Fer (2005), andRx indicates that we are using reflector

FIG. 16. Portion of seismic section from offshore Nicaragua line SO-1, showing locations of

XBT drops (white dashed lines), in situ temperature profiles (blue lines), and isotherms (green

lines, labeled in 8C). Solid white line indicates seafloor. Most reflections follow isotherms over

horizontal scales of ;1 km.
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displacements rather than isopycnal displacements

(zx in KM07). Before averaging, spectra for each re-

flector are scaled by the local buoyancy frequency at

the reflector depth,N(z), which is determined from the

nearest XCTD probe in the offshore Nicaragua data-

set, and from a regional profile in the South China Sea

(L. St. Laurent 2010, personal communication). In the

region of interest, turbulence dissipation is then esti-

mated by fitting the mean reflector slope spectra to the

KM07 model for the turbulence subrange [Eq. (12) of

Klymak and Moum 2007b], using a nonlinear least

squares inversion. Eddy diffusivity is then estimated as

Kr 5 0.2«N22.

An example of a slope spectrum calculated from

tracked reflectors in the South China Sea line 5 is shown

in Fig. 5d. It is instructive to compare the ‘‘data slope

spectrum’’ of Fig. 5b with the ‘‘reflector slope spectrum’’

of Fig. 5d. The two spectra show similar characteristics,

with a discernible break between the internal wave

subrange and the turbulence subrange, which has a clear

slope of kx
1/3. Both spectra show a drop-off at wave-

numbers greater than 0.04 cpm (wavelengths smaller

than 25 m). Differences between the two spectra are

expected, since the reflector slope spectrum only in-

corporates a limited number of successfully tracked re-

flectors (black lines in Fig. 5c), whereas the data slope

spectrum includes the entire image. Because the track-

ing algorithm sifts high-amplitude reflections and ex-

cludes transparent zones, the reflector spectrum is likely

less susceptible to noise than the data spectrum.

A second example of a reflector slope spectrum, from

South China Sea line 5 (Fig. 6), shows the effect of the

selected Fourier transform length on interpreted tur-

bulence levels. The reflector slope spectrum (Fig. 6d)

and its corresponding data slope spectrum (Fig. 6b) both

show a sharp transition between the internal wave sub-

range and the turbulence subrange at kx 5 0.025 cpm.

Interestingly, the tracked reflector slope spectrum is

inclined at exactly the expected value of kx
1/3 in the

turbulence subrange, even though the data slope spec-

trum showed a slightly higher value. This is likely a

consequence of noisy patches in the data that do not

affect the tracked reflectors, which preferentially follow

reflections with a higher signal-to-noise ratio. Choosing

a shorter Fourier transform length (e.g., 64 points) al-

lows tracking of shorter reflections (white lines, Fig. 6c),

which sample areas of lower signal-to-noise ratio than

the longer tracks and produce higher estimates of tur-

bulence (dashed lines, Fig. 6d). This dependence of

turbulence estimates on Fourier transform length is an

important point: shorter FFT lengths allow reflections to

be tracked in areas of lower signal, which are expected to

be areas of higher turbulence (signal-to-noise ratio, by

definition, is a measure of the similarity of adjacent

CMP-stacked seismic traces, which should be suppressed

by turbulence).

g. Estimation of diffusivity from XCPs

Coincident with seismic data acquisition on line SO-1

off Nicaragua, we deployed 26 XBTs and three XCPs

(Fig. 1). The XCP measures the weak electrical poten-

tials generated by the flow of the conductive ocean in

the magnetic field of the earth to derive profiles of

the horizontal velocity (Sanford et al. 1982). Typical

uncertainties in 2-m binned velocities are 0.5 cm s21

(Kunze et al. 2002).

Estimates of vertical diffusivity Kr were derived from

the XCP velocity and temperature profiles using the

technique of Henyey et al. (1986), Gregg (1989), and

Polzin et al. (1995). Salinity profiles were developed

using the temperature–salinity relationship from the

nearest CTD station obtained by the R/V New Horizon

during the cruise. From these profiles we computed

density and buoyancy frequency N profiles for each

XCP. The Henyey–Gregg–Polzin technique uses the

vertical shear in the horizontal velocities on 10-m scales

(S10) in an empirical relation that estimates the turbu-

lent dissipation rate « and is related to eddy diffusivity as

Kr 5 0.2 « N22 (Osborn 1980). The basic relationship,

which depends on the fourth power of S10 and the shear-

to-strain ratio Rv, has been validated by several field

programs (Polzin et al. 1995) using combined velocity

and turbulence profilers and applied several times to

XCP data (D’Asaro and Morison 1992; Lee et al. 2006;

Nash et al. 2007). The main problem with application of

the scaling is in low-stratification regions (Kunze et al.

2006), which is not a concern for these relatively shallow

casts. For these data, a running 100-m window of 10-m

shear variance [obtained from 10-m linear fits to the raw

data andmultiplied by 2.11, followingGregg (1999)] and

buoyancy frequency was used to estimate the diffusivity

profiles. The latitudinal dependence of the scaling was

included (Gregg et al. 2003). The shear-to-strain ratio

was obtained as the ratio of vertical wavenumber spectra

of N-normalized shear and strain, each integrated to

0.1 cpm. The spectra are calculated using 128-m-long

segments. The strain spectra are obtained fromN2 profiles,

approximating the background stratification using a qua-

dratic fit, and correcting for the first differencing inherent

in the gradients. Spectral analysis of the XCP data sug-

gests a rather high shear-to-strain ratio of Rv 5 17.

When averaged using the data points where N . 4 3
1023 s21, that is, excluding relatively weak stratification

that can erroneously increase the normalized-shear vari-

ance, Rv 5 8. We used Rv 5 17 in our application to the

seismic data (section 4b). Calculations using Rv 5 8
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would require a correction larger by a factor of 1.6. The

uncertainty in our estimates ofKr using XCPs should be

comparable to or better than that inferred for shear

measurements using lowered acoustic Doppler current

profilers, which require significant spectral corrections

(Polzin et al. 2002). While it would have been desirable

to have obtained coincident dissipation measurements

from a free profiler, this is not possible from a constantly

moving seismic ship, and theXCP offered the bestmethod

of estimating the dissipation rate of turbulent mixing.

4. Results

a. Synthetic tests

Synthetics were calculated for three increasing levels

of turbulence (Fig. 17). The turbulence levels were

selected arbitrarily, but, assuming a constant buoyancy

frequency of 2 cph, they produce isopycnal displace-

ments that approximate those expected for vertical dif-

fusivity levels of 23 1026, 23 1025, and 13 1024 m2 s21.

The appearance of the seismic image changes markedly

as turbulence increases, from long, relatively contin-

uous reflections at low turbulence to increasingly choppy

and discontinuous reflections at high turbulence (Fig. 17).

Reflector tracks tend to follow high-amplitude events

in the image, with relatively few tracks in areas of low

signal, where the vertical temperature (and sound speed)

gradients are lower. Tracking reflections becomes more

difficult as turbulence increases because of the increased

choppiness of reflections. In these synthetic examples,

this does not bias the results, since the synthetic models

have equal levels of turbulence everywhere. In real data,

however, where spatially variable turbulence is expected,

FIG. 17. Synthetic seismic sections calculated from the sound speed model of Fig. 3, for three levels of turbulence:

(a) low, (b) moderate, and (c) high. Red lines show tracked reflections in each section. Note the increased choppiness

of reflections (and hence fine structure) as turbulence increases. (d) Slope spectra calculated from tracked reflections

for each synthetic section (black lines with 95% confidence intervals) plotted with slope spectra calculated from

isopycnals from each synthetic model (blue lines). Spectra were calculated for 64-point reflector lengths (corre-

sponding to 512 m for the synthetic dataset). Yellow and blue lines show required slopes of internal wave (yellow)

and turbulence (blue) subranges.
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this will likely bias the results toward lower values of

turbulence.

Overall the reflector slope spectra provide an

acceptable match to the isopycnal slope spectra, with

fidelity that decreases with increasing turbulence.

Reflector slope spectra match at all wavenumbers for

the low-turbulence example: out to kx;0.04 cpm for the

medium-turbulence example and out to kx;0.015 cpm

for the high-turbulence example. Since sound speed

structure becomes more complex as turbulence in-

creases, lateral propagation effects and migration arti-

facts may contribute to this loss of signal. We do not use

wavenumbers higher than 0.04 cpm to interpret turbu-

lence. We note that, as turbulence increases, signal-to-

noise levels decrease markedly in the synthetic seismic

data, from 11.1 in the low-turbulence section to 5.4 for

the high-turbulence example. This is expected, since

signal-to-noise levels measure trace-to-trace coherency

and increased turbulence renders adjacent seismic

traces less similar. This demonstrates that higher tur-

bulence leads to lower reflected signal; in the limit,

where turbulence produces vertically homogeneous

layers, no reflected signal will result, and seismic images

will be transparent.

These results demonstrate that the reflector slope

spectra can reproduce isopycnal slope spectra with

reasonable fidelity, as long as fine structure is ‘‘per-

manent.’’ More work is needed to investigate the kx
signatures of fine structure generated in more re-

alistic, dynamic ocean models. However, the syn-

thetics show clearly that, for standard seismic data

frequencies (30–80 Hz) and horizontal sampling (6.25 m),

we should expect sensitivity to horizontal wavenumbers

out to about 0.04 cpm, depending on the level of

turbulence.

b. Turbulence dissipation from offshore Nicaragua
seismic data

Wetracked reflections in line SO-1, offshoreNicaragua,

as described above. We chose the Nicaragua dataset be-

cause coincident XCP data there enable a comparison of

turbulence dissipation estimates from seismic data to in

situ estimates (section 4c). Figure 18 shows an example of

tracked reflections in that dataset.

The resulting reflector slope spectra show a remark-

able fit to the expected shape of the turbulence sub-

range. Figure 19 shows mean reflector slope spectra for

425 individual reflectors in a 12-km-wide 3 400-m-high

area of the seismic section (green outline, Fig. 18). At

kx . 0.01 cpm (horizontal wavelengths , 100 m), the

slope spectra show a distinct change to a kx
1/3 slope,

which persists out to kx ; 0.07 cpm. At the very highest

wavenumbers, the data may show the kx
2 spectral slope

consistent with noise. For kx , 0.01 cpm, the slope

spectra show an acceptable fit to the internal wave sub-

range of KM07 (slope kx
21/2), especially for longer n, al-

though our spectra appear to be somewhat steeper than

KM07. A histogram of slope of the low-wavenumber

portion of spectra inferred from tows of KM07 show

a broad distribution between 22 and 1 (their Fig. 10);

hence the deviations from the GM75 slope are ex-

pected. Turbulent wavenumbers (0.01–0.04 cpm) of

the observed slope spectrum are fit to the model spec-

trum [Eq. (2)] by varying the dissipation rate tominimize

the residual using the Levenberg–Marquardt algorithm

FIG. 18. Portion of seismic line SO-1 used for turbulence

analysis. Green box outlines portion of data used in Fig. 20. Inset

shows zoom of data in small black box, showing tracked re-

flections using n 5 32 (yellow lines). Locations of XCPs are

shown by arrows.

FIG. 19. Mean reflector slope spectra calculated for tracked

reflections for n 5 128 (bold solid line), with 95% confidence

interval (vertical lines) shown for 161 degrees of freedom as-

suming vertical decorrelation over six reflectors; this is a conser-

vative error estimate. Dotted lines show slope spectra calculated

with other values of n (32, 64, 256). Best-fitting lines for internal

wave subrange (yellow line), turbulence subrange (cyan line), and

noise (red line) are shown for the mean spectrum with n 5 128.

Green lines show spectral levels for Kr values of 10
23, 1024, and

1025 m2 s21.
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for nonlinear least squares. The 95% confidence level

is then obtained, for each spectrum, from the residuals.

The confidence limits varied between a factor of 1.3 and

2.4, with mean and standard deviation of 1.6 6 0.15. The

fit to the internal wave subrange is not removed from

the observed spectrum, as the variability of the slope in

the internal wave subrange might affect the quality of the

results in the turbulence subrange. The value of Kr

that best fits the slope spectra for n 5 128 over the kx
range from 0.01 to 0.04 cpm is 2.3 3 1025 m2 s21; 95%

confidence intervals suggest acceptable fits between

;1.6 3 1025 and 3.1 3 1025 m2 s21. The Kr estimates

depend on the choice of n (Fig. 19), with smaller values

of n producing higher Kr; this is not an error, but rather

a consequence of the fact that the reflector tracks

themselves depend on n (e.g., Fig. 6c). A smaller n

allows shorter reflector segments to be tracked and

included in the slope spectra; since shorter reflector

segments are typically concentrated in ‘‘disrupted’’

areas such as the continental slope, the result is a higher

(and likely more accurate) estimate of Kr with greater

spatial resolution. In our section, Kr estimates increase

from 1.63 1025 m2 s21 for n5 256 to 4.63 1025 m2 s21

for n 5 32.

c. Comparison to in situ data

We tested our seismic-based Kr estimates against in

situ data by comparing to the Kr values derived from

coincident, concurrent XCP data (Figs. 20a and 20b).

The seismic and XCP estimates show a remarkable

match, both in terms of the average Kr values (4.4 3
1025 m2 s21 for the XCPs, 4.6 3 1025 m2 s21 for the

seismic estimate) and the trends with depth. In Figs. 20a

and 20b we separate near-slope XCP14 from the deeper-

water XCPs 12 and 13 and compare them to the appro-

priate sections of the seismic line. The comparison shows

a compelling match: the seismic-derived estimates match

not only the overall levels of Kr (between 1025 and

1024 m2 s21) but also the downward increase in Kr as

well as several finer-scale features, such as the local peak

in Kr at depths of ;600 m. The match between in situ

and seismic estimates of Kr strongly supports the in-

ference that reflector slope spectra can produce quan-

titative estimates of vertical diffusivity in the ocean.

Our results enable estimates of the spatial distribution

of Kr across the seismic section (Fig. 20c). This is done

by calculating the diffusivity from slope spectra aver-

aged spatially within bins 25 m high 3 400 m wide, and

then smoothing the resulting data spatially with a 1 3 1

boxcar. Here, the overall pattern of relatively high dis-

sipation at depths of ;550–600 m and again at 700–

750 m (cf. Fig. 20a) is visible, but horizontal variability

in this pattern is also evident. The dominant feature is

a 50- to 100-m-thick zone of relatively high diffusivity

just above the seafloor, especially at depths near 700 m,

where Kr is as high as 3 3 1024 m2 s21. This zone ap-

pears in the seismic image as a region of highly disrupted

seismic reflections, suggesting that disruption of fine

structure in seismic images may be a useful marker of

increased turbulence.

FIG. 20. (a) Depth profiles of mean Kr estimates from reflector slope spectra in offshore portion (18–24 km) of seismic profile in

Fig. 18 (squares) compared to Kr values calculated from 10-m shear on XCPs 12 and 13 (colored symbols; locations shown in Fig. 18).

Profiles from reflector slope spectra are averaged in 25-m vertical bins and are shown with 95% bootstrap confidence intervals in-

ferred from 1000 bootstrap resamples of the data points in each depth bin. Uncertainty in estimates of Kr from XCP data (not

shown for clarity) are approximately a factor of 3, similar to the size of error bars on seismically derived estimates. (b) As in (a),

except comparing the nearshore portion of seismic section (25–30 km) and XCP 14. (c) Spatial distribution of Kr estimates in green

box of Fig. 18, averaged in boxes 600 m wide 3 25 m high and then smoothed with a 1 3 1 boxcar function. Scale at right shows

log10(Kr).
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5. Discussion

We have shown that, under the right circumstances,

seismic imaging can provide reliable, quantitative esti-

mates of turbulence dissipation in the ocean. Both syn-

thetic modeling and comparisons to in situ estimates

from vertical shear support the notion that seismic

images can detect and quantify turbulence dissipation.

This opens up exciting new possibilities for charac-

terizing the dynamics of turbulence over large swaths

of the ocean.

There are, however, several caveats and pitfalls that

must be kept in mind when attempting to produce reli-

able slope spectra from seismic reflections. In particular,

both random and kx harmonic noise is present in seismic

images and must be analyzed (and suppressed) before

deciding whether a particular dataset is appropriate for

producing slope spectra. Random noise is easily identi-

fiable because of its clear kx
2 slope in data transforms

(Fig. 10). Harmonic noise is less familiar and more in-

sidious if it is not identified. In extreme cases, spectral

leakage from harmonic noise peaks can produce re-

flector slope spectra that mimic the expected kx
1/3 slope

of the turbulence subrange. An example of this is given

in Fig. 21, which shows slope spectra [number of points

in the fast Fourier transform (NFFT) 5 64] from a da-

taset acquired in the Gulf of California in 2002 aboard the

R/V Ewing. Here, the reflector slope spectra (Fig. 21b)

produce a subrange that could easily be interpreted as

turbulence, but the data transform (Fig. 21d) reveals that

this section contains no information about turbulence.

Rather, strong harmonic noise peaks overprint subranges

dominated by internal waves (kx , 0.017 cpm) and ran-

dom noise (kx . 0.017 cpm). In the reflector slope spec-

trum, the relatively short Fourier transform length (64)

used causes spectral leakage from the harmonic noise

peaks that can mimic a turbulence slope and thus

produce highly misleading results. When calculating

FIG. 21. (a) Tracked reflections, (b) reflector slope spectra (NFFT 5 64), (c) seismic data, and (d) direct data

transform of a seismic section acquired in the Gulf of California. Spectrum from tracked reflections shows an ap-

parent (but false) turbulence subrange at middle values of kx. The false turbulence slope is caused by spectral leakage

from harmonic noise peaks [see (d)], where it is clear that no turbulence subrange is captured in the seismic image;

harmonic noise peaks overprint subranges dominated by internal waves and random noise. Spectral leakage from

these noise peaks creates a false turbulence slope in (b), thus highlighting the importance of calculating slope spectra

directly from seismic data before tracking reflectors.
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kx spectra of seismic oceanography data, it is clearly

crucial to consider both random and harmonic noise.

Results presented without explicit reporting of the se-

verity of those noise sources, and without accompanying

data transforms, should be treated with caution.

The results presented here provide a basis for rec-

ommendations about seismic acquisition parameters

that are most likely to provide images most amenable to

turbulence dissipation estimates. The ideal dataset has

high S/N values (up to frequencies of at least 80 Hz) but

minimal contamination from harmonic noise. Increasing

S/N requires large source arrays to generate strong sig-

nal levels, and high fold to facilitate stacking, which can

be accomplished by increasing the number of channels

(i.e., longer streamer) and/or decreasing the shot spac-

ing. Decreasing shot spacing Ds is especially desirable

for minimizing harmonic noise, as the noise peaks occur

at integer multiples of 1/Ds. However, when the seafloor

and uppermost subseafloor geology is unusually ‘‘hard’’

(high reflection coefficient), decreasing shot spacing can,

paradoxically, decrease the S/N. This is because a major

source of ‘‘random’’ noise in seismic oceanography data

comes from reverberations within the water column

from previous shots. Thus, the increased fold that is

gained when going from, say, a shot spacing of 50 down

to 25 m might be swamped by the increased previous-

shot noise in some environments. The choice of shot

spacing will depend on the environment: continental

margins covered by soft sediments are amenable to

small shot spacings (e.g., 25 m), while midocean en-

vironments will likely require larger (100–150 m) shot

spacings and consequent attention to suppressing har-

monic shot noise.

Our work represents a first step in understanding how

reliably seismic images can provide turbulence esti-

mates, but much remains to be done. In particular, fu-

ture studies would benefit both from high-resolution

models of ocean dynamics (including patchy turbulence)

and from more realistic seismic simulations. More so-

phisticated and standardized fitting algorithms of the

observed slope spectra to the model, also incorporating

a realistic noise spectrum, such as the maximum likeli-

hood spectral fitting method to the Batchelor form de-

vised by Ruddick et al. (2000), can increase the accuracy

of the inferred diffusivity and the confidence intervals.

Seismic oceanography generally, and these methods in

particular, would benefit from improved understanding

of the causes, time scales, and slope spectral signatures

of fine structure in the ocean. For example, under what

circumstances does fine structure follow isopycnals? Do

both permanent and ‘‘reversible’’ fine structure provide

reliable slope spectra, and over what time scales? Most

of all, improved confidence in these methods requires

further (and better) comparisons between seismic im-

aging and in situ measurements, including horizontally

towed data and microstructure measurements.

6. Conclusions and recommended workflow

This study shows that seismic images can provide ac-

curate estimates of turbulence dissipation, out to hori-

zontal wavenumbers of about 0.04 cpm, corresponding

to horizontal wavelengths as small as 25 m. Compari-

son of seismically derived turbulence estimates to co-

incident, simultaneous, in situ estimates from vertical

shear corroborate the accuracy of reflector slope spectra

and the estimates of turbulence dissipation derived from

them. However, producing reliable slope spectra from

seismic images of the water column requires recognizing

and suppressing two sources of noise: random noise and

harmonic noise in the kx domain related to the shot

spacing during seismic acquisition. A quick and neces-

sary test of the suitability of a particular seismic dataset

to slope spectral analysis is the calculation of slope

spectra directly from the seismic data; both random and

harmonic noise become evident in such plots.

We summarize a recommended workflow for pro-

ducing reliable slope spectra from seismic images below:

1) Careful processing through migration. Seismic data

must be processed through poststack migration, with

careful attention to stacking velocities and sources of

noise. Migration is necessary, as unmigrated data

have false reflector slopes and thus will not have

reliable slope spectra, especially at high kx.

2) Calculation of slope spectra directly from seismic

data. Before calculating slope spectra from tracked

reflectors, it is critical to assess the suitability of each

dataset by calculating slope spectra directly from

seismic data (Figs. 5b and 6b), as described in section

3c. We note that noise characteristics can vary even

on a single seismic section because of changes in sea

state, bottom characteristics (which can affect previous-

shot multiple strength), reflector strength, and acqui-

sition parameters; thus, one portion of a seismic line

may be suitable for slope spectral analysis (e.g., Fig.

5), while another may not (Fig. 10).

3) Signal-to-noise analysis and random noise suppres-

sion. Random noise can be suppressed by carefully

selecting filter bands to maximize the signal-to-noise

ratio; we found that a band of 30–80 Hz works well.

Each dataset should be analyzed by passband (e.g.,

Fig. 9 and Table 1) to determine optimal filter bands.

Signal-to-noise ratios should be calculated as in Eq.

(3) and section 3d; passbands with an S/N ratio less

than about 4 are unlikely to be suitable.
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4) Suppression of harmonic noise. Shot-generated har-

monic noise contaminates all seismic sections (Fig.

11) and must be eliminated by a targeted filter as

described in section 3e and shown in Figs. 12. Data

acquiredwith unusually large shot separations will be

severely contaminated and may produce false ‘‘tur-

bulence’’ slopes in tracked reflector spectra because

of spectral leakage (Fig. 21).

5) Automated reflector tracking. Hand-tracked reflec-

tors are unlikely to produce reliable slope spectra; we

recommend automated tracking by contouring the

0.6 value of cos(f), where f is the instantaneous

phase angle from the Hilbert transform, as described

in section 3f.

6) Calculation of reflector slope spectra. Horizontal

slope spectra can be calculated from tracked reflectors

using the method of KM07, substituting reflector

displacementsRx for isopycnal displacements zx. The

effect of varying NFFT on dissipation estimates

should be explored, as in Fig. 19.
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