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Abstract 1 

Sound is the primary sensory cue for most marine mammals, and this is especially true for 2 

cetaceans.  To passively and actively acquire information about their environment, cetaceans 3 

have perhaps the most derived ears of all mammals, capable of sophisticated, sensitive hearing 4 

and auditory processing.  These capabilities have developed for survival in an underwater world 5 

where sound travels five times faster than in air, and where light is quickly attenuated and often 6 

limited at depth, at night, and in murky waters.  Cetacean auditory evolution has capitalized on 7 

the ubiquity of sound cues and the efficiency of underwater acoustic communication.  The sense 8 

of hearing is central to cetacean sensory ecology, enabling vital behaviors such as locating prey, 9 

detecting predators, identifying conspecifics, and navigating.  Increasing levels of anthropogenic 10 

ocean noise appears to influence many of these activities.  11 

  Here we describe the historical progress of investigations on cetacean hearing, with a 12 

particular focus on odontocetes and recent advancements. While this broad topic has been 13 

studied for several centuries, new technologies in the last two decades have been leveraged to 14 

improve our understanding of a wide range of taxa, including some of the most elusive species.  15 

This paper addresses topics including how sounds are received, what sounds are detected, 16 

hearing mechanisms for complex acoustic scenes, recent anatomy and physiology studies, the 17 

potential impacts of noise, and mysticete hearing.  We conclude by identifying emerging 18 

research topics and areas which require greater focus.  19 

 20 
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1. INTRODUCTION 1 

 Hearing in cetaceans is an impressive process resulting from various adaptations to life 2 

underwater. Some components of the auditory system of mysticetes (baleen whales) are among 3 

the largest of all mammals and some species are likely to hear infrasonic frequencies.  4 

Odontocetes (toothed whales, dolphins, and porpoises) can have extraordinarily broad hearing 5 

ranges, up to 180 kHz in some species. Within this range, most odontocete species have fine-6 

scale frequency discrimination abilities. They can process sounds rapidly, compensating for both 7 

the faster underwater sound speed and complex requirements for echolocation. Furthermore, 8 

odontocetes have developed a novel mechanism to receive sounds through specialized acoustic 9 

fats associated with their lower jaws.  10 

Past investigations of cetacean hearing, particularly those conducted on odontocetes in 11 

the past 50 years, have revealed a significant amount of information about the impressive hearing 12 

abilities of cetaceans.  Because cetaceans are primarily offshore, pelagic animals, many of whom 13 

do not maintain well in captivity, audiometry studies typically involve small sample sizes for a 14 

limited subset of species. Consequently, there is still a substantial amount of knowledge to be 15 

gained for most species and with the subject of cetacean hearing. 16 

This review addresses what has been learned regarding cetacean hearing, presenting it 17 

within a historical context while incorporating more recent, novel investigations. The review 18 

focuses on odontocetes because the majority of information available examines this suborder 19 

(Figure 1A-C).  We also address what little is known about mysticete hearing and suggest future 20 

research areas.  21 

 22 

2. EARLY INVESTIGATIONS 23 
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 The study of cetacean hearing started as an observational inquiry, centered on natural 1 

history.  One of the notable earlier studies was published by John Hunter in 1787 (Hunter, 1787).  2 

In his lengthy work titled “Observations on the Structure and Oeconomy of Whales”, Hunter 3 

noted that cetacean ears are made of the same structures as quadruped ears including an external 4 

opening, a tympanic membrane, the Eustachian tube, ossicles, cochlea, and semicircular canals.  5 

However, there is no pinna and the ear canal is a long tube taking a “serpentine course” through 6 

the tissues of the head.  The bony portion of the ear, composed of the “tympanum” (tympanic) 7 

and the “round, bony process” (periotic) is very hard and is not as integrated into the skull as 8 

other quadrupeds.  Regarding how the organ functions, Hunter speculated that the tympanic 9 

cavity amplifies sound through the vibration of bone and these vibrations are directly transferred 10 

to the inner ear.   11 

 In 1812, Everard Home published an account of the ears of bowhead whales (Balaena 12 

mysticetus). He noticed the peculiarity of the tympanic membrane in these animals, which is 13 

convex unlike in any other animal and projects into the ear canal (Home, 1812).  This derived 14 

tympanic membrane, which is common to mysticetes but not found in odontocetes, is now called 15 

the “glove finger.”  Home hypothesized that the bowhead whale hears through vibrations of the 16 

tympanic bone, which are transmitted via another “membrane” stretched across the tympanic 17 

cavity and attaching to the malleus.   18 

 Remington Kellogg studied the evolution of whales in the 1920’s, comparing currently 19 

existing species to fossil cetaceans and examining various modifications to the skull as cetaceans 20 

evolved to live under water (Kellogg, 1928).  In the process, Kellogg elaborated upon previous 21 

descriptions of the auditory anatomy.  He noted that the attachment of the tympanic and periotic 22 

bones (housing the middle and inner ears) to the skull differs between toothed whales and baleen 23 



 5

whales: the bones are only attached to the skull by ligaments in toothed whales, while the 1 

periotic bones of all living and fossil baleen whales have a long posterior process that is wedged 2 

between the exoccipital and squamosal bones.  Kellogg speculated that the dense, heavy, air-3 

filled tympanic bulla serves as a resonating sounding box, vibrating somewhat independently of 4 

the periotic and transmitting sound along the ossicles.  This “resonance theory” seems to have 5 

been a popular viewpoint at this time, as the same mechanism was also described by Claudius 6 

(1858) and Denker (1902)1 even though they disagreed about the involvement of the ossicles.   7 

Various other theories on cetacean sound reception also existed during this time period.  8 

Camper (1762)1 thought that sperm whales heard through the ear canal.  Buchanan (1828) stated 9 

that bowhead whales heard through the Eustachian tube.  An unnamed scientist (described in 10 

Kernan, 1919) thought that sound reaches the cochlea directly through vibrations of the periotic 11 

bone, but this was dismissed by Kernan because the cochlear fluid needs to receive an orderly 12 

succession of waves from the ossicles for sensitivity to different frequencies.  Kernan (1919) 13 

supported bone conduction, where vibrations from the entire skull are transmitted to the 14 

tympano-periotic complex through a bony outgrowth of the tympanic that may contact the skull.  15 

Yamada (1953) also supported the bone conduction theory, arguing that even if the tympano-16 

periotic complex lacks bony connections to the skull, fibrous connections prevent acoustic 17 

isolation of the ears.  He reasoned that resonance of air in the middle ear cavity cannot be 18 

essential to auditory function because the cavity often fills up with parasites.   19 

 Yamada also provided a summary of conflicting theories of the time, including 20 

Boenninghaus (1904)’s “sound-funnel” theory.  Boenninghaus1 proposed a soft-tissue pathway 21 

which ends at the tympanic bulla, putting the malleus into motion and thus transferring sounds 22 

                                                 
1 These works are unavailable in English.  Therefore, the content was obtained from Yamada (1953)’s descriptions 
of the theories. 
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via the ossicles to the inner ear.  Although he included skin, fat, tongue, and jawbone 1 

musculature in the soft-tissue pathway, this seems to be the theory closest to the current view of 2 

odontocete sound reception described by Norris (1968; see below).  However, Yamada noted 3 

that Boenninghaus’s work was “really so hard to understand that… a serious confusion was 4 

brought into our field.”  Yamada concluded his discussion by stating that the experiments 5 

necessary to settle the dispute of how cetaceans receive sound are not yet feasible, but the field 6 

will greatly benefit from technical advances in the future. 7 

 While the mechanism of hearing remained unclear, the anatomic potential for acute 8 

hearing in cetaceans was becoming evident.  Hunter (1787) had noted the well-developed 9 

cochlea relative to the semi-circular canals, an observation repeated by Fraser (1952).  10 

Langworthy (1931)’s study of the central nervous system revealed that the acoustic nerves and 11 

acoustic components of the brain are exceptionally well developed in odontocetes.  He 12 

commented that the highly developed odontocete cerebral cortex may have been driven by very 13 

acute hearing and need for acoustic processing, analogous to the rapid growth and differentiation 14 

of the primate cortex as a response to its complex optic structures and binocular stereoscopic 15 

vision.  Indeed, researchers began suspecting that odontocetes might echolocate and “see” 16 

through their hearing in 1947 (Schevill and McBride, 1956). 17 

 The first underwater recordings of cetacean vocalizations were made in the 1940’s, which 18 

greatly advanced our understanding of the sounds used by cetaceans (Schevill and Lawrence, 19 

1949).  In 1952, Kellogg and Kohler borrowed a transducer from the U.S. Navy for a primitive 20 

behavioral hearing experiment on captive dolphins (Kellogg and Kohler, 1952).  Based on the 21 

results, they surmised that dolphins can hear ultrasonic sounds of up to 50 kHz.  High frequency 22 
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hearing in odontocetes was also supported by histological examination of their cochlea (Yamada 1 

and Yoshizaki, 1959). 2 

 Meanwhile, the controversy on how cetaceans received sounds was not yet settled.  3 

Reysenbach De Haan (1957) argued that the cetacean ear canal was vestigial based on 4 

experiments using tissue from blue whales (Balaenoptera musculus).  He took a section of 5 

blubber which contained the ear canal, immersed it in water, and used hydrophones to show that 6 

sound conductivity was not significantly different through water compared to blubber.  7 

Furthermore, the orientation of the ear canal relative to the sound source made no difference in 8 

sound propagation.  Therefore, he concluded that the ear canal could not be a preferential 9 

pathway for sound.  Dudok van Heel (1962) supported this view as well.  Fraser and Purves 10 

(1960) came to the opposite conclusion by measuring sound waves traveling through a dissected 11 

ear canal compared to the surrounding tissue in fin whales.  Because sound was attenuated the 12 

least through the ear canal, they surmised that it is a preferential sound reception pathway.  13 

Regarding the alternate theories, Fraser and Purves stated, “The adaptation of the sound path in 14 

normal terrestrial mammals is, on the face of it, more acceptable than any de novo method of 15 

sound conduction in mammals.”   16 

 17 

3. KEN NORRIS AND THE “JAW HEARING” HYPOTHESIS 18 

 The major breakthrough in the field came in the mid 1960’s.  Ken Norris was walking on 19 

a beach in Mexico when he came across a dolphin skeleton.  He noticed a region of the lower 20 

jaw which was so thin that it was translucent (Figure 1A).  Norris then realized that this is a 21 

common feature to all odontocetes, and that this thin area of bone was overlain with an oval fatty 22 

area which he called the “acoustic window.”  According to Norris, sound enters the odontocete 23 
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head through this oval fat body and goes through the thinnest part of the mandible to the 1 

“acoustic fat” filling the mandibular canal (Figure 1B).  While the existence of these mandibular 2 

fat bodies was known since the 1800’s, Norris was the first one to associate them with the 3 

auditory system, observing that they lead directly to the tympanic bulla and may provide a low 4 

impedance pathway to the ears (Figure 1; Norris, 1964; Norris, 1968).   5 

 Not everyone accepted Norris’s hypothesis immediately.  However, Norris’s stimulating 6 

idea led to a series of validation studies, enabled by technological advances of the time.  Bullock 7 

et al. (1968) conducted physiological recordings from anesthetized dolphins and found the 8 

greatest response when sound was played to the lower jaw.  Norris and Harvey (1974) implanted 9 

small hydrophones in various locations of a dead bottlenose dolphin head and found sound to be 10 

concentrated in the proposed sound channel of the jaws.  Brill et al. (1988) found that a 11 

bottlenose dolphin’s echolocation abilities were greatly reduced when its lower jaws were 12 

covered by an acoustically opaque hood. The authors suggested that the hood prevented the 13 

animal from hearing the returning echoes, thus behaviorally supporting the notion of jaw hearing.  14 

A behavioral hearing test suported these observations in which sound was presented via a 15 

“jawphone,” or a transducer implanted in a suction cup (Brill, et al., 2001). The tests showed that 16 

high frequencies were best detected when sounds were presented along the lower jaw (e.g., 17 

Figure 1C).  However, the dolphin detected lower frequencies better when they were presented 18 

near the meatus.  These reports were supported with similar electrophysiological hearing tests 19 

(Møhl, et al., 1999).  20 

Scientists from other fields also made significant contributions.  For example, Varanasi 21 

and colleagues’ biochemical analysis showed that “acoustic fats” are incredibly specialized, 22 

comprised of endogenously synthesized shorter, branch-chained fatty acids and wax esters not 23 
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typically found in mammalian adipose tissues (Litchfield, et al., 1975; Morris, 1975; Varansi, et 1 

al., 1975; Varansi and Malins, 1972).  Recent work by (Koopman, et al., 2006) has revealed a 2 

complex and consistent topographical distribution of lipids within odontocete perimandibular 3 

fats, with the highest relative wax ester concentrations for each species all occurring in the 4 

caudal-most portions of the inner mandibular fat bodies, which connect to the tympano-periotic 5 

complex.  This new study confirmed early suggestions of heterogeneity in lipid composition of 6 

odontocete perimandibular fats (Malins and Varanasi, 1975).   7 

Koopman et al., (2006) also found that the distribution of fatty acids show consistent 8 

patterns, where the shortest and branched-chain compounds were concentrated in the middle of 9 

the inner fat body and around the tympano-periotic complex.  It has been shown that sound 10 

velocity in lipids is a function of their molecular weight and that sound also travels faster through 11 

triacylglycerols than through wax esters (Flewellen and Morris, 1978; Gouw and Vlugter, 1967; 12 

Hustad, 1971).  Therefore, the study hypothesized that the topographical arrangement of lipids 13 

within perimandibular fat bodies of odontocetes are arranged so that sound is directed to the ears 14 

as it bends towards the inner low-velocity center of the mandibular fat body, which has a higher 15 

concentration of wax esters and short, branched-chain lipids.  Such an acoustic channel has also 16 

been proposed for odontocete melons in previous studies which have found compositional 17 

heterogeneity within the melon (Blomberg and Lindholm, 1976; Litchfield, et al., 1973; Scano, 18 

et al., 2005; Varanasi and Malins, 1972; Wedmid, et al., 1973). 19 

Interestingly, Zahorodny et al., (2009) found that the perimandibular fats of the 20 

bottlenose dolphin do not display the same pattern of having an inner low-velocity channel, 21 

although the fats closest to the tympano-periotic complex do follow the pattern of having the 22 

highest wax ester content and shortest, branched-chained fatty acids and fatty alcohols.  These 23 
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differences between species, as well as differences in lipid composition found between age 1 

classes, may reflect the complexity, development and niche related adaptations of the fat 2 

“channels” (Koopman and Zahorodny, 2008).  Together, these studies helped establish the 3 

validity of Norris’s unconventional theory, leading to a paradigm shift by uncovering a whole 4 

new mechanism for mammalian hearing.   5 

 6 

4. WHAT ODONTOCETES HEAR 7 

4.1. Basic hearing abilities 8 

The odontocete audiogram, or a plot of frequency vs. detection limit (hearing threshold, 9 

e.g., Figure 2), was first estimated by Johnson (1966; 1967). Using operant-conditioned and a 10 

go/no-go procedure, an 8-9 year old male bottlenose dolphin was trained to press a lever when a 11 

sound was detected (a “go” or positive response). If the animal did not detect a sound it would 12 

remain still (a “no-go”).  A staircase method, which steps sound levels up or down based on 13 

correct and incorrect responses, was used to vary sound levels.  The animal was given a 90 14 

second time-out for incorrect responses. This work described an auditory range of 75 Hz – 150 15 

kHz and thresholds at or below 50 dB re 1 µPa from approximately 10-115 kHz. Maximal 16 

sensitivity was 40.8 dB at 65 kHz. This broad and sensitive audiogram set a benchmark for 17 

which all other odontocete audiogram have been, and continue to be, compared.   18 

 This bottlenose dolphin audiogram was soon succeeded by comparative hearing tests in 19 

several other odontocete species including one harbor porpoise (Phocoena phocoena), one killer 20 

whale (Orcinus orca) and one Amazon river dolphin (Inia geoffrensis) (Andersen, 1970; Hall 21 

and Johnson, 1972; Jacobs and Hall, 1972).  The hearing tests from each of these animals 22 

produced different audiograms.  The harbor porpoise had slightly less sensitive hearing 23 
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compared to the bottlenose dolphin and its best hearing was found at slightly lower frequencies 1 

(8-32 kHz). The killer whale was most sensitive at even lower frequencies and had a high 2 

frequency cut-off of only 32 kHz.  The Amazon river dolphin had a narrow range of “best 3 

sensitivity” (10-50 kHz) and a high frequency limit of 105 kHz.  (Note that meaning of “best 4 

sensitivity” can vary between studies; in this case it refers to 20 dB above the lowest threshold).  5 

At the time, it was not clear whether the large variations between these audiograms were due to 6 

species or individual differences. 7 

 Since these early audiograms, there have been several additions to the roster of species 8 

with hearing tests (Table 1). These now include the: Chinese river dolphin (Lipotes vexllifer) 9 

(Wang, et al., 1992); beluga (Delphinapterus leucas) (Awbrey, et al., 1988; Klishin, et al., 2000; 10 

Mooney, et al., 2008; White, et al., 1978); false killer whale (Pseudorca crassidens) (Thomas, et 11 

al., 1988; Yuen, et al., 2005); tucuxi (Sotalia fluviatilis guianensis) (Sauerland and Dehnhardt, 12 

1998); Risso’s dolphin (Grampus griseus) (Nachtigall, et al., 1995; Nachtigall, et al., 2005); 13 

striped dolphin (Stenella coeruleoalba) (Kastelein, 2003); finless porpoise (Neophocoena 14 

phoccanoides) (Popov, et al., 2005); Gervais’ beaked whale (Mesoplodon europaeus) (Cook, et 15 

al., 2006; Finneran, et al., 2009); Tursiops truncatus gilli (Houser, et al., 2008; Ljungblad, et al., 16 

1982); the white beaked dolphin (Lagenorhynchus albirostris) (Nachtigall, et al., 2008); long-17 

finned pilot whale (Globicephala melas) (Pacini, et al., 2010); Blainville’s beaked whale 18 

(Mesoplodon densirostris) (Pacini, et al., 2011); and the pygmy killer whale, (Feresa attenuata) 19 

(Montie, et al., 2011).  These audiograms have yielded a substantial amount of information on 20 

odontocete hearing sensitivity.  21 

 One conclusion that can be derived from the above studies is that there is a huge diversity 22 

in hearing ranges and sensitivities among odontocetes. These disparities appear to be a 23 
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combination of species differences and individual variation. Increasing sample sizes within a 1 

species has shown that there are many instances of hearing loss.  For example, Rigdway and 2 

Carder (1997) demonstrated that hearing loss in bottlenose dolphins appears to be correlated with 3 

age and sex.  Older animal were more likely to have high frequency hearing loss compared to 4 

younger individuals.  Males had a greater incidence and extent of high frequency hearing loss 5 

compared to females.  These results implied that the relatively narrower audiograms in species 6 

such as the killer whale and Risso’s dolphin reflected incidences of individual high frequency 7 

hearing loss rather than a species-wide phenomenon (Hall and Johnson, 1972; Nachtigall, et al., 8 

1995). This hypothesis was supported by subsequent tests of both species (Nachtigall, et al., 9 

2005; Szymanski, et al., 1999). For the killer whale, Szymanski et al. showed a substantially 10 

greater high frequency limit of 120 kHz, as opposed to 32 kHz (Hall and Johnson, 1972), while 11 

the frequency of best hearing was similar to the previous study (18 and 20 kHz). Nachtigall et 12 

al.’s (2005) work examined the hearing of a neonate Risso’s dolphin (Figure 2). This animal had 13 

a high frequency limit of 150 kHz, instead of 100 kHz, and good sensitivity (< 80 dB) over a 14 

wider range, from 8-110 kHz (Figure 3).  Lowest thresholds were 49.5 dB at 90 kHz, instead of 15 

the previously reported threshold at 67 dB at 64 kHz, although these elevated thresholds were 16 

likely masked by the noisy test conditions of Kaneohe Bay (Nachtigall, et al., 1995).  17 

While the above studies established that intra-species variation existed, these differences 18 

were examined in greater detail for two subspecies of bottlenose dolphins (T. truncatus and T. 19 

truncatus gilli) (Houser and Finneran, 2006b; Houser, et al., 2008). Variability in the range of 20 

hearing and age-related reductions in sensitivity was consistent between the two bottlenose 21 

dolphin subspecies. However, areas of best sensitivity differed between the two subspecies. The 22 
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authors suggested that both genetic differences between the subspecies and the background noise 1 

conditions of the populations could be causing these differences.  2 

 3 

4.2. Functional explanations for diversity in audiograms 4 

These species differences, and the consistencies in audiogram shape between closely 5 

related species, suggest that there is a genetic component to odontocete hearing (Houser and 6 

Finneran, 2006b; Houser, et al., 2008), which has been observed in other mammals (Vanke, 7 

1980).  In general, these differences are often attributed to correlations with the sounds produced, 8 

such as the frequencies of the echolocation clicks of the species. 9 

Compared to the average bottlenose dolphin audiogram, the range of best sensitivity (20 10 

dB within the lowest threshold in this case) for killer whales was centered around much lower 11 

frequencies of 12-52 kHz (Szymanski, et al., 1999). The best sensitivities were also 12 

comparatively lower, in the range of 40-50 kHz, for the two beaked whale species measured 13 

(Finneran, et al., 2009; Pacini, et al., 2011).  Correspondingly, beaked and killer whale 14 

echolocation click signals are centered at lower frequencies than for clicks produced by 15 

bottlenose dolphins (20-50 kHz vs. 80-130 kHz) (Au, et al., 1974; Au, et al., 2004; Johnson, et 16 

al., 2007).   17 

Harbor porpoises show a broad range of good sensitivity 16-140 kHz which included 18 

relatively high frequencies (Kastelein, et al., 2002).  They are also sensitive up to 180 kHz. 19 

Compared to the bottlenose dolphin, porpoise echolocation pulses are narrow band, high 20 

frequency signals, consistent with their high-frequency hearing (Au, et al., 1999).  This is 21 

exceptional for odontocetes with only one other species, white beaked dolphins, detecting signals 22 

at such high frequencies (Nachtigall, et al., 2008).   23 
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Whistles are presumably just as important, at least to the species that produce them.  For 1 

the bottlenose and Stenella spp., whistle fundamental frequencies often do not overlap with the 2 

regions of best sensitivity (Johnson, 1967; Kastelein, 2003; Lammers, et al., 2003).  However, 3 

whistle harmonics can overlap with “best” hearing ranges, suggesting that their auditory system 4 

is well adapted to detect these components of the communication signals (Lammers, et al., 2003).  5 

Notably, echolocation signals can change with hearing abilities (Ibsen, et al., 2007; Kloepper, et 6 

al., 2010). As high frequency hearing is lost, animals seem to alter their echolocation centriod 7 

frequencies to match regions of maximal auditory sensitivity.  Thus, there is substantial evidence 8 

that hearing sensitivities match the acoustic signals produced.  Echolocation clicks with 9 

substantial sound energies at frequencies beyond the range of best hearing has been found in 10 

only in the white beaked dolphin (Nachtigall, et al., 2008; Rasmussen and Miller, 2002).  While 11 

somewhat unexpected, this is probably a function of slight differences in the animals’ auditory 12 

anatomy or physiology. There are several examples of terrestrial animals producing sounds 13 

beyond their hearing range (Pytte, et al., 2004).    14 

 15 

4.3 The auditory evoked potential (AEP) method 16 

Increased audiogram sample sizes, even across different methods and experimental 17 

conditions (Figure 4), have greatly broadened our understanding odontocete hearing sensitivity.  18 

Many of these audiograms were made possible by applying electrophysiological methods to 19 

study hearing.  The primary electrophysiological method that has been used is called the auditory 20 

evoked potential method (AEP).  AEP provide a noninvasive and rapid way to test hearing by 21 

measuring the small voltages generated by neurons in the auditory system in response to acoustic 22 

stimuli (Figure 3).  Voltages in response to sound are often generated in the brainstem and are 23 
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sometimes referred to as auditory brainstem responses (ABRs).  Louder acoustic stimuli lead to 1 

larger amplitudes in the AEP signals.  As the stimulus is reduced in intensity, the resulting AEP 2 

signals also become reduced.  The intensity at which the AEP signal is no longer detectable is 3 

defined as the hearing threshold.  Actual threshold determinations can be conducted in several 4 

ways (Finneran, et al., 2007a; Nachtigall, et al., 2007; Supin and Popov, 2007).  The AEP 5 

method requires no training of the subject and is used to assess hearing in a variety of taxa 6 

including other mammals, such as humans (Dolphin and Mountain, 1992; Hecox and Galambos, 7 

1974), birds (Brittan-Powell, et al., 2002), teleost fish (Ladich and Yan, 1998), cartilaginous fish 8 

(Casper, et al., 2003), and invertebrates (Lovell, et al., 2005).   9 

Electrohysiological auditory measurement techniques have been established for several 10 

decades in marine mammals.  Initially, the methods varied, electrophysiological tools adapted for 11 

marine mammals were not widely available, the experiments were often invasive, and the 12 

methods were not widely applied (Bullock, et al., 1968; Popov and Supin, 1990; Ridgway, et al., 13 

1981).  Early studies initially required anesthesia, a major accomplishment for animals which 14 

respire voluntarily (Ridgway and McCormick, 1967). Bullock et al. (1968) followed this work 15 

with the first acoustically-stimulated electrophysiological auditory recordings from twenty nine 16 

odontocetes among four species. This was a comprehensive study which addressed waveform 17 

characteristics, temporal resolution, electrode placement, frequency tuning, masking using 18 

background noise, and pure tones vs. modulated stimuli. The study produced an “audiogram” 19 

similar in frequency responses and sound levels to Johnson’s audiogram for the bottlenose 20 

dolphin.  Evoked potentials were measured using tungsten and stainless steel electrodes inserted 21 

in several locations, with reliable responses originating from the inferior colliculus.  22 
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McCormick et al. (1970) followed with an integrative anatomical and 1 

electrophysiological study of the mechanisms of the dolphin middle ear using dissections and 2 

physiologically recording from the inner ear’s round window. They concluded that sound will 3 

induce movement of the ossicles (thus a functional middle ear) and be conducted to the inner ear 4 

through the oval window. While still a novel study, the results were slightly limited by the 5 

inevitable surgery and the necessity to make measurements with the animal at the water’s surface. 6 

Odontocete middle ear mechanisms are still debated today.  7 

The pace of electrophysiological studies in the U.S. slowed after the passage of the 8 

Marine Mammal Protection Act of 1972.  However, substantial AEP work was continued by 9 

Soviet scientists (see review by Ridgway, 1980). Advancements included using AEPs to identify 10 

response-generating regions within the cortex and identifying how AEP onset and offset 11 

responses were impacted by frequency and duration (Ladygina and Supin, 1970; Ladygina and 12 

Supin, 1977; Popov and Supin, 1976; Popov and Supin, 1978). The thresholds produced were 13 

similar to prior psychophysical (behavioral) tests (Johnson, 1966). Classical conditioning was 14 

used to measure hearing physiologically by pairing tones with electric shocks, while monitoring 15 

changes in heart rate, respiration and galvanic skin response (Sukhoruchenko, 1971; 16 

Sukhoruchenko, 1973; Supin and Sukhoruchenko, 1970). The experiments detected the upper 17 

limit of hearing and showed that both bottlenose dolphins and porpoises have precise frequency 18 

discrimination abilities across their hearing range. Using operant conditioning, Thompson and 19 

Herman demonstrated that dolphins can distinguish two sounds that differ in frequency by only 20 

0.2-0.3%, displaying remarkably precise frequency analyses (1975).  21 

Amongst these early AEP studies was the establishment of non-invasive methods which 22 

recorded responses from the surface of the skin (Seeley, et al., 1976).  This method was similar 23 
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to those used on humans and set the stage for rapid advances in odontocete AEP recordings 1 

(Hecox and Galambos, 1974). Within the last two decades an emphasis on relatively simple, 2 

non-invasive AEP techniques has been developed, providing insights into the auditory systems 3 

of odontocetes (Dolphin, et al., 1995; Nachtigall, et al., 2007; Supin and Popov, 1995; Supin, et 4 

al., 2001).   5 

Early non-invasive dolphin AEP measurements were stimulated with tone pips and 6 

revealed dolphin AEP responses involving a series of 5-7 neurophysiological “wave” responses 7 

(Popov and Supin, 1985; Popov and Supin, 1990).  An efficient and reliable method to obtain 8 

AEP hearing thresholds has used the envelope following response (EFR) or auditory steady state 9 

response (ASSR; Supin and Popov, 1995).  In this method the stimulus is a sinusoidally 10 

amplitude modulated tone or a series of clicks (Figure 3).  The series of resulting AEP waves are 11 

all visible at the onset of an EFR, but if a stimulus is played at a rapid enough rate, most of the 12 

waves blend together in a sinusoidal fashion.  The animal’s EFR is a consequent sinusoidal 13 

“following” of the envelope of the carrier signal; when the animal is able to detect the stimulus, 14 

the AEP recordings contain a sinusoidal signal at the frequency with which the amplitude of the 15 

stimulus is modulated. The results of this method compare favorably to those from behavioral 16 

psychometric audiograms (Houser and Finneran, 2006a; Szymanski, et al., 1999; Yuen, et al., 17 

2005).  Other aspects of odontocete AEPs are well-reviewed elsewhere (Nachtigall, et al., 2007; 18 

Supin, et al., 2001).   19 

 20 

5. HEARING MECHANISMS FOR COMPLEX AUDITORY SCENES 21 

While the increasing number and quality of audiograms provide insights into what 22 

odontocetes hear, substantial progress has also been made regarding how odontocete hearing 23 
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works.  For hearing to provide any advantage to an individual listener, an animal must not only 1 

detect, discriminate and recognize sounds, but must also know the sound source location.  These 2 

abilities are complicated by the presence of multiple sounds occurring simultaneously in 3 

Euclidean space. An excellent example of a fundamental, but complex auditory task occurs 4 

during cooperative nocturnal feeding by Hawaiian spinner dolphins (Stenella longirostris). These 5 

animals are tasked with cooperatively herding a low-density mesopalagic biomass, into a dense 6 

group that is more conducive to feeding. (Benoit-Bird and Au, 2009). Behaviorally, the group 7 

spreads out in a horizontal line and swims towards the low density layer forcing the fish to 8 

coalesce for protection. To accomplish this task, the dolphins must acoustically monitor the 9 

position of group members and coordinate their herding behavior, acoustically monitor the 10 

position and density of their prey, and still remain vigilant for potential predators. Monitoring the 11 

position and direction of movement in group members is likely accomplished by both directly 12 

echolocating on group members as well as passively listening to specific acoustic cues associated 13 

with other group member’s directional phonations. Foraging groups in Hawaii typically range 14 

from 16-28  individuals (Benoit-Bird and Au, 2009) meaning that there will be a cacophony of 15 

clicks and echoes coming from many different sources and targets that the dolphin auditory 16 

system must make sense of. Understanding how this is accomplished requires an understanding 17 

of how the dolphin’s auditory system segregates and recognizes sounds in complex auditory 18 

scenes. 19 

 20 

5.1 Basic hearing model 21 

The dolphin auditory pathway can be modeled as a series of transfer functions that 22 

convert environmental pressure fluctuations into perception.  The primary stages are: the head 23 
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related transfer function (HRTF), amplification by the middle ear ossicles, spectral 1 

decomposition at the basilar membrane, transduction and amplitude compression at the hair cells, 2 

low pass filtering by the 8th nerve and higher auditory areas, and reintegration of the information 3 

from both ears to form a percept. What follows is a review on some of the stages that have been 4 

studied.  5 

 6 

5.2. Head related transfer function 7 

In terrestrial mammals, the primary purpose of the outer ear (i.e., the pinna and meatus) is 8 

to focus sound towards the middle and inner ear. In addition, the complex ridges and folds of the 9 

pinna, as well as the head and torso, also differentially filter sound depending on the source’s 10 

location. This is known as a position-dependant spectral filter or a head related transfer function 11 

(HRTF) and aids a listener in determining the location of a sound source, especially in the 12 

vertical plane (Branstetter and Mercado III, 2006). A feature often found in auditory predators 13 

(e.g., the barn owl, Tyto alba, (Knudsen, 1981)) is pronounced asymmetry in external auditory 14 

anatomy that results in a HRTF with salient localization cues.  In water, the terrestrial pinna loses 15 

its reflective and filtering capabilities due to the density similarity with water. As a result, natural 16 

selection has sacrificed the archetypical odontocete pinna to provide a more streamlined shape 17 

for locomotion.  To compensate for the loss of the pinna, the reflective and refractive properties 18 

of internal anatomical structures may function as a pinna analog (Aroyan, 2001; Ketten, 1997).  19 

Like other auditory predators, odontocetes exhibit pronounced asymmetry in anatomical 20 

structures including the skull (Fahlke, et al., 2011; Ness, 1967), soft tissue (Cranford, et al., 21 

1996), and cranial air sacks (Cranford, et al., 1996; Houser, et al., 2004b). To date, a detailed 22 

HRTF of any cetacean has not been measured. However, data from behavioral experiments (Brill, 23 
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et al., 2001), electrophysiological experiments (Supin and Popov, 1993) and computer models 1 

(Aroyan, 2001) all suggest that odontocetes possess a salient and complex HRTF.  2 

 3 

5.3 Middle ear transfer function 4 

 The function of the middle ear in terrestrial animals is to amplify sounds to overcome 5 

impedance mismatch between air and the fluid-filled cochlea. Impedance mismatch between an 6 

ocean environment and the fluid-filled cochlea is minimal, which calls into question the function 7 

of the middle ear in odontocetes. The ossicles of odontocetes are rigid and calcified, lacking the 8 

mobility of their terrestrial ancestors (Ketten, 1997). Nevertheless, mechanical models based on 9 

the anatomy of the tympano-periotic complex suggest the odontocete middle ear functions as a 10 

velocity amplification device using a lever mechanisms (Nummela, et al., 1999). The rigidity of 11 

the system may be a specialization for high frequency hearing associated with echolocation and 12 

the computer models are able to provide reasonable fits to odontocete audiograms (Hemilä, et al., 13 

2001). 14 

 15 

5.4. Frequency and temporal resolution at the auditory periphery 16 

Sound enters the cochlea at the oval window and displaces the differentially stiff basilar 17 

membrane (BM). The odontocete basilar membrane functions on the same principles as 18 

terrestrial mammals. The basal end is stiffer and maximally displaced by shorter wavelength, 19 

high-frequency sounds. The apical end responds to long wavelength, lower frequency sounds 20 

(Ketten and Wartzok, 1990).  The basal end of the odontocete basilar membrane is especially 21 

thick (25 μ), narrow (30 μ) and rigid, consistent with their sensitivities to ultrasonic sounds. 22 

Towards the apex, the thickness decreases (5 μ) and the width increases nine fold to increase 23 
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sensitivity to lower frequencies (Ketten and Wartzok, 1990). Because of the frequency dependent 1 

displacement of the BM, hair cells at specific locations will fire best for a characteristic 2 

frequency. Odontocete hair cell density along the BM appears to be uniform (Ketten and 3 

Wartzok, 1990) as in most terrestrial mammals. Each site along the basilar membrane is tuned to 4 

a specific frequency. Because there is a uniform distribution of hair cells on the BM, but not 5 

uniform displacement (i.e., lower frequencies have longer wavelengths, and thus displace a 6 

larger surface area of the BM) more hair cells are allocated to lower frequencies resulting in finer 7 

frequency resolution.  8 

Frequency selectivity has been measured in odontocetes using both electrophysiological 9 

(Popov, et al., 1997) as well as behavioral methods (Au and Moore, 1990; Finneran, et al., 10 

2002a; Lemonds, 1999) in different masking paradigms. One of the most common methods for 11 

measuring frequency selectivity is a band-widening, masking paradigm resulting in a metric 12 

known as the critical band (CB). Listeners are required to detect the presence of a sinusoidal tone 13 

masked by a narrow band of noise centered on the signal frequency. Thresholds are estimated as 14 

a function of increasing bandwidth. A result replicated across many animal species is that 15 

thresholds increase as a function of bandwidth, but only up to a specific bandwidth known as the 16 

critical band. Masking noise beyond this critical band no longer contributes to the masking of the 17 

signal. To account for this result, Fletcher (1940) suggested that the auditory periphery behaves 18 

as a series of overlapping band pass filters. Each filter processes frequency energy within a 19 

limited range while attenuating peripheral frequency energy.  A related metric known as the 20 

critical ratio is based on the idea that since only a small band of noise contributes to the masking 21 

of the signal, the auditory filter bandwidth can be estimated by measuring tonal thresholds in 22 

wideband noise.  This assumes that the amount of energy in the noise band that masks the signal 23 
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is equivalent to the signal at thresholds. If the pressure spectral density of the noise (N) and the 1 

signal at threshold (Sth) are known the CB can be estimated by: 2 

 3 

 ΔFCB = Sth/(K·N), 4 

 (1) 5 

where ΔFCB is the CB and K is a constant. If K is assumed to equal to 1, the equation simplifies 6 

to: 7 

 8 

ΔFCR = Sth/N,    9 

             (2) 10 

Where ΔFCR  is the critical ratio. If CR is expressed in dB re 1 Hz, the CR can be simplified by 11 

subtracting the pressure spectral density level (LN, in dB re 1 µPa2/Hz) from the signal SPL at 12 

threshold (LS, in dB re 1 µPa):  13 

LCR = LS–LN.    14 

            (3)  15 

where LCR is the critical ratio. The CR is the most widely used masking metric for marine 16 

mammals due to the relative ease of data collection (i.e., only one noise bandwidth is required 17 

compared to CBs which require several noise bandwidths). Figure 6 displays CRs for several 18 

odontocete species. A common feature among terrestrial mammals is that CRs increase as a 19 

function of frequency due to increasing bandwidths of auditory filters. The relationship between 20 

the center frequency of a filter and the bandwidth of a filter can be described as a quality factor, 21 

Q: 22 

 23 
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Q = fo / Δf,   1 

                     (4) 2 

where fo  is the frequency of the signal and Δf is the filter bandwidth. Q values for bottlenose 3 

dolphins have been estimated to be 12.3 for CRs and 2.2 for CBs (Au and Moore, 1990). A 4 

consequence of a constant-Q filter bank is that higher frequencies associated with wider filters 5 

will have reduced spectral resolution compared to lower frequencies (see Figure 7). The tradeoff, 6 

however is that wide, high frequency filters will have excellent temporal resolution (See Figure 7 

8). A recent reevaluation of Q values for The bottlenose dolphin suggest these animals have a 8 

constant-Q filter bank for lower frequencies (< 40kHz) and a constant bandwidth filter bank for 9 

frequencies above 40 kHz (Lemonds, et al., 2011).  Similar constant bandwidth filters have been 10 

measured in harbor porpoises (Popov, et al., 2006). 11 

Auditory filter shapes have been measured using a notched noise methodology for 12 

bottlenose dolphins and belugas (Finneran, et al., 2002a; Lemonds, 1999).  Equation (1) can be 13 

rewritten as: 14 

 15 

∫
∞

∞−

= ,)()( dffWfNKPs  (4) 16 

 17 

where Ps is the power of the signal at threshold, N(f) is the noise power spectral density 18 

and W(f) is a weighting function described by the shape of the auditory filter.  W(f) is often 19 

estimated using a rounded exponential (roex) function: 20 

 21 

 W (g) = 1− r( ) 1+ pg( )e− pg + r  (5) 22 
 23 
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where g is a normalized frequency deviation [g = |f – fo|/fo, where f is frequency and f0 is the 1 

signal frequency], and p and r are adjustable parameters  2 

Biomimetic models using simulated auditory filters derived from empirical 3 

measurements have proven useful for investigating what time-frequency information is available 4 

to dolphins during echolocation discrimination tasks for artificial targets (Branstetter, et al., 5 

2007b; Roitblat, et al., 1993b) as well as natural fish targets (Au, et al., 2009) and as inputs into 6 

neural network classifiers (Au, et al., 1995; Branstetter and Mercado III, 2006; Roitblat, et al., 7 

1993a).  These models attempt to incorporate limitations of the dolphin auditory system with 8 

respect to both frequency and temporal resolution and mimic how this information might be 9 

organized and utilized for classification purposes. 10 

 11 

5.5. Transduction and low-pass filtering 12 

In addition to resolving characteristics of the auditory filters, hair cell transduction and 13 

low pass-filtering of the 8th nerve (and beyond) will also affect how sounds are perceived. Little 14 

is known about hair cell transduction in any marine mammal. However, hair cell anatomy 15 

appears to be similar to terrestrial mammals.  One striking difference is that odontocetes have a 16 

high density of afferent innervations with up to 2900 ganglion cells, 100 inner hair cells (IC), and 17 

300 outer hair cells / mm (Ketten, 1997).   There are about three times as many ganglion cells / 18 

IC in some odontocetes compared to humans (Ketten, 1997).  Hair cells behave as non-linear, 19 

half-wave rectifiers (Berg, 1996; Branstetter, et al., 2007b) that can be described by a simple 20 

model: 21 

( ) ( ) ( ) 2/2 ⎟
⎠
⎞⎜

⎝
⎛ += tftftf rect          (6) 22 
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Where t is the instantaneous amplitude of the time domain waveform. Another characteristic of 1 

hair cell response is amplitude compression, which is partially responsible for the broad range in 2 

amplitude sensitivity of mammalian listeners (Regan, 1994). Input-output functions describing 3 

amplitude compression have not been estimated in cetaceans. Unlike typical neurons, hair cells 4 

do not have refractory periods, which make them extremely fast. However, ganglion cells are 5 

much more sluggish and behave as low-pass filters which can be described with an exponential 6 

decay function: 7 

 8 

τtketh −=)(       (7) 9 

Where k is a constant, t is units of time and τ is the critical interval or integration time constant 10 

(Berg, 1996). The critical interval (τ) for transient signals appears to be around 264 μsec (Moore, 11 

et al., 1984; Vel'min and Dubrovskii, 1976). For tonal signals, the integration time constant 12 

appears to be governed by a different mechanism than transient signals. Time constant are 13 

frequency-dependent and much longer in duration. For example, the integration time constants 14 

are approximately 200 and 100 ms for a 10 kHz and 20 kHz tone respectively. The time constant 15 

for a 100 kHz tone is less than 10 ms.  Differences in integration times for tonal signals and 16 

transient signals may be the result of compartmentalized hearing abilities for communication 17 

signals and echolocation signals, respectively. 18 

 19 

5.7. Auditory masking with complex stimuli 20 

The auditory masking experiments previously described (CBs, CRs, and filter shape 21 

measurements) were all conducted with Gaussian noise maskers. The primary finding of these 22 

studies is that only noise within a single auditory filter centered on the signal frequency 23 
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contributes to the masking of the signal. This finding is a special case of masking that applies to 1 

Gaussian noise but fails to generalize to more complex sounds animals might encounter in the 2 

ocean. In natural auditory scenes, sounds are often amplitude and frequency modulated and the 3 

auditory system can use common modulation patterns to segregate sound sources (Bregman, 4 

1990). This has been demonstrated in dolphins in what is called comodulation masking release or 5 

CMR (Branstetter and Finneran , 2008). When broadband noise is coherently amplitude 6 

modulated across frequency regions, a release from masking as large at 17 dB has been reported, 7 

compared to Gaussian noise of equal pressure spectral density (Figure 9). An important feature 8 

of CMR is that the effect is most salient when noise bandwidths exceed an auditory filter 9 

bandwidth (Branstetter and Finneran, 2008a; Hall and Grose, 1990). In other words, more total 10 

noise power equals less masking.  Several acoustic variables contribute to CMR. Wide band 11 

noise (i.e., greater than an auditory filter bandwidth) produces a systematic decrease in masking. 12 

In addition, lower AM rates produce greater amounts of CMR (Branstetter and Finneran, 2008a).  13 

A similar release from masking has been demonstrated for natural sounds including ice-cracking 14 

noise (Erbe, 2008) and snapping shrimp noise (Trickey, et al., 2011), both of which are also 15 

coherently amplitude modulated across frequency regions (Figure 10).   16 

 17 

5.8. Sound localization  18 

Due to limited visibility, locating prey, predators, conspecifics, or any other biologically 19 

relevant object or event is often accomplished through sound. To localize sounds in the 20 

horizontal plane, humans and animals have been shown to exploit binaural stimulus differences 21 

related to loudness, temporal onset and phase. Because the cetacean auditory system evolved 22 

from the archetypal terrestrial auditory system, changes in anatomy and physiology occurred to 23 
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compensate for a dense aquatic medium where sound travels almost five times faster than in air.  1 

For terrestrial animals, interaural loudness differences (ILDs) are created by sound shadowing 2 

due to the impedance mismatch between the air medium and an animal’s head. In water, 3 

terrestrial animals lose ILDs due to the density similarity of the head and water. For odontocetes, 4 

ILDs are created not by external anatomy, but by internal structures of varying density. The 5 

dense tympano-periotic complex, which houses the middle and inner ear, is completely separated 6 

from the skull by a matrix of air sinuses, lipids and vascularization collectively called the 7 

albuminous foam (Ketten, 1992). The foam, along with additional structures such as cranial air 8 

sacks and mandibular fats, collectively function to acoustically isolate each ear and produce 9 

ILDs in excess of 20 dB (Supin and Popov, 1993).  Sensitivity to ILDs has been measured in the 10 

bottlenose dolphin to be less that 1 dB (Moore, et al., 1995).  Interaural time differences (ITD) 11 

will be five times smaller in aquatic environments due to increased sound speed in water relative 12 

to air. However, dolphins are still capable of exploiting ITD and have demonstrated sensitivity to 13 

ITDs as small at 7 μsec (Moore, et al., 1995). In terrestrial mammals, the use of interaural phase 14 

differences (IPD) decreases with an increase in frequency because the wavelengths get smaller. 15 

While it is unlikely that odontocetes use IPDs for higher frequencies, it has not been tested. IPDs 16 

could be exploited by mysticetes, which have large heads and use low-frequency sounds.  17 

ILDs and ITDs only provide source information in the horizontal plane. However, 18 

dolphins have excellent localization abilities not only in the horizontal plane, but also in the 19 

vertical plane. The minimum audible angle (MAA) for the bottlenose dolphin is 0.9 and 0.7 in 20 

the horizontal and vertical planes respectively (Renaud and Popper, 1975). The fact that the 21 

bottlenose dolphin can localize as well (if not slightly better) in the vertical plane despite the lack 22 

of ITDs and ILDs is remarkable, and suggests an additional mechanism exists for vertical 23 
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localization. As mentioned previously, dolphins likely have a salient HRTF due to the 1 

pronounced asymmetry of cranial structures.  Position-dependent spectral cues related to the 2 

dolphin’s HRTF may be providing the dolphin with fine vertical localization abilities. Although 3 

a detailed HRTF for an odontocete has not been measured, receiving beam patterns have been 4 

measured for the bottlenose dolphin for a few frequencies, resulting in a complex pattern. The 3 5 

dB beam widths for 30, 60, and 120 kHz were measured to be 59.1, 32.0, and 13.7 degrees 6 

respectively in the horizontal plane and 30.4, 22.7, and 17.0 degrees in the vertical plane (Au and 7 

Moore, 1984). Receiving beam patterns are more directional for higher frequencies, which likely 8 

aid the animal in localizing sounds during echolocation. The ability of the bottlenose dolphin to 9 

echoically discriminate horizontal angular differences has been measured to be about 0.9-1.5 10 

degrees (Branstetter, et al., 2007a; Branstetter, et al., 2003) which is significantly smaller than 11 

the receiving 3 dB beam width, but similar to the dolphin’s MAA. The receiver beam width 12 

likely aids in gross localization as well as attenuating off-axis signals during echolocation.   13 

 14 

6. ADVANCED ANATOMICAL AND PHYSIOLOGICAL STUDIES 15 

6.1. Anatomy 16 

The recent use of computerized tomography (CT) has proven useful to study in-situ 17 

auditory anatomy of odontocetes. (Cranford, et al., 2008; Houser, et al., 2004a; Ketten, 1994; 18 

Ketten and Wartzok, 1990; Montie, et al., 2011; Soldevilla, et al., 2005).  These imaging 19 

techniques are particularly valuable for studying fatty sound reception pathways since these 20 

unique fats have a low melting temperature, are soft at room temperature, and liquid at body 21 

temperatures for at least some species (Norris, 1968), making them difficult to study via 22 

dissection.  Dissection also prevents the study of the in-situ geometries of these fats.  In fact, a 23 
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magnetic resonance imaging (MRI) study by Ketten (1994) led to the finding of a new funnel-1 

shaped fat channel lateral to the tympano-periotic complex in some odontocetes (Delphinus 2 

delphis, Lagenorhynchus acutus, and Tursiops truncatus) that may serve as a “second acoustic 3 

window” for lower frequency sounds to reach the ears (Popov, et al., 2008).   4 

Live cetaceans were CT scanned for the first time by Houser et al. (2004a) using 5 

bottlenose dolphins trained by the U.S. Navy’s Marine Mammal Program.  The use of live 6 

animals was a significant improvement since it prevented post-mortem changes in air space 7 

volumes and tissue characteristics from potentially affecting the data.  This study also 8 

incorporated functional investigations of auditory and sound production tissues through single 9 

photon emission computed tomography (SPECT) and positron emission tomography (PET), 10 

identifying extensive blood flow in the lower jaw and melon fats.  Since these tissues are 11 

relatively metabolically inert, the authors hypothesized that the blood flow served as a 12 

thermoregulatory control of lipid density, optimizing the acoustic fats for sound reception and 13 

propagation.  The application of such advanced functional imaging techniques to fully aquatic, 14 

live mammals may have seemed inconceivable to most researchers before this study.   15 

An equally challenging and exciting idea for the future was presented by Moore et al. 16 

(2011b), who developed a hyperbaric computed tomography technique for investigating the 17 

effect of pressure on lung compression in postmortem marine mammals.  The paper concludes 18 

with potential modifications of the system for application to live animals in the future.  If this 19 

technique can actually be used on live animals, it may enable investigations on changes in 20 

middle ear air volumes and tissues relevant to the auditory system with simulated depth. 21 

Applying biomedical imaging techniques to cetaceans has also enabled the modeling of 22 

sound reception pathways in odontocete heads.  One type of modeling technique that is often 23 
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used is called the Finite Element Method (FEM).  In FEM, a model is constructed by defining a 1 

set of mathematical equations in a continuous domain.  For example, to model sound propagation 2 

through a dolphin head, the mathematical model is the wave equation together with a set of 3 

boundary conditions.  The domain, which in this case corresponds to the dolphin head and the 4 

surrounding medium, is discretized into small connected “elements” creating what is called the 5 

finite element mesh.  By employing structural data from CT and material properties from 6 

different types of tissues like bone, muscle, and fats, the acoustical power flow of both isolated 7 

anatomical structures and whole multi-tissue systems can be modeled to estimate optimal 8 

impedance paths for sounds from internal or external sources.  While computer models of 9 

odontocete sound production had been developed earlier (Aroyan et al., 1992), the application of 10 

FEM and related methods to odontocete sound reception has seen much progress over the past 11 

decade (Aroyan, 2001; Cranford, et al., 2010; Cranford, et al., 2008; Krysl, et al., 2006).   12 

 13 

6.2. AEPs in hearing tasks 14 

As described above, there are many types of studies which address hearing in odontocetes.  15 

However, a large proportion of them now involve AEP measurements (Figure 4).  AEP is an 16 

appealing method because data can be gathered rapidly with minimal or no animal training 17 

investment. A complete audiogram can be obtained in an untrained animal in less than twenty 18 

minutes, enabling hearing tests even during situations where time is severely limited (Nachtigall, 19 

et al., 2004; Nachtigall, et al., 2005). Recording times can be dramatically decreased by 20 

simultaneously recording responses to multiple frequencies (Finneran and Houser, 2007) and 21 

using automated methods of response detection (Finneran, et al., 2007a).  22 
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One advantage of AEP related methodology has been to opportunistically measure the 1 

hearing of stranded animals, thus broadening the number of individuals and species tested 2 

(André, et al., 2007; Ridgway and Carder, 2001).  Early attempts at recording AEPs from 3 

stranded animals were conducted at rehabilitation facilities and produced mixed results 4 

(Ridgway and Carder, 2001).  The animals tested were large and included a pigmy sperm whale 5 

(Kogia breviceps), a gray whale (Eschrichtius robustus) calf and a neonate sperm whale 6 

(Physeter macrocephalus).  The response records were somewhat noisy and full audiograms 7 

were not acquired, perhaps because the large size of animals reduced signal-to-noise ratios of the 8 

AEP (Houser, et al., 2007; Szymanski, et al., 1999).  However, the study produced novel records, 9 

showed the efficacy of the technique, and laid substantial groundwork for future research.   10 

Improvements in methods and equipment between 2001 and 2005 led to successful AEP 11 

recordings from a stranded neonate Risso’s dolphin (Grampus griseus), producing a full 12 

audiogram and an estimate of temporal resolution (Mooney, et al., 2006; Nachtigall, et al., 2005).  13 

This animal had sensitive and broadband hearing, discounting suggestions that there may have 14 

been permanent auditory damage due to a potential noise-induced stranding event (Figure 2).  15 

However, “profound” hearing loss has been found in other stranded odontocetes including pilot 16 

whales, bottlenose dolphins and rough-toothed dolphins (Mann, et al., 2010).  The authors 17 

speculated that the causes of hearing loss vary and could include congenital defects, chemical 18 

contaminants, and normal presbycusis. 19 

A major advance in AEP technology is the development of portable systems which can 20 

be applied in field situations (Delory, et al., 2007; Finneran, 2009; Ridgway and Carder, 2001; 21 

Taylor, et al., 2007).  The AEP test on the stranded Risso’s dolphin involved flying a desktop 22 

computer from Hawaii to Portugal and was conducted over 5 days. Since these tests, AEP 23 
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systems have been reduced in size to laptop-based systems and audiograms are collected much 1 

more rapidly.  To date, AEP recordings in the field have been made with catch-and-release 2 

procedures on white-beaked dolphins (Nachtigall, et al., 2008) and beach-stranded delphinids 3 

(Moore, et al., 2011a), showing promising results despite logistical challenges.  4 

Recent, novel AEP experiments have combined AEPs with morphological studies to 5 

address form-and-function questions. Montie et al. (2011) examined the hearing of two stranded 6 

pygmy killer whales. They moved electrode locations and created 3-D reconstructions of the 7 

brain from CT images, while concurrently measuring the amplitude of the ABR waves. Their 8 

results provided evidence that the neuroanatomical sources of ABR waves I, IV and VI were the 9 

auditory nerve, inferior colliculus and the medial geniculate body, respectively.  Other studies 10 

have combined AEP with CT and MRI to examine the hearing pathways of odontocetes 11 

(Mooney, et al., 2011). Using a jawphone transducer to present stimuli, Mooney et al. showed 12 

that AEP responses can be generated from multiple locations on the head and body.  Jawphones 13 

placed at the mandibular fat bodies (identified from MRI and CT) tended to produce higher 14 

amplitude AEPs, lower thresholds, and faster responses, although this was somewhat frequency 15 

dependent (Figure 4C). Thus, the head anatomy receives and guides sound in multiple ways, 16 

confirming earlier findings by Mohl et al (1999) which mapped the areas of best sensitivity in the 17 

bottlenose dolphin head using AEPs and jawphone-presented stimuli. These areas of best 18 

sensitivity differ slightly between the few species examined (bottlenose dolphin, beluga, finless 19 

porpoise; Figure 4C, D), suggesting that the diverse morphologies found among odontocete 20 

species affects how each of them receives sound (Mooney, et al., 2008).  21 

 22 

6.3. AEPs during echolocation 23 



 33

Bullock and Ridgway (1972) had discovered that AEP responses varied based on whether 1 

they were induced from self-generated clicks or simulated clicks presented by the researchers, 2 

laying the groundwork for substantial future developments of hearing protection and auditory 3 

gain control.  Since then, AEPs have been used to measure hearing during echolocation, 4 

addressing auditory gain control and how ears are adapted to hear quiet echoes which occur 5 

immediately after loud clicks (Nachtigall and Supin, 2008; Supin, et al., 2003).  These studies 6 

methodically addressed this issue by training a false killer whale to echolocate on cylinder 7 

targets while AEPs were concurrently measured (Figure 4B).  The earliest work established that 8 

far-field evoked potential methods can be used to record AEPs in response to both outgoing 9 

clicks and returning echoes (Supin, et al., 2003). The click and echo AEPs had similar 10 

amplitudes, despite substantial (40 dB) differences in the relative stimulus intensity levels. 11 

Impressively, these results suggested either an “attenuation of sound transmission from the sound 12 

generator to the ears and/or a neurophysiological mechanism of releasing responses to echoes 13 

from masking by loud emitted clicks.”   14 

In two succeeding experiments the authors varied the target distance and length (i.e., the 15 

target strength), thus varying the intensity of the returning echoes. The amplitudes of echo-16 

generated AEPs were independent of the variables. The click-generated AEPs were dependent on 17 

target strength, but not distance (Supin, et al., 2004; Supin, et al., 2005).  The sound pressure 18 

levels of the outgoing clicks did not vary based on target strength, which suggested that the 19 

differences in AEP amplitude were due to changing hearing sensitivities as the animal 20 

echolocated – a fascinating finding.  Supin et al. (2006) sorted AEPs relative to the SPL of the 21 

outgoing click and compared these responses from simulated clicks of varying amplitude.  22 

Evoked potential amplitudes, and thus hearing of these clicks, were dependent on target presence, 23 
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target absence, and passive hearing vs. echolocation.  Thus, this whale adjusted its hearing based 1 

on the context of the experiment (Supin, et al., 2006).  2 

Adjustments and recovery from auditory dampening of loud echolocation clicks appeared 3 

to be based on both the distance of a target (i.e., the time interval between the outgoing click and 4 

the incoming echo) and the intensity of the click (Supin, et al., 2007).  The use of electronically 5 

simulated phantom echoes allowed the “echo” amplitude and distance to be adjusted.  In both 6 

behavioral and electrophysiological studies, echo thresholds or response levels appear dependent 7 

on distance of the target. As the time between click and echo increased, hearing ability improved, 8 

suggesting that the protection of ears during echolocation may somewhat mask the hearing of 9 

clicks; however this forward masking was released as time increased (Supin, et al., 2008; Supin, 10 

et al., 2009).  Follow-up studies in a standard echolocation task showed that while echo 11 

generated AEPs were constant with target distance, click generated AEPs increased.  The results 12 

indicated that control of hearing during echolocation served as a way to keep sensitivities of 13 

echoes constant, perhaps as a means to compensate for natural echo attentions, and improve 14 

hearing abilities of quiet echoes, at greater distances (Supin, et al., 2010). These hypotheses were 15 

confirmed by subsequent phantom echo studies (Supin, et al., 2011). Overall, these novel 16 

investigations revealed much regarding the active process of odontocete hearing and their 17 

impressive echolocation capabilities.  While few studies have addressed parallel investigations in 18 

“standard” hearing tests, it is possible that odontocetes may also adjust reception or sensitivities 19 

when not producing sounds.  20 

This work has expanded recently with comparative studies in the bottlenose dolphin and 21 

the harbor porpoise. The porpoise showed that it alters its outgoing click amplitudes as well as it 22 

click AEP levels (Linnenschidt, et al., 2012).  Like Supin, the authors supposed that these gain 23 
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controls maximized detection of quiet echoes. In similar experiments, Li et al. found the 1 

bottlenose dolphin may enact direct control over both the click and echo (Li, et al., 2010).  Echo- 2 

generated AEP amplitudes increased with target distance, suggesting an “overcompensation” of 3 

echo hearing.  This was unlike the porpoise and false killer whale studies, but it was not clear 4 

whether these were species, individual, or anatomical differences.  It is also notable, that these 5 

mechanisms are not only means to improve echo detection but a way to protect sensitive ears 6 

from repeated, intense echolocation clicks (Li, et al., 2011).  7 

 8 

7. THE IMPACTS OF NOISE 9 

 As discussed above, odontocetes may have a mechanism to protect their sensitive ears 10 

from their own loud echolocation clicks.  However, these mechanisms may not be sufficient to 11 

overcome the constant exposure to human-made sound.  The effects of noise on marine 12 

mammals have been a substantial topic of concern for researchers, policy makers, and the public.  13 

Much of these interests stem from beaked whale strandings that were associated with high- 14 

amplitude naval sonar (Balcomb and Claridge, 2001; Evans, et al., 2001; Frantzis, 1998). The 15 

actual sonar-induced physiological or behavioral effects on the stranded animals have been 16 

extensively debated (Brownell, et al., 2009; Cox, et al., 2006; Fernandez, et al., 2005; Jepson, et 17 

al., 2003; Southall, et al., 2006).  Furthermore, the reality is that ocean noise is diverse, including 18 

shipping and vessel traffic, construction of wind farms, air guns related to seismic exploration, 19 

construction, and scientific surveys. These sounds can be broadly grouped into noise categories 20 

of (i) continuous (or near-continuous) such as shipping, (ii) impulse sounds such as seismic air 21 

guns or military munitions, and (iii) intermittent noise like construction or sonar.  Behavioral 22 
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changes in response to elevated noise conditions from these various sources have caused alarm 1 

(e.g., Holt, et al., 2009; Miller, et al., 2000; Parks, et al., 2009).   2 

In terrestrial mammals, a well-established and primary concern of noise exposure is 3 

noise-induced hearing loss (Kryter, 1994; Ward, et al., 1958).  Over exposure to noise can induce 4 

both temporary and permanent hearing loss, also referred to as temporary or permanent threshold 5 

shifts.  For marine mammals, a wide array of data are needed to predict potential occurrences of 6 

noise impacts. The necessary research efforts to address noise impacts on marine mammals have 7 

been addressed by four National Research Council reports and a more recent report by Southall 8 

et al., to establish a science-based, noise exposure criteria (National Academy of Sciences, 1994; 9 

2000; 2003; 2005; Southall, et al., 2007). Hearing related recommendations include: establishing 10 

baseline hearing sensitivities in a greater number of species and individuals, investigating 11 

auditory scene analyses in regards to how cetaceans process and evaluate multiple acoustic cues 12 

simultaneously, determining the levels and effects of auditory masking, and the sounds and 13 

conditions which induce temporary and permanent threshold shifts (i.e., temporary and 14 

permanent hearing loss).  These previous documents provide comprehensive reviews of this 15 

specific subject, addressing behavioral, physiological, and anatomical noise impacts; thus we 16 

will only briefly address hearing and noise exposures here to provide an update on the data since 17 

this report, and place these data in the context of past results and conclusions.   18 

Temporary threshold shifts (TTSs) have received substantial experimental attention in 19 

recent years. It was first established in cetaceans (five bottlenose dolphins and two belugas) 20 

using 1 s pure tones across a range of frequencies (0.4 – 75 kHz) (Schlundt, et al., 2000).  Shifts 21 

of 6-17 dB re 1 µPa were measured at exposure levels generally between 192 and 201 dB, but 22 

TTS was also documented for fatiguing stimuli as low as 182 dB.  Shortly thereafter, intense 23 
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impulse sounds (226 dB (peak-peak) re 1 µPa and a sound exposure level of 186 dB re 1 µPa2•s) 1 

from a seismic watergun were used as the fatiguing noise to induce TTS (Finneran, et al., 2002b).  2 

The sound exposure level (SEL) can be calculated by: 3 

SEL =10 log10
p2(t)
p0

2t0

dt
0

T

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,        4 

Where t0 is the reference time of 1 sec, p(t) is the instantaneous sound pressure of the signal, and 5 

p0 is the reference pressure of 1 μPa. This metric is useful because it integrates the squared 6 

pressure over the total duration of the signal and is often used to predict TTS due to multiple 7 

exposures of varying duration. Threshold shifts were induced in the beluga tested, but not in the 8 

bottlenose dolphin.  A subsequent study used increased duration, lower amplitude, broadband 9 

noise (4-11 kHz, 179 dB re 1 µPa and 55 min) to induce TTS in a bottlenose dolphin.  10 

(Nachtigall, et al., 2003). Shifts were variable between sessions from (-1 to 18 dB).  These early 11 

studies were pivotal in multiple respects. Not only did they establish that TTS can occur by 12 

multiple types of noise exposure, there were substantial differences regarding whether TTS was 13 

actually induced within replicate conditions, the amount of TTS induced varied between the 14 

species tested and within individuals. The variations and covariates revealed the mountainous 15 

task of predicting auditory noise impacts.  16 

 Subsequent work has improved the methods for measuring TTS, addressed means to 17 

bridge some of these variables, and filled in key data gaps. Since the 2007 Southall et al. 18 

publication, Finneran and colleagues used AEP technology to measure TTS at multiple 19 

frequencies simultaneously, making it possible to rapidly determine at which frequencies TTS is 20 

induced (Finneran, et al., 2007b).  Several research groups have also addressed how best to 21 

predict situations that may induce TTS (Finneran, et al., 2005; Mooney, et al., 2009a). Recent 22 

work has shown that if the fatiguing noise type is constant, but duration and amplitude are varied, 23 
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TTS onset is well predicted by SEL (Finneran, et al., 2010; Mooney, et al., 2009a). In other 1 

words, shorter duration sounds require greater energy to induce TTS compared to longer duration 2 

signals.  Note that these studies did not investigate impulse sounds such as seismic air guns, 3 

which may have entirely different effects (Ward, 1997).  The TTS growth in dolphins was also 4 

correlated with SEL and TTS exposure duration continued to play a greater influence in 5 

generating TTS compared to SPL (Finneran, et al., 2010). These results have several 6 

implications.  First, TTS onset and growth data are better represented as functions of SPL and 7 

duration rather than SEL alone.  Second, short duration signals such as most sonar must be of 8 

very high received intensity to induce TTS (Mooney, et al., 2009b).  These situations are 9 

probably rare because they would usually require the animal to be close to the sound source. 10 

Third, longer duration sounds such as constant shipping or snapping shrimp noise may induce 11 

TTS at much lower intensity and sensation levels (the SPL relative to threshold).  These chronic 12 

exposures, such as shipping noise, may induce quite different impacts compared to the brief, 13 

intense exposures.  The impacts of these chronic exposures are a growing area of concern.  14 

 Hearing thresholds were comparatively examined using noise exposures with a mid and a 15 

higher frequency tone (3 and 20 kHz) to address the impacts of hearing sensitivities on TTS 16 

(Finneran and Schlundt, 2010). The results showed that at 20 kHz TTS not only began at a lower 17 

exposure level compared to the 3-kHz exposures, but also grew at a faster rate. Repeated 18 

exposures also increased noise impact susceptibility (Finneran and Schlundt, 2010). The results 19 

clearly demonstrated auditory impact risk criteria must take exposure frequency, hearing 20 

sensitivity and prior experience into account.   21 

 While these prior studies addressed auditory physiology, they did not address the 22 

perception of sound intensity, or loudness.  Equal loudness contours provide a comparison of 23 
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tones that are perceived at the same sound level, providing a means to modify acoustic damage 1 

risk criteria by placing greater emphasis on sensitive frequencies.  The first of these studies in a 2 

non-human animal was conducted with a bottlenose dolphin (Finneran and Schlundt, 2011). The 3 

animal was trained to perform a loudness comparison test, where it indicated which of two 4 

sequential tones was perceived as louder. The resulting equal loudness contours were similar in 5 

shape to the dolphin audiogram. As in humans, the contours became flatter at higher SPLs 6 

(Finneran and Schlundt, 2011). Based on these data, the authors were able to provide modified 7 

auditory weighting functions which provided greater insight into the frequencies dolphins may 8 

be most sensitive. In general, there was an inverse relationship between sensitivity and hearing 9 

thresholds, with similar loudness responses (±2.5 dB) from approximately 6-100 kHz. These 10 

weighting functions were substantially different from those proposed by Southall et al., (2007), 11 

reflecting the need for management practices that can adapt to the growing literature of best 12 

available data 13 

 14 

8. HEARING IN MYSTICETES 15 

 In contrast to the immense amount of progress that has been made on hearing in 16 

odontocetes, the study of mysticete hearing has been more stagnant over the past several decades.  17 

Mysticetes are large, rarely kept in captivity, and have never been trained, making them more 18 

difficult to study.  Therefore, several indirect methods have been applied to gain information 19 

about mysticete hearing.  One method is based on vocalization data, based on the premise that 20 

animals typically vocalize at frequencies audible to conspecifics.  Recordings of mysticete 21 

vocalizations conducted since 1951 suggest that baleen whales use and hear low frequency 22 
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sounds (Watkins and Wartzok, 1985).  Vocalizations down to 12 Hz have been recorded in the 1 

blue whale (Cummings and Thompson, 1971).   2 

 Anatomical studies of middle and inner ear structures afford another way to understand 3 

what kinds of sounds mysticetes may hear.  Yamada and Yoshizaki (1959) noted the lack of 4 

high-frequency specializations in mysticete cochleae, in contrast to the cochleae of odontocetes.  5 

Mysticetes also possess massive, loosely-joined ossicles and wide basilar membranes, consistent 6 

with low-frequency hearing (Ketten, 1994).  Parks et al. (2007) predicted that the total possible 7 

hearing range for the North Atlantic right whale (Eubalaena glacialis) is approximately 10 Hz to 8 

22 kHz, based on measurements of their basilar membranes. Using FEM, Tubelli et al., (2011) 9 

recently estimated the middle ear transfer function of the minke whale to have a best frequency 10 

range between approximately 100 Hz and 75 kHz, depending on the location of the stimulus 11 

input location (Tubelli, et al., 2011).  These anatomical studies are promising for studying 12 

hearing in rare and inaccessible species, especially if they can be validated by future 13 

physiological studies. 14 

A third method for deducing what types of sounds mysticetes may hear is the playback 15 

technique, in which a range of naturally recorded or artificially generated sounds are presented to 16 

wild animals.  An acoustic stimulus that elicits a behavioral response from an animal is presumed 17 

to be audible to the animal.  While most playback studies on mysticetes are not designed to test 18 

their hearing, they support the hypothesis that mysticetes are able to hear and differentiate 19 

vocalizations of conspecifics (Clark and Clark, 1980; Mobley, et al., 1988; Parks, 2003; Tyack, 20 

1983). In a study of minke (Balaenoptera acutorostrata), fin (Balaenoptera physalus), 21 

humpback (Megaptera novaeangliae), and right whales near Cape Cod, Watkins (1986) found 22 

that most whales reacted to human-made sounds between 15 Hz and 28 kHz, whereas higher 23 
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frequency sounds between 36 and 60 kHz elicited no response.  These data also support the 1 

notion that mysticetes are sensitive to lower frequencies.  Yet, an individual may not always 2 

respond to an audible sound and the received levels of the sounds are often unknown, limiting 3 

the effectiveness of playback studies as a method for studying hearing. 4 

The ultimate goal for understanding what mysticetes hear is to obtain audiograms 5 

showing hearing sensitivity as a function of frequency.  Behavioral tests using trained, captive 6 

animals are unlikely, as mentioned above.  However, AEP testing may be a possibility in the 7 

future.  As noted earlier, Ridgway and Carder (2001) attempted to record AEPs from a stranded 8 

gray whale calf which was rehabilitated at Sea World of San Diego between January 1997 and 9 

March 1998.  While some preliminary AEPs were recorded, an audiogram could not be produced. 10 

Besides the rarity of opportunities to conduct AEP testing, a major obstacle in applying current 11 

AEP methods to mysticetes is that mysticetes are generally larger and also have very different 12 

cranial morphologies compared to odontocetes.  It is likely that customized equipment needs to 13 

be developed based on the auditory anatomy and sound reception mechanisms of mysticetes.   14 

This leads us to the other fundamental question about mysticete hearing: how do baleen 15 

whales receive sound?  There is still no consensus regarding how the auditory system of baleen 16 

whales function, and this question has not received much attention for the past 50 years.  17 

Interestingly, Yamato et al. recently described a potential fatty sound reception pathway in the 18 

minke whale (Yamato et al., submitted).  Combining CT, MRI, and dissections, the authors 19 

found a well-formed fat body adjacent to the mandibular ramus and lateral to the tympano-20 

periotic complex (Figure 10).  This fat body inserts into the tympano-periotic complex at the 21 

juncture between the tympanic and periotic bones and is in contact with the ossicles.  Preliminary 22 

dissections of fin and humpback whales also indicate that they possess fat bodies associated with 23 
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the ears, suggesting that fatty sound reception pathways may not be a unique feature of 1 

odontocete cetaceans. 2 

 3 

9. CONCLUSIONS AND FUTURE WORK 4 

 Our knowledge of cetacean hearing has substantially increased in recent years. Through 5 

technology advancements such as AEPs and FEM, there are a greater number of research 6 

questions which can be addressed. This provides an improved understanding of how and what 7 

many species hear, as well as their sophisticated acoustic processing abilities.  Much of this work 8 

has been in applied research to determine noise impacts, but have also yielded more basic 9 

information in auditory scene processing and mammalian hearing.  These developments have 10 

also made clear several data gaps and research priorities.  11 

 Mysticete hearing abilities have been predicted from a variety of studies but there has yet 12 

to be an audiogram established. While AEPs will be difficult to measure for some species, the 13 

method has potential for smaller animals such as minke whale or juvenile whales.  Entangled or 14 

stranded situations might offer reasonable test scenarios. This would not only establish the sound 15 

sensitivity of a “great” whale but also empirically test the current auditory models for future 16 

applications to other species.   17 

There are also quite a few odontocete species for which audiograms also need to be 18 

established.  Measuring the audiogram for these species provides data-based methods to evaluate 19 

potential noise impacts. This would also provided much needed information the diversity of 20 

auditory capabilities. Acquiring these data likely requires the continual advancement of AEP 21 

technologies for field situations, and perhaps even integrating them into non-invasive tagging 22 

tools. Such tools would not only produce audiograms, but will also enable the study of auditory 23 
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gain control mechanisms and hearing during echolocation in natural situations.  A tag-based 1 

technology would also greatly increase study sample sizes, a clear limitation for many cetacean 2 

audiometric studies.    3 

 Investigations of a greater number of species would also address the subtle differences 4 

found between taxa. There are clear morphological and behavioral differences between species, 5 

suggesting subtle auditory physiological differences as well.  A clear way to investigate this is 6 

through research which addresses classic form-and-function questions, combining anatomical 7 

studies with physiological, experimental research.  We may also find that species adapt to noise 8 

impacts in different manners, since some animals seem particularly sensitive to sound. For 9 

odontocetes which are high-frequency specialists, high frequency hearing loss which is typical in 10 

mammals may have unique impacts. Physiological investigations of hearing loss and auditory 11 

protective mechanisms may further our understanding of how or whether certain animals can 12 

reduce the impacts of noise exposure.  13 

 Despite the recent advancements there is continual room for improvements in 14 

understanding of basic hearing abilities.  As anthropogenic use of aquatic environments increases, 15 

so does the need for empirical studies on sensory ecology.  Information regarding the overlap 16 

between human and cetacean acoustic habitats is crucial to evaluate the potential impacts on 17 

these sound-sensitive marine animals.  Ultimately, these studies will further our understanding of 18 

the evolution of mammalian hearing and the adaptations acquired for sophisticated auditory 19 

systems which process and cope with complex auditory scenes.  20 
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 1 

Figure 1. (A) The lower jaws of a harbor porpoise (MH416Pp), posterior view.  Note the 2 

enlarged mandibular foramen on the medial side, which is a common feature to all odontocetes 3 

and is filled with fats associated with sound reception. The thin “pan bone” area which Norris 4 

proposed as the acoustic window is labeled PB.  (B) Proposed sound pathways in a porpoise 5 

head showing incoming sounds traveling through the lower jaw (Norris, 1964). (C) Coronal slice 6 

of a dolphin head, modified from Ridgeway (1999). FB, fat body in the lower jaw; BUL, 7 

tympanic bulla. (D) A 3-D reconstruction of the bottlenose dolphin auditory system based on CT 8 

data, ventral view.   The bone is off-white, “acoustic fats” are yellow, the tympano-periotic 9 

complex is shown in purple, and the vestigial ear canal is blue.  From Yamato et al. (2008).    10 

 11 

Figure 2. Audiograms of two Risso’s dolphins. One was collected behaviorally and the 12 

other using AEP methods. The dashed audiogram was measured from an older animal with high-13 

frequency hearing loss.  The solid audiogram was measured for a neonate animal which 14 

presumably had more “normal” hearing. 15 

 16 

Figure 3. (A) AEP waveforms to a click stimulus. Two responses are overlaid on top of each 17 

other. Note the series of waves responses generated from the multiple generators of the auditory 18 

system, from the 8th nerve up through the brainstem. (B) EFRs or ASSRs to 16 kHz amplitude 19 

modulated stimuli (top trace). The EFRs decrease in amplitude as stimulus amplitude 20 

correspondingly decreases.  21 

 22 
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Figure 4. Various hearing test studies and animal examinations. (A) a bottlenose dolphin during 1 

an auditory evoked potential (AEP) hearing test in the free field. The dolphin is stationed in a 2 

hoop 1 m below the surface and 2 m from the sound generator. Note the AEP electrodes on the 3 

head and back of the dolphin. (B) A false killer whale positively responding during a combined 4 

psychoacoustic and electrophysiological task. The animal responds that it detects an object by 5 

touching a yellow ball with its rostrum. The stimulus in this case was the echolocation detection 6 

of cylinder target. In hearing tests tasks, reporting the detection of a tone would generate a 7 

similar response. (C) Measuring the hearing of a finless porpoise out of water using a suction-8 

cup jawphone transducer placed on the pan bone region of the lower jaw. Reponses are measured 9 

using AEPs. A suction-cup electrode is visible on top of the head, just behind the blowhole. (D) 10 

Beluga whale during an AEP hearing test to examine directional sensitivity (from Mooney, et al., 11 

2008)  12 

 13 

Figure 5.   Critical ratios for several odontocete species as a function of frequency. From 14 

Finneran and Branstetter (in press). 15 

 16 

Figure 6.   Frequency response of a gamma-tone filter bank (Branstetter, et al., 2007b) that was 17 

fit from notched-noise masking data (Lemonds, 1999). Frequency resolution is sharper for lower 18 

frequencies. 19 

 20 

Figure 7. Impulse response of the gamma-tone filter bank (from Figure 6) which illustrates the 21 

high degree of temporal resolution at the higher frequencies and the “ringing” at the lower 22 

frequencies (Branstetter, et al., 2007b) . 23 

 24 
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Figure 8. Thresholds for a 10 kHz tone as a function of masker bandwidth for comodulated noise 1 

(CM) and uncomodulated (UC) or Gaussian noise. Both noise types had a flat noise spectral 2 

density of 95 dB re 1 μPa2/Hz. A processing transition can be seen at 1 kHz (the critical 3 

bandwidth for a 10 kHz tone) where thresholds asymptote for UC noise while thresholds 4 

decrease for CM noise (Branstetter and Finneran, 2008b). 5 

 6 
 7 
Figure 9. Thresholds for a 10 kHz tone masked by three broadband noise types (UC = Gaussian, 8 

CM = comodulated, and environmental = snapping shrimp). A release from masking is present 9 

for CM and environmental noise (Trickey, et al., 2011). 10 

 11 

Figure 10. Three-dimensional reconstructions of the auditory system of the minke whale based 12 

on CT data, showing fat bodies associated with the ears.  The fats are shown in yellow, the 13 

tympano-periotic complex (ears) in purple, and bone in off-white.  (a) Ventral view.  (b) Lateral 14 

view  (Yamato et al., submitted.)  15 

 16 



TIMELINE 
 
- 1762: Camper claims that whales hear through the ear canal, as in terrestrial mammals. 
 
- 1787: Hunter speculates that the tympanic cavity amplifies sound through vibration of bone, 
and these vibrations are directly transferred to the inner ear. 
 
- 1858: Claudius says vibrations in water are accepted by whole head, and air space resonances 
are transmitted to the inner ear.   
 
- 1904: Boenninghaus proposes a general soft-tissue sound reception pathway in odontocetes 
(toothed whales). 
 
- 1919: Kernan proposes bone conduction as the hearing mechanism. 
 
- 1957: Reysenbach de Haan supports a soft tissue sound reception pathway. 
 
- 1958: Kellogg publishes experimental evidence supporting echolocation in odontocetes. 
 
- 1962: Dudok van Heel argues that the ear canal is vestigial. 
 
- 1964: Norris speculates that odontocetes may receive sounds through “acoustic fats” located 
within and surrounding the lower jaws. 
 
- 1966: Purves and colleagues still maintain that the ear canal is functional. 
 
- 1968: Evoked potential experiments by Bullock et al., support Norris’s hypothesis. 
 
- 1970: McCormick et al., record cochlear potentials from anesthetized dolphins.  They argue 
that the ear canal is not functional and support bone conduction. 
 
- 1974:  Norris and Harvey use hydrophones implanted in dead porpoise heads to support the 
lower jaw acoustic fat theory. 
 
- 1975: The biochemical uniqueness of “acoustic” fats is demonstrated by Varanasi et al. 
 
- 1976: Seeley, Ridgway and colleagues record AEPs from dolphins non-invasively 
 
- 1988: Brill finds that an acoustically opaque hood on the lower jaw of dolphins decreases 
hearing ability.  Norris’s hypothesis is more widely accepted as evidence accumulates in support 
of it. 
 
- 1995: Supin et al., establish the EFR in dolphin AEPs and are rapidly progressing AEP 
methods 
 
- 2000: Schludt et al., demonstrate TTS in odontocetes 



 
- 2001: Navy sonar is correlated with a Bahamas beaked whale stranding event fueling the 
growing concern for noise impacts on marine mammals.  
 
- 2001: Ridgway and Carder record AEPs from large, stranded cetaceans showing the techniques 
possibilities.  
 
- 2003: Supin and Nachtigall initiate their experiments on hearing during echolocation. 
 
- 2005: Nachtigall et al., collect an AEP audiogram from a stranded Risso’s dolphin showing the 
efficacy of the technique in strandings, greater species and high frequency hearing loss. 
 
- 2006: Houser and Finneran demonstrate the variation in dolphin audiograms through hearing 
examinations of a population of bottlenose dolphins.  
 
- 2007: Finneran and Houser record AEPs to multiple simultaneous sinusoidal amplitude 
modulated tones. 
 
 
 
 
 
 
 
 



Table 1. Odontocete audiograms chronologically from initial tests on the species.  

Species n Hearing range (kHz) Best sensitivity (kHz) Method Reference 
T. truncatus 1 0.75 - 150 7 - 130 behavior Johnson, 1966; 1967 
 42 10 - 150 10 - 80† physiology Houser and Finneran, 2006 
P. phocoena 1 1 - 150 2 - 140 behavior Andersen, 1970 
 1 0.250 - 180 4 - 150 behavior Kastelein et al., 2002 
O. orca 1 0.5 - 31 5 - 30 behavior Hall and Johnson, 1972 
 2 4  - 100 12 - 52 behavior Szymanski et al., 1999 
 same# 1 - 100 16 - 45 physiology Szymanski et al., 1999 
I. geoffrensis 1 1 - 105 10 - 50 behavior Jacobs and Hall, 1972 
D. leucas 2 1 - 130 15 - 110 behavior White, et al., 1978 
 4 0.125 - 8* 4 - 8 behavior Awbrey, et al., 1988  
 1 8 - 128 27 - 107 physiology Klishin, et al., 2000  
 2 2 - 130 14 - 90 behavior Finneran et al., 2005 
 1 8 - 128 22 - 90 physiology Mooney, et al., 2008  
T. truncatus gilli 1 2 - 135 25 - 110 behavior Ljungblad, et al., 1982 
 13 10 - 150 20 - 130† physiology Houser, et al., 2008 
P. crassidens 1 2 - 115 16 - 64 behavior Thomas, et al., 1988 
 1 4 - 45 7 -27 behavior Yuen, et al., 2005 
 same# 4 - 45 6.7 - 27 physiology Yuen, et al., 2005 
L. vexllifer 1 1  - 200 10 - 65 behavior Wang, et al., 1992 
G. griseus 1 1.6 - 110 4 - 80 behavior Nachtigall, et al., 1995 
 1 4 - 150 8 - 108 physiology Nachtigall, et al., 2005 
S. fluviatilis guianensis 1 4 - 135 16 - 105 behavior Sauerland and Dehnhardt, 1998 
S. coeruleoalba 1 32 - 120 0.5 - 160 behavior Kastelein et al., 2003 
N. phoccanoides 2 8 - 152 32 - 139 physiology Popov, et al., 2005 
M. europaeus 1 10 - 80 40 - 80 physiology Cook et al., 2006 
 1 20 - 90 20 - 80 physiology Finneran et al., 2009 
L. albirostris  2 16 - 181 32 - 128 physiology Nachtigall, et al., 2008 
G. melas 1 22.5 -50 4 - 100 physiology Pacini, et al., 2010 



 
*did not establish upper limit 
#same animal tested 
†greatly varied depeding on sex and age 
Noted: Bullock et al., 1968 published hearing ranges and relative reponses, but not calibrated audiograms 
 
 
 
 

S. bredanensis 14 10 -120 unclear physiology Mann et al., 2010 
M. densirostris 1 5.6 - 160 40 - 50 physiology Pacini, et al., 2011 
F. attenuata  2 5 - 120 20 - 60 physiology Montie, et al., 2011 
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