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ABSTRACT 14 

Plant wax lipids and lignin phenols are the two most common classes of molecular markers that 15 

are used to trace vascular plant-derived OM in the marine environment.  However, their 13C and 14C 16 

compositions have not been directly compared, which can be used to constrain the flux and 17 

attenuation of terrestrial carbon in marine environment.  In this study, we describe a revised method 18 

of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high 19 

pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative 20 

capillary gas chromatography (PCGC).  We then examine in detail the 13C and 14C compositions of 21 

plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington 22 

margin that are influenced by discharge of the Columbia River.  Plant wax lipids (including 23 

n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in 24 

both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or 25 

continental storage and transport histories.  In contrast, lignin phenols exhibited similar δ13C values 26 

(between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based 27 

mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰).  Moreover, lignin 28 

phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that 29 

vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade 30 

faster in soils and sediments.  The isotopic characteristics, abundance, and distribution of lignin 31 

phenols in sediments suggest that they serve as promising tracers of recently biosynthesized 32 

terrestrial OM during supply to, and dispersal within the marine environment.  Lignin phenol 14C 33 

measurements may also provide useful constraints on the vascular plant end member in isotopic 34 

mixing models for carbon source apportionment, and for interpretation of sedimentary records of 35 

past vegetation dynamics.  36 

Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington 37 

margin, marine carbon cycling, terrestrial organic matter38 
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 39 

1. INTRODUCTION 40 

 The synthesis, degradation, and storage of terrestrial organic matter (OM) form an important 41 

component of the global carbon cycle.  Estimates of the flux of terrestrial organic carbon (OC) to 42 

the oceans imply that it must influence marine carbon budgets, especially on continental margins 43 

(Hedges et al., 1997; Masiello, 2007).  The fate of terrestrial OM in the ocean is therefore one of the 44 

central questions that have continued to interest and challenge biogeochemists, and remains a 45 

fundamental constraint on (i) understanding the global carbon cycle (Hedges et al., 1997; Schlunz 46 

and Schneider, 2000; Burdige, 2005), and (ii) interpreting the geologic sedimentary record with 47 

respect to reconstruction of biological evolution, sedimentary paleoenvironments and past climatic 48 

variations (McCaffrey et al., 1991; Rommerskirchen et al., 2006a; Ohkouchi and Eglinton, 2008).  49 

A key challenge for studying terrestrial OM in the marine environment is to trace it amongst the 50 

complex, heterogeneous assemblage of carbon-bearing constituents transported to, and produced in 51 

the sea.  Prior attempts have utilized organic molecules specific to terrestrial higher plants (e.g., 52 

lignin-derived phenols and plant wax lipids).  However, during their transport from plant source to 53 

sedimentary sink, these molecules are subject to biological and physiochemical processes that can 54 

substantially attenuate their flux and alter their chemical composition (Hernes and Benner, 2003).  55 

Despite this, isotopic information encoded in the carbon skeletons of these molecules is largely 56 

preserved, providing valuable insights into growth conditions, biological sources (C3 versus C4 plants)  57 

and reactivity of terrestrial OM accumulating in sediments (e.g., Goñi et al., 1997; Pearson et al., 58 

2001; Smittenberg et al., 2006; Drenzek et al., 2007).  For example, recent investigations on the 14C 59 

composition of organic compounds in marine sediments have revealed the importance of an 60 

additional continental OC source derived from the erosion of ancient sedimentary rocks or 61 

petrogenic sources (termed “relict OC” in this paper) exposed at the Earth’s surface (Eglinton et al., 62 

1997; Pearson et al., 2001; Drenzek et al., 2007).  The contribution from this component may 63 
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significantly influence sedimentary OC budgets (Drenzek et al., 2007), but minimally impacts the 64 

exchange of carbon between active reservoirs (Galy et al., 2008).  Carbon isotopic (13C, 14C) 65 

characteristics of higher plant-derived organic molecules can thus provide important information on 66 

the sources of OC produced exclusively by the terrestrial biosphere, leading to improved estimates of 67 

continental OC fluxes in the ocean and to a better understanding of the ultimate fate of terrigenous 68 

OC in the marine environment. 69 

 Plant wax lipids and lignin phenols are the most commonly employed classes of molecular tracer 70 

for terrestrial OM in the marine environment (e.g., Prahl et al., 1994; review by Hedges et al., 1997; 71 

Goñi et al., 2000; Drenzek et al., 2007; Ohkouchi and Eglinton, 2008).  While their origin is 72 

unequivocal, their transport pathways, storage times and modifications during land-ocean transfer are 73 

much less clear.  Lignin is generally more abundant in the coarse particles that are rich in 74 

undegraded OM debris whereas plant wax lipids tend to be more enriched in mineral-bound OM 75 

(Wakeham et al., 2009).  Hydrodynamic sorting processes are known to influence the dispersal and 76 

fate of mineral-associated OM versus plant debris during transport (Keil et al., 1994; Prahl et al., 77 

1994; Gordon and Goñi, 2003; Huguet et al., 2008; Mead and Goñi, 2008; Vonk et al., 2010) and 78 

hence may affect the distribution of lignin phenols versus plant wax lipids in the sediments.  The 79 

13C and 14C compositions of plant wax lipids have been investigated in a range of sedimentary 80 

environments (Jones et al., 1991; Huang et al., 1995; Pearson et al., 2001; Smittenberg et al., 2006; 81 

Drenzek et al., 2007; 2009; Mollenhauer and Eglinton, 2007; Kusch et al., 2010; Gustafsson et al., 82 

2011); while carbon isotopic (especially 14C) data on lignin phenols in marine sediments remains 83 

sparse (Goñi et al., 1997; Culp, 2012).  Different groups of lignin phenols are reported to exhibit 84 

varying vulnerabilities to degradation in the environment; for instance, angiosperm-derived syringyl 85 

phenols and non-woody-tissue-derived cinnamyl phenols both show faster decay rates relative to 86 

vanillyl phenols (Hedges et al., 1988; Opsahl and Benner, 1995; Otto et al., 2005).  It is presently 87 

unknown whether individual lignin phenols exhibit any isotopic discrepancies that may reflect 88 
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variations in their source or reactivity.  It also remains unclear whether lignin and plant wax lipids 89 

exhibit similar 13C and 14C characteristics in drainage basins (i.e., with respect to provenance and 90 

dynamics) and if factors such as differing particle associations and turnover times may cause any 91 

isotopic discrepancies between them.  Furthermore, in contrast to plant wax lipids, which are 92 

relatively trace constituents of terrestrial OM, lignin is one of the most abundant terrestrial 93 

biopolymers (Hedges et al., 1997; Kögel-Knabner, 2002), making it quantitatively more significant 94 

for use in isotopic mass balance-based source apportionment.  Comparing the carbon isotopic 95 

characteristics of these two groups of terrestrial tracers may yield unique insights on the transfer and 96 

cycling of terrestrial OC in the ocean and provide further information on their utility in 97 

reconstructing paleoenvironmental conditions.  98 

 Compared to plant wax lipids, lignin phenols have remained a challenge to isolate and measure 99 

for 14C content.  While successfully isolated by preparative capillary gas chromatography (PCGC), 100 

their separation requires derivatization with quite harsh and toxic reagents, and the efficiency of 101 

derivatization appears to suffer from competition with other reactants (McNichol et al., 2000).  102 

Adding derivative carbons to the relatively small monomeric lignin products from oxidative 103 

hydrolysis (8-10 carbons) also increases analytical error associated with isotopic analysis 104 

(Beramendi-Orosco et al., 2006; Corr et al., 2007).  Direct separation of lignin phenols on high 105 

pressure liquid chromatography (HPLC) can circumvent this problem, which has been applied to 106 

plant tissues and lake sediments recently (Hou et al., 2010; Ingalls et al., 2010).  Compared to 107 

terrestrial samples (plants, soils, lake and fluvial sediments), marine sediments represent challenging 108 

environmental matrices with myriad OC inputs and dilution of lignin residues with marine OM.  In 109 

this paper, we evaluate an alternative HPLC-based method of isolating lignin phenols from marine 110 

sedimentary matrix for 14C analysis and compare the results with the PCGC-based isolation.  We 111 

then use this method to compare and contrast the carbon isotopic composition of lignin phenols with 112 

those of plant wax lipids from two surface sediments collected from the Washington margin.  The 113 
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sediments in this region, which receive high inputs of terrestrial OM from the Columbia River, have 114 

been extensively characterized in terms of sedimentology and geochemistry (Hedges and Mann, 115 

1979a; Nittrouer and Sternberg, 1981; Prahl et al., 1994; Hartnett et al., 1998), and provide a “classic 116 

location” for assessing vascular plant marker signatures on fluvially-influenced continental margins.  117 

To our knowledge, this study represents the first detailed investigation of both the 13C and 14C 118 

compositions of the two major classes of these vascular plant molecular markers in marine 119 

sediments.   120 

 121 

2. MATERIALS AND METHODS 122 

2.1. Samples and Bulk Analysis 123 

The mineralogy and geochemistry of the Washington margin have been well studied (White, 124 

1970; Nittrouer and Sternberg, 1981; Prahl et al., 1994; Hedges et al., 1999).  Coastal surface 125 

sediments are dominated by fluvial inputs with steady supply and deposition of plant debris and 126 

coarse-grained sediment near the Columbia River mouth and over the mid-shelf over at least the last 127 

400 years (Hedges and Mann, 1979a; Prahl et al., 1994).  The sediment accumulation rate is 128 

approximately 400 cm/kyr close to the river mouth and ~300 cm/kyr in the mid-shelf (Coppola et al., 129 

2007), with sediment mixed layer depths ranging from 20 to 30 cm over the shelf (Nittrouer and 130 

Sternberg, 1981; Coppola et al., 2007).  Coarse sand and silts are preferentially accumulated over 131 

the shelf while grain size progressively decreases with increasing distance from the Columbia River 132 

(Nittrouer and Sternberg, 1981; Coppola et al., 2007).  Vegetation in the drainage basin is 133 

dominated by C3 plants and sediments over the Washington margin shelf contain a high abundance 134 

of terrestrial vascular plant OC with 13C-depleted stable carbon isotopic compositions (-25.5 ‰), 135 

high C/N ratios and abundant higher plant biomarkers (Hedges and Mann, 1979a; Prahl et al., 1994; 136 

Hedges et al., 1999; Dickens et al., 2006).   137 
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Two large volume (ca. 350 g dry wt.) surface (< 4 cm) sediment samples were collected using a 138 

grab sampler in 1993 during cruise W9308A (R/V Wecoma) on the Washington margin.  Station 1 139 

(St 1, 46°15.12'N, 124°15.23'W) was at the inner shelf in close proximity to the mouth of Columbia 140 

River with a water depth of 74 m.  Sediments at St 1 had a typical coarse sandy texture.  Station 2 141 

(St 2, 46°25.00'N, 124°20.03'W) was located at the mid shelf (water depth, 83 m) where the 142 

sediments were primarily composed of coarse silts.  After collection the samples were stored frozen 143 

in glass jars and subsequently freeze-dried.   144 

An aliquot of bulk sediment was retained for elemental and isotopic analysis.  The OC content 145 

of bulk sediments was determined on a Carlo Erba 1108 Elemental Analyzer (CE Elantech, Inc., NJ, 146 

USA) after removal of inorganic carbon with 2N HCl solution.  Stable carbon isotopic composition 147 

was determined by automated on-line combustion, followed by conventional isotope ratio mass 148 

spectrometry (Finnigan Delta-S mass spectrometer, see Fry et al., 1992 for details).  149 

To validate an HPLC method to isolate lignin phenols for 14C analysis, we used three 150 

commercially available phenol standards (vanillin from Sigma, vanillic acid and acetovanillone from 151 

Acros) and standard plant tissues with a range of 14C contents that are pre-determined from the 152 

Fourth International Radiocarbon Intercomparison (FIRI) project (Scott et al., 2004) and the 153 

International Atomic Energy Agency (IAEA; Rozanski et al., 1992).  Standard plant tissues 154 

included kauri wood (FIRI-A; the consensus fraction modern (Fm) value is 0.0033), subfossil wood 155 

from eastern Wisconsin (IAEA C-5; Fm: 0.2305), Belfast dendro-dated wood (FIRI-D; Fm: 0.5705), 156 

hohenheim wood (FIRI-H; Fm: 0.7574), and barley mash (FIRI-J; Fm: 1.1069).  The wide range of 157 

14C contents in these standard materials allowed us to assess the effect of procedural blanks on the 158 

measured 14C contents of isolated lignin phenols (see Section 2.8).  Phenol standards were dissolved 159 

in methanol and plant tissues were ground to fine powders prior to analysis.  The radiocarbon 160 

content of acid-treated bulk sediment and phenol standards was measured as described in Section 161 

2.8. 162 
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For the subsequent chemical extractions and analyses, all glassware, SiO2 and CuO powders (for 163 

lignin extraction) were pre-combusted at 450 °C for 5 h before use.  Teflon bombs and vessels used 164 

for lignin extraction were soap washed, soaked in HCl (10 %), and rinsed with MilliQ water and 165 

dichloromethane (DCM):methanol (1:1) before use. 166 

 167 

2.2. Extraction and Purification of Plant Wax Lipids 168 

Dried sediments (~ 300 g) were Soxhlet-extracted with DCM:methanol (93:7, 72 h) to obtain a 169 

corresponding total lipid extract (TLE).  The TLEs were spiked with a mixture of recovery 170 

standards (including C24 n-alkane, C19 n-alkanol, and C19 n-alkanoic (fatty) acid) and transesterified 171 

with methanol (5% HCl, 70°C for 12 h) of known isotopic composition to hydrolyze bound fatty 172 

acids and to form corresponding methyl esters.  Lipid class sub-fractions (including hydrocarbon, 173 

fatty acid methyl esters (FAMEs), aldehyde/ketone, and alkanol) were obtained using SiO2 gel flash 174 

chromatography, eluting with different polarity solvents (modified after Farrington et al., 1988).  175 

The hydrocarbon fraction was eluted with hexane and then further purified by AgNO3 thin layer 176 

chromatography (TLC) and urea adduction (Marquart et al., 1968) to yield a fraction dominated by 177 

plant wax n-alkanes.  FAMEs were eluted with ethyl acetate/hexane (10:90).  Aldehyde/ketone 178 

and alkanol fractions were eluted with ethyl acetate/hexane (5:95 and 20:80, respectively) and further 179 

purified by urea adduction.  n-Alkanols were converted to corresponding acetates after reaction 180 

with acetic anhydride in pyridine (65 °C, 15 min).  Small aliquots (ca. 5%) of each fraction were 181 

reserved for gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame 182 

ionization detector (GC-FID) analysis (Section 2.4) and stable carbon isotopic analysis by isotope 183 

ratio monitoring gas chromatography-mass spectrometry (irm-GC-MS; Section 2.5).  Individual 184 

lipids were isolated by PCGC for 14C analysis (Section 2.6). 185 

 186 

2.3. Isolation of Lignin Phenols 187 
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Lignin phenols were released from the solvent-extracted sediments using CuO oxidation and 188 

isolated by both PCGC- and HPLC-based methods.  For PCGC isolation, we used 10-mL 189 

Teflon-lined bombs for CuO oxidation.  In order to process a large volume of sample 190 

simultaneously, we first treated solvent-extracted sediments (~150 g) with HCl (10% w/v, ~200 ml) 191 

and HF (40% w/v, ~25 ml) sequentially to reduce mineral content and sample volume.  The 192 

resulting residues (< 5 g) were then solvent extracted (Section 2.2) again to remove any residual 193 

soluble material and subsequently subjected to alkaline CuO oxidation (2 g CuO, 150 °C, 1.5 h) to 194 

release lignin phenols (Hedges and Ertel, 1982; Goñi et al., 1993).  The lignin oxidation product 195 

(LOP) was spiked with a recovery standard (ethyl vanillin) and extracted with ethyl acetate after 196 

acidification to pH 2.  To assess the concentration and 13C isotopic composition of LOP, an aliquot 197 

was derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and pyridine (70 °C, 1 h) 198 

and analyzed by GC-FID and irm-GC-MS as trimethylsilyl (TMS) derivatives, respectively.  Based 199 

on the similar yield and composition of lignin phenols as compared to previous results in the same 200 

sedimentary region (Section 3.3), we do not think that HCl/HF treatment caused significant removal 201 

of lignin during the pretreatment.  Due to the instability of TMS derivatives, isolation of individual 202 

lignin phenols by PCGC for 14C measurement required formation of more stable derivatives.  We 203 

converted alkanol and acidic groups to methyl ethers and esters, respectively, using dimethyl sulfate 204 

(McNichol et al., 2000).  Briefly, dried LOP was mixed with dimethyl sulfate in excess, 10–20 mg 205 

K2CO3, and 2 mL of dry acetone and stirred at 70 °C overnight. Unreacted dimethyl sulfate was then 206 

destroyed with a few drops (< 1 mL) of 30% ammonium hydroxide solution by stirring for 1 h.  The 207 

methylated phenols were extracted with diethyl ether, dried over sodium sulfate, and isolated by 208 

PCGC (see Section 2.6). 209 

For the HPLC isolation of lignin phenols (Fig. 1), a second portion of the solvent-extracted 210 

sediments (~100 g) was first hydrolyzed with 1 M KOH in methanol (100 °C, 3 h) to remove 211 

hydrolysable lipids (Otto and Simpson, 2006; 2007).  This step also removed some phenol moieties 212 
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(including vanillin, vanillic acid, p-coumaric acid, and ferulic acid) that are present in the suberin 213 

macromolecule (Otto and Simpson, 2006). These phenols amounted to < 4% of lignin phenols 214 

released by CuO oxidation (data not shown) and were not considered to represent ‘true’ lignin (cf. 215 

Otto and Simpson, 2006; 2007).  The residues were then subjected to CuO oxidation on a 216 

microwave system (MARS, CEM Corporation) following a modification of the method described by 217 

Goñi and Montgomery (2000), which allowed for a larger quantity of sediments to be processed.  218 

Approximately 20 g of sediment, 4 g of CuO, 0.6 g of ferrous ammonium sulfate, and 20 mL of 219 

N2-bubbled NaOH solution (2 M) were loaded into each of 5 vessels for one sample.  Vessels 220 

containing all reagents but no sample were also included as “procedural blanks” along with each 221 

batch of sediment or standard plant tissue samples.  All vessels were vacuum-purged with N2 four 222 

times and oxidized at 150°C for 1.5 h.  LOP was extracted with ethyl acetate after acidification to 223 

pH 2 and blown carefully to < 100 µL under N2 for subsequent procedures (Section 2.7).  224 

 225 

2.4. GC-MS and GC-FID Analysis 226 

Small aliquots of lipid sub-fractions (including n-alkanes, FAMEs, n-aldehydes, and n-alkanol 227 

acetates) and the TMS derivatives of lignin phenols were identified on an HP 5890 series II GC 228 

interfaced with a VG Autospec-Q mass spectrometer (MS).  Lipids were separated on a 229 

CP-Sil-5-CB column (30 m × 0.25 mm i.d., film thickness, 0.25 μm) and phenols were separated on 230 

a J&W DB-1 column (60 m × 0.32 mm; film thickness, 0.25 μm) using He carrier gas (1 mL min-1) 231 

and a temperature program from 50 °C (initial hold time, 0 min) to 320 °C at a rate of 6 °C min-1.  232 

Spectra were obtained by scanning over the range 50-600 amu, with a cycle time of 1 s.  Electron 233 

impact ionization (EI) at 70 eV was used for all analyses.  Quantification was achieved on a 234 

GC-FID using the same columns and GC program by comparison with internal standards.   235 

 236 

2.5. Stable Carbon Isotopic Analysis by irm-GC-MS 237 
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 Stable carbon isotopic measurements of lipid fractions and lignin phenols TMS derivatives were 238 

performed on an HP 6890 GC coupled with a Finnigan MAT Deltaplus isotope ratio MS system.  239 

Instrumental conditions were described previously (Goñi and Eglinton, 1994, 1996; Feakins et al., 240 

2005).  The mass-spectrometor was calibrated using deuterated n-alkane internal isotopic standards 241 

(co-injected with the sample) as well as external CO2 gas standards for each run.  The δ13C values 242 

of fatty acids, n-alkanols, and lignin phenols were corrected for the derivative carbon based on 243 

isotopic mass balance and the associated errors were propagated.  Uncertainty of δ13C values was 244 

typically ~0.4 ‰ for plant wax lipids and 0.1-1.2 ‰ for lignin phenols due to the large number of 245 

derivative carbons added.   246 

 247 

2.6. Isolation of Plant Wax Lipids and Lignin Phenols by PCGC 248 

Individual plant wax lipids and methylated lignin phenols were isolated by PCGC for 14C 249 

analysis as described previously (Eglinton et al., 1996; McNichol et al., 2000).   Briefly, plant wax 250 

lipids and methylated lignin phenols were separated on a 30-m “megabore” RTX-1 (Restek; 0.53 mm 251 

i.d.; film thickness, 0.5 µm) and on a 60-m DB-5 fused silica column (0.53 mm i.d.; film thickness, 252 

0.5 µm), respectively.  Typically, > 100 injections were required to isolate sufficient amounts 253 

(15–350 µg C, Supplementary Table S.1) of individual compounds.  A small aliquot was used to 254 

check compound identity and purity by GC-MS.  255 

 256 

2.7. Purification and Isolation of Lignin Phenols by HPLC 257 

Before HPLC isolation, lignin phenols were purified through two solid phase extraction (SPE) 258 

steps (Fig. 1).  In details, the LOP (dissolved in < 100 µL of ethyl acetate) was diluted in ~0.5 mL 259 

of deionized water (pH 2), and loaded onto a Supelclean ENVI-18 SPE cartridge (Supelco, 260 

pre-conditioned with methanol and water).  Lignin phenols were eluted with acetonitrile while 261 

neutral compounds and other impurities were retained on the cartridge (Lima et al., 2007).  The 262 



12 
 

purified LOP was blown under N2 to a volume of < 0.5 mL and further separated on a self-packed 263 

amino SPE cartridge (0.5 g, Supelclean LC-NH2, Supelco, preconditioned with methanol) into 264 

phenolic aldehydes/ketones (eluting with methanol) and their corresponding acids (eluting with 265 

methanol:12 M HCl, 95:5), which have very similar retention times on subsequent HPLC analysis.  266 

Each fraction was then blown to < 50 µL under N2 and re-dissolved in methanol for HPLC 267 

separation.  Due to the high volatility of phenols, solvents were never completely removed during 268 

the extraction and purification steps to avoid sample loss.  Recovery of phenols from the two-SPE 269 

cleanup procedure ranged from 65-110% (Supplementary Table S.2).  Procedural blanks containing 270 

no sediments during CuO oxidation and standard plant tissues with pre-determined 14C contents were 271 

processed in the same manner for method validation. 272 

An HPLC method was developed to isolate individual lignin phenols utilizing two LC columns 273 

with different selectivity in order to afford phenol separation at a much higher amount (up to 30 µg 274 

and average of 16 µg compound per injection) than PCGC without derivatization.  Purified LOP 275 

fractions were separated on an Agilent 1200 HPLC system consisting of a degasser, a binary pump, 276 

an injection autosampler, coupled to a diode array detector (DAD), and a fraction collector, or a 6310 277 

quadrupole MS system.  The fraction containing phenolic aldehydes/ketones was first separated on 278 

a Phenomenex Synergi Polar-RP column (4.6 × 250 mm; 4 µm pore size) along with a Polar-RP 279 

SecurityGuard column (4.0 × 3.0 mm; 4 µm pore size).  Phenols were eluted from the column using 280 

a binary gradient program (Table 1) of water/acetic acid (99.8:0.2; Solvent A) and 281 

methanol/acetonitrile (50:50; Solvent B).  The column was maintained at 28 °C, and the initial 282 

conditions were 10% Solvent B at a flow rate of 0.8 mL/min for the first 3 min.  The gradient 283 

program ramped to 15% Solvent B by 8 min, 20% by 15 min, held at 20% till 22 min, ramped to 284 

25% by 27 min, held at 25% till 36 min, finally ramped to 100% by 37 min, and was held for 5 min 285 

at 100% to wash the column.  Subsequently, the column was re-equilibrated in 10% Solvent B for 5 286 

min between injections.  Phenols were detected by DAD (280 nm) and MS (atmospheric pressure 287 
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chemical ionization-negative ion mode, conditions described as in Hoffmann et al., 2007).  288 

Individual phenols were collected in 20-mL glass vials using time-based fraction collection from the 289 

beginning to the end of the time interval of each phenol UV peak.  Phenols were recovered from the 290 

mobile phase through extraction with ethyl acetate at pH 2 and gently blown to < 50 µL under N2.  291 

In order to remove impurities or phenols co-eluting on the Polar-RP column, all the isolated phenolic 292 

aldehydes/ketones were re-dissolved in methanol and further purified individually on a ZORBAX 293 

Eclipse XDB-C18 column (4.6 × 150 mm; 5 µm pore size) with a ZORBAX Eclipse C18 guard 294 

column (4.6 × 12.5 mm; 5 µm pore size; after Lobbes et al., 1999; Fig. 2a) using the same mobile 295 

phases and a slightly different gradient program (Table 1).  In most cases, a total of 8 injections (10 296 

µL each) were conducted for each sample to collect approximately 40-300 µg of each phenol (i.e., 297 

~20-150 µg C) for 14C measurement.  Similarly, the fraction containing phenolic acids was 298 

separated on a ZORBAX Eclipse XDB-C18 column followed by further isolation on a Phenomenex 299 

Polar-RP column using similar binary gradient programs (Table 1; Fig. 2b).  After isolation, lignin 300 

phenols were purified using a 5% deactivated SiO2 column with ethyl acetate as the eluting solvent 301 

to remove potential column bleed.  Recovery of phenols from the SiO2 column was typically > 90% 302 

and the overall recovery of phenols from the SPE and HPLC procedures was estimated around 303 

60-80% by comparing phenol quantities before and after purification and isolation steps on the 304 

GC-FID.  As also reported by Ingalls et al. (2010), the biggest loss of sample occurred during 305 

solvent removal processes due to the volatile nature of phenols.  Although any isotopic 306 

fractionation that might occur during evaporation was corrected for with the 13C/12C ratio during 307 

AMS measurement, significant sample loss via solvent dry down should be avoided.  Heating was 308 

therefore not used during N2 blow-down when the solvent level was low.  A small aliquot of 309 

purified phenols was removed and derivatized to check compound identity and purity by GC-MS as 310 

described previously (Supplementary Fig. S.1), and found to yield purities > 99%.  Procedural 311 

blanks from CuO oxidation and SPE purification were injected 8 times on HPLC, collected at time 312 
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intervals corresponding to the retention time of lignin phenols, and purified in the same way.  A 313 

small aliquot of the resulting procedure blank was derivatized with BSTFA and pyridine and 314 

analyzed on GC-MS for its composition.  No distinct peaks were observed in the GC-MS trace.  315 

The rest of the procedure blanks were combusted to CO2 and quantified in a calibrated volume on the 316 

vacuum line (Section 2.8). 317 

 318 

2.8. Radiocarbon Measurement by Accelerator Mass Spectrometry (AMS) 319 

Quartz tubes and CuO catalysts were pre-combusted at 850 °C for 5 h one day before use.  320 

Decarbonated sediments, phenol standards, individual plant wax lipids and lignin phenols isolated 321 

from sediments and plant tissues, and HPLC-processed procedural blanks were transferred to 322 

pre-combusted quartz tubes using DCM:methanol (1:1) where necessary.  After any solvents used 323 

in sample transfer were carefully removed under a gentle stream of N2 gas, quartz tubes were 324 

sonicated in water for 1 min and gently blown again under N2 gas without heat for 1 min to ensure 325 

complete dryness.  The samples were subsequently combusted in evacuated pre-combusted quartz 326 

tubes in the presence of CuO at 850 °C for 5 h.  Resulting CO2 was dried, quantified on the vacuum 327 

line, and subsequently converted to graphite using standard methods (Pearson et al., 1998) for 328 

radiocarbon analysis with accelerator mass spectrometry (AMS) at the National Ocean Sciences 329 

Accelerator Mass Spectrometer (NOSAMS) facility at the Woods Hole Oceanographic Institution.  330 

Radiocarbon contents are reported as fraction modern carbon (Fm), ∆14C (‰), and conventional 14C 331 

age (Stuiver and Polach, 1977).  Errors associated with AMS measurement depend on the sample 332 

size, 14C content and instrument performance at the time of measurement, etc.  The long-term 333 

average error associated with AMS measurement is typically about ± 15 ‰.  The radiocarbon 334 

contents were corrected for the derivative carbon (where necessary) and procedural blanks using a 335 

mass balance approach.  The associated errors were propagated in the results.   336 
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Procedural blanks as referred to in this paper include any background carbon originating from 337 

reaction vessels, SPE bonding materials, GC or LC column bleed, HPLC reagents (MilliQ water), 338 

and/or background CO2 on vacuum line.  We made every attempt to reduce the procedural blank by 339 

pre-combusting glassware, quartz tubes, SiO2 and CuO before use, pre-rinsing SPE cartridges, and 340 

purifying isolated compounds with SiO2 columns after PCGC or HPLC isolation.  Based on our 341 

experience (Galy and Eglinton, 2011), procedural blanks associated with the PCGC procedures 342 

(including extraction and combustion) carry 1.8 ± 0.9 µg of C with an Fm of 0.44 ± 0.10.  343 

Procedural blanks associated with HPLC procedures were assessed separately in Section 3.2.3.1 344 

using phenols purified from authentic standards and plant reference materials.  345 

 346 

2.9. Isotopic Mass Balance Model and Statistics 347 

We employed an isotopic mass balance model to assess the relative contribution of terrestrial 348 

(including soil and vascular plants), marine, and relict OC to bulk sediments following a procedure 349 

described previously (Pearson and Eglinton, 2000; Drenzek et al., 2007).  Briefly, the model is 350 

expressed in the following three equations: 351 

fT (∆14CT) + fM (∆14CM) + fR (∆14CR) = ∆14CS   (1) 352 

fT (δ13CT) + fM (δ13CM) + fR (δ13CR) = δ13CS    (2) 353 

fT + fM + fR = 1          (3) 354 

where ƒ is the fractional abundance and the subscripts T, M, R, and S are terrestrial, marine, relict 355 

OC, and bulk sediment sample, respectively.  Among them, δ13CT and δ13CM have a value of 356 

-25.5 ‰ and -21.5 ‰ respectively, as determined by Hedges and Mann (1979a).  The δ13CR and 357 

∆14C values of end members were constrained by the isotopic characteristics of analyzed biomarkers 358 

(Section 4.3).  Comparison of isotopic values was tested using ANOVA or t test and the difference 359 

was considered to be significant at the level of P < 0.05. 360 

 361 
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3. RESULTS AND DISCUSSION 362 

3.1. Bulk Geochemical Properties of the Washington Margin Sediments 363 

Table 2 provides information on the bulk geochemical properties of the two Washington margin 364 

surface sediment samples studied.  Similar to previous observations (Hedges and Mann, 1979a; 365 

Prahl and Carpenter, 1984; Prahl, 1985), the inner shelf sediment (St 1) had a lower OC content 366 

(0.40 %) than the mid-shelf sample (St 2; 0.93 %) due to the coarser-grained texture of the former.  367 

This trend is typical of Washington margin sediments, where coarse materials emanating from the 368 

Columbia River accumulate in the inner shelf whereas silts and finer particles with a higher OC 369 

content are preferentially transported farther from the source to the mid shelf and upper slope 370 

(Hedges et al., 1999; Coppola et al., 2007).  Bulk OC had an identical δ13C value of –25.3 ‰ at 371 

both stations, consistent with the C3 terrestrial plant carbon signal (-25.5 ‰) supplied by the 372 

Columbia River (Hedges and Mann, 1979a; Prahl et al., 1994).  Bulk OC in the surface sediment 373 

(0-4 cm) had a ∆14C value of –195 and –136 ‰ for St 1 and 2, corresponding to a radiocarbon age of 374 

1700 and 1140 years, respectively.  These values are much more depleted than the ∆14C values of 375 

surface dissolved inorganic carbon in the North Pacific Ocean in the 70s-90s (> 0 ‰; Key et al., 376 

2002) and the ages are significantly older than the deposition time of the sediments (approximately 377 

over 50-100 years of sampling time) based on the mixed layer depth (20-30 cm) and sedimentation 378 

rate of 400-300 cm/kyr across the region (Coppola et al., 2007), reflecting significant pre-aging of 379 

the bulk OC before its deposition into the sediments.   380 

 381 

3.2. Molecular and Isotopic Characteristics of Lignin Phenols 382 

3.2.1. Molecular Composition 383 

Eight “characteristic” lignin-derived phenolic monomers (Λ8; Hedges and Mann, 1979a) were 384 

detected in high concentrations in the Washington margin sediments (Table 3), reflecting both the 385 

high abundance of lignin as a component of terrestrial plant biomass and the preferential 386 
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accumulation of woody plant fragments (which have a high lignin content) from the mouth of 387 

Columbia River to mid shelf (Hedges and Mann, 1979a).  Vanillyl phenols were the most abundant 388 

phenols and ratios of syringyl-to-vanillyl (S/V) and cinnamyl-to-vanillyl (C/V) phenols ranged at 389 

0.19-0.30 and 0.04-0.05, respectively, comparable to the lignin phenol composition found at the 390 

nearby sites (Hedges and Mann, 1979a) and implying mixed inputs of angiosperm (minor) and 391 

gymnosperm (major) tissues (Hedges and Mann, 1979b; Prahl, 1985; Keil et al., 1998; Goñi et al., 392 

2000).  Despite a general similarity in lignin composition, the acid-to-aldehyde ratio for syringyl 393 

phenols (Ad/Al)s, a lignin degradation indicator (Hedges et al., 1988; Opsahl and Benner, 1995), was 394 

higher at St 2 than St 1 (Table 3).  This observation coincides with an enrichment of relatively 395 

undegraded woody debris (with a lower (Ad/Al)s ratio) in the coarse fractions that are deposited 396 

closer to the river mouth (i.e., St 1; Keil et al., 1994; 1998).   397 

In addition to the 8 monomers, three dimeric lignin phenols that are most abundant in 398 

gymnosperm wood (5-vanillovanillin, 5-vanilloacetovanillone, and dehydrovanillinvanillic acid; 399 

Goñi and Hedges, 1992) were detected in both sediments, albeit at much lower concentrations (< 1.0 400 

mg/g OC).  Similar to previous studies (Prahl et al., 1994; Keil et al., 1998), 401 

p-hydroxybenzaldehyde, 3,5-dihydroxybenzoic acid (DHA), and dihydroxy C16 fatty acid were also 402 

identified as LOP in both sediments.  Among them, dihydroxy C16 fatty acid is known to derive 403 

from higher plant cutin (Goñi and Hedges, 1990), whereas the source of the hydroxybenzene 404 

compounds is less clear.  p-Hydroxybenzaldehyde may derive from protein as well as lignin (Goñi 405 

et al., 2000), and has been detected in algal extracts (Feng et al., unpublished results).  DHA, a 406 

common LOP in sediments and soils but not of fresh vascular plant tissues, has been proposed to be a 407 

product of soil alteration processes but has also been detected in brown macroalgae (Prahl et al., 408 

1994).  DHA occurred in both sediment samples in a comparable abundance to lignin phenols 409 

(~1.0-1.3 mg/g OC) whereas p-hydroxybenzaldehyde and dihydroxy C16 fatty acid were present in 410 

much lower concentrations (< 1.0 mg/g OC).  411 
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 412 

3.2.2. Stable Carbon Isotopic Composition 413 

The δ13C values of individual lignin-derived monomers fell between –30 and –34 ‰ for both 414 

stations (with the exception of acetosyringone; Fig. 3a), 5-9 ‰ more depleted than the bulk OC.  415 

This offset is slightly higher than the typical δ13C offset between macromolecular lignin and bulk OC 416 

in plant tissues (2-6 ‰; Benner et al., 1987).  However, the δ13C values of lignin monomers fell 417 

within the range of δ13C values reported for C3 plant lignin phenols (–31.1 ± 3.7 ‰, Goñi and 418 

Eglinton, 1996; –32.9 ± 2.5 ‰, Bahri et al., 2006) which fractionated against plant bulk OC by as 419 

much as –9.8 ‰.  No general trend was observed for the isotopic composition among the aldehyde, 420 

ketone, and acid monomers of vanillyl and syringyl phenols.  Acetovanillone was the most 421 

13C-enriched phenol at both stations (–29.9 and –29.6 ‰ for St 1 and 2 respectively), while 422 

acetosyringone had exceptionally low δ13C values (–43.3 and –44.6 ‰).  Such an isotopic depletion 423 

in acetosyringone has not been observed in plant tissues (Goñi and Eglinton, 1996; Bahri et al., 2006) 424 

and appears inconsistent with an origin of C3 plants.  We, therefore, suspect that acetosyringone 425 

co-eluted with an impurity during irm-GC-MS analysis.  Syringic acid at St 2 exhibited a lower 426 

δ13C value (–36.7 ‰) as compared to the other lignin monomers, and syringyl phenols generally 427 

were slightly more 13C-depleted than vanillyl phenols at both stations.  Cinammyl phenols, i.e., 428 

p-coumaric acid and ferulic acid, gave similar isotopic results (ca. –33 and –30 ‰ respectively), with 429 

the former being systematically more depleted.  The abundance-weighted δ13C values for the Λ8 430 

phenols (excluding acetosyringone) were –32.0 and –31.7 ‰ for St 1 and St 2 respectively, 431 

6.2-6.5 ‰ more depleted than the bulk tissue of C3 plants in the Columbia River drainage basin 432 

(–25.5 ‰; Hedges and Mann, 1979a), exhibiting an offset close to the reported fractionation between 433 

lignin and plant OC (2-6 ‰; Benner et al., 1987). 434 

Three dimeric lignin phenols (5-vanillovanillin, 5-vanilloacetovanillone, and 435 

dehydrovanillinvanillic acid) had similar δ13C values (–31.3 to –35.9 ‰).  p-Hydroxybenzaldehyde 436 
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yielded similar values to lignin phenols for both stations, suggesting a predominantly vascular plant 437 

origin.  DHA was markedly depleted in 13C at both stations and had a similar δ13C value (ca. –42 ‰) 438 

to acetosyringone, possibly due to co-eluting impurities as well.  Finally, cutin-derived dihydroxy 439 

C16 fatty acid yielded values (ca. –34 ‰) close to those of lignin phenols.  440 

 441 

3.2.3. Radiocarbon Composition 442 

3.2.3.1. Assessment of Lignin Phenol 14C Measurement Based on HPLC Isolation  443 

To assess the accuracy of radiocarbon measurement involving the HPLC isolation method, we 444 

first compared the measured Fm values of individual lignin phenols (34-281 µg C each, similar to the 445 

Washington margin sample size ranging from 22-235 µg C, Table 4 and Supplementary Table S.1) 446 

“isolated” from authentic standards and plant tissue reference materials with the nominal Fm values 447 

of their corresponding bulk OC.  The offset between the measured (not corrected for procedural 448 

blanks) and nominal Fm values of lignin phenols ranged from –0.0266 to +0.0267 with an average of 449 

–0.0021 ± 0.0175 (Table 4).  Procedural blanks associated with HPLC procedures yielded 2 ± 0.5 450 

µg C, similar values to those reported with HPLC isolation steps (Hou et al., 2010; Ingalls et al., 451 

2010).  We were unable to directly measure the radiocarbon content of our procedural blanks as 452 

sample sizes were too low.  Instead, we indirectly estimated their Fm value using a mass balance 453 

approach (Ziolkowski and Druffel, 2009), assuming that sedimentary and standard phenols were 454 

diluted with a constant amount of blank (2 ± 0.5 µg C) with a constant radiocarbon content which 455 

caused an offset between the measured and nominal Fm values of the phenol standards that we 456 

measured (∆Fm; Table 4).  A range of Fm values (from 0.000 to 1.000) were tested to correct the 457 

measured Fm values of all phenol standards (Table 4; Fig. 4).  An Fm value of 0.48 ± 0.10 was 458 

chosen for subsequent corrections of HPLC-based measurement, which decreased the Fm offset to an 459 

average of 0.0000 ± 0.0131 (Table 4; Fig. 4), corresponding to a ∆14C offset of 0 ± 13 ‰.  The high 460 

uncertainty (± 0.10) assigned to the Fm value of HPLC procedural blank is similar to that of the 461 
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PCGC blanks and most likely made it reasonable to compare the ∆14C values of compounds isolated 462 

using different methods.  Overall, syringyl and cinnamyl phenols exhibited an offset of –0.0073 ± 463 

0.0002 and –0.0160 ± 0.0074 relative to their nominal Fm values respectively, whereas vanillyl 464 

phenols showed an offset of +0.0044 ± 0.0124 after blank corrections.  These values are not 465 

considered to be significantly different (one-way ANOVA; P = 0.73), especially when the errors of 466 

measured Fm values are taken into account (up to ± 0.0090; Table 4).  Different lignin phenols 467 

isolated from the same plant tissues had similar Fm values (Table 4).  The Fm offset between 468 

individual phenols (within 0.0434, comparable to a ∆14C offset of ~40 ‰) is comparable to that 469 

reported by Hou et al. (2010) and yet our measurement encompasses a broader array of lignin 470 

phenols.  Although this variability is slightly larger than the uncertainties associated with 471 

processing (including extraction, HPLC isolation and combustion; 0 ± 13 ‰) and the average error 472 

of long-term AMS measurement (± 15 ‰), it is sufficiently small to address questions concerning 473 

the cycling of lignin in the environment.   474 

As compared to other published HPLC isolation methods of lignin phenols for radiocarbon 475 

measurement (Hou et al., 2010; Ingalls et al., 2010), our procedure has two important advantages.  476 

First, purification through two SPE cartridges greatly improves baseline separation on the subsequent 477 

HPLC analysis.  In particular, the aldehyde/ketone fraction of LOP eluting from amino SPE was 478 

promising for lignin isolation on HPLC in that this fraction from both plant tissues and Washington 479 

margin sediments was almost colorless and yielded a flat baseline during HPLC-DAD (Fig. 2a).  480 

This is particularly important for complex environmental samples, from which interfering non-lignin 481 

compounds are liberated during CuO oxidation (products of protein and carbohydrate hydrolysis, 482 

etc.).  Second, SPE cartridges help to concentrate lignin phenols such that phenols of relatively 483 

lower abundances can be isolated fairly easily, enabling a broader array of lignin phenols to be 484 

targeted for radiocarbon measurement.  Notably, we successfully isolated two lignin phenols 485 

(p-coumaric acid and ferulic acid) that had a very low abundance in the Washington margin 486 
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sediments, demonstrating the effectiveness of our HPLC isolation method.  Admittedly, two solvent 487 

dry-down steps were added by using two SPE cartridges in cleaning up extracts, which may increase 488 

the potential loss of lignin phenols through volatization.  Special care was taken in those steps to 489 

prevent complete removal of solvents and the recovery of phenols was quite satisfactory (Table S.2).  490 

We hence recommend the use of SPEs to purify samples and to protect HPLC columns.      491 

     492 

3.2.3.2. ∆14C Values of Lignin Phenols Isolated by HPLC and PCGC from Washington Margin 493 

Radiocarbon content was then compared for individual lignin phenols isolated from the 494 

Washington margin sediments using both PCGC and HPLC methods.  Lignin phenols isolated by 495 

HPLC from the Washington margin sediments had ∆14C values ranging from –64 to –132 ‰ at St 1 496 

and from –45 to –150 ‰ at St 2 (Fig. 3a; Table S.1).  Vanillic acid and vanillin were the most 497 

14C-depleted phenols in St 1 and St 2, respectively.  The abundance-weighted ∆14C values for three 498 

vanillyl phenols were –107 ± 3 and –134 ± 4 ‰ for St 1 and St 2, respectively, more depleted than 499 

those of individual syringyl (by 41-57 ‰) or cinammyl phenols (40-89 ‰) at the respective stations 500 

(t test; P < 0.05).  Vanillyl phenols at St 1 were significantly more enriched in 14C than those at St 2 501 

(t test; P < 0.05).   502 

By comparison, lignin phenols isolated by PCGC displayed ∆14C values ranging from –13 to 503 

–105 ‰ in St 1, and from –23 to –116 ‰ in St 2 (Fig. 3a; Table S.1).  Values were similar for both 504 

stations and in both cases vanillin was the most 14C-depleted component.  Because not all phenols 505 

were measured for 14C, we calculated the abundance-weighted ∆14C values for the same phenols 506 

analyzed at both stations.  Three vanillyl phenols and two syringyl phenols (acetosyringone and 507 

syringic acid) isolated by PCGC had an average ∆14C value of –86 ± 7 and –17 ± 21 ‰ respectively 508 

at St 1 and –105 ± 16 and –50 ± 13 ‰ respectively at St 2.  These values were statistically 509 

indistinguishable between St 1 and St 2.  Similar to the HPLC-based measurements, PCGC-isolated 510 

vanillyl phenols were significantly more depleted in 14C than syringyl phenols at both stations (by 511 
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55-69 ‰; t test; P < 0.05).   512 

Overall, HPLC-based ∆14C values of vanillyl phenols were 21-29 ‰ more depleted than 513 

PCGC-based values.  Admittedly, sample pretreatment differed for the PCGC- and HPLC-isolated 514 

lignin phenols (HCl/HF treatment and alkaline hydrolysis before CuO oxidation, respectively).  The 515 

∆14C offset is however not considered to be affected by the treatment procedures, because: (a) the 516 

concentration and composition of lignin phenols was similar to those measured previously in the 517 

Washington margin (Hedges and Mann, 1979a; Prahl, 1985; Prahl et al., 1994; Keil et al., 1998); (b) 518 

the HCl/HF treatment did not induce a depletion in the ∆14C value of lignin phenols in the treated 519 

residues as is suspected for the acid-insoluble OC (Rumpel et al., 2008); and (c) even when we 520 

assume that phenols extracted by hydrolysis (which yielded 2-4% of their respective counterparts 521 

from the CuO oxidation) carry a modern ∆14C value of 0 ‰, they would only increase the ∆14C value 522 

of HPLC-isolated phenols by 4 ‰, much smaller than the offset between PCGC and HPLC-based 523 

∆14C values.  Actually, a discrepancy of 21-29 ‰ is similar in size to the ∆14C variability of 524 

individual phenols isolated from the same wood standards (38 ‰) and not considered to be 525 

significant, particularly when the average uncertainties of AMS measurement (± 15 ‰) and blank 526 

assessment (0 ± 13 ‰ for the HPLC method) are taken into account.  As compared with the PCGC 527 

method, HPLC-based isolation of lignin phenols is preferred as it does not require derivatization and 528 

consumes far less instrument time (2 columns × 5 injections for HPLC versus >100 injections for 529 

PCGC).               530 

 531 

3.3. Molecular and Isotopic Characteristics of Plant Wax Lipids 532 

3.3.1. Molecular Composition 533 

In comparison to lignin phenols, solvent extractable n-alkyl lipids were present in much lower 534 

concentrations in both sediments (Table 3).  n-Alkanes were present in the range of C19-35 and 535 

exhibited a marked odd-over-even carbon number preference (carbon preference index, CPI = 536 
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∑C21-31 odd-numbered n-alkanes/∑C22-32 even-numbered n-alkanes of 3.1 and 4.2 at St 1 and 2, 537 

respectively).  The average chain length (ACL) was 27.0 and 28.1 for n-alkanes at St 1 and 2, 538 

respectively, with n-C29 n-alkane being the most abundant homologue.  The concentration of plant 539 

wax n-alkanes (∑C25-31 odd-numbered) was 0.08 and 0.09 mg/g OC at St 1 and 2, respectively (Table 540 

3), consistent with previous reports (Prahl and Carpenter, 1984; Prahl, 1985; 1994).  n-Alkanoic 541 

(fatty) acids, n-alkanols, and n-aldehydes exhibited a strong even-over-odd carbon number 542 

predominance with C24, C26, and C28 as the most abundant homologue for n-alkanoic acids, 543 

n-alkanols, and n-aldehydes, respectively.  The ACL varied between 24.8 and 27.1 in both stations.  544 

These data are consistent with previous observations on the lipid composition of Washington margin 545 

coastal sediments (Prahl and Pinto, 1987) and indicate a predominant terrestrial input.  Long-chain 546 

fatty acids (∑C24-32 even-numbered) were the most abundant plant wax lipids in both sediments with 547 

a concentration of 0.18 and 0.12 mg/g OC at St 1 and 2, respectively (Table 3).  ∑C24-32 548 

even-numbered n-alkanols and n-aldehydes ranged from 0.06 to 0.09 mg/g OC.   549 

 550 

3.3.2. Carbon (13C, 14C) Isotopic Compositions and OC Sources 551 

Individual n-alkanes displayed δ13C values between –30 and –33 ‰ (Fig. 3b), 5 to 8 ‰ more 552 

13C-depleted than the bulk OC.  Within homologous series, C31 and C33 n-alkanes exhibited the 553 

most depleted δ13C values at both stations, indicating an origin predominantly from C3 plant waxes 554 

for the longer chain homologues (Collister et al., 1994; Rommerskirchen et al., 2006b; Chikaraishi 555 

and Naraoka, 2007).  n-Alkanes (C27, 29, 31) that were characteristic of higher plant waxes had a 556 

similar radiocarbon content to the bulk OC, varying slightly within –100 to –125 ‰ at both stations 557 

(Fig. 3b).  Their corresponding abundance-weighted δ13C and ∆14C values were –32.4 ‰ and –104 558 

± 22 ‰ for St 1, and –32.5 ‰ and –122 ± 15 ‰ for St 2, respectively.  In sharp contrast, the 559 

summed ∆14C values of shorter-chain C21, 23, 25 n-alkanes were significantly more depleted (–588 and 560 

–506 ‰ for St 1 and 2, respectively), while the C22, 24, 26 homologues showed an even stronger 561 
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depletion (–969 and –747 ‰, respectively), suggesting a predominant input from relict sources to 562 

C22, 24, 26 n-alkanes (particularly for St 1) and, to a less extent, to C21, 23, 25 n-alkanes (cf. Pearson and 563 

Eglinton, 2000; Pearson et al., 2001; Drenzek et al., 2007).  Among these n-alkanes that showed 564 

signs of non-plant inputs, the even-numbered homologues had similar δ13C values (ca. –32 ‰) to 565 

their odd-numbered counterparts in the C22-C29 range, whereas shorter chain (C19-C21) homologues at 566 

St 1 had the most enriched values (–30.2 to –31.0 ‰).   567 

In contrast to n-alkanes, even-numbered fatty acids exhibited a wider range of δ13C values 568 

varying from –26.0 to –33.9 ‰ and a wide range of ∆14C values between –204 to +179 ‰ (Fig. 3c).  569 

Short-chain fatty acids (C14, C16, C18) had the highest δ13C values (–26.0 to –26.9 ‰), ~4-5 ‰ more 570 

depleted than marine planktonic OC (–21.5 ‰; Hedges and Mann, 1979a; Prahl et al., 1994) in the 571 

Washington margin.  This isotopic offset is close to the fractionation between fatty acids and 572 

biomass (~4 ‰; Hayes, 1993; Schouten et al., 1998).  C16 and C18 fatty acids also displayed the 573 

most enriched ∆14C values between +4 to +179 ‰.  These data collectively suggest a strong 574 

algal/bacterial contribution with a (greater than) modern radiocarbon age to short-chain fatty acids 575 

(Perry et al., 1979; Volkman et al., 1998).  Longer-chain (C26-C32) homologues displayed a similar 576 

range of δ13C values (–29.8 to –33.9 ‰) to long-chain n-alkanes (C21-C33), cutin marker (dihydroxy 577 

C16 fatty acid) and lignin phenols while C26 fatty acid displayed a similar radiocarbon content to bulk 578 

OC at both stations (Fig. 3c).  The abundance-weighted δ13C values of C26, 28, 30, 32 fatty acids were 579 

–31.8 and –31.0 ‰ for St 1 and St 2, respectively.  By comparison, C20, 22, 24 fatty acids displayed 580 

more enriched δ13C (–28.2 to –29.0 ‰) and ∆14C values (–73 to +74 ‰) than their longer 581 

homologues (Fig. 3c).  Although long-chain (>C20) saturated even-numbered fatty acids are usually 582 

considered to derive predominantly from vascular plant waxes, these lipids have also been identified 583 

in microalgae (Volkman et al., 1998 and references therein) and perhaps bacteria (Volkman et al., 584 

1988; Gong and Hollander, 1997).  The heavy 13C and 14C isotopic data collectively suggest the 585 

contribution of modern planktonic OC to C22 and, to a less extent, C24 fatty acids.   586 
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Even-numbered C22-C30 n-alkanols displayed δ13C values from –29.9 to –34.3 ‰ at St 1 and 587 

were slightly more 13C-depleted (–29.7 to –37.5 ‰) at St 2 (Fig. 3d).  In general, the values fell 588 

within the range reported for C3 plant wax n-alkanols (Bull et al., 2000; Rommerskirchen et al., 589 

2006a).  Similar to fatty acids, C22 and C24 n-alkanols exhibited more enriched δ13C values (–29.7 to 590 

–31.1 ‰) than their longer homologues (C26-C30; –33.4 to –37.5 ‰) at both stations.  However, C22 591 

and C24 n-alkanols had a similar 14C content to plant wax n-alkanes, indicating a predominant input 592 

from terrestrial sources instead of modern marine biota such as microalgae, seagrasses, and 593 

cyanobacteria (Rommerskirchen et al., 2006a; Volkman et al., 2008).  Furthermore, contrary to fatty 594 

acids, the longer homologues (C26-C30) of n-alkanols were more enriched in 14C, suggesting a shorter 595 

residence time or a greater contribution of fresher material.  The observed 13C isotopic composition 596 

of long-chain n-alkanols may therefore reflect isotopic variation among plant wax lipids, where 597 

longer (>C26) n-alkanols are reported to have more depleted δ13C values than the C22 and C24 598 

homologues in several plant species (Chikaraishi and Naraoka, 2007).  The abundance-weighted 599 

δ13C values of C22-30 n-alkanols were –32.4 and –34.5 ‰ for St 1 and St 2, respectively, while the 600 

abundance-weighted ∆14C value of these n-alkanols was –56 ± 18 ‰ at St 1.  Due to a limited 601 

sample size, only one composite sample of C22-C30 even-numbered n-alkanols was measured for St 2, 602 

which had a more enriched ∆14C value (–69 ‰) than plant wax n-alkanes, fatty acids and bulk OC in 603 

St 2. 604 

The stable carbon isotopic composition of n-aldehydes, which were only measured for St 2, 605 

ranged between –29.3 and –33.8 ‰ (Fig. 3e).  Odd-numbered n-aldehydes had relatively invariant 606 

δ13C values (–31.8 to –33.8 ‰) that were similar to even-numbered n-alkanes.  The n-aldehydes 607 

have been suggested to be oxidation products of n-alkanes (Cardoso and Chicarelli, 1983; Stephanou, 608 

1989) and hence may exhibit similar δ13C values to the n-alkanes.  By comparison, even-numbered 609 

n-aldehydes were more enriched than their odd-numbered counterparts by up to 4.5 ‰, with the C30 610 

homologue exhibiting the most enriched value (–28.3 ‰) and the C28 homologue showing the most 611 
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depleted value (–33.6 ‰).  Even-numbered long-chain n-aldehydes are considered to derive mainly 612 

from terrestrial plants (Prahl and Pinto, 1987; Rieley et al., 1991; van Bergen et al., 1997) and our 613 

measured δ13C values fall within the range reported for C3 plant wax n-aldehydes (Collister et al., 614 

1994).  The abundance-weighted δ13C value of C22, 24, 26, 28, 30 n-aldehydes was –30.9 ‰ for St 2 and 615 

a composite sample of these n-aldehydes had a similar ∆14C value (–145 ‰) to plant wax n-alkanes 616 

and bulk OC at St 2 (Fig. 3e). 617 

       618 

3.4. Comparing the Carbon Isotopic Characteristics of Higher Plant Biomarkers in 619 

Washington Margin Sediments  620 

The 13C and 14C contents of lignin phenols and various plant wax lipids revealed several 621 

interesting characteristics in the Washington margin sediments.  Overall, lignin phenols displayed a 622 

relatively narrow range of ∆14C values (corresponding to radiocarbon ages of ca. 300-1200 years) 623 

that were similar to, or younger than, bulk OC at both stations (Figs. 3 and 5).  The coherence of 624 

14C data for this suite of compounds lends confidence in the robustness of our method as a means of 625 

retrieving the isotopic characteristics of this terrestrial biopolymer.  The corresponding age of lignin 626 

phenols suggests that this vascular plant component is significantly pre-aged as a consequence of 627 

retention in either soils or upstream deposits of the Columbia River for hundreds of years.  628 

Furthermore, although this study only included two sites, our data suggest that the radiocarbon age of 629 

lignin phenols preserves the origin and degradation characteristics of this terrestrial biopolymer 630 

during land-ocean transfer as the age of lignin phenols appears to relate to their decay rate in the 631 

sediments.  Vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols 632 

in both sediments, suggesting a longer residence time of vanillyl phenols in soils or upstream 633 

deposits.  This observation coincides with the faster decay of syringyl and cinnamyl relative to 634 

vanillyl phenols in soil and sedimentary environment (Hedges et al., 1988; Opsahl and Benner, 1995; 635 

Otto et al., 2005).   636 
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Unlike lignin phenols, carbon isotopic compositions reveal relict OC or algal/bacterial 637 

influences for some long-chain lipids in the Washington margin sediments such as C21, 23, 25 n-alkanes 638 

and C20, 22, 24 fatty acids.  Although these lipids are usually considered to be of vascular plant origin, 639 

our data as well as reports on the Santa Monica Basin (Gong and Hollander, 1997; Pearson et al., 640 

2001) and Beaufort Sea (Drenzek et al., 2007) suggest diverse origins in the marine environment.  641 

For comparative purposes, the abundance-weighted average δ13C and ∆14C values (where applicable) 642 

of lipids showing a predominance of C3 vascular plant signals (including C27, 29, 31 n-alkanes, C26, 28, 30, 643 

32 fatty acids, C22, 24, 26, 28, 30 n-alkanols, and C22, 24, 26, 28, 30 n-aldehydes) were compared with those of 644 

lignin phenols as represented by the most abundant vanillyl phenols isolated by HPLC (Fig. 5; Table 645 

S.1).  As compared with lignin phenols, plant wax lipids exhibited higher variability in their 646 

average ∆14C values, ranging from –60 to –200 ‰, corresponding to radiocarbon ages of 400-1800 647 

years (Fig. 5).  The broader age span suggests varied stability and/or heterogeneity in their carbon 648 

sources, or more diverse transport pathways (such as eolian versus fluvial transport; Dahl et al., 2005) 649 

to the marine environment.  Among plant wax lipids, long-chain n-alkanols displayed significantly 650 

higher ∆14C values (ca. –60 ‰) than bulk OC or other lipid classes at both stations (Fig. 5), 651 

suggesting that this group of compounds exhibits a greater reactivity or has a shorter residence time 652 

in the environment before deposition into the Washington margin sediments.  This finding is 653 

consistent with the faster degradation rate of long-chain n-alkanols as compared with long-chain 654 

n-alkanes and fatty acids during fluvial transport (van Dongen et al., 2008).  Alternatively, pollen of 655 

several dominating plant species (such as Pinus ponderosa) in the Pacific Northwest contains high 656 

concentrations of long-chain n-alkanols relative to other lipid classes (Prahl and Pinto, 1987), and 657 

pollen is widely distributed in the Washington margin shelf sediments (Hedges et al., 1999).  658 

Wind-borne pollen may supply the sediments with younger-age long-chain n-alkanols than other 659 

terrestrial lipids that are mainly delivered via fluvial transport.  The contribution of pollen-derived 660 

OC to sediments is, however, not known.  The other plant wax lipids (n-alkanes, fatty acids, and 661 
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n-aldehydes) exhibited a similar radiocarbon content to the bulk OC and lignin phenols at St 2 (Fig. 662 

5), suggesting a uniform origin and a similar transport and deposition pattern of terrestrial lipids and 663 

lignin at the mid shelf.  This observation may be related to a narrower grain size distribution in the 664 

mid-shelf sediment of Washington margin, where fine particle-associated OC dominates bulk OC 665 

signatures (Coppola et al., 2007).  In contrast, while plant wax fatty acids (C26) displayed a similar 666 

∆14C value to the bulk OC at St 1, plant wax n-alkanes and lignin phenols showed higher ∆14C values 667 

at this station (Fig. 5).  Because the inner shelf Washington margin sediments contain a high 668 

proportion of coarse materials emanating from the Columbia River (Coppola et al., 2007), the 669 

younger radiocarbon age of plant wax n-alkanes and lignin phenols most likely reflected the 670 

contribution of woody and leafy debris (Hedges and Mann, 1979a) that is enriched with both groups 671 

of biomarkers.  By comparison, C26 fatty acid did not carry a strong plant debris 14C signal, possibly 672 

because its abundance in plant debris relative to sediments is not as high as C27, 29, 31 n-alkanes or 673 

lignin phenols (Table 3). 674 

 675 

3.5. Constraining Isotopic End Members and Their Contributions in the Washington Margin  676 

Based on discussions above, we selected a range of values to constrain the δ13CR and ∆14C 677 

values of end members in the isotopic mass balance model.  Since even-carbon-numbered n-alkanes 678 

are not abundantly produced by extant terrestrial or marine biomass (Volkman et al., 1998; 679 

Rommerskirchen et al., 2006b; Chikaraishi and Naraoka, 2007) and C22, 24, 26 n-alkanes at St 1 had a 680 

∆14C value of –969 ‰, indicating a predominance of relict OC, relict OC in the mixing model 681 

assumes a similar range of δ13CR values as those of even-numbered n-alkanes at St 1 from –30 to 682 

–32 ‰.  Given that the sediments were collected in 1993, closer to the peak in 14C stemming from 683 

above-ground nuclear weapons testing (the so-called “bomb spike”), it might be expected that marine 684 

OC, which reflects surface ocean dissolved inorganic carbon isotopic characteristics, has a ∆14C 685 

value > 0 (Pearson et al., 2000).  However, surface sediments in the mixed layer (20-30 cm in depth) 686 
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integrate 50-100 yr of deposition across the study sites, and bioturbation further smoothes the bomb 687 

spike.  Based on the radiocarbon content of C16, 18 fatty acids (mainly of a planktonic origin) and 688 

C22, 24, 26 n-alkanes at St 1 (mainly derived from relict OC; Fig. 3), marine and relict OC are therefore 689 

assumed to carry ∆14CM and ∆14CR values of 0 and –1000 ‰, respectively.  Terrestrial OC assumes 690 

a similar ∆14C value to plant wax n-alkanes and lignin vanillyl phenols (–115 ± 15 ‰).  The 691 

contribution of each end member to the bulk OC varies only slightly (± 2 %) within the range of 692 

δ13CR and ∆14CT values we adopted for the end members (see discussions in Drenzek et al., 2007).  693 

In general, this approach suggests that terrestrial, marine, and relict OC contribute 89 ± 2 %, 2 ± 1 % 694 

and 9 ± 2 % (St 1) and 95 ± 2 %, 2 ± 1 %, and 3 ± 2 % (St 2) of bulk sedimentary OC at these two 695 

sites on the Washington margin, respectively.  This simple estimate is consistent with the 696 

predominance of terrestrial OM in the Washington margin sediments inferred previously (Hedges 697 

and Mann, 1979a; Prahl et al., 1994; Dickens et al., 2006), and highlights the utility of both lignin 698 

and plant wax δ13C and ∆14C data in source apportionment and for developing carbon budgets for 699 

coastal marine sediments.  The small proportion of relict OC in the Washington margin sediments 700 

stands in sharp contrast with the high contribution of sedimentary rock derived OC in other systems 701 

where a similar approach has been applied (Drenzek et al., 2007; 2009), suggesting significant 702 

heterogeneity in OC sources and deposition patterns among different river systems.    703 

 704 

4. CONCLUSIONS 705 

This study examines compound-specific 13C and 14C data for various plant wax lipids and lignin 706 

phenols isolated from Washington margin shelf sediments.  Plant wax lipids displayed a broader 707 

range of radiocarbon ages.  Depending on the compound class, pre-aged soil components, relict 708 

carbon and microbial sources may contribute to the observed isotopic signatures.  By comparison, 709 

lignin phenols displayed a narrower range of ages that reflected the origin and degradation 710 

characteristics of this terrestrial biopolymer.  Interestingly, vanillyl phenols were on average ~500 711 
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years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments.  These 712 

isotopic characteristics, together with their high abundance and wide distribution in sediments, make 713 

lignin phenols a promising tracer of relatively recent terrestrial OM during the land-ocean transfer.  714 

The 14C composition of lignin phenols may hence provide a useful constraint on the vascular plant 715 

OC end member in mixing models and improve understanding of the marine OC budget.  716 
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Tables 983 

Table 1: Binary gradient of mobile phases of the HPLC method to separate lignin phenols. Solvent A: 984 

water/acetic acid (99.8:0.2); solvent B: methanol/acetonitrile (50:50); flow rate = 0.8 mL/min. 985 

 Phenomenex  
Polar-RP column 

ZORBAX Eclipse  
XDB-C18 column 

Time (min) % Solvent B Time (min) % Solvent B 

0 10 0 10 
3 10 3 10 
8 15 8 15 
15 20 15 20 
22 20 20 20 
27 25 25 25 
36 25 261 100 
371 100 301 100 
421 100 312 10 
432 10 362 10 
482 10   

1 Phase of column washing. 986 

2 Phase of column equilibrium. 987 
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Table 2: Bulk geochemical properties of the Washington margin surface sediment samples. 

Station Location OC (%) δ13C (‰) ∆14C (‰) 14C age (yr) 

1 Inner shelf 0.40 –25.3 –195 1700  
2 Mid shelf 0.93 –25.3 –136 1140 
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Table 3: Composition of lignin phenols and lipids in the Washington margin surface sediment samples. 

 ∧81 S/V2 C/V3 (Ad/Al)v
4 (Ad/Al)s

5 
n-alkanes n-fatty acids n-alkanols n-aldehydes 

∑6 
ACL7 CPI8 ∑9 

ACL ∑10 
ACL ∑11 ACL 

St 1 60.7 0.19 0.04 0.24 0.16 0.08 27.0 3.1 0.18 25.0 0.08 26.3 n.a. n.a. 
St 2 51.3 0.30 0.05 0.27 0.26 0.09 28.1 4.2 0.12 24.8 0.09 27.1 0.06 26.3 

 

1 Summed concentration of 8 major lignin phenols (mg/g OC; Hedges & Ertel, 1982). 
2 Ratio of syringyl-to-vanillyl phenols.  
3 Ratio of cinnamyl-to-vanillyl phenols.  
4 Acid-to-aldehyde ratio of vanillyl phenols.  
5 Acid-to-aldehyde ratio of syringyl phenols.  
6 Summed concentration of n-alkanes C25, 27, 29, 31, 33, 35 (mg/g OC). 
7 Average Chain Length (ACL): concentration-weighted mean carbon chain length for plant wax lipids C21-31 or C22-32. 
8 Carbon Preference Index (CPI) for n-alkanes C21-31. 
9 Summed concentration of n-fatty acids C24, 26, 28, 30, 32 (mg/g OC). 
10 Summed concentration of n-alkanols C24, 26, 28, 30, 32 (mg/g OC). 
11 Summed concentration of n-aldehydes C24, 26, 28, 30, 32 (mg/g OC). 

n.a. = not analyzed. 
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Table 4: Mass and radiocarbon contents of lignin phenols isolated by HPLC relative to the nominal Fm values of bulk OC. 

Source Lignin phenol Mass 
(µg C) 

Measured values on phenols isolated by HPLC 
Nominal 

Fm of 
bulk OC2 

∆Fm  
(AMS 

-corrected 
only) 

∆Fm  
(procedural 

blank 
-corrected)  

AMS-corrected only Procedural 
blank-corrected1 

Fm error Fm error 
Commercial3 Vanillic acid 182 0.0105 0.0005 0.0053 0.0018 0.0040 0.0065 0.0013  
Commercial3 Acetovanillone 163 0.0297 0.0007 0.0241 0.0020 0.0030 0.0267 0.0211  
FIRI-A Vanillin 224 0.0157 0.0005 0.0115 0.0015 0.0033 0.0124 0.0082  
C-5 Vanillin 199 0.2426 0.0018 0.2402 0.0022 0.2305 0.0121 0.0097  

Acetovanillone 34 0.2533 0.0027 0.2390 0.0079 0.0228 0.0085  
FIRI-D Vanillic acid 71 0.5573 0.0018 0.5595 0.0035 0.5705 -0.0132 -0.0110  

Acetovanillone 73 0.5540 0.0018 0.5561 0.0034 -0.0165 -0.0144  
Vanillin 191 0.5683 0.0040 0.5692 0.0042 -0.0022 -0.0013  

FIRI-H Vanillin 281 0.7468 0.0034 0.7487 0.0035 0.7574 -0.0106 -0.0087  
Syringaldehyde 184 0.7473 0.0046 0.7502 0.0048 -0.0101 -0.0072  

FIRI-J Vanillin 130 1.1191 0.0084 1.1291 0.0090 1.1069 0.0122 0.0222  
Ferulic acid 226 1.0803 0.0059 1.0857 0.0062 -0.0266 -0.0212  
Acetosyringone 78 1.0836 0.0026 1.0995 0.0055 -0.0233 -0.0074  
p-Coumaric acid 82 1.0810 0.0023 1.0961 0.0052 -0.0259 -0.0108  

Commercial4 Vanillin 152 1.1257 0.0076 1.1343 0.0081 1.1213 0.0044 0.0130  

1 Procedural blank contains 2.0 ± 0.5 µg C with Fm = 0.48 ± 0.10. 
2 Nominal values were measured on authentic phenol standards (purchased from Acros or Sigma) and were pre-determined for bulk plant 

tissues.  FIRI-A, C-5, FIRI-D, FIRI-H, and FIRI-J are plant tissues as international standards. 
3 Obtained from Acros. 
4 Obtained from Sigma.   
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Figure Captions 

Fig. 1: Scheme of extraction and isolation of individual lignin phenols for radiocarbon 

measurement.  Short names: Vl = vanillin; Sl = syringaldehyde; Vn = acetovanillone; Sn = 

acetosyringone; Vd = vanillic acid; Sd = syringic acid; pCd = p-coumaric acid; Fd = ferulic acid. 

 

Fig. 2: HPLC chromatogram of lignin phenols isolated from the Washington margin surface 

sediment, St 1: (a) separation of phenolic aldehyde/ketones on Polar-RP column followed by 

XDB-C18 column; (b) separation of phenolic acids on XDB-C18 column followed by Polar-RP 

column. Shaded areas represent phenol peaks collected. Short names: pBl = 

4-hydroxybenzaldehyde; pBn = 4-hydroxyacetophenone; Vl = vanillin; Sl = syringaldehyde; Vn = 

acetovanillone; Sn = acetosyringone; Vd = vanillic acid; Sd = syringic acid; pCd = p-coumaric acid; 

Fd = ferulic acid. 

 

Fig. 3: The δ13C and ∆14C values of individual lignin phenols (a) and lipids (b-e) in the Washington 

margin sediments (‰).  All values are corrected for derivative carbon and procedural blanks with 

the errors propagated.  Filled and open symbols represent samples in St 1 and 2, respectively.  

*The following data points for ∆14C values are measured for composite samples of homologues in 

parentheses, with the point plotted at the most abundant homologue’s chain length: C22 n-alkane 

(C22, 24, 26), C25 n-alkane (C21, 23, 25), St 2 C26 n-alkanol (C22, 24, 26, 28, 30), C28 n-aldehyde (C22, 24, 26, 28, 

30).  †Acetosyringone and di-hydroxybenzoic acid may have coelutes during irm-GC-MS analysis.  

 

Fig. 4: Relationship between the Fm value of procedural blanks associated with the HPLC method 
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and the average offset between measured and nominal Fm values (∆Fm) of phenol standards (listed 

in Table 4). The zero offset (∆Fm = 0) corresponds to an Fm of 0.48 for the HPLC method 

procedural blanks. 

 

Fig. 5: Concentration-weighted average δ13C and ∆14C values of lignin phenols and plant wax lipids 

as compared with those of bulk OC in the Washington margin surface sediments (‰).  All values 

are corrected for derivative carbon and procedural blanks with the errors propagated.  Filled and 

open symbols represent samples in St 1 and 2, respectively.  The δ13C values are calculated for C27, 

29, 31 n-alkanes, C26, 28, 30, 32 fatty acids, C22, 24, 26, 28, 30 n-alkanols, C22, 24, 26, 28, 30 n-aldehydes, and ∧8 

lignin phenols (except acetosyringone).  The ∆14C values of plant wax lipids is calculated or 

measured for C27, 29, 31 n-alkanes, C26 fatty acid, C22, 24, 26, 28, 30 n-alkanols, and C22, 24, 26, 28, 30 

n-aldehydes.  *The ∆14C values of lignin phenols are represented by the most abundant vanillyl 

phenols isolated by HPLC. 
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Fig. 1: 
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Fig. 2: 
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Fig. 3: 
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Fig. 4: 
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Fig. 5: 

-36 -34 -32 -30 -28 -26 -24
-250

-200

-150

-100

-50

0

 

 

 Bulk OC
 n-Alkanes
 n-Alkanoic (fatty) acids
 n-Alkanols
 n-Aldehydes
 Lignin (vanillyl) phenols*∆14

C 

d13Cδ13C (‰)

∆ 
14

C 
(‰

)

 



1 
 

14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments 

Xiaojuan Fenga,b, Bryan C. Benitez-Nelsona,b, Daniel B. Montluçona,b, Fredrick G. Prahlc, Ann P. McNichold, Li Xud, Daniel J. Repetab, and 

Timothy I. Eglintona,b 

Supplementary Information 

Table S.1: Concentration, isolated mass, and corrected ∆14C values of individual lignin phenols and lipids in the Washington margin sediments.   

Compound 

Concentration 
in sediments1 

PCGC-based measurement HPLC-based measurement 
St 1 St 2 St 1 St 2 

St 1 St 2 µg 
C 

∆14C 
(‰) 

Error 
(‰) 

µg 
C 

∆14C 
(‰) 

Error 
(‰) 

µg 
C 

∆14C 
(‰) 

Error 
(‰) 

µg 
C 

∆14C 
(‰) 

Error 
(‰) 

Lignin phenols 
Vanillin 3.3 2.5 150 -105 9 353 -116 24 235 -103 3 74 -150 6 
Acetovanillone 0.8 0.6 36 -54 22 143 -87 16 43 -97 11 90 -99 5 
Vanillic acid 0.8 0.7 66 -38 14 65 -83 14 122 -132 5 134 -106 5 
Syringaldehyde 0.6 0.7 

   
117 -23 14 132 -66 4 80 -77 7 

Acetosyringone 0.2 0.2 27 -19 26 59 -57 22 
      Syringic acid 0.1 0.2 20 -13 35 65 -40 14 22 -64 17 

   p-Coumaric acid 0.1 0.1 
         

46 -45 11 
Ferulic acid 0.1 0.1 

      
28 -67 19 

   n-Alkanes  
C21, 23, 25     24 -588 15 29 -506 14 

      C22, 24, 26     17 -969 40 20 -747 17 
      C27 19 15 20 -100 34 28 -125 22 
      C29 23 26 23 -108 28 37 -117 23 
      C31  13 21 

   
23 -125 27 

      n-Alkanoic (fatty) acids 



2 
 

C16 184 146 44 4 28 85 60 8 
      C18 58 50 18 179 46 

         C22 53 33 19 74 38 52 18 20 
      C24 84 58 29 -73 28 70 -28 18 
      C26 45 30 19 -204 33 32 -107 30 
      n-Alkanols 

C22 10 7 15 -76 49 
         C24 15 14 20 -106 31 
         C26

2 21 30 17 -56 41 87 -69 16 
      C28 18 21 22 2 35 

         C30 11 18 26 -62 34 
         n-Aldehydes 

C22, 24, 26, 28, 30   
   

66 -145 22 
      1 Concentration in sediments in the units of mg/100 mg OC for lignin phenols and µg/g OC for lipids; concentration is not provided for 

combined compounds. 
2 C22, 24, 26, 28, 30 n-alkanols from St 2 were combined. 
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Table S.2: Recovery of phenol standards from two-SPE cleanup procedures (concentration assessed 
before and after SPE procedures on HPLC respectively; compounds sorted in elution order from 
HPLC). F1: aldehyde/ketone fraction; F2: acid fraction from LC-NH2 SPE. nd: not detected. 

 

Phenol 
1st assessment 2nd assessment 

F1 F2 F1 F2 
pBd nd 110% nd 91% 
Vd nd 105% nd 69% 
Sd nd 107% nd 69% 

pBn 102% nd 90% 2% 
Vl 78% 1% 65% 1% 

pCd nd 102% nd 80% 
Sl 75% 2% 70% 1% 
Vn 80% nd 78% nd 
Sn 103% nd 89% nd 
Fd nd 98% nd 90% 
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Fig. S.1: GC-MS total ion chromatogram of lignin phenols isolated by HPLC from the Washington margin surface sediment, St 1 (analyzed as 

TMS derivatives). 
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