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Abstract: A novel axially-symmetric filter for increasing focal depth and 
generating an approximation to a Bessel beam is proposed. It consists of an 
array of rings of strength –1,0 and 1. The design is based on an analytic 
solution, and combines high resolution in the transverse direction with good 
efficiency. One presented design increases the depth of focus compared 
with a standard lens by more than 30 times, with a very flat axial intensity 
distribution over this range. Effects of discretization are discussed. Various 
different approaches to increasing depth of focus are compared, to put the 
new design into perspective. 

© 2012 Optical Society of America 

OCIS Codes: (050.1220) Apertures; (050.1940) Diffraction; (070.2580) Paraxial wave optics; 
(110.6980) Transforms; (350.6980) Transforms. 

References and links 

1. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” 
beams,” Laser Photon. Rev. 4(4), 529–547 (2010). 

2. J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44(8), 592–597 (1954). 
3. J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. Lond. A Math. Phys. Sci. 248(1252), 93–106 

(1958). 
4. G. B. Airy, “The diffraction of an annular aperture,” Phil. Mag. Ser. 3 18, 1–10 (1841). 
5. J. W. S. Rayleigh, “On the diffraction of object glasses,” Mon. Not. R. Astron. Soc. 33, 59–63 (1872). 
6. G. C. Steward, “IV Aberration diffraction effects,” Phil. Trans. Roy. Soc. London Ser. A 225(626-635), 131–198 

(1926). 
7. E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66(2), 

145–149 (1953). 
8. B. J. Thompson, “Diffraction by semitransparent and phase annuli,” J. Opt. Soc. Am. 55(2), 145–149 (1965). 
9. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 

159(1-3), 19–22 (1999). 
10. H. F. Wang and F. Gan, “High focal depth with a pure-phase apodizer,” Appl. Opt. 40(31), 5658–5662 (2001). 
11. E. R. Dowski, Jr. and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 

1859–1866 (1995). 
12. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves 

Opt. Acoust. 2(4), 105–112 (1978). 
13. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 

(1987). 
14. C. J. R. Sheppard, “Binary phase filters with a maximally-flat response,” Opt. Lett. 36(8), 1386–1388 (2011). 
15. C. J. R. Sheppard, J. Campos, J. C. Escalera, and S. Ledesma, “Three-zone pupil filters,” Opt. Commun. 

281(14), 3623–3630 (2008). 
16. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987). 
17. A. J. Cox and J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17(4), 232–234 (1992). 
18. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979). 
19. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” 

Phys. Rev. Lett. 99(21), 213901 (2007). 
20. M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy 

using high aperture lenses,” in Optical Imaging and Microscopy P. Török and F.-J. Kao, eds. (Springer, 2003), 
pp. 143–168. 

21. R. Boivin and A. Boivin, “Optimized amplitude filtering for superresolution over a restricted field - I. 
Achievement of maximum central irradiance under an energy constraint,” Opt. Acta (Lond.) 27, 857 (1980). 

22. C. J. R. Sheppard and Z. S. Hegedus, “Axial behaviour of pupil plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 
(1988). 

#172811 - $15.00 USD Received 17 Jul 2012; revised 23 Aug 2012; accepted 23 Aug 2012; published 19 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27212



23. Y. S. Xu, J. Singh, C. J. R. Sheppard, and N. G. Chen, “Ultra long high resolution beam by multi-zone 
rotationally symmetrical complex pupil filter,” Opt. Express 15(10), 6409–6413 (2007). 

24. V. F. Canales, J. E. Oti, and M. P. Cagigal, “Three-dimensional control of the focal light intensity distribution by 
analytically designed phase masks,” Opt. Commun. 247(1-3), 11–18 (2005). 

25. Z. Bouchal, J. Wagner, and M. Olivik, “Bessel beams in the focal region,” Opt. Eng. 34(6), 1680–1688 (1995). 
26. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. 

Am. A 24(6), 1793–1798 (2007). 
27. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, 

“Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” 
Opt. Express 19(17), 15947–15954 (2011). 

28. C. J. R. Sheppard, “Synthesis of filters for specified axial properties,” J. Mod. Opt. 43(3), 525–536 (1996). 
29. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral 

using an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16(7), 4901–4917 
(2008). 

30. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 
17(18), 15558–15570 (2009). 

31. J. Wang, W. Chen, and Q. W. Zhan, “Engineering of high purity ultra-long optical needle field through reversing 
the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010). 

32. H. F. Wang, L. Shi, B. Luk`yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally 
polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). 

33. C. J. R. Sheppard, S. Rehman, N. K. Balla, E. Y. S. Yew, and T. W. Teng, “Bessel beams: Effects of 
polarization,” Opt. Commun. 282(24), 4647–4656 (2009). 

34. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized 
beam,” Opt. Lett. 35(23), 3928–3930 (2010). 

35. C. J. R. Sheppard and S. Rehman, “Highly convergent focusing of light based on rotating dipole polarization,” 
Appl. Opt. 50(22), 4463–4467 (2011). 

1. Introduction 

Numerous papers recently have been concerned about ways to improve depth of focus, while 
maintaining good transverse resolution and efficiency [1]. There are several different 
approaches, most of which were introduced many years ago, including the following: 

• axicon [2], 

• diffractive axicon [3], 

• annular aperture [4–7], 

• binary phase array of annuli [8–10], 

• cubic phase mask [11]. 

The refractive axicon can give very long focal depth, but is in essence a macroscopic 
device based on geometric optics, which can produce strong intensity fluctuations along the 
optical axis. The diffractive axicon is like a Fresnel lens but with constant ring widths, and 
has similar limitations to the refractive type. An annular aperture, used with a lens, produces 
an axial intensity that is stretched out without change of shape, accompanied by a sharpening 
of the focal spot. In the limiting case of a narrow annulus, the focal depth tends to infinity and 
a Bessel beam is produced [6, 12, 13]. This is accompanied by a huge loss in power, but this 
problem can be overcome by combining with illumination using an axicon. Alignment is not 
severe if the annulus is not too narrow. A practical limit to the achievable DoF is set by 
diffraction by the annular aperture. 

Binary arrays of phase annuli can produce an improvement in depth of focus (DoF) that 
increases with the number of rings. Recently a strategy was described for analytically 
designing a binary array with a flat axial response, giving a maximally-flat (MF) filter [14]. 
The design principle is that low-order derivatives of the axial intensity around the focal plane 
are set to zero by choice of the same number of array element boundaries. The pth derivative 
of the axial amplitude is proportional to the pth moment of the pupil. By choosing 1n −  
boundaries causing the lowest order moments of the binary pupil to be zero, we designed 
analytically pupils that give rise to an axial intensity whose first 2 1n −  derivatives around the 
focal plane are zero. For an array of five rings of alternating sign, the distance along the axis 
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between the points where the intensity drops to 90% is increased by a factor of 8.3 compared 
with a circular pupil, although there is some accompanying loss of power (Strehl ratio is 13%) 
[14]. The intensity in a meridional plane using such filters is shown in Fig. 1, where it is 
compared with the result for a circular pupil. A more modest improvement of 4.6 times is 
achieved with three rings [10, 15]. These filters give good approximation to a Bessel beam 
over a finite propagation distance. They result in finite energy beams that give much more 
uniform axial intensity than Bessel-Gauss beams [12, 16], or some other approximations to a 
Bessel beam [17]. They are also generated from a finite pupil, unlike Bessel-Gauss beams. 
Potential applications include optical coherence tomography, and confocal, multiphoton and 
scanned light sheet microscopy. 

The cubic phase mask can give a large increase in DoF: an increase of 30 times has been 
described [11]. This is usually used in combination with digital restoration, as the raw point-
spread function is blurred. For this reason, the overall noise behavior is difficult to compare 
with the other methods, but the Strehl ratio at the focus is only about 0.1%. The cubic phase 
mask is non-axially symmetric, unlike the other methods considered here. This may be a 
disadvantage for some applications, but an advantage is the achromatic property. The cubic 
phase mask is closely related to the Airy beam [18]. Although it has been reported that the 
first observation of Airy beams was made only in 2007 [19], effectively an approximation to 
an Airy beam is observed in cubic phase imaging experiments. For example, Arnison et al. 
experimentally observed the point spread function in a fluorescence microscope with a cubic 
phase mask [20]. 

It is often claimed that phase masks are superior to amplitude masks as the latter absorb 
energy. However, in some applications the energy throughput is not the most important 
factor: the relative strength of the side lobes can be more important [21, 22]. In this case the 
annular pupil, as an example of an amplitude mask, can be superior compared with other 
approaches. And, for focusing radiation as in a confocal microscope, as already mentioned, an 
axicon can be used for illumination of the annular mask, and loss of energy is no longer a 
problem. Amplitude masks can give good performance, as they can reduce the relative side 
lobe strength compared with that using a phase mask. Xu et al. described a mixed 
amplitude/phase mask consisting of rings with amplitude strengths –1, 0 and 1 [23]. An 
increase in DoF of 16 times was achieved using a 7-ring mask. The mask gives a Strehl ratio 
of 1.8%. The principle behind the performance of this filter was not discussed. It might be 
thought that the mechanism is that the zero strength rings provide a more gradual variation 
from –1 to 1, but analysis seems to show that this is not the case. Rather, the filter is basically 
a 2-ring MF element to flatten the axial response, combined with a central obscuration, as in 
an annular aperture, to stretch it further. A few more elements were used to tune the overall 
behavior. This observation suggests that interesting filter designs could result from combining 
MF elements with a central obscuration. The strategy is that the axial intensity is flattened by 
the MF elements and stretched further by the annular shape, resulting in an increased DoF. 

This procedure should be preferable to increasing the number of MF elements. Although 
in principle the number can be increased to obtain unlimited depth of field, in practice we 
could not solve numerically the simultaneous equations for more than 6 elements. The 
dimensional tolerances also become severe for many elements. 

2. Comparison of existing designs 

First we compare performance of some of the existing designs for scalar, paraxial focusing. 
As in previous work we define the parameters S, F and G [22]. The filter amplitude 
transmittance is given by ( )Q t , assumed real with maximum value maxQ , where 
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Fig. 1. The intensity in a meridional plane for: (a) – (d) the four different solutions for a 
maximally-flat pupil (MF) of 5 elements, (e) a circular pupil, calculated using fast Fourier 
transform with a sampling distance of 0.004 of the pupil radius. Solution (a) gives the smallest 
focal spot. Pairs of solutions (a), (b) and (c), (d) each give the same axial intensity. 

2 ,0 1t tρ= < < and ρ  is the normalized pupil radius. Then S is the intensity at the focus, 

given by 
22

0 max/S q Q= , where the pth moment of the pupil is defined by 

 
1

0

( ) .p
pq Q t t dt=   (1) 

F is the normalized ratio of the intensity at the focus to the focused energy, and is given by 

 
2
0

1
2

0

.

( )

q
F

Q t dt

=


 (2) 

G is called the transverse gain factor, which is equal to the square of the normalized parabolic 
width of the intensity point spread function, and is given by 

 1

0

2
.

q
G

q
=  (3) 

S, F and G are all unity for a plain circular pupil. For an annular pupil with normalized inner 
radius 0ρ , we have 2

0 01q ρ= − , 4
1 0(1 ) / 2q ρ= − , and max 1Q = , and so 2 2(2 )S F G= = − . 

For the limiting case of an annular pupil of infinitesimal thickness, 2G = . 
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Figure 2(a) compares the behavior of S versus G for an annular pupil, a 2-ring binary 
phase filter (levels 1± ), and MF filters with 2-5 rings. We observe that the value of S for a 
given G is highest for the 2-ring binary phase filters [24]. The MF filters give higher S than 
for the annulus, but lower (except for 2 rings) than for the 2-ring binary filter. Also shown is 
the behavior of F for the annular pupil. It is seen that if F is the important parameter, then the 
annular pupil performs better than the binary filters. Figure 2(b) shows the variation of G with 
the DoF, defined by the parameter 90W , the normalized axial distance between the points 
where the intensity drops to 90% of the peak value. For an annular pupil, the shape of the 
axial intensity variation is independent of the obscuration, and 1/2

90 1/W F S −= = . The MF 

filters give greater 90W for a given G compared with an annular pupil. Note that binary phase 

filters could be designed to give a further improved 90W , compared with MF filters, by 
allowing small axial variations in intensity. Figure 2(c) shows the variation of S and F with 

90W . MF exhibits better S and F than the annular pupil, and at the same time the axial 
intensity is much flatter. 
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Fig. 2. Parameters for different strategies to achieve increased depth of focus. (a) The 
parameters S and F as functions of G, the transverse gain, for an annular pupil, 2-zone binary 
phase filters, and maximally-flat (MF) filters of 2-5 elements. (b) The parameter G plotted 

against 90W , the 90% depth of focus. MF and MFA solutions are compared with an annular 

pupil. (c) The parameters S and F as functions of 90W  for MF filters, MFA filters, and annular 

pupils. 

3. A three level filter 

We now consider the combination of MF elements with a central obscuration. We call these 
MFA (maximally-flat annulus) filters. In general the amplitude in the focal region for a mask 

( )Q t  can be written [22] 

 
1

0

0

( , ) ( ) ( ) exp( / 2) ,U v u Q t J v t iut dt= −  (4) 

where 2 sinv krπ α=  and 24 sin ( / 2)u kz α= are optical coordinates related to cylindrical 

coordinates ,r z  in the focal region, 2 /k π λ= , and α is the angular semi-aperture of the 

lens. The axial amplitude ( 0v = ) is shown from Eq. (4) to be the Fourier transform of ( )Q t . 

This means that by making a central obscuration of width 0t  simply scales linearly the axial 

intensity given by the rest of the filter. A typical value for 0t  might be 3/4 (i.e. 

0 3 / 2 0.866ρ = = ), which for a plain annulus would give 90 4W = , 

7 / 4G = , 1 /16S = , 1 / 4F = (see Table 1), so that (unless illuminated by an axicon) 25% of 
the power is transmitted. To obtain MFA filters from previously designed MF filters, the 
boundaries between regions are scaled linearly in t , and so should be set at 

1/2
MFA 0 0[ (1 ) ]i it t tρ = + − , where it are the values for the unobstructed case [14]. Then 
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90MFA 90 0/ (1 )W W t= − , MFA 0 0[2 (1 )]G t G t= + − , 2
MFA 0(1 )S t S= − , and MFA 0(1 )F t S= − , in 

each case the value of the parameter with subscript MFA (A standing for annulus) being 
given in terms of the corresponding MF values without subscript. G is close to 2, the value 
corresponding to a Bessel beam. As an example, for a 5-ring MF element (first solution) with 

0 3 / 4t =  (i.e. a total of 6 elements), 90 33W = , 1.92G = , 0.8%S =  and 0.03F = . These, 
and other cases, are given in Table 1, and the parameters also plotted in Fig. 2(b) and 2(c). 
The MFA solutions give higher values of S than a plain annulus. The values of F are similar, 
as the beam is close to a Bessel beam. The intensities along the axis and in the focal plane for 
the 5-ring and 2-ring cases are shown in Fig. 3. The axial response for both 5-ring and 2-ring 
cases is very flat, and the transverse intensity similar to a Bessel beam. The axial intensity is 
much more uniform than using an annulus alone, and the efficiency also higher. Although we 
compute the filter boundaries analytically as described above, the intensity distribution in the 
focal region is simulated in Fig. 4 on a discrete grid. The discrete simulation allows us to 
evaluate the sensitivity to discretization when the pupils are implemented with discrete 
devices, such as a spatial light modulator (SLM). All filter responses in Figs. 1 and 4 are 
computed by the fast Fourier transform algorithm with a sampling distance of 0.004 in 
normalized pupil coordinates. The normalized sampling distance of 0.004 corresponds to 500 
samples over the normalized diameter ( 2= ) of the pupil, which can be easily implemented 
with current generation SLMs that typically provide 800 600× pixels or more. 

Table 1. Performance Parameters for Different Filter Strategies 

 
90W  G S F

Circular 1 1.0 1.0 1.0
MF3 4.6 1.54 0.275 0.275 
MF5 8.3 1.68 0.133 0.133 
Annulus 

( 0 0.75t = ) 

4 1.75 0.063 0.25

Annulus 

( 0 0.9t = ) 

10 1.9 0.01 0.1

Annulus 

( 0 0.97t = ) 

33.3 1.97 0.0009 0.03

Bessel beam ∞  2.0 0 0
MFA2 11.2 1.85 0.029 0.116 
MFA5 33.2 1.92 0.008 0.03
F10 21 1.81 0.047 0.047 
F10A 84 1.95 0.003 0.012 
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Fig. 3. The intensity in the focal region for MFA pupils of 2 and 5 elements (total 3 or 6 rings). 
(Solution (a) for 5 elements.) (a) Axial intensity. (b) Transverse intensity. The behavior for a 
circular aperture is shown in green for comparison. 

For the MF filters described previously [14], for 5 rings there are four possible solutions, 
as shown in Fig. 1. There are two different axial intensity distributions, and two filter 
solutions for each of them, mirror images of each other in coordinate t . The solution 
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illustrated in Fig. 1(a) is the one that gives the smallest focal spot. The other solution with the 
same axial response exhibits the broadest focal spot of the four (Fig. 1(b)). The remaining two 
solutions are shown in Figs. 1(c) and 1(d). For the MFA filters, again there are four solutions 
for 5-ring MFA (with a total of 6 elements including the central obscuration), as shown in 
Fig. 4(a)–4(d). For MFA, the focal spot size for the four solutions is similar. 
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Fig. 4. The intensity in a meridional plane for (a-d) the four solutions for an annular 

maximally-flat pupil (MFA) of 5 elements (total 6 rings) ( 0 0.75t = ), (e) a plain annular 

pupil ( 0 0.75t = ). These are calculated using fast Fourier transform with a sampling distance 

of 0.004 of the pupil radius. Solution (a) gives the smallest focal spot, but all solutions give 
close to a Bessel beam in the transverse direction. Pairs of solutions (a), (b) and (c), (d) each 
give the same axial intensity. Note the different axial scale from Fig. 1. 

4. Sensitivity to errors and pixelation 

We investigated the sensitivity of the MF filters to errors in ring radius. Figure 5 shows the 
effect on the axial intensity when using radii truncated to 3, 2, 1.5 (i.e. with second decimal 
place 0 or 5) and 1 decimal places, respectively. The actual values taken for the radii are {1, 
0.716, 0.544, 0.367, 0.185, 0}, {1, 0.71, 0.54, 0.37, 0.19, 0}, {1, 0.70, 0.55, 0.40, 0.20, 0}, {1, 
0.7, 0.5, 0.3, 0.2, 0}. These correspond to solution (a) for 5 elements. It is seen that 2 decimal 
places gives a flat response, although the depth of field is decreased relative to the more 
accurate result. If the rings are written using a pixelated device such as an SLM, rather than 
using an axially symmetric structure, we might expect the errors to be more important. 
Figures 6, 7 show the pixilated filters used for the simulations presented in Figs. 1, 4, 
corresponding to 500 500× pixels. The pixelation is very obvious in the filter transmission, 
and some of the rings are very narrow for the MFA filters. However, transverse and axial 
intensity plots for these filters are shown in Fig. 8, demonstrating that they are quite robust. 
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The pixelation was performed automatically, and we expect some improvement could be 
obtained by further optimization. 

5. Further observations 

Investigation of the element radii for the family of MF solution (a) (with greatest G) shows 
that the radii are close to proportional to the integers, except for the outer ring. For example, 
for 5 elements we have as a starting design {0, 0.2, 0.4, 0.6, 0.8, 1}, and by evaluating the 
axial intensity we find the performance is improved by changing the outer radius: {0, 0.2, 0.4, 
0.6, 0.8, 1.1135}. Then renormalizing and approximating, we obtain {0, 0.18, 0.36, 0.54, 
0.72, 

 

Fig. 5. The axial intensity for five element MF filters, with ring radii truncated to 3, 2, 1.5 and 
1 decimal place. 

(a) (b) (c) (d)
 

Fig. 6. The pixelated filters used in our simulations for MF filters. The four solutions for five 
elements are shown. 

(a) (b) (c) (d)
 

Fig. 7. The pixelated filters used in our simulations for MFA filters. The four solutions for five 
elements are shown. 

1}, giving 90 5W ≈ . This compares with the exact design (to 5 decimal places) {0, 0.18512, 

0.36726, 0.54412, 0.71610, 1}, giving 90 8.3W ≈ . In this way we can generate designs for 
larger number of elements. For example, for a 10-element filter with uniform spacing except 
for the largest ring, {0, 0.093, 0.186, 0.279, 0.371, 0.464, 0.557, 0.645, 0.743, 0.836,1}, we 
have 90 18W ≈ . This could be used as a starting point for further optimization. Fitting the ring 
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radii to a cubic gives the filter {0, 0.100, 0.196, 0.290, 0.384, 0.477, 0.570, 0.661, 0.751, 
0.841,1}, which further improves the flatness of the axial intensity, and gives 90 21W ≈ . 

Constructing an annular filter with 0 0.866ρ = as before would then give 90 84W ≈ . Some 
properties of these last two cases are also given in Table 1 and Fig. 2, as F10 and F10A. 

An array of equal width elements gives the well-known design for a diffractive axicon [3]. 
Combined with a lens it produces a double-ring focus. So now we can see an explanation of 
the mechanism of operation for the family of MF filters giving greatest G: the diffractive 
axicon diffracts the light away from the focal region to produce a central shadow, while the 
excess part of the outer ring produces a Bessel-like beam in the interior shadow region, which 
interferes with the side-lobes of the double-ring structure. As the number of elements 
increases, the focal field tends towards that of a Bessel beam. This is similar to the 
mechanism of focusing from a truncated Bessel 0J  pupil [25], which also has elements of 
approximately equal width, apart from the truncated element. For our solution with lowest G, 
the excess is at the center of the pupil, and so the beam becomes larger as the number of 
elements increases. For our other solutions, the excess is in an intermediate zone of the pupil. 
Kozawa and associates have reported using a filter to give improved transverse resolution, 
and also presented impressive experimental results with a confocal system [26, 27]. Their 
filter also consists of 5 rings of close to equal width, with an outer ring of a different width. 
Their experimental result shows an increase in depth of focus, illustrating that the point 
spread 
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Fig. 8. The transverse (a), (b) and axial (c), (d) intensities (un-normalized) for: (a), (c) 
pixelated 5 ring MF (labeled biphase), and (b), (d) pixilated MFA filters (labeled 3 level). 
Results for a circular pupil and an annular pupil are also shown. 5a and 5b correspond to the 
two different axial intensity variations, while 5amirror, 5bmirror correspond to the filters that 
are mirror images in coordinate t of 5a and 5b. 
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function is close to a Bessel beam. They explain the operation of their filter in terms of a 
higher order Laguerre-Gauss mode, with a scale optimized relative to the pupil radius, but as 
the zeros of the Laguerre polynomial are also approximately equally spaced in radius, the 
connection with the Laguerre mode may be fortuitous. 

6. Conclusions 

A novel design for pupil masks to give greatly increased depth of focus has been presented. 
The method is based on arrays of rings of amplitude strengths –1, 0 and 1. A 30 times 
increase results with one of the designs. The transverse spot size is also reduced. The 
approach can be used to generate an approximation to a Bessel beam. It also sheds some light 
on the mode of operation of previously presented filter designs. The mask could be 
manufactured using thin film technology, or our simulations show it could be generated using 
512 512×  pixel liquid crystal modulators. Although several methods for designing pupil 
masks to increase focal depth have been presented [28–31], many of them give axial intensity 
distributions that exhibit pronounced ripple, whereas the present design is exceedingly flat. 

In order to stress the general principle, the design here is based on the scalar paraxial 
approximation, based on an analytic solution rather than an optimization. Our previous 
experience suggests that it could be readily adapted to high numerical aperture focusing, 
using different polarization distributions. In particular, it could be combined with radially-
polarized illumination, or azimuthally-polarized illumination with a vortex, to produce a 
needle of longitudinally polarized light [32] or circularly polarized light [33–35], 
respectively. The present design gives a depth of focus increase of a factor of over 30 (to give 
15λ for 0.95 NA), as compared with about a factor of 8 (4λ for 0.95 NA) in Ref. 29. 
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