
Evaluation of monsoon seasonality and the tropospheric biennial
oscillation transitions in the CMIP models

Yue Li,1 Nicolas C. Jourdain,1 Andréa S. Taschetto,1 Caroline C. Ummenhofer,2

Karumuri Ashok,3 and Alexander Sen Gupta1

Received 31 July 2012; revised 17 September 2012; accepted 25 September 2012; published 26 October 2012.

[1] Characteristics of the Indian and Australian summer
monsoon systems, their seasonality and interactions are exam-
ined in a variety of observational datasets and in the Coupled
Model Intercomparison Project Phase 3 and 5 (CMIP3 and
CMIP5) climate models. In particular, it is examined whether
preferred monsoon transitions between the two regions and
from one year to another, that form parts of the Tropospheric
Biennial Oscillation, can lead to improved predictive skill.
An overall improvement in simulation of seasonality for both
monsoons is seen in CMIP5 over CMIP3, with most CMIP5
models correctly simulating very low rainfall rates outside of
the monsoon season. The predictability resulting from each
transition is quantified using a Monte Carlo technique. The
transition from strong/weak Indian monsoon to strong/weak
Australian monsoon shows �15% enhanced predictability
in the observations, in estimating whether the following
monsoon will be stronger/weaker than the climatology. Most
models also successfully simulate this transition. However,
enhanced predictability for other transitions is less clear.
Citation: Li, Y., N. C. Jourdain, A. S. Taschetto, C. C. Ummenhofer,
K. Ashok, and A. Sen Gupta (2012), Evaluation of monsoon season-
ality and the tropospheric biennial oscillation transitions in the
CMIP models, Geophys. Res. Lett., 39, L20713, doi:10.1029/
2012GL053322.

1. Introduction

[2] The Indian - Australian monsoon system affects approx-
imately one-fourth of the world’s population. As such, a
thorough understanding of the monsoon variability is of vital
importance for the population living in those areas. Both
Indian and Australian monsoons undergo large year-to-year
variations. Previous studies have suggested that this vari-
ability can be partly understood in terms of a quasi-biennial
oscillation, whereby a relatively strong Indian monsoon is
followed by a strong Australian monsoon half a year later and
relatively weak Indian monsoon in the subsequent year (and
vice versa) [Meehl, 1987]. This monsoonal see-saw is often
referred to as Tropospheric Biennial Oscillation (TBO)

[Meehl, 1997]. Large-scale atmospheric circulation change
and ocean-land temperature gradient are key ingredients of
the TBO, with modulation by remote modes of variability,
such as the El Niño-Southern Oscillation (ENSO) [Meehl
and Arblaster, 2002].
[3] Previous studies have examined the possible mechan-

isms for the TBO and the individual transitions that make up
the TBO. Meehl [1987] and Meehl and Arblaster [2002], for
example examine the Indian-Australian in-phase transition
when a strong (weak) Indian monsoon is followed by a
strong (weak) Australian monsoon. They show that a direct
forcing by ENSO tends to reinforce the transition, as an
El Niño (La Niña) tends to suppress (enhance) both mon-
soons. According to Wu [2008] however, this transition can
also occur independently of any ENSO influence via inter-
actions confined to the Indian Ocean and Maritime Conti-
nent. A number of complementary mechanisms have also
been proposed for the out-of-phase transition, i.e., from a
strong (weak) Australian monsoon to a weak (strong) Indian
monsoon. When the phase of ENSO changes just after an
Australian monsoon season, it can directly drive the out-of-
phase transition [e.g.,Meehl and Arblaster, 2002]. In another
mechanism, cool Indian Ocean SST anomalies resulting from
a combined strong Indian monsoon and La Niña conditions
may persist through to the next year to produce a weak Indian
monsoon [Meehl and Arblaster, 2002]. At the same time the
persistence of La Niña drives a strong Australian monsoon.
Thus we see a strong Australian monsoon followed by a weak
Indian monsoon, although the strong Australian monsoon
is not the cause of the Indian monsoon anomaly. Finally,
Wu [2009] also proposes a mechanism that is independent
of ENSO in which the Australian monsoon generates SST
anomalies in the north Indian Ocean, which in turn influence
the subsequent Indian monsoon. TBO-like variability has
been successfully reproduced in both simple box models
[e.g., Chang and Li, 2000] and coupled climate models
[Nanjundiah et al., 2005]. Previous studies have shown
considerable decadal variability in the presence of the TBO
(e.g., K. Ashok et al., Decadal changes in the relationship
between the Indian and Australian summer monsoons,
submitted to Climate Dynamics, 2012).
[4] Using a Monte Carlo sampling of observed monsoon

rainfall, Fasullo [2004] examined the Indian-Indian monsoon
transition. He found that the success of this transition
was highly dependent on the co-occurrence of ENSO events,
suggesting that ENSO-related mechanisms are a necessary
condition for the existence of a TBO. In this study we use a
similar approach to Fasullo [2004] to examine all monsoon
transitions in several observational products and in the CMIP3
and CMIP5 historical simulations. In particular, we quantify
the enhanced predictive skill, resulting from each of the
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transitions, i.e., the probability that the following monsoon
rainfall will be stronger or weaker than the climatological
average.

2. Methodology

[5] In order to examine Indian and Australian monsoon
variability, we define the Indian Monsoon Rainfall Index
(IMRI) and the Australian Monsoon Rainfall Index (AMRI).
The reference IMRI is based on mean JJAS (June to
September) All-Indian Monsoon Rainfall (AIR) computed
by Parthasarathy et al. [1995] (1871–2008, referred to as
IMRI-AIR, see Figure 1a). Other IMRIs are similarly defined
using other observational datasets (see below) for the shaded
area shown in Figure 1a. These indices differ from the
IMRI-AIR in that the Himalaya is entirely included in our
domain in order to be consistent with various coarse model
grids. The Australian Monsoon Rainfall Index (AMRI) is
defined as the mean DJFM (December to March) rainfall
anomaly over northern Australia (Figure 1a). In this paper,
the reference AMRI is derived from the high-quality daily
rainfall data from the Australian Water Availability Project
(AWAP) (1900–2007; resolution 0.1� � 0.1� [Jones et al.,

2009]) (referred to as AMRI-AWAP). In order to test the
sensitivity of our results to the choice of dataset, we also
calculate the IMRI and AMRI from two global gridded pre-
cipitation datasets: the Climate Prediction Center Merged
Analysis of Precipitation dataset (CMAP; resolution 2.5� �
2.5�; 1979–2008) [Xie and Arkin, 1996] and the Global
Precipitation Climatology Centre dataset (GPCC; resolution
1� � 1�; 1901–2010) [Rudolf et al., 2010]. The IMRI and
AMRI are also calculated for 24 CMIP3 models simulations
(20c3m experiment) covering approximately 1860–2000, and
for 23 CMIP5 simulations (historical experiment) covering
1850–2005 (some models contain more than one member).

3. Results

3.1. Seasonality

[6] For all three observed Indian rainfall datasets, the four
wettest months extend from June to September with maxi-
mum rainfall in July (Figure 2a). The CMIP models show a
range of behaviors. Eleven out of 24 CMIP3 models
(Figure 2a) and 11 out of 23 CMIP5 models (Figure 2c)
correctly simulate peak rainfall in July, with several models
with peak rainfall delayed by onemonth. Three CMIP3models
have large timing biases: the mpi_echam5 and csiro_mk3.5/ipsl-
cm4 peak two months early and late respectively. There is also
considerable spread in the amplitude of the seasonal cycle.
While rainfall in the peak monsoon month ranges from 7.2 to
9.1 mm/d across observations, both CMIP3 and CMIP5
models range from �3 to 10 mm/d. The multi-model means
(�1 standard deviation) for CMIP3 and CMIP5 models are
similar with a maximum of �6 � 2 mm/d in August, indi-
cating that in general the monsoon rainfall in the models is
too weak. For a few models (particularly for CMIP3), there
is too much rainfall outside of the monsoon season (e.g.,
cnrm_cm3 and inmcm3_0).
[7] Over Australia maximum observed rainfall occurs in

February, ranging between 5.9 to 8.6 mm/d across the three
observational datasets (Figure 2b) with most rainfall from
December to March. Again there is a considerable range in
monsoon strength across the models (2 to 11 mm/d),
although the multi-model means (7.5 � 3/7.0 � 3 mm/d for
CMIP3/CMIP5) lie within the observational range. The
giss_aom and ipsl_cm4 CMIP3 models have essentially no
monsoon season. Most CMIP3 and CMIP5 models simulate
maximum rainfall in the correct month with a few of models
peaking one month early and others with an overly long
rainy season (e.g., bccr_bcm2_0).
[8] In general, for both CMIP3 and CMIP5 and for both

regions the range in monsoon strength across the models is
about the same. However, there is a clear overall improve-
ment in the seasonality of both monsoons from CMIP3 to
CMIP5, with most CMIP5 models better simulating the
monsoon timing and very low rainfall rates outside of the
monsoon season.

3.2. TBO Transitions Assessment

[9] A Monte Carlo technique is used to assess the signifi-
cance of enhanced predictability associated with the TBO. In
particular we assess the success rate of the four transitions
that are thought to be important for the TBO tendency start-
ing from a given year t: (1) Successful Indian-Indian out-of-
phase transition is defined as IMRI(t) > 0 and IMRI(t + 1) < 0
or IMRI(t) < 0 and IMRI(t + 1) > 0; (2) Successful Australian-

Figure 1. (a) The map showing the continental Indian and
Australian monsoon regions (shaded) used to calculated the
IMRI and AMRI, and the extended monsoon regions (boxes:
5�N–40�N, 60�E–100�E and 20�S–5�N, 100�E–150�E),
including the ocean based on Meehl and Arblaster [2002].
(b) The IMRI-AIR is the anomaly derived from average
JJAS rainfall over the Indian subcontinent, and (c) the
AMRI-AWAP is the anomaly averaged from DJFM rain-
fall over North Australia. Red/blue circles in Figures 1b
and 1c represent the successful positive/negative transition
years, respectively, relating to Indian-Indian and Australian-
Australian transitions.
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Australian out-of-phase transition is defined as AMRI(t) > 0
and AMRI(t + 1) < 0 or AMRI(t) < 0 and AMRI(t + 1) > 0;
(3) Successful Indian-Australian in-phase transition is defined
as IMRI(t) > 0 andAMRI(t) > 0 or IMRI(t) < 0 andAMRI(t) < 0;
and, (4) Successful Australian-Indian out-of-phase transition
is defined as AMRI(t) > 0 and IMRI(t + 1) < 0 or AMRI(t) < 0
and IMRI(t + 1) > 0.
[10] To determine the observed predictability associated

with a given transition, we count the number of successful
transitions in the timeseries (Figures 1b and 1c), relative to the
total number of possible successful transitions. This is then
repeated 100,000 times by randomly resampling the observed
timeseries (with replacement). The predictability of the mon-
soon resulting from a given transition is considered enhanced
if the observed or simulated percentage of successful transi-
tions is significantly higher than the median of the randomized
distribution. Moreover, the enhanced predictability is con-
sidered significant if the observed or simulated percentage of

successful transitions lies in the upper decile of the random-
ized distributions (i.e., there is only a 10% probability of
getting the enhanced predictability by chance).
[11] In the IMRI-AIR and AMRI-AWAP, only two of the

four transitions show a significantly enhanced predictability
over the random distribution: the Indian-Indian out-of-phase
transition and the Indian-Australian in-phase transition,
where the enhanced predictability from the median is 8.8%
(p � 0.1) and �15% (p � 0.001), respectively (Figure S1 in
the auxiliary material).1 This means that if the Indian mon-
soon is anomalously strong (weak) in a given year there is a
�59% probability that the subsequent Indian monsoon will
be anomalously weak (strong) and a �65% probability that
the subsequent Australian monsoon will be anomalously
strong (weak).

Figure 2. Seasonal cycle of the (a, c) Indian and (b, d) Australian land-restricted rainfall for observed and CMIP3 (Figures 2a
and 2b) and CMIP5 (Figures 2c and 2d) models over. Models (names in black) and observations (names in red) are sorted
according to the average monsoon rainfall amount (JJAS rainfall for Indian monsoon and DJFM rainfall for Australian mon-
soon). The top row shows the multi-model mean (names in blue) of CMIP3 or CMIP5 models for Indian and Australian rain-
fall. Internal numbers show the maximum rainfall (mm/d) in the month of greatest rainfall.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053322.
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[12] To test the sensitivity of these results to the datasets,
we compute predictability based on different datasets and
time periods: CMAP (1979–2008) and GPCC (1901–2010)
over the same spatial land areas (Figure 1a). Indices from
both datasets show significant enhanced predictability (p �
0.1) of 27.6% and 13.8%, respectively, for the Indian to
Australian transition. However, for the Indian-Indian out-of-
phase transition, only GPCC shows an enhanced predict-
ability of 6.4% (p � 0.12). Given the relative shortness of
the CMAP datasets, the lack of significant results might arise
from multi-decadal variability of the TBO. To examine this,
we divided the IMRI-AIR into a CMAP-like period (1979–
2008) and pre-CMAP period (1871–1978). The pre-CMAP
period shows significantly enhanced predictability (10.3%,
p � 0.1). The predictability for over the later CMAP-like
period is not significant. This suggests that the biennial
tendency for the Indian-Indian out-of-phase transition has
deceased in the past 30-yrs, consistent with the recent
weakening of the El Niño-Indian monsoon relationship
[Ummenhofer et al., 2011; Meehl and Arblaster, 2011].
[13] Figure 3 shows the enhanced predictability for the

different observational datasets and selected CMIP3 and
CMIP5models for the four transitions. We only showmodels
for which at least one ensemble member shows a signifi-
cantly enhanced predictability in any of the transitions.
Twelve CMIP3 and 15 CMIP5 models have at least one
ensemble member with significantly enhanced predictability
for the Indian-Australian in-phase transition (Figure 3a),
consistent with the observations. For the CMIP5 models the
range of enhanced predictability is relatively small (5%–
15%, for significant results only). As such the models gen-
erally underestimate the observed enhanced predictability of
�15%. For the CMIP3 models the range is larger (5–35%).
For the models with multiple ensemble members, many show
contrasting results for different members, indicating a sub-
stantial multi-decadal variability in the efficacy of this tran-
sition. Nevertheless, when considering concatenated ensemble
members, the Indian- Australian transition has enhanced
predictability in 11 of 24 (14 of 23) CMIP3 (CMIP5) models.
[14] As noted above, the only other transition that provides

significantly enhanced predictability using the long-term ref-
erence observations is the Indian-Indian out-of-phase transi-
tion, although it is mostly associated with the earlier part of the
record (see discussion above). For this transition (Figure 3b),
seven CMIP3 and five CMIP5 models show enhanced
predictability for at least one ensemble member. In the
case of models with multiple ensemble members, only a small
number of members are significant (e.g., CNRM_CM5,
GISS_E2_H and NorESM_M). As such, only four CMIP3
and two CMIP5 models show enhanced predictability
when considering the multi-ensemble concatenation for each
model.
[15] For the Australian-Indian out-of-phase transition

(Figure 3c), one of the longer observational timeseries suggests
a multi-decadal period when there was enhanced predictability
associated with this transition. Five CMIP3 and only one
CMIP5 models have ensemble members with significantly
enhanced predictability, despite conflicting results within
each ensemble set. Surprisingly, a large number of models
actually show significant negative predictability, in particular
when considering concatenated ensemble members. Negative
predictability suggests that a strong (weak) Australian mon-
soon would tend to be followed by a strong (weak) Indian

monsoon. Such behavior is not found in the observations,
and might be related to bias in the simulated ENSO sea-
sonal cycle, e.g., where La Niña events tend to persists too
long this would lead to a strong Australian monsoon fol-
lowed by a strong Indian monsoon (N. C. Jourdain et al.,
The Indo-Australian monsoon and its relationship to ENSO
and IOD in reanalysis data and the CMIP3/CMIP5 simu-
lations, submitted to Climate Dynamics, 2012). Finally for
the Australian-Australian out-of-phase transition (Figure 3d),
for which there is no observational evidence of enhanced
predictability, eight of the CMIP3 and five of the CMIP5
models have ensemble members with significantly
enhanced predictability.
[16] While the impacts of the monsoon are primarily over

land, the teleconnections associated with global modes of
variability can involve larger domains. To assess the effect
of the monsoon in a larger context, we also derived similar
rainfall indices over extended Indian and Australian regions
(including the oceanic regions, Figure 1a, see methods) used
in previous analysis of the TBO [e.g., Meehl and Arblaster,
2002]. Applying the Monte Carlo analysis to these indices
for both CMIP3 and CMIP5 models, we find that for the
Indian-Australian transition, most models show significant
enhanced predictability independent of the index definition
(Figure S2). For the other transitions there is little consistency
with regards to predictability across the models. For the
Australian-Indian transition, fewer models show the negative
predictability seen with the land-only based indices. In addi-
tion for the Australian-Australian transition there are more
CMIP3 models that exhibit enhanced predictability using the
more inclusive index. As such, overall we do not find that
the sequence of events that combine to make up the TBO is
more obvious when examining a larger land-ocean area.

4. Conclusion

[17] This study examines the fidelity of climate models in
simulating the mean state and seasonality of the Indian and
Australian monsoons and the various transitions that play a
role in the TBO. While almost all models produce at least
some monsoon-like behavior, there are very large spreads in
maximum monthly rainfall: 33% to 110% (50% to 170%) of
the AIR/AWAP observational dataset for Indian (Australian)
rainfall. The multi-model means of Indian maximum rainfall
are underestimated for both CMIP3 and CMIP5 models
(6 � 2 mm/d as compared to 7–9 mm/d), while multi-model
means of Australian maximum rainfall are within the observed
range (6–9 mm/d). Most models successfully reproduce the
timing of the monsoons although phase shifts of up to 2
months are evident in a few models. Overall, while there is no
obvious improvement in the average summermonsoon rainfall
from CMIP3 to CMIP5, in general, the CMIP5 models do
show improved seasonality for both monsoons.
[18] In the observations and in the majority of the models

(13 of 24 CMIP3 and 15 of 23 CMIP5), we find significantly
enhanced predictability in the Indian-Australian in-phase
transition. The observations suggest that given the strength of
the Indian monsoon we have a �65% chance of correctly
estimating whether the following Australian monsoon will be
weaker or stronger than normal. The enhanced predictability
in CMIPmodels is probably related to the fact that the models
correctly reproduce an ENSO-monsoon link, such that an
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El Niño (La Niña) is associated with both a weak (strong)
Indian and Australian monsoon [Webster et al., 1998].
[19] The Indian-Indian out-of-phase transition is only

significant in the long AIR dataset, providing enhanced
predictability of �8% (Figure 3b), however it varies over
certain time periods. For CMIP3 and CMIP5 models with

multiple ensemble members, only some of the ensemble
members show successful transitions. This suggests a high-
degree of multi-decadal variability in this transition. This is
consistent with previous studies looking at the observa-
tional records [e.g., Fasullo, 2004; Meehl and Arblaster,
2011]. While some models indicate significantly enhanced

Figure 3. Percentage enhanced predictability for the (a) Indian-Australian, (b) Indian-Indian, (c) Australian-Indian and
(d) Australian-Australian transitions for observations and CMIP3 and CMIP5 models for which at least one ensemble mem-
ber for that model and for at least one of the transitions shows a significant increase in predictability. Circles represent indi-
vidual ensemble members (marked in red are significant, p < 0.1). Bars represent the multi-ensemble mean percentage
enhanced predictability for each model with yellow indicating significant changes. The multi-ensemble mean predictability
was calculated by concatenating time series for all ensemble members prior to Monte Carlo resampling.
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predictability, many models actually show significantly
reduced predictability for the Indian-Indian and Australian-
Indian out-of-phase transitions. Future work will examine
the reasons behind these inter-model differences.
[20] In summary, this study examines four different TBO

transitions, for which a number of different mechanisms
have been proposed [e.g., Meehl and Arblaster, 2002]. Our
study demonstrates that while for both observations and
models the India-Australia link seems to be robust, the other
transitions are both dataset and time period dependent, with
a range of contrasting behaviors exhibited in the climate
models. In particular there seems to be little evidence that
the Australian monsoon can directly influence the subse-
quent Indian monsoon.
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