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ABSTRACT 

For more than a decade there has been controversy in oceanography regarding the 

metabolic state of the oligotrophic gyres of the open sea. Here we review background on 

this controversy, commenting on several issues to set the context for a moderated debate 

between two groups of scientists. In a companion paper, Williams et al (2013) take the 

view that the oligotrophic subtropical gyres of the global ocean exhibit a state of net 

autotrophy, that is, the gross primary production (GPP) exceeds community respiration 

(R), when averaged over some suitably extensive region and over a long duration. Duarte 

et al (2013) take the opposite view, that the oligotrophic subtropical gyres are net 

heterotrophic, with R exceeding the GPP. This idea -- that large, remote areas of the 

upper ocean could be net heterotrophic raises of host of fundamental scientific questions 

about the metabolic processes of photosynthesis and respiration that underlie ocean 

ecology and global biogeochemistry. The question remains unresolved, in part, because 

the net state is finely balanced between large opposing fluxes and most current 

measurements have large uncertainties. This challenging question must be studied against 

the background of large, anthropogenically-driven changes in ocean ecology and 

biogeochemistry  Current trends of anthropogenic change make it an urgent problem to 

solve and also greatly complicate finding that solution.  
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INTRODUCTION 

In this paper, we introduce a new feature for Annual Reviews of Marine Science: a 

moderated debate between two groups of scientists over a controversial topic in the 

marine sciences. In this instance, Peter J LeB Williams and Carlos Duarte and their 

coauthors exchange views on the topic of the metabolic balance of the oligotrophic 

oceans. Williams et al (2013) take the view that the oligotrophic subtropical gyres of the 

global ocean exhibit a state of net autotrophy, that is, the gross primary production (GPP) 

exceeds community respiration (R), when averaged over some suitably extensive region 

and over a long duration. Duarte et al (2013) take the opposite view, that the oligotrophic 

subtropical gyres are net heterotrophic, with R exceeding the GPP. We serve as 

moderators, having helped to frame the terms of the debate, and in this article, reviewing 

the background of the controversy, and commenting on several issues to set the context 

for the debate. We refrain from critically evaluating the respective claims of the debating 

parties. Reviewed drafts of all three articles were exchanged among the authors, and each 

had the opportunity to revise their papers following the exchange.  

DEFINITIONS AND CONCEPTS 

The concept of the metabolic balance of the ocean (or some part of it) is encapsulated in 

two different equations: 

6CO2 + 6H2O ↔ C6H12O6 + 6O2      (1) 

GPP = NCP + R        (2) 

Equation 1 defines photosynthesis (proceeding to the right) or respiration (to the left). 

Equation 2 specifies the balance between photosynthesis and respiration (Figure 1), with 
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NCP (Net Community Production) being the organic matter remaining after consumption 

of the GPP through respiration by plants (autotrophs), microbes and animals 

(heterotrophs). Precise definitions of GPP and NPP (net primary production) are 

reviewed by Williams (1993) and will not be discussed further here. The net metabolic 

state is set in Equation 1 by the balance between the rates of the forward versus back 

reactions. When (or where) the forward reaction predominates, there is a state of net 

autotrophy; if the back reaction is greater, there is net heterotrophy, or excess 

consumption of organic matter over the amount produced in situ by the autotrophs. A 

positive NCP reflects surplus organic matter production that is available for lateral or 

vertical export to fuel, for example, respiration in the mesopelagic and deep sea. The 

estimation of NCP is often closely tied with the concept of new production; that part of 

autotrophic productivity supported by external or “new” sources of nutrients to the 

euphotic zone usually cast in terms of nitrogen (Dugdale & Goering 1967). 

The concept of metabolic balance in the sea has a long history. Sverdrup et al. 

(1942) had the concept of the metabolic balance between GPP and R in mind when they 

wrote: 

“In nature, the oxygen accumulates in layers of organic production and thus its 

fluctuations in time and space give a measure of the intensity of phytoplankton 

outbursts. It can provide only minimal values because the exact quantity of 

oxygen produced is obscured by the respiratory activities of animals and bacteria, 

and in the case of surface supersaturation some oxygen is given off to the 

atmosphere.” (page 934). 
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In our debate, both papers evaluate estimates of the balance between GPP and R based on 

short-term incubation of captured water samples, and incubation-free approaches, 

whereby the net balance is derived from measurements of chemical tracers such as 

dissolved oxygen and the isotopic content of dissolved or particulate carbon. Sverdrup et 

al. already considered these two approaches, and Riley (1957) compared them in his 

famous debate with Steemann Nielsen (1954) over the magnitude of primary production 

in the sea (see Peterson (1980) and Mills (1989) for discussion of this debate and related 

issues).  

In 1949 Sargent and Austin (1949) pioneered the flowing water method to 

measure the net productivity of a coral reef community by determining the net increase or 

decrease of oxygen and organic matter as ocean water flowed across the reef flat. H.T. 

and E.P. Odum (1955) employed the approach in their seminal paper on the trophic 

structure and metabolism of the Eniwetok (Enewetak) coral atoll. They found that the 

reef had high GPP but low NCP, a state that complicates detection of metabolic balance 

to this day. H. T. Odum (1956) formalized the approach with the equation: 

Q = GPP – R + Din + A       (3) 

where Q is the time rate of change of dissolved oxygen (dO2/dt), GPP and R are as 

defined above, Din is the diffusive input (or loss) and A the advective input (or loss). 

Bottle incubations isolate a small water parcel from external fluxes, NCP is estimated 

from the change in O2, and GPP-R = Q. By contrast, the oxygen budget of the ocean 

mixed layer is strongly influenced by exchange with the atmosphere across the air-sea 

interface, and to first approximation Equation (3) reduces to a steady-state balance 

between NCP and the diffusive air to sea flux, GPP-R ~ -Dair-sea. (Jenkins 1985). The 
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seasonal thermocline below the mixed layer is more isolated from the atmosphere and 

acts like a long-duration bottle incubation; a positive NCP over the growing season 

would result in a build-up (supersaturation) in subsurface oxygen, GPP – R ~ Q. 

If we consider other tracers besides oxygen such as organic matter (as did Odum 

and Odum, 1955), Equation 3 makes the important point that ecosystems are not isolated, 

but rather are open systems in which the input of nutrients and organic matter from 

adjacent systems may be critical in determining the metabolic balance. The relationships 

and balance among GPP, R and various inputs and exports from open terrestrial 

ecosystems have been critically reviewed and formulated (Chapin III et al 2006). Chapin 

III et al. distinguish between Net Ecosystem Production (NEP), the balance between GPP 

and R, as in Equation 2, and the Net Ecosystem Carbon Balance (NECB), a term that 

includes exchanges with neighboring systems as in Equation 3. These points are 

especially important for the problem of defining the metabolic balance of the oligotrophic 

subtropical gyres. 

External inputs of organic matter could tip the balance between net autotrophy 

and heterotrophy for oligotrophic ocean regions, which are typically marked by microbial 

planktonic ecosystems, high biological recycling rates and relatively low rates of net 

community production. In contrast to oligotrophic enclosed basins like the Mediterranean 

Sea or other oligotrophic regions nearer to the continental margins, the subtropical gyres 

are remote from land and from more productive ocean systems that might serve as 

sources of organic matter via lateral advection and mixing. Another potential source is 

net atmospheric input of organic material from gas exchange, particulate/aerosol 

deposition, and/or rainfall (Duce et al 1983, Willey et al 2000). Atmosphere deposition of 
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organic matter to the sea surface is poorly characterized and includes components of 

terrestrial, fossil fuel and marine origin (Raymond 2005); the marine component would 

not constitute a net source to the upper ocean but rather reflects material recycled through 

the atmosphere. The relative importance of this marine component, and especially the 

volatile fraction is uncertain, but possibly large. A related argument concerns the 

possibility that the dissolved organic carbon (DOC) pool of the global ocean is changing 

with time. In particular, if it were found to be declining over the long term, it could serve 

as a subsidy fueling net bacterial heterotrophy in the central gyres. Williams and Duarte 

and their co-authors address the question of the relative magnitudes of external inputs 

and/or a non-steady state DOC pool as potential sources of net heterotrophy in the 

oligotrophic subtropical gyres. In a microcosm of the present debate, Fouilland and 

Moustajir (2010) assert that the oceanic bacterial carbon demand (a major component of 

community respiration) is not satisfied by local primary production. However this 

argument relies on assumptions about poorly-known conversion factors (Morán & 

Alonso-Sáez 2010), rather than direct measurements of elemental fluxes.  

BIOLOGICAL PRODUCTION IN THE OLIGOTROPHIC GYRES 

There are many tens of thousands of estimates of the rate of marine primary production 

using the 14C incubation approach (Steemann Nielsen 1952); however they are not 

directly pertinent to the ocean metabolic balance, since the method yields an estimate that 

lies somewhere between GPP and NPP, depending on environmental (and incubation) 

conditions and the preceding history of the population being measured. Nonetheless, 14C 

incubations are sensitive and easy to perform, and the size of the historical database 
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makes it invaluable for evaluating the magnitude of primary production, and therefore an 

important element in this debate.  

The application of incubation-free, geochemical tracer estimates of new 

production in the early 1980s (Jenkins & Wallace 1992, Shulenberger & Reid 1981) 

triggered an overall reassessment of primary production estimates in the subtropical gyres, 

and a critical reexamination of the concepts of gross, net and new primary production 

(Eppley 1992). In part this assessment of primary production was motivated by 

realization that the new incubation-free tracer methods gave in some cases much greater 

productivity estimates than 14C incubations; yet the tracer approaches really measured the 

new production (similar to NCP), itself a subcomponent of the total production! The 

seeds of a resolution were planted in 1982, when John Martin developed trace metal-

clean techniques for sampling and incubating plankton samples without contaminating 

them with potentially toxic concentrations of copper and other metals (Fitzwater 1982). 

Open-ocean phytoplankton are exquisitely sensitive to trace metals, and incubation in 

glass bottles resulted in inhibition of 14C labeled inorganic carbon uptake, yielding low 

estimates of the PP rates. Once new, clean sampling and incubation technology was 

implemented, the resulting new, higher 14C-based PP rates enabled a more objective 

comparison of incubation-based and incubation-free approaches, as in this debate. 

Ironically, Riley’s (1957) primary production estimates for the Sargasso Sea, once 

dismissed as being impossibly high, now seem much more in line with current 

understanding, and the original 14C estimates of Steeman Nielson were probably 

contaminated. 
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While less common than 14C-based productivity estimates, bottle incubation 

experiments for quantifying oxygen production and consumption rates have been 

conducted for a range of marine biogeographical regimes and seasons. The experiments 

often involve paired light and dark bottles where the rate of change in oxygen for the 

light bottle is equated with NCP and the dark bottle change with bacterial or community 

respiration R; planktonic GPP can then be estimated from Equation 2. By the late 1990’s 

sufficient O2 bottle incubation data existed for cross-ecosystem analyses. del Giorgio et al. 

(1997) reported that O2-based bacterial respiration exceeds 14C-based primary production 

in low-productivity subtropical gyres, reflecting a steeper decline in photosynthesis  than 

respiration under low productivity conditions. Duarte and Agustí (1998) presented similar 

results by comparing trends of bottle O2-based NCP versus GPP rates. Other authors (e.g., 

Geider 1997; Williams 1998) countered that these findings were aliased by both 

methodological artifacts and the difficulty of interpreting the O2 bottle incubation results. 

In contrast to 14C-PP, O2 bottle incubations attempt to measure the small difference 

between two large and opposing rates, GPP and R.  The number of O2 bottle incubation 

studies has grown substantially from the late 1990s but the basic story remains; many 

experiments indicate net heterotrophy (NCP < 0), often with large negative rates and with 

substantial variance both within and across studies (see Williams et al. 2013 and Duarte 

et al 2013 and references therein). 

The spatial and seasonal coverage of tracer-based NCP estimates have expanded 

over the same time period. The most common technique involves measurements of O2/Ar 

ratios for the mixed layer from water column sampling at time-series stations and along 

ship transects (e.g., Quay et al. 2010; Stanley et al. 2010; and Hamme et al. 2012). In situ 
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oxygen sensors on autonomous robotic profiling floats and gliders are greatly expanding 

capabilities to monitor seasonal upper ocean oxygen trends (Nicholson et al 2008, Riser 

& Johnson 2008). Recent glider surveys near Hawaii failed to detect periodic bursts of 

primary production (see Duarte et al. 2013) but Riser and Johnson (2008, Abstract) 

concluded that their observations were “…consistent with an ecosystem that is a net 

producer of fixed carbon (net autotrophic) throughout the year, with episodic events not 

required to sustain positive oxygen production." Argon has similar molecular diffusivity 

and solubility characteristics as O2 and is used to correct the observed oxygen saturation 

for physical effects such as heating and bubble injection (Spitzer and Jenkins 1989; Luz 

and Barkan 2009). Mixed layer oxygen in oligotrophic regions is typically supersaturated 

with respect to the atmosphere (even after applying the argon adjustments). The oxygen 

supersaturation is interpreted as the remnants of net autotrophy (NCP > 0) producing 

excess O2, most of which is lost by gas exchange to the atmosphere. Other tracer-based 

NCP approaches examine seasonal build up in subsurface oxygen, seasonal drawdown in 

mixed layer and subsurface dissolved inorganic carbon and nutrients, seasonal variations 

of inorganic carbon isotopes, and supply rates of new nutrients required to support NCP 

(Jenkins and Wallace 1992; Gruber et al. 1998). Measurement precision has improved 

such that in situ diurnal variations are resolvable for some situations. On the other end of 

the time-scale, observational and modeling studies have reconstructed the time-mean 

spatial patterns of net ocean-atmosphere O2 and CO2 fluxes; unfortunately the signal of 

local upper-ocean metabolism is often masked by large-scale circulation, surface 

warming and cooling, and inputs of subsurface waters with large metabolic CO2 burdens 

and O2 deficits (Gruber et al. 2001; Gruber et al. 2009; Takahashi et al. 2009). 
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BOTTLE INCUBATIONS VERSUS TRACER TECHNIQUES 

Scientific lines of evidence supporting and refuting the conclusion that the 

oligotrophic open-ocean is net heterotrophic are presented in two columns in Table 1. At 

the heart of the on-going debate is the apparent inconsistency between the results of in-

vitro O2 bottle incubations and in situ O2 and other geochemical tracer techniques, which 

is fleshed out in more depth by Duarte et al. (2013) and Williams et al. (2013). Both 

approaches have their unique strengths and pitfalls, and much of the discussion centers on 

potential methodological biases. Some skepticism is probably warranted for any 

biological rate estimates that derive from direct manipulation of plankton samples, 

particularly for oligotrophic microbial systems where autotrophy and heterotrophy appear 

tightly coupled. Further, measurements of net property changes are often plagued by 

relatively small signal to noise ratios. On the other hand, tracer approaches are dependent 

on the often challenging task of resolving open-ocean physical transport rates (Equation 

3) -- vertical mixing, gas exchange and lateral advective divergence; in fact the objective 

of the mixed layer O2/Ar method is to equate NCP to air-sea O2 exchange and is, 

therefore, sensitive to uncertainties in gas transfer velocity.  

Perhaps equally important are the differences in the time and space scales 

captured by the two basic approaches. Bottle incubations inherently sample a small 

volume of water for a short period of time (hours to a day), and large numbers of samples 

are required to overcome ocean heterogeneity. The tracer-based techniques integrate over 

larger and longer scales: weeks for O2/Ar-based mixed layer NCP and weeks to seasons 

for other methods. Particularly for underway transects, steady-state is assumed, though 

this may not always hold true (Hamme et al 2012). Further, the choice of depth 
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integration can strongly influence estimates of water-column integrated NCP because 

GPP tends to decrease sharply with depth, reflecting in part declining photosynthetically 

available radiation, while R tends to be more constant with depth. Based on an analysis of 

seasonal O2 variations, Najjar and Keeling (1997) suggest that the switch between net 

community production and net community consumption, or oxygen compensation, falls 

at a depth of approximately 80-100 m in the subtropics. Few studies have combined 

incubation-based and tracer-based estimates for net ocean metabolism, and given the 

scale mismatches, well formulated studies would require paired high-frequency 

biogeochemical measurements over an extended time period and careful attention to 

ocean physics.  

CONCLUSION 

The idea that large parts of the most remote areas of the open sea could be net 

heterotrophic is a profoundly intriguing, if not disquieting proposition. This idea has been 

an active area in ocean biogeochemistry for over a decade, and has stimulated much 

research into the metabolic state of the oceanic gyres, including development of novel 

approaches to estimate net and gross oxygen and carbon fluxes. Current trends of 

anthropogenic change make it an urgent problem to solve and also greatly complicate 

finding that solution. The debate remains unresolved because the net state is finely 

balanced between large opposing fluxes and most current measurements have large 

uncertainties. Even so, the papers presented here suggest some clear research priorities 

including continued methods refinement, improvements in understanding of the relevant 

physical transport and mixing processes, and a better definition of autotrophic community 

production, encompassing oxygenic photosynthesis and anoxygenic production.  
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Table 1 Arguments for and against the proposition that the oligotrophic subtropical gyres of the open ocean 

are heterotrophic, composed by the authors of the three debate articles 

 

 

Arguments against net heterotrophy Arguments for net heterotrophy 

• In vitro methods suffer from errors deriving 
from confinement/bottle effects. 

• Estimates resulting from incubation-free, in situ 
oxygen and carbon dioxide fields consistently 
find oligotrophic zones to be autotrophic, and 
although some uncertainties remain in these 
assessments, none have the potential to change 
the sign of the results (i.e., from net autotrophic 
to net heterotrophic). 

• The euphotic zone has comparatively small 
reserves of labile organic carbon, and thus 
allochthonous inputs of organic carbon are 
needed to sustain heterotrophy. No transport 
system can be identified that operates on the 
required scale. Atmospheric inputs of organic 
carbon cannot represent a significant carbon 
subsidy to oligotrophic regions because they 
would give rise to δ13C depletion of surface 
dissolved inorganic carbon (DIC), which is 
opposite the δ13C-DIC enrichment observed in 
the subtropical gyres. 

• The euphotic layer in the open ocean supports 
significant exports amounts of organic carbon 
and fishery yields, which is incompatible with 
sustained heterotrophy in these zones. 

• Heterotrophic metabolism is a transient 
phenomena balanced temporally by autotrophic 
periods, with communities being in near 
balance when integrated across adequate 
timescales not captured by discrete in vitro 
incubations. 

• The observed 13C enrichment of subtropical 
surface DIC can be explained only by positive 
net autotrophy. 

• Available evidence consistently suggests that 
respiration exceeds primary production below a 
certain threshold of gross primary production, 
suggesting that less productive communities 
should be heterotrophic. 

• Estimates from incubation-free, in situ oxygen 
and carbon dioxide fields contain substantial 
errors that give rise to biased estimates and 
cannot reliably resolve metabolic rates. 

• The open ocean receives substantial 
allochthonous inputs of organic carbon. 

• Estimates of community respiration rates 
typically deliver underestimates. 

• Respiration rates below the mixed layer are 
much greater than the flux of organic carbon 
from the mixed layer. 

• Oxygen pools in the ocean are declining. 
• Nonoxygenic autotrophic processes may 

contribute to organic production in the open 
ocean, which would not be captured by the net 
oxygen flux and therefore would result in 
underestimates of net community production. 
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Figure 1. Cartoon illustrating metabolic exchanges, transformations and related 
processes in the surface ocean, influencing the balance between net autotrophy and 
heterotrophy. GPP and NPP are gross and net primary production, respectively. NCP is 
net community production. See text for equations and definitions of these terms. DOM 
includes dissolved organic matter produced by phytoplankton and consumers and utilized 
by heterotrophic bacteria (and some phytoplankton) in situ, and also that supplied from 
external sources. Vertical, horizontal and atmospheric sources of exogenous (new) 
nutrients (e.g., nitrogen, iron) support a varying fraction of the GPP, termed new 
production. This is quantitatively equivalent to the NCP over appropriate time and space 
scales. The new production and NCP are available for export from the system (only 
vertical exports shown). The air-sea exchange and lateral transport are possible sources 
and sinks for organic matter that can affect NCP. Other forms of metabolism (e.g., 
anoxygenic photosynthesis) not shown.  
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