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Abstract  

Many species demonstrate variation in life history attributes in response to gradients in 

environmental conditions. For fishes, major drivers of life history variation are changes in 

temperature and food availability. This study examined large-scale variation in the demography of 

four species of butterflyfishes (Chaetodon citrinellus, C. lunulatus, C. melannotus, and C. 

trifascialis) between two locations on Australia’s Great Barrier Reef (Lizard Island and One Tree 

Island, separated by approximately 1200km). Variation in age-based demographic parameters was 

assessed using the re-parameterised von Bertalanffy growth function. All species displayed 

measurable differences in body size between locations, with individuals achieving a larger adult 

size at the higher latitude site (One Tree Island) for three of the four species examined. Resources 

and abundances of the study species were also measured, revealing some significant differences 

between locations. For example, for C. trifascialis, there was no difference in its preferred 

resource or in abundance between locations, yet it achieved a larger body size at the higher latitude 

location, suggesting a response to temperature. For some species, resources and abundances did 

vary between locations, limiting the ability to distinguish between a demographic response to 

temperature as opposed to a response to food or competition. Future studies of life histories and 

demographics at large spatial scales will need to consider the potentially confounding roles of 

temperature, resource usage and availability, and abundance / competition in order to disentangle 

the effects of these environmental variables.  



Introduction 

The importance of understanding demographic and life history characters of fish 

populations has long been recognized, particularly with respect to management of 

species of economic importance. Increasingly, studies are investigating the intra-

specific patterns of variation in life history across geographical scales spanning 

hundreds or thousands of km, and it is common to find differences in growth rate, 

body size, and longevity between populations of fish living at different latitudes 

(e.g., Robertson et al. 2005) and in different ocean basins (e.g., Trip et al. 2008). 

Regional temperature differences are often considered to play a central role in 

driving the responses in these traits (e.g., Robertson et al. 2005; Ruttenberg et al. 

2005).  

Proper understanding of the mechanisms that drive the response of life-history 

traits across spatial scales is central to effective management. Traits such as 

growth, age at maturity, and longevity are key parameters in sustainable harvest 

models. Given the prevalence of geographic variation in these traits, it is prudent 

to investigate local populations rather than applying a model based on parameters 

measured in another location. If mechanisms are eventually understood, managers 

could even begin to anticipate population responses to climate change (Munday et 

al. 2009). Shifting environmental regimes may subsequently impact a specific 

population’s dynamics, requiring an adaptive management strategy.  

Species distributed over large geographic and latitudinal ranges are often 

exposed to significant variation in environmental conditions, and frequently 

exhibit geographical differences in life-history traits. In general, ectotherms grow 

slower but achieve a larger size at higher latitudes (Temperature-Size Rule, 

Atkinson 1994; Atkinson and Sibly 1997; Kingsolver and Huey 2008). Coral reef 

fishes exhibit marked variation in life history dynamics among geographically 



separated locations and with latitude. In particular, body size and longevity 

exhibit strong negative relationships with temperature, such that the largest and 

oldest fishes are typically found in higher latitudes (e.g., Meekan et al. 2001; 

Robertson et al. 2005; Trip et al. 2008).  

In reality, however, temperature is only one of many other variables that 

may influence life history characters. Density of conspecifics or other competitors 

(Gust et al. 2002), presence of predators (Stallings 2008), resource availability 

(Berumen and Pratchett 2008), fishing pressure (Graham et al. 2005), and physical 

habitat (e.g., exposure, Robertson et al. 2005) are among the many variables 

capable of influencing various life history and demographic parameters, but these 

factors may be difficult to control for (or even measure) for most species when 

conducting large-scale comparisons (e.g. Crossman et al. 2005). 

The response of demographic and life history traits to temperature may 

particularly vary depending on resource availability (Munday et al. 2008; 

Donelson et al. 2010). The standard hypotheses accompanying temperature-driven 

variation in life history traits have not, to our knowledge, ever been tested under 

conditions in which it was possible to control or measure food resource 

availability at a large scale. Numerous experimental studies show that food quality 

or availability directly affects growth (Berumen and Pratchett 2008), reproductive 

lifespan (Lee et al. 2008), reproductive output (Arendt et al. 2005), larval quality 

(McCormick 2003), and other parameters. It is thus likely that life history traits 

may be influenced by resources in a way that obscures or amplifies the effects of 

temperature at a large scale.  

The objective of this study was to describe the patterns of demographic 

variation for four species of butterflyfishes between two geographic locations 

separated by 1,200 km and 9° of latitude along the Great Barrier Reef, Australia. 



Demographic characters that were compared between these populations include 

initial growth rate, mean maximum adult body size, and mean maximum age 

(longevity). We predicted that these species would show measureable differences 

in these life history parameters at this scale. We selected butterflyfish species in 

which we can easily measure abundance and resource availability, potentially 

confounding variables that are not typically measured in such studies of coral reef 

fishes. We are therefore able to examine whether fish abundance and resource 

availability potentially introduce confounding effects between our sites.   

 

Methods 

Study species 

The four species examined were Chaetodon citrinellus, C. lunulatus, C. 

melannotus, and C. trifascialis, which exhibit distinct prey preferences. C. 

citrinellus is a generalist feeder, consuming prey items from several categories, 

both coral and non-coral, including small invertebrates and some algal material 

(Harmelin-Vivien and Bouchon-Navaro 1983; Pratchett 2005). C. lunulatus is a 

hard-coral feeder, but is a “generalist” hard-coral feeder, consuming a very wide 

range (up to 52 species) of different corals (Pratchett et al. 2004; Berumen et al. 

2005; Pratchett 2005). C. melannotus is a soft-coral feeder, consuming a variety 

of coral and non-coral prey, but mostly specializing on soft coral species (Alino et 

al. 1988; Pratchett 2005). C trifascialis is a hard-coral specialist, feeding almost 

exclusively on just one coral species, Acropora hyacinthus (Pratchett 2005). All 

four species are widespread with geographic ranges encompassing much of the 



Pacific Ocean basin (Allen et al. 1998) and are abundant on Australia’s Great 

Barrier Reef (Pratchett and Berumen 2008).  

Study location 

This study was conducted at two locations in Australia: Lizard Island (14° 40´S, 

145° 28´E), located in the northern Great Barrier Reef, and One Tree Island (23° 

30´S, 152° 06´E), located in the southern Great Barrier Reef. The two islands are 

separated by 1,200 km and experience differences in mean annual sea surface 

temperature (SST) of approximately 2°C (mean annual SST of ~27°C and ~25°C 

at Lizard Island and One Tree Island, respectively, and mean SST over the 

summer (January-March) and winter (July-September) months of ~28.7°C and 

~24.4°C at Lizard Island, and of ~27.5°C and ~22.5°C at One Tree Island, 

respectively) (http://www.cdc.noaa.gov, see Trip et al. 2008). At least 29 

individuals of the four study species were collected from each reef through 2003 

and 2004 (Table 1). Growth rates, densities, and condition of fish may vary 

among habitats at a given reef (e.g., Gust et al. 2002; Berumen et al. 2005; 

Pratchett and Berumen 2008), so to avoid these confounding influences, all 

collections and sampling were undertaken exclusively in haphazardly selected 

replicate sites on exposed reef crests on the south-east side of One Tree Island and 

Lizard Island. 

 

Estimation of age  

Adults (>50mm TL) were collected by spearing or netting. Juveniles were 

collected using a clove oil mixture (Munday and Wilson 1997) and hand nets. The 

total length (TL) of each fish was recorded to the nearest mm; sagittal otoliths 

http://www.cdc.noaa.gov/


were removed, cleaned and stored dry. Otoliths were prepared following Choat 

and Axe (1996). Sectioned otoliths were examined using a dissecting microscope 

(10x) using transmitted light, counting opaque zones. These were presumed to be 

annular growth increments (Fowler 1995; Berumen 2005). Otoliths that did not 

display two or more increments were examined using a high-power microscope 

(400x), and daily increments were counted following Ralston (1976).  

 

Growth modelling and estimation of initial growth rate  

Growth was modelled separately for each species from each location using the re-

parameterised equation of the von Bertalanffy Growth Function (rVBGF; Francis 

1988) (e.g., Welsford and Lyle, 2005; Trip et al. 2008, 2011; Claisse et al. 2009). 

The rVBGF model parameters express average body size at three arbitrary ages τ, 

ω and μ, with age ω the average of ages τ and μ. The parameters of the rVBGF 

equation provide estimates of mean size-at-age at specific ages, thus allowing 

comparison of mean size-at-age among populations. Ages 1, 3, and 5 were 

selected so as to best represent the overall form of growth over the majority of 

each species’ life span, from age classes in which size data were well represented. 

Thus, the parameters used in this study were L1, L3 and L5, with L1 a measure of 

mean size-at-age during the growth phase, and L5 a measure of mean size-at-age 

during the asymptotic phase of the growth trajectory. Parameters L1, L3 and L5 

were estimated by minimising the negative log of the likelihood given a normal 

probability distribution of size-at-age t (Lt), with mean Lt and standard deviation σ 

(Haddon 2001). Parameter L1 was used as an estimate of the average rate of 

somatic growth experienced between the ages of zero and one year. The percentile 



95% confidence intervals (CI) were estimated for each rVBGF parameter using a 

bootstrapping procedure (Götz et al. 2008).  

 

A Likelihood Ratio Test (LRT) was used to compare growth of each species 

between One Tree Island and Lizard Island (Kimura 1980; Cerrato 1990; Haddon 

2001). The null hypothesis of no difference in growth between locations was 

rejected at α = 0.05, with q degrees of freedom being the difference in the number 

of parameters constrained under the two hypotheses (e.g., q = 3 for coincident 

curves). LRT allows establishing which growth parameters differ significantly 

between populations, and therefore whether any differences in growth between 

populations sampled at the two locations arise from differences in mean size-at-

ages one, three, or five years.  

 

Longevity and mean maximum size  

Mean maximum age (longevity) and mean maximum size were calculated as the 

average age (years) and average size (TL, mm) of the 25% oldest individuals of 

each sample, respectively (Choat and Robertson 2002). A bootstrapping technique 

was used to estimate 95% CIs around each parameter (longevity and mean 

maximum size). Original sample means were bias-adjusted, and percentile CIs 

were calculated from the sorted bootstrapped estimates (Götz et al. 2008). 

Comparison of 95% CIs provides more conservative results relative to standard 

significance testing methods (Schenker and Gentleman 2001). 

 



Resource availability  

To quantify the availability of coral and non-coral resources that are primarily 

targeted by the four study species, the abundance (percent cover) and composition 

of benthic communities were quantified using replicate 50m random-point 

transects (English et al. 1997). Resource availability was measured using the same 

transects deployed to assess butterflyfish abundance, giving a total of fifteen 

transects across three replicate sites at each reef. Corals underlying each of 100 

points along each transect were identified to genus; Acropora corals were 

subdivided into morphological categories. All other benthic taxa were categorized 

to family. Variation in total coral abundance (arcsine transformed) among 

locations was analysed using one-way ANOVA for key major benthic categories 

(Acropora hyacinthus, other Acropora spp., Montipora spp., Porites spp., other 

hard corals, soft corals, and non-coral substrate) using R (R Development Core 

Team 2011). 

 

Butterflyfish density   

The majority of competitive interactions involving C. citrinellus, C. lunulatus, and 

C. trifascialis occur amongst individuals of the same species or with individuals 

of another of our study species, while non-butterflyfish aggressors are 

comparatively uncommon (see Table 1 in Berumen and Pratchett 2006). C. 

melannotus is rarely involved in inter-specific competitive interactions (Berumen, 

pers. obs.). Previous work has shown that where butterflyfishes densities are 

higher, aggressive interactions are more frequent (Berumen et al. 2005; Berumen 

& Pratchett 2006). These interactions may restrict access to preferred food 

resources with flow-on effects to growth or other life history characteristics. 



Consequently, mean density was estimated for C. citrinellus, C. lunulatus, C. 

trifascialis and C. melannotus at each location using 50m x 4m visual belt 

transects, with five replicate transects at each of three sites on the exposed reef 

crest.  

 

Variation in total density among locations was analysed using ANOVA, while 

variation in the relative density of species was analysed using multivariate 

analyses of variance (MANOVA). Univariate homogeneity was tested using 

Cochran's test and residual plots were examined to confirm MANOVA 

assumptions of multivariate homogeneity and normality. Pillai's Trace statistic 

was used to determine the significance of MANOVA results, following Olsen 

(1976), using SPSS® 16.0. 

 

Results 

Size-at-age, growth rate and adult body size  

A total of 506 fish were collected and aged for analysis of growth (Table 1). For 

C. citrinellus, C. lunulatus and C. trifascialis, the relationship between size and 

age showed an asymptotic form of growth, suggesting fast initial growth, with 

individuals achieving 68 – 92% of mean maximum (adult) body size by the age of 

one year. In contrast, C. melannotus displayed a comparatively more continuous 

form of growth, with individuals achieving 36 – 57% of adult size in the first year 

(Fig. 1).  

 



No significant differences in mean size-at-age one (L1) were found between 

Lizard Island and One Tree Island for C. citrinellus, C. lunulatus, and C. 

trifascialis, suggesting no differences in mean growth rate through the first year of 

life between locations (Fig. 2, Table 2).  In contrast, C. melannotus displayed 

significantly greater mean size-at-age one at One Tree Island (L1 = 75.1 mm TL) 

than at Lizard Island (L1 = 60.2 mm TL) indicating significantly faster growth 

between the ages of zero and one year at One Tree Island (Fig. 2, Table 2).  

 

Likelihood Ratio Tests indicated significant differences in growth between Lizard 

Island and One Tree Island for all four species (Table 2). Differences in growth 

trajectories between locations were explained by differences in expected mean 

size-at-ages three (L3) and /or five (L5). For C. citrinellus and C. trifascialis, fish 

were significantly larger from One Tree Island than from Lizard Island by the age 

of three (Fig. 2, Table 2). For C. citrinellus, C. lunulatus, and C. trifascialis, fish 

were significantly larger at the age of five years from One Tree Island (Fig. 2, 

Table 2). In contrast, C. melannotus showed no significant differences in expected 

mean size-at-ages three or five between the two locations sampled (Fig. 2, Table 

2). Comparison of mean body size of the 25% oldest individuals sampled 

confirmed significantly larger adult body sizes at One Tree Island for all species 

except C. melannotus, for which there was no difference in mean maximum size 

between the two locations (Fig. 3). These results further suggest that estimates of 

mean size-at-age provided from the rVBGF parameters are reliable estimates to 

examine differences in adult body size across populations.  

 



Longevity 

Examination of mean maximum age (longevity) showed that C. citrinellus had a 

significantly greater mean maximum age at One Tree Island (6.07 – 9.57 years, 

95% CI) than at Lizard Island (3.71 – 5.94 years). In contrast, the other three 

species all showed a greater mean maximum age at Lizard Island than at One Tree 

Island although those differences were not significant (Fig. 3).  

 

Benthic communities and resource availability  

Several categories of benthic cover that represent key food resources for the four 

study species differed significantly between Lizard Island and One Tree Island 

(Fig. 4a). Acropora spp. (excluding A. hyacinthus) (ANOVA, F1,25=37.782, P < 

0.001), , Montipora spp. (ANOVA, F1,25=41.431, P < 0.001), and other hard 

corals (ANOVA, F1,25=12.359, P = 0.002) were more abundant at One Tree 

Island, while soft corals (ANOVA, F1,25=6.926, P = 0.014) and all non-coral prey 

(ANOVA, F1,25=34.041, P < 0.001) were more abundant at Lizard Island (Fig. 4a). 

Abundance of Acropora hyacinthus (ANOVA, F1,25=0.875, P = 0.359), 

Pocillopora spp. (ANOVA, F1,25=0.656, P = 0.426), and Porites spp. (ANOVA, 

F1,25<0.001, P = 0.991) did not differ between locations (Fig. 4a). 

 

Butterflyfish density  

A total of 406 fish from 23 species were recorded in our density surveys. Mean 

density of butterflyfishes (presented hereafter as mean no. individuals per 200m2 

± S.E.) was significantly higher (ANOVA, F1,25=5.848, P = 0.023) at One Tree 

Island (14.4 ± 1.6) compared to Lizard Island (12.6 ± 1.4). The relative density of 



our study species and other key chaetodontid species also differed between Lizard 

Island and One Tree Island (MANOVA, Pillai’s trace=0.782, F8,18=8.07, 

P<0.001), however, only C. lunulatus exhibited significant differences in density 

on the exposed reef crest between locations (Fig. 4b). Mean densities of C. 

citrinellus, C. melannotus, and C. trifascialis did not differ significantly between 

locations (Fig. 4b).  

 

Discussion 

This study examined the life history traits (initial growth rate, mean 

maximum adult body size, and longevity) of four butterflyfish species at two 

locations on Australia’s Great Barrier Reef. The four species primarily conformed 

to predictions of how life history traits may differ between locations with varying 

temperature regimes. Butterflyfishes from One Tree Island generally grew larger 

than conspecifics from Lizard Island, a pattern coinciding with that seen in many 

ectotherms and fishes in response to temperature over gradients of latitude 

(Temperature-Size Rule or “Hotter is smaller” hypothesis; Kingsolver and Huey 

2008). One species, C. citrinellus (a generalist feeder), also showed a significant 

difference in longevity, living longer at the higher latitude location (One Tree 

Island). Larger body size coupled with greater life span at higher latitudes 

coincides with the pattern documented for an increasing number of coral reef 

fishes (e.g., Robertson et al. 2005; Ruttenberg et al. 2005; Trip et al. 2008).  

In addition to finding some differences in life history traits, we found 

notable differences in food resources and congeneric abundances. These types of 

environmental variables have the capability to influence growth rates (e.g., 



conspecific or competitor density, Gust et al. 2002; resource quality, Berumen and 

Pratchett 2008). The response seen in the four butterflyfish species examined in 

this study, however, clearly argues for a role of temperature in shaping large-scale 

patterns of variation in growth rate, body size, and longevity. In particular, 

Chaetodon trifascialis, among the most specialist of all butterflyfish species 

(Berumen and Pratchett 2008), almost exclusively consumes the tabular coral 

Acropora hyacinthus. We found no difference in availability of A. hyacinthus 

between One Tree Island and Lizard Island and also found no difference in 

conspecific abundance between the two sites. Despite this lack of difference in 

resources or conspecific abundance, we found differences in the mean maximum 

body size and growth rate (specifically, mean body size at the ages of three, L3, 

and five years, L5) of C. trifascialis, with individuals reaching larger body size at 

One Tree Island, a pattern that coincides with the predicted effect of temperature 

on body size in the majority of ectotherms (Kingsolver and Huey 2008).  

Furthermore, C. melannotus grew faster at the higher latitude location 

(One Tree Island) in the early years of the life span (at the age of one year), even 

though the preferred resource of C. melannotus (soft corals) were significantly 

more abundant at Lizard Island. If growth rate responded primarily to differences 

in food availability, we would have expected to find faster growth rates and larger 

adult body sizes at Lizard Island, a response which is found in conditions of 

increased food availability (Berrigan and Charnov 1994). In contrast, C. 

melannotus exhibited a higher initial growth rate at the location with 

comparatively lower abundance of preferred foods (One Tree Island). Work by 

Conover and colleagues using the Atlantic silverside Menidia menidia, has 

demonstrated that faster growth rates at higher latitudes are correlated with a 

decrease in temperature (shorter growing season) in species with strong juvenile 



mortality rates (countergradient variation model, Conover and Present 1990). The 

response seen in C. melannotus suggests that, in this case, the effect of latitude 

(temperature) is likely to play a comparatively greater impact on determining 

initial growth rate than the abundance of food resources.  

However, as temperature increases, most organisms experience increased 

metabolic demands (per unit of body size) (Brown et al. 2004) and greater 

requirements for food (Munday et al. 2008), and the response of demographic 

traits to temperature varies with levels of food abundance (Munday et al. 2008; 

Donelson et al. 2010). Food availability and / or quality is therefore likely to 

interact intimately with the effects of temperature on the response of life history 

traits over broad geographic scales. In natural populations, quantifying the relative 

contributions of temperature and food to the response of life history traits over 

gradients of latitude is a challenging task, and requires addressing the patterns of 

variation in diet composition as well as nutrient utilisation and assimilation 

processes over similar gradients of latitude. At a minimum, researchers need to be 

aware that food and competition for food could potentially confound or mask 

findings at these scales. Elucidating underlying mechanisms will not be possible 

until such data are available. Butterflyfishes are an ideal group to use for studies 

that seek to incorporate resource usage with environmental variables and other 

biological/ecological traits due to the ease of surveying the respective 

communities of fishes, resource usage, and benthic resources used by these 

species. We acknowledge that the present study falls short of this ambitious goal, 

but nonetheless it represents a useful starting point for future work seeking to 

explore the underlying general mechanisms structuring life history characters over 

geographic scales. Environmental variables such as resource availability and 

congeneric abundances species are going to be difficult to control for when 



sampling at scales as large as common geographic comparisons, but future work 

establishing life history traits and, particularly, similar studies making large-scale 

geographic comparisons should endeavour to quantify them, and aim at 

establishing their relative contributions.  
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Figure captions  

Figure 1. Chaetodon spp. Relationship between size and age of C. citrinellus, C. 

lunulatus, C. melannotus and C. trifascialis at Lizard Island and One Tree Island 

on the Great Barrier Reef (Australia). The best-fit re-parameterised VBGF 

(rVBGF) growth model is shown for each species at the two locations. Circles and 

solid line represent size-at-age data and growth trajectory at Lizard Island, and 

grey triangles and dashed line represent size-at-age data and growth trajectory at 

One Tree Island.  

 

Figure 2. Chaetodon spp. Comparison of expected mean size-at-ages one, three, 

and five years in C. citrinellus, C. lunulatus, C. melannotus and C. trifascialis 

between Lizard Island (open bars) and One Tree Island (grey bars) on the Great 

Barrier Reef (Australia). Re-parameterised von Bertalanffy Growth Function 

(rVBGF) parameters L1, L3 and L5 are presented with 95% confidence intervals. 

Likelihood Ratio Test of significant difference in rVBGF parameter values 

between the two locations is indicated (see Table 2): *** = P < .001 ; ** = P < .01 

; * = P < .05 ; n.s. = not significant (P > .05).  

 

Figure 3. Chaetodon spp. Correlation plots of mean maximum size against mean 

maximum age comparing adult size and longevity of C. citrinellus, C. lunulatus, 

C. melannotus and C. trifascialis between Lizard Island (circles) and One Tree 

Island (triangles). Means are estimated from the 25% oldest individuals for each 

population sampled, and are bias-adjusted. Confidence intervals (CI) are 95% 

percentile CIs estimated from bootstrap estimates.  



 

Figure 4. (a) Mean percent cover of preferred prey resources and (b) mean 

density of C. citrinellus, C. lunulatus, C. melannotus and C. trifascialis at Lizard 

Island (open bars) and One Tree Island (shaded bars) on the Great Barrier Reef 

(Australia). Bars represent (a) the mean coverage of 8 benthic categories counted 

in 10m line-intercept transects and (b) the mean number of individuals counted in 

200m2 visual belt transects ± Standard Error (S.E). ANOVA results of 

significance of difference between locations for each species is indicated: *** = P 

< .001 ; ** = P < .01 ; * = P < .05 ; n.s. = not significant (P > .05). (#) symbols on 

x-axis labels indicate diet categories of hard corals. Dashed lines show the range 

of diet categories targeted by each of the four study species (Chaetodon 

citrinellus, C. lunulatus, C. melannotus and C. trifascialis).  

 


	Methods
	Results

