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Experimental observations and theoretical studies show that nonlinear internal waves occur widely

in shallow water and cause acoustic propagation effects including ducting and mode coupling. Hor-

izontal ducting results when acoustic modes travel between internal wave fronts that form wave-

guide boundaries. For small grazing angles between a mode trajectory and a front, an interference

pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is

provided along with comparisons between results from the formulated model predicting a horizon-

tal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are

considered, including boxcar and jump sound speed profiles where change in sound speed is

assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The

focus of this analysis is on different front locations relative to the source as well as on the number

of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby

changes the interference patterns. For sources oriented so that the front appears concave, the areas

with interference patterns shrink as curvature increases, while convexly oriented fronts cause

patterns to expand. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3666004]

PACS number(s): 43.30.Bp, 43.30.Zk [JAC] Pages: 1689–1700

I. INTRODUCTION

Nonlinear internal gravity waves (NIWs) in coastal

waters can strongly influence acoustic propagation.1

Although NIWs occur worldwide,2 they are ubiquitous in

shallow water and vary considerably in their characteristics,3

and their acoustic effects are of particular experimental inter-

est. The waves are often observed from late spring through

early fall in periods of sharp stratification.2 In a well know

process, nonlinear internal waves cause sound speed vari-

ability by vertically displacing water parcels, and the vertical

structure of these internal waves is well described using a

few low order baroclinic modes. The NIWs produce rela-

tively large isopycnal displacements4 (10–30 m or more),

and corresponding large changes in the water sound speed

profile. The consequences of acoustic scattering by NIWs

can be significant changes in the vertical acoustic energy dis-

tribution, particularly for low frequency (<1 kHz,) signals.5

A review of some results from the Shallow Water ‘06

experiment describes features of propagation through

NIWs.6 These include two-dimensional (2-D) propagation

across NIW fronts that cause fluctuations of sound intensity

arising from mode coupling.7 Such intensity changes were

confirmed in 3-D NIW environments in which acoustic cal-

culations were performed without azimuthal coupling

(N� 2-D).8 The NIW packets produced strong intensity fluc-

tuations when the angle between acoustic propagation direc-

tion and NIW fronts is larger than about 20 deg. For smaller

angles, and especially when the propagation is near parallel

to the fronts, calculations show intensity focusing and defo-

cusing.9 This strong effect was observed by analysis of data

collected during the 1995 SWARM experiment.10,11 Fully

3-D propagation calculations12 also show this behavior and

suggest where azimuthal coupling may be important. A sum-

mary of propagation mechanisms as a function of angle

between acoustic direction and NIW front is provided in

Ref. 13.

At small angles between propagation directions and

NIW fronts, horizontal refraction effects may lead to distinc-

tive interference patterns or striations in horizontal transmis-

sion loss (TL), especially at lower frequencies. These

striations were hypothesized to arise from interference

between a direct propagation path and a path refracted by

the NIW front. The pattern was called a Horizontal Lloyd

mirror (HLM) in Ref. 1 because of the correspondence to the

classical Lloyd mirror in a vertical plane with a surface-

reflected path. The classical Lloyd mirror has a long history

and is relevant to many shallow water applications.14 The

HLM patterns are of considerable interest because they have

been observed, for the first time, in experimental data taken

during Shallow Water ’0615 and discussed in experimental

observations in Ref. 16. Moreover, their importance has

been conjectured for containing information that potentially

may be extracted for characterizing NIW features.1 The

objective of this study is to explore properties of HLM
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interference patterns and their dependence on environmental

and internal wave parameters. Different representations of

NIWs are considered and compared to find one that is both

convenient and generally faithful to the widely used

Korteweg–de Vries (KdV) solitons. The selected sound

speed models are benchmarked with the Adiabatic Mode

Parabolic Equation (AMPE).17 With this model established,

extensions are made to incorporate multiple waves because

solitons are known to travel in trains. Fronts exhibiting dif-

ferent degrees of curvature are observed experimentally in

synthetic aperture radar (SAR) images from many experi-

ments,2 so this property may be expected to be particularly

important. As a result, both straight and curved internal

wave fronts are considered.

The paper is structured as follows. The next section

describes three NIW approximations, a sech2, a boxcar

shape, and single sound speed jump. A model for NIW inter-

actions is formulated and describes full-field acoustic calcu-

lations used for AMPE. Section III formulates the horizontal

Lloyd mirror model using Huygens’ Principle and provides

convenient expressions for later use. Extensions are made

for multiple and moving NIWs. A revised formulation for

the horizontal Lloyd mirror for curved NIW fronts, again

using Huygens’ Principle, appears in Sec. IV. Dependence

of the interference pattern on parameters such as wave spac-

ing and speed, as well as frontal curvature is discussed in

Sec. V. The final section discusses results and conclusions as

well as future work.

II. ENVIRONMENTAL MODEL AND PROPAGATION
CALCULATIONS

A. Environmental formulation

The ocean regional environment used in this study has

properties based on the New Jersey shelf, including trains of

NIWs observed and recorded in the 1995 SWARM18 and

Shallow Water 06 experiments.6 A range independent back-

ground water sound speed profile c0(z) from the SWARM

experiment appears as the solid curve in Fig. 1(a). It suggests

that c0(z) has two layers, so a simplified profile10 shown with

dashed lines in Fig. 1(a) is used. The upper layer sound

speed decreases with constant gradient to depth 45 m, from

surface value of 1534 to 1484 m/s, and the lower layer is iso-

speed. The bottom bathymetry is approximated as flat with

depth H¼ 71 m. The sediment sound speed has a 20 m tran-

sition layer from 1600 to 1650 m/s, with an isospeed base-

ment of 1650 m/s continuing to 1000 m. The bottom is

simplified to neglect attenuation, so that the focus of the

study can be on water column effects. The canonical sound

speed environment used in this study is intended to exem-

plify important ocean acoustic propagation physics. Clearly

the detailed acoustic response relevant to any particular

experiment will depend on the specific environment for that

experiment. Other water sound speed profiles lead to acous-

tic responses that could be concentrated in different mode

numbers.19

NIWs give rise to vertical isopycnal displacements, g,
which can be written using Eq. (1).3 A cylindrical coordinate

system (r, h, z) is used, where z¼ 0 and H are the ocean

surfaces, r is range, and h is azimuth. Separating variables

with F(r, h) as the horizontal displacement,

gðr; h; zÞ ¼ Fðr; hÞĝðzÞ; (1)

leads to a boundary value problem for the internal wave

modes ĝj:

d2ĝj

dz2
þ j2

j

N
2

zð Þ � x2
j

x2
j � f 2

in

 !
ĝj ¼ 0; (2)

ĝjð0Þ ¼ ĝjðHÞ ¼ 0; (3)

where the linear internal wave mode, ĝ, can be calculated

assuming a flat ocean bottom with no background currents.

In Eq. (2) �NðzÞ is buoyancy frequency, fin is local inertial fre-

quency, xj are eigenvalues, and jj are the horizontal internal

wave wavenumbers. To incorporate internal wave effects,

only the first internal wave mode g1(z) (Ref. 20) is consid-

ered. Higher modes may be considered once the model is

established because they are relatively easy to treat. The first

modal shape is simplified as having two layers, each

approximated linearly.5 In deep water, the ratio of internal

wave amplitudes to water depth is small with the horizontal

motion expressed as a plane wave. However, in shallow

water this ratio can be much larger, and soliton solutions of

the nonlinear KdV equation are widely used as models.2,21

Following Refs. 5 and 21, the horizontal isopycnal depres-

sions from a series of N NIWs are

F r; hð Þ ¼
XN

i¼1

Ai sech2 y r; hð Þ � yi � Vit

Ki

� �
; (4)

where Ai, Ki, yi, and Vi are the amplitude, width, relative

position, and speed of a planar wavefront which travels in

the direction of the y axis.

The most significant acoustic activity usually occurs

near the lead internal wave in an internal wave train (typi-

cally the lead wave is the largest).5,22 Refraction and reflec-

tion effects determine variations of the acoustic field. These

mechanisms are controlled by the angle between the direc-

tions of acoustic propagation and internal wavefronts. Sig-

nificant refraction near the NIW occurs when this angle is

small; that is to say, the acoustic propagation direction is

along the NIW front. The spacing between waves is assumed

wide enough so that propagation contributions arise from the

lead internal wave within a circular region of interest [see

Fig. 1(b)]. The lead wave is spatially coherent and self-

healing to perturbations, so it does not change significantly

in height or width.22 Consequently, the wave preserves its

shape as it moves relative to the acoustic source, at the cen-

ter of the region, and calculations are illustrated for various

NIW locations [choices of t in Eq. (4)]. Thermocline dis-

placements based on this shape are shown in Fig. 1(c), where

the maximum range is 15 km and cross range distance is

800 m. Amplitude A1¼ 10 m and wavelength K1 ¼ 270 m

lead to an average sound speed increase of about 12 m/s,

using Eq. (4) and following Ref. 21. For comparison, an
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example with A1¼ 20 and twice the sound speed increase is

shown.

B. Acoustic propagation computations

Relatively slow horizontal changes justify the assump-

tion of adiabatic propagation where conditions are not close

to mode cutoffs. Also, forward scattering is an excellent

approximation for these environments. As a result TL calcu-

lations are preformed using AMPE,17 which assumes no cou-

pling between acoustic normal modes. The pressure field is

represented as a finite sum of M propagating modes,

Pðr; z; hÞ ¼
XM

m¼1

½kmðr; hÞ�1=2umðr; hÞwmðz; r; hÞ: (5)

The horizontal wavenumber km varies slowly in (r, h), which

permits energy conservation to be satisfied conveniently.

The local acoustic modes wm incorporate slow horizontal

variation from NIWs, and the amplitude um is found from a

PE in range h. Sound speed changes from NIWs are discre-

tized on a horizontal grid, and km and wm are calculated at

each grid point. The normal mode code COUPLE (Ref. 23)

is used to calculate mode shapes and wavenumbers with the

propagation range divided into range-independent sub-

regions and a strong absorption layer imposed in the bottom

100 m.

Because a Lloyd mirror pattern should arise where prop-

agation is nearly parallel to waveguide boundaries, calcula-

tions are shown in the region of Fig. 1(a) enclosed by the

black dashed line. Different spacings s between the NIW and

the acoustic source measure the progression of the internal

wave as it passes over the source. A frequency of f¼ 55 Hz

is used because it is within the range where strong NIW ac-

tivity was observed in the SWARM experiment.10 For this

frequency, the waveguide supports four propagating modes.

Figure 1(d) shows TL reduced by cylindrical spreading (r),

TL ¼ �10 log
I

I0

� �
þ 10 logðrÞ; (6)

with a reference intensity I0, for the NIW model in Eq. (4),

where s¼ 400 m, N¼ 1, and A1¼ 10 m. Although the modal

interference from the four modes is clearly visible, the pat-

tern created by horizontal refraction from the NIW is some-

what obscured. To focus on structure of the patterns,

subsequent calculations use only the first propagating acous-

tic mode. The TL contours from AMPE for this case are

shown in Figs. 2(a) and 2(b), where the distances s are 400

and 800 m and the cross range of 1.8 km corresponds to part

of the boxed region in Fig. 1(b). Contours in all plots are

shown over a 10 dB dynamic range. Figures 1(d), 2(a), and

2(b) show that a single mode permits focus on the basic in-

terference patterns. However, a frequency that supports mul-

tiple modes is used because often one mode dominates. This

allows better extraction of interference pattern properties

and also the possibility to extend calculations to multiple

modes.

Two modifications of the sech2 NIW environment are

considered. The first approximates the sech2 shape by a box-

car consisting of two sound speed jumps as suggested in Fig.

2(c). This model assumes no transmission, and strong inter-

ference patterns where incident angles upon the internal

wave reflector are shallow. In this case, in the direction of

sound speed variation (that is, internal wave propagation),

the acoustic wavelengths have longer projections. These

long wavelengths move rapidly over large distances, so that

small sound speed changes have little effect on them, and

the boxcar approximation is appropriate. The magnitudes of

the sound speed jumps do not directly correspond to the

FIG. 1. (Color online) Nonlinear in-

ternal wave environment. (a) Back-

ground water sound speed profile

based on the SWARM region is

shown in the solid line. Dashed lines

represent a two-part linear approxi-

mation to the SWARM profile. (b)

Horizontal schematic with CW

source located at the center of a cir-

cular ocean region (radius, 15 km).

Environmental features and calcula-

tions are displayed for the

15 km� 2 km box enclosed by the

black dashed line. (c) Thermocline

for NIW example from 0 �C to

10 �C. (d) Reduced transmission

loss (dB re: 1 m) contours in a hori-

zontal plane for the boxed region

shown in (b). Four-mode calculation

at 55 Hz from AMPE. The internal

wave in (c) lies along upper image

edge, 400 m from the source.

The interference pattern of energy

refracted by the internal wave is

multi-modal.
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maximum change in sound speed across the sech2. Ways to

select the jump magnitude include the value at the point of

maximum sech2 slope or from matching the areas under the

sech2 and boxcar. The latter is used, and Fig. 2(c) sketches

the two wave representations. The boxcar area depends on

width and amplitude, so each must be chosen to match the

sech2 area. A jump of 5 m/s (the 1/e point of the 12 m/s

sound speed variation) and a width of 500 m are chosen,

accounting for 94 percent of the sech2 area. At the first jump

interface of the boxcar, the sound speed increases, causing

mainly reflection at shallow angles and relatively little trans-

mission. At the second interface, only minor reflections

occur because the sound speed decreases. Therefore, the sec-

ond modification is to approximate the thermocline displace-

ment as a single jump in sound speed between the two

isospeed regions. Calculations to follow use these simplifica-

tions and focus on the strength of the associated NIW sound

speed jump, the number of wavefronts and their motion as

well as the source to front separation and frontal curvature.

III. HORIZONTAL LLOYD MIRROR

In this section, the HLM is formulated using Huygens’

Principle. The classical Lloyd mirror for propagation in a

vertical plane takes pressure as the sum of a direct and ocean

surface-reflected wave.14 In the HLM, an adiabatic mode

propagates along horizontal rays, in a horizontal plane.24 It

is appropriate to assume that any adiabatic vertical mode

retains its energy during propagation for sufficiently slow az-

imuthal changes.

To develop the HLM model, this vertical geometry is

rotated to the horizontal plane, shown in Fig. 3(a). The pa-

rameter h1, not associated with the angle h in Eq. (5), is the

angle between the acoustic propagation direction and NIW

crests. The straight NIW reflector is taken along y¼ yF. The

source S is positioned at (0,0) and the receiver at (L, d). The

direct and reflected paths to the receiver are r0 and r1þ r2,

where

r1ðh1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

F

q
¼ x

cos h1

; (7)

and,

r2ðh1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðL� xÞ2

q
¼ L� x

cos h2ðh1Þ
: (8)

The pressure P(x, y, z) satisfies the 3-D Helmholtz equation

for a source located at (xs, ys, zs),

r2Pþ 1

q
@

@z
q
@P

@z

� �
þ k2ðz; x; yÞP

¼ �4pdðx� xsÞdðy� ysÞdðz� zsÞ: (9)

A separable solution of Eq. (9) is

Pðx; y; zÞ ¼ Cmðx; yÞwmðz; x; yÞ; (10)

where Cmðx; yÞ is the modal amplitude and wm(z; x, y) is the

mth modal depth function. Because from Sec. II B a single

mode is considered, the mode number subscript m is dropped

so that the modal amplitude is governed by

r2Cþ k2
HC ¼ �4p

wðzs; xs; ysÞ
qðzsÞ

dðx� xsÞdðy� ysÞ; (11)

where kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

z ðz; x; yÞ
p

is the horizontal wavenumber.

The quantity kH has a slow variation in x and y, but in the

present model, it is constant inside and outside of the duct.

In cylindrical coordinates, the axisymmteric solution to Eq.

(11) is

CðrÞ ¼ ip
wðzs; rsÞ
qðzsÞ

H
ð1Þ
0 ðkHjr � rsjÞ; (12)

which yields solutions of the form

CðrÞ � q
eikH jr�rsjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHjr � rs

p
j
; (13)

in the far-field approximation. The variable r is the radial

coordinate, rs the source position, and the constant

q ¼ i
ffiffiffiffiffiffi
2p
p

e�ip=4wðzs; rsÞ=qðzsÞ.

A. Huygens’ principle formulation

Huygens’ method is used to formulate an expression for

a reflected wave at low grazing angles. Each wave is treated

as a different source with diminished strength due to the am-

plitude decrease 1=
ffiffiffiffiffiffiffiffiffi
kHr1

p
along the propagation path, and

the obliquity factor and the Kirchoff Integral Theorem are

incorporated.25 There are at least two other approaches to

find this amplitude, including the image method and plane

wave decomposition.26

FIG. 2. (Color online) Reduced TL (dB re: 1 m) contours in the horizontal

from AMPE using one mode in the NIW environment. The internal wave

lies along upper image edge, and source is at left boundary (black dot). Dis-

tance between internal wave acoustic source is (a) 400 m, and (b) 800 m.

Range is 15 km and cross range is 1800 m. (c) Boxcar and sech2 representa-

tions of an NIW. Boxcar width and height are chosen so that its area is about

the same as the sech2.
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Huygens’ formulation requires finding amplitudes and

phases of the sources on the NIW front, which when inte-

grated comprise the reflected wave at the receiver. Reciproc-

ity of the Green’s functions is used with a source at (L, d) for

calculations. The free space Green’s function G(x, y) that

satisfies Eq. (11) with (xs, ys)¼ (L, d) is used with the modal

amplitude Cðx; yÞ where (xs, ys)¼ (0, 0). For a volume X and

surface Ŝ, Green’s Identity is

ð
X

Cr2G� Gr2C dX ¼
ð

Ŝ

C
@G

@n̂
� G

@G

@n̂
dŜ; (14)

where n̂ is the outward pointing unit normal to the wave-

front. Substituting G(x, y; L, d) and Cðx; y; 0; 0Þ, which have

the form of Eq. (13), into Eq. (14) and solving for CðL; dÞ
gives

C L; dð Þ ¼ w zs; 0; 0ð Þ
w zs; L; dð ÞG 0; 0; L; dð Þ

� q zsð Þ
4pw zs; L; dð Þ

ð
s

C
@G

@n̂
� G

@C
@n̂

dŜ: (15)

The definition of q implies that

wðzs; 0; 0Þ
wðzs; L; dÞGð0; 0Þ � q

eikHr0ffiffiffiffiffiffiffiffiffi
kHr0

p : (16)

The integral portion of Eq. (15), denoted as CRðx; yÞ, is the

Kirchoff Integral, and the Kirchoff boundary conditions imply

that the only portion of Ŝ that contributes is along the wavefront

y¼ yF. Both amplitude and Green’s functions are evaluated at

y¼ yF and have solutions like Eq. (13) with jr � rsj replaced

by r1 and r2. The obliquity factor C(h1, h2) converts the normal

derivative terms in Eq. (15) to derivatives with respect to r1 or

r2. This factor is an average of cosines of the normals with

respect to the horizontal for the incident and reflected angles,

Cðh1; h2Þ ¼
cos

p
2
� h1

� �
þ cos

p
2
� h2

� �
2

; (17)

and accounts for the angular tilt of the source. Finally, the

boundary condition for Cðx; y; 0; 0Þ includes the coefficient

R(h1) to account for reflection off the wavefront surface and

is discussed later.

From Eqs. (15) and (17), the amplitude of the reflected

wave is given by

CR L;dð Þ� ikH
w zs;0;0ð Þ

q zsð Þ

ð1
0

R h1ð ÞC h1h2ð Þe
ikH r1þr2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
Hr1r2

p dx;

(18)

where integration in x implies summation of all possible

sources along the x axis. Stationary phase is employed to

evaluate the integral expression in Eq. (18) for large kH.

Using Eqs. (7) and (8), the phase is

/ðx; yÞ ¼ kH
x

cos h1ðxÞ
þ L� x

cos h2ðx; yÞ

� �
: (19)

FIG. 3. (Color online) (a) Horizontal Lloyd mirror geometry with NIW modeled as a sound speed jump. Acoustic source S is located at the origin and pressure

P is received at (L, d). Propagation paths shown for a direct wave r0 and a reflected wave r1 and r2. For incident angles / near critical, beam displacement

D(/) occurs. (b) Schematic for multiple wavefronts incorporating dominant secondary reflections and transmissions from additional fronts. The value wj repre-

sents the width of layer j. Transmission Tij and reflection Rij coefficients are from region i to region j. (c) Schematic of NIW front at initial time t0 and a later

time t after the wave moves with constant speed V. The incident sound path from (0, 0) to A0 has wavelength k0¼ c/f0. The sound reflects off the front at t0 and

at t. The projected wavelength of reflected sound k is the shortest distance between the reflected paths. (d) Horizontal Lloyd mirror geometry where a curved

nonlinear internal wave is modeled as a sound speed jump. The front shown corresponds to the plus root of Eq. (44). Propagation paths are shown for a direct

wave (r0) and a reflected wave (�r1, �r2). The line tangent to the front at the stationary point 1 and �h1 and �h2 are the angles between reflected rays and this

tangent.
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The major contribution from stationary phase occurs when

cos h1¼ cos h2, or h1¼ h2¼ hs, giving

CRðL; dÞ � RðhsÞ
i
ffiffiffiffiffiffi
2p
p

wðzs; 0; 0Þ
qðzsÞ

eikHðr1þr2Þ�ip=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHðr1 þ r2Þ

p : (20)

Using the definition of q and Eqs. (16) and (20) gives the

amplitude as

CðL; dÞ ¼ q
eikHr0ffiffiffiffiffiffiffiffiffi

kHr0

p þ Rðh1Þ
eikHðr1þr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHðr1 þ r2Þ

p
 !

: (21)

Internal wave effects alter the reflection coefficient from the

traditional Rayleigh formula, which involves the index of

refraction n ¼ k̂=k. A variation of this reflection coefficient

appears in Ref. 1, which is called the ESME reflection coeffi-

cient. It is expressed as

RðhsÞ ¼
sin hs � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hs � t2

p
sin hs þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hs � t2

p ; (22)

where t1¼ 2pf/kH and t2 ¼ 2pf=k̂H are the horizontal phase

velocities for frequency f and the horizontal wavenumber in

the upper medium k̂H. The ratio of horizontal phase veloc-

ities t ¼ t1=t2 may be different from n for larger angles.1 In

this case, propagation at small incidence angles and low

acoustic modes, wavenumbers are close to that of the ocean

region and to each other, so a ratio of phase velocities well

approximates the index of refraction.

The reflection coefficient permits only wave reflection

for incident angles smaller than the critical angle. Thus the

wavefront is not a perfect reflector, and R= 1 for all propa-

gation angles. The critical angle is defined as

u ¼ cos�1 t: (23)

Using Eqs. (7) and (8) implies

t � yFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

F

p ; (24)

and

t � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ d2

q ; (25)

for the jRðhsÞj � 1. Combining the conditions yields an

equation which predicts locations d in terms of yF and L for

which to expect an HLM interference pattern:

dðL; yFÞ � L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

1� t2

r
� yF: (26)

The constraint Eq. (26) assumes that the magnitude of the

reflection coefficient decreases from one sharply and no

reflection occurs outside the constrained region. Although

the transition is rapid it is not immediate, so Eq. (26) gives

the region in which a strong HLM pattern occurs.

For the selected sound speed values of c¼ 1500 and

ĉ ¼ 1512 m/s, the critical angle is about 7 deg. This particu-

lar sound speed jump restricts the d, yF, and L values giving

a HLM pattern according to Eq. (26). For example, when

s¼ 400 m and L¼ 15 km, the maximum value of d is about

1428 m. Choosing c as above and ĉ ¼ 1524 m/s, however,

gives a critical angle of about 10 deg, allowing a maximum

of about d¼ 2250 m for the same yF (or s) and L.
In addition to horizontal sound speed changes, the verti-

cal sound speed profile also influences the HLM pattern.

Several approximations may be used to describe the sound

speed profiles found during the SW06 experiment.19 The

established vertical profile gives a separate dependence of

the interference pattern on mode number. The mode number

changes both kH and the reflection coefficient, and the domi-

nant effect on the pattern results from changes in the former.

For the region of interest, the sound paths r0 and (r1þ r2)

only differ by a few percent. The major contribution in TL

will therefore arise from the phase terms in Eq. (21) and

from the mode number. This is seen by following the formu-

lation in Refs. 14 and 27 for the classical Lloyd mirror

model. Using L 	 s, the direct and reflected paths in Eq.

(21) are approximated to show the magnitude of the modal

amplitude. Adjacent nulls in the amplitude are spaced in

cross range according to

jdi� diþ1j ¼ LkHs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ip

kHs

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðiþ 1Þp

kHs

� �2
s������

������;
(27)

for i¼ 0, 1,…, where i indexes the zeros in the magnitude of

Eq. (21). Because kHs	 ip, and an HLM pattern is only sup-

ported for ranges much greater than cross range, a binomial

expansion of Eq. (27) for each internal wave mode m yields

jdi � diþ1j � Lp2 2iþ 1

kHs

¼ Lp2 2iþ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pf

c

� �2

� ð2m� 1Þp
2H

� �2
s ; (28)

for m¼ 0, 1, … . As i increases, so does null spacing. As

mode number increases, the spacing increases and the HLM

beams become wider. Equation (28) also indicates a depend-

ence on frequency f opposite to mode number dependence as

f increases the null spacing causes more narrow beams.

Beam displacements are known to occur at interfaces

with the ocean bottom. Because sound speed changes

between the water column and sediment can be large, it may

be necessary to incorporate pressure disturbances that propa-

gate along the water-sediment interface. Figure 3(a) depicts

an alternate propagation path r3þ r4þD(/) for reflected

waves near an interface,26 the lateral wave. The magnitude

of the displacement D(/) is determined by the incident angle

and refractive index change and is largest for incident angles

near critical. In calculations, Eq. (21) is used with a lateral

component CLðx; yÞ for the reflected portion:28
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CLðx;yÞ�
8pik̂He�ip=8

C
1

4

� �
kH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð2/Þ

p
ðkHðr1þr2Þ=2Þ1=4

eikHðr1þr2Þ

ðr1þr2Þ
;

(29)

which is valid for /�hs<�. The constant � is chosen

such that the angles are within about 2 deg and the quan-

tity Cð1
4
Þ is the Gamma function. Calculations show that

beam displacements were found to have negligible effects.

Another approximation of the NIW sound speed change

uses two regions of constant gradient with the sound

speed peak change at the center of the NIW. This simplifi-

cation preserves refractive effects but will not be dis-

cussed here.

B. Multiple NIWs

Ocean NIWs travel in packets with each wave having

distinct amplitudes.2 Incorporating this extension into the

HLM model requires modifying the reflection coefficient. A

schematic is shown in Fig. 3(b), where each R and T repre-

sent reflection and transmission coefficients at each inter-

face. These reflection coefficients have the same form as Eq.

(22). For l isospeed layers the reflection coefficients are

recursively defined as26,27

Rðl�2Þlðh1Þ ¼
Rðl�2Þðl�1Þ þ Rðl�1Þl

1þ Rðl�1ÞlRðl�2Þðl�1Þe2iUl�1
; (30)

and

Rðl�3Þlðh1Þ ¼
Rðl�3Þðl�2Þ þ Rðl�2Þl

1þ Rðl�2ÞlRðl�3Þðl�2Þe2iUl�2
; (31)

reaching R1l. Equations (30) and (31) require l � 3 and l � 4.

The phase Uj ¼ kj
Hwðj�1Þ sin hj, for width wj and horizontal

wavenumber kj
H of the jth layer. Snell’s law is satisfied at

each interface, so k1
H cos h1¼ kj

H cos hj for all j. Layers with

even values of l have higher sound speed values and represent

NIWs. The case l¼ 2 (one front) is the jump model used so

far, and l¼ 3 (2 fronts) is the boxcar representation of the

sech2. Of interest are effects of different sounds speed jumps

and spacings of NIWs in the train.

C. Moving NIWs

The formulation above assumes a fixed NIW reflector,

but NIW motion relative to a stationary source implies a

Doppler shift. This appears as a frequency change and is

derived using geometric arguments.29 At time t0, the wave

begins to travel at a constant wave speed V. At time t, the

wave has moved to V(t� t0) as seen in Fig. 3(c). Incident

sound begins at the source and reaches A0 with wavelength

k0. At time t, sound reflects at a different point along the

front. The reflected wavelength k is given by the shortest dis-

tance between the reflected sound paths at times t and t0.

Trigonometry gives the two relations

cðt� t0Þ ¼ k1 þ
Vðt� t0Þ

cosðp=2� h1Þ
; (32)

and

k ¼ Vðt� t0Þ
cosðp� h1 � h2Þ

cosðp=2� h1Þ
þ cðt� t0Þ; (33)

representing path lengths from the source to A" and from

point B to the receiver. Eliminating (t� t0) and h2 and using

the relations f¼ c/k and f0¼ c/k0 gives the modified fre-

quency ~f :

~f ¼ f0

1� V

c
sinðh1Þ �

V

c

� �2

1� V

c

� �2

0
BBB@

1
CCCA: (34)

This change in frequency influences the horizontal wave-

number associated with the reflected portion of the modal

amplitude. Substituting Eq. (34) into kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

z ðz; x; yÞ
p

and expanding gives the corrected horizontal wavenumber
~kH

~kH � kH � 2
k2

kH
sin h1

V

c
; (35)

where k¼ 2pf/c. The modal amplitude is now

~Cðx; yÞ � q
eikHr0ffiffiffiffiffiffiffiffiffi

kHr0

p þ RðhsÞ
ei~kHðr1þr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kHðr1 þ r2Þ

q
0
B@

1
CA: (36)

The horizontal wavenumber correction is a weighted Mach

number that changes both amplitude and phase of the

reflected paths. For an initial frequency of 55 Hz and

c¼ 1500 m/s, the difference in kH and ~kH is about 0.6 km�1.

Calculations focus on a single wavefront modeled as a jump

to describe effects of the frequency change.

IV. CURVED NONLINEAR INTERNAL WAVE FRONTS

The Huygens’ formulation for the HLM is useful when

the NIW front is not straight. Instead of the front along

y¼ yF in Fig. 3(a), the front is y¼ f(x) as in Fig. 3(d), and in

formulas r1, r2, R(h1), h1 and h2 are replaced by �r1, �r2, �Rð�h1Þ,
�h1, and �h2. Source and receiver locations are in Sec. III. The

angles �h1 and �h2 are between �r1 and �r2 and the line tangent

to the reflector at any point ð�x; �yÞ on the front. The incident

and reflected rays become

�r1ð�h1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ ð�y� yFÞ2

q
¼ �xþ mð�xÞ½�y� yF�

cos �h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�xÞ2 þ 1

q ; (37)

and

�r2ð�h1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� �xÞ2 þ ðd � �yÞ2

q
¼ ½L� �x� þ mð�xÞ½d � �y�

cos �h2ð�h1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�xÞ2 þ 1

q ; (38)

where mð�xÞ is the slope of the line tangent to the front

�y ¼ f ð�xÞ.
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The reflected wave may be expressed using Huygens’

Principle via Eq. (18). The equation for amplitude becomes

C L; dð Þ � qH
eikHr0ffiffiffiffiffiffiffiffiffi

kHr0

p þ ikH
w zs; 0; 0ð Þ

q zsð Þ

�
ð1

0

R h1

� 	
C h1; h2

� 	 eikH r1þr2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

Hr1r2

p dx; (39)

where the obliquity factor is now

�Cð�h1; �h2Þ ¼
cos

p
2
� �h1

� �
þ cos

p
2
� �h2

� �
2

: (40)

The major contribution to the integral in Eq. (39) occurs at
�h1 ¼ �h2 ¼ �hs according to stationary phase. Using Eqs. (37)

and (38) gives the relation

�xþ mð�xÞ½�x� yF�
�r1

¼ ½L� �x� þ mð�xÞ½d � �x�
�r2

: (41)

Equation (41) is equivalent to the requirement that the angles

are equal and can be solved for the stationary point ð�xs; �ysÞ.
The integral term in Eq. (39) is denoted CRðL; dÞ and

becomes

�CRðL; dÞ � q �Rð�hsÞ
eikHð�r1þ�r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHð�r1 þ �r2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 �hs

sin2 �hs þ vð�xs; �ysÞ

s
;

(42)

where vð�xs; �ysÞ is the correction term introduced into Eq.

(20) by front curvature. An expression for vð�xs; �ysÞ is

vð�xs; �ysÞ ¼ m2 1� ð�xs þ mð�ys � yFÞÞ2

�r2
1ðm2 þ 1Þ

 !

þM

m

�r1ðL� �xsÞ � �r2�xs

ð�r1 þ �r2Þ

� �
; (43)

where M ¼ f 00ð�xsÞ is the approximate curvature of the front

at the stationary point. For the formulation in Sec. III A, a

straight front has m¼ 0 and M¼ 0, and Eq. (42) reduces to

Eq. (20). For a straight tilted front M¼ 0 while m= 0.

Although Eq. (43) holds for any continuous wavefront

shape f(x), this study focuses on circular fronts with

f 6ðxÞ ¼ yF6ð�rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

Þ; (44)

where r is the radius of curvature of the NIW. Equation (44)

gives mð�xÞ ¼ 6�x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � �x2
p

, and the root depends on the

orientation of the front. For a front in negative cross range

relative to the source, the plus root corresponds to a concave

front as in Fig. 3(d), and the minus root to a convex front.

The maximum curvature considered is r¼ 5 km, which is

consistent with SAR images in Ref. 2 as well as data from

the SW06 experiment.30

The reflection coefficient �Rð�hsÞ differs by a factor from

the straight case although its derivation requires the same

conditions on pressure and velocity. The stationary phase

condition on the angle implies that

�Rð�hsÞ ¼
sin �hs � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �hs � t2

p
sin �hs þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �hs � t2

p
 !

eikH �y sin �hs

¼ Rð�hsÞeikH �y sin �hs ; (45)

where the phase change in Eq. (45) arises from the incident

ray hitting the curved front. The range of angles where only

reflection occurs is the same as in Sec. III A. Although the

critical angle �hs has not changed, it now depends on the

slope of the front, so the region where strong patterns occur

changes with r. As in Sec. III A, and using Eqs. (37) and

(38), a pair of inequalities hold:

t � m�x� ð�y� yFÞ
�r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1
p ; (46)

and

t � mðL� �xÞ � ðd � �yÞ
�r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1
p : (47)

These specify a more complicated expression for d com-

pared with a straight front, Eq. (26), for which examples had

jRðhsÞj � 1 for hs less than 7–10 deg.

Table I shows examples of Eqs. (46) and (47), giving

the maximum value of receiver cross range d (m) where an

HLM pattern extends from the front for the minus root of

Eq. (44). Table II shows the same for the plus root in

Eq. (44). Values are reported for a fixed L¼ 15 km. As s
increases, the HLM range decreases. However, increasing

curvature (decreasing r) provides more opportunity for

HLM patterns at L¼ 15 km, and maximum d values increase.

For s¼ 200 and r¼ 100 km, the maximum value is smaller

compared to the trend in the rest of the row because the

strong HLM region does not extend to the front.

In Table II, the maximum d again decreases as s
increases but also decreases as r decreases (larger curva-

ture). The latter behavior is opposite to that in Table I. In

both cases, there are steeper angles with the front and fewer

TABLE I. Maximum distance d (m) between front and end of strong HLM

region at L¼ 15 km, depending on separation distances s (m) from source to

front and front radius of curvature r (km). Maximum values are from Eqs.

(46) and (47) and the minus root of Eq. (44). For s¼ 200 and 400 m and

r¼ 100 km, the region does not extend to the front [see Figs. 9(b) to 9(d)].

As a result these regions cannot sustain an HLM pattern, so values in Table

I are adjusted to account for this phenomenon.

r (km)

s (m) 1 500 400 300 200 100

200 1628 1776 1814 1879 2136 1839

400 1428 1607 1632 1674 1829 2020

600 1228 1349 1406 1430 1577 1925

800 1028 1139 1177 1222 1320 1640

1000 828 929 982 1010 1104 1403

1|200 628 745 785 826 920 1206

1400 259 561 592 643 736 1009

1600 220 379 422 464 578 848
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below critical. For large enough s or small enough r, no

strong HLM pattern exists.

V. EXAMPLES

A. Straight fronts

In Sec. II B, it was hypothesized that a sech2 representa-

tion of an NIW may be approximated by a sound speed

jump. Calculations using AMPE where the front is taken as a

sech2 function are compared to results from the HLM model

to illustrate that full field intensity patterns from a parabolic

equation are essentially equivalent to HLM patterns. The

Lloyd mirror-like patterns appear to occur outside the NIW

at separation distances s for which the incident acoustic

propagation paths are within a critical angle.

The HLM predictions and AMPE calculations were

compared for reduced TL sections along the y axis at various

distances s between source and front. Figure 4(a) shows the

AMPE result for s¼ 400 m over a 15 km range with 30 dB

dynamic range. Figure 4(b) shows corresponding results for

the HLM model without beam displacements using the mul-

tiple layer reflection coefficients given in Eqs. (30) and (31)

for l¼ 3, w1¼ 500 m, and Dc¼ 5 m/s, so that the boxcar and

AMPE sech2 have comparable areas. Finally, Fig. 4(c) has

calculations using the ESME reflection coefficient and a sin-

gle 5 m/s sound speed jump. Amplitudes of Figs. 4(b) and

4(c) are normalized by dividing out by the direct wave por-

tion of Eq. (21) rather than the traditional 1 m reference

value. This normalization implies a constant difference in

TL compared to AMPE calculations, so calculations are fit

to the same decibel dynamic range. Cases exhibit the same

behavior in the number of fades and their approximate loca-

tions. As a result the AMPE calculations in Figs. 2(a) and

2(b) show generally good agreement with the HLM model

for both NIW representations.

Figures 5(a) and 6(a) compare the jump and boxcar

models with normalized amplitudes and contours are shown

over a 10 dB range. The s¼ 400 m cases in Figs. 5(a) and

6(a) have a Dc¼ 12 m/s, and w1¼ 200 m in the latter. In

both, the familiar fanlike striation pattern occurs, and the

number of beams and widths. The jump model produces

more intense beams because the reflection from the second

front may interfere destructively. Figure 6(b) shows contours

for a front separation of 400 m, and the beams are more

intense than Fig. 6(a) due to the increase in area of the box-

car. Figure 6(c), with Dc¼ 6 m/s and w1¼ 400 m so the area

agrees with the case in Fig. 6(a), has similar intensities.

Finally, Fig. 6(d) with w1¼ 800 m shows a prominent sec-

ondary reflection, which disrupts the interference pattern

along the line where the beams fade to weaker TL values.

The boxcar and jump models typically produce similar pat-

terns until the separation of the jumps is about 10 times the

acoustic wavelength and secondary reflections begin to

TABLE II. Same as Table I, except using the plus root of Eq. (44). For s

large and r small enough, incidence angles are steep and strong HLM pat-

terns are not seen.

r (km)

s (m) 1 500 400 300 200 100

200 1628 1466 1428 1363 1138 756

400 1428 1298 1226 1189 1070 735

600 1228 1105 1064 1019 938 665

800 1028 923 898 835 750 0

1000 828 715 685 629 497 0

1200 628 490 453 382 139 0

1400 259 199 79 0 0 0

1600 220 0 0 0 0 0

FIG. 4. Reduced TL along y¼ 0 for a 15 km range and s¼ 400 m. All plots

have dynamic range of 30 dB. (a) AMPE calculation for nonlinear internal

wave environment. (b) Horizontal Lloyd mirror model calculation using the

multilayer reflection coefficient (l¼ 3) and a boxcar with Dc¼ 5 m/s and

w1¼ 500 m. The modal amplitude is normalized by dividing by the first

term in Eq. (21) for comparison with (a). (c) Same as (b) except calculations

use a single 5 m/s sound speed jump. The plots show good agreement in the

number of fades and their placement.

FIG. 5. (Color online) Reduced TL contours with calculations from

Eq. (21) using sound speed change Dc and source to front distance s equal to

(a) 12 m/s and 400 m, (b) 12 m/s and 800 m, (c) 24 m/s and 400 m, and (d)

24 m/s and 800 m. The modal amplitude is normalized by dividing through

by the first term in Eq. (21), so calculations can also be fit to a 10 dB

dynamic range for comparisons. The region to the right of the white dashed

line is expected to have a strong HLM pattern via Eq. (26). Images neglect

beam displacement. Regions of strong HLM patterns increase as s decreases

and as Dc increases.
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appear. The effects from a range of NIW widths generally

appear to be small. Consequently, for the regime where a

typical NIW has 200–400 m width, other than the change in

pattern intensity, the jump-front model captures relevant fea-

tures of both boxcar and AMPE calculations. This simplifi-

cation is used for further calculations with a single NIW.

Both Figs. 5(a) and 5(b) represent the NIW as a sound

speed jump of 12 m/s, with 5(b) having source-front distance

s¼ 800 m. Along the dashed line enclosing the region of

strong HLM patterns from Eq. (26), a ripple is visible as the

interference pattern transitions to weaker variations in TL

levels. The ripple results from the kink in the reflection coef-

ficient at the critical angle and corresponds to regions where

beam displacement is predicted. For fronts further from the

source, the number of beams increases and their widths

decrease, and the region of strong interference patterns

decreases as well. These results from the HLM model com-

pare well with the classical Lloyd mirror using the Rayleigh

reflection coefficient. The maximum number of beams for

different front positions, using the same approach as in Refs.

27 and 31, is very close with that from the model.

Figures 5(c) and 5(d) correspond to Figs. 5(a) and 5(b)

except with sound speed jump of 24 m/s. For the former, the

beam width and placement has not changed significantly, but

the position of the dashed line is different, showing height

intensity beams over a larger area compared to the latter.

This arises because the critical angle for sound speed jump

24 m/s is about 10 deg and only 7 deg in calculations for

Dc¼ 12 m/s.

For multiple waves, the reflection coefficient Eqs. (30)

and (31) are used to examine the case of two boxcar-

modeled waves, l¼ 5. Having seen the dependence on front

position and on sound speed jump associated with a single

NIW, s¼ 400 m and Dc¼ 12 m/s are fixed to explore effects

from wave spacing. Figure 7 shows calculations with two

waves with pairs of fronts representing a NIW spaced 100 m

apart so secondary reflections from the back of the boxcar

are not present. Figure 7(a) is a limiting case in which

w2¼ 25 m so NIWs are close enough to be effectively one

boxcar and the TL is very close to Fig. 6(a). As w2 increases

beyond 100 m [Fig. 7(b)], the second wave effects become

more prominent. For example, in Fig. 7(c) an out of phase

spacing with w2¼ 350 m shows another appearance of sec-

ondary reflection. In Fig. 7(d) with w2¼ 820 m, the two

interruptions in the pattern are a clear superposition of inter-

ference patterns from the two waves.

Effects of the Doppler shift from an NIW moving at

constant speed are seen in Fig. 8. The snapshots are all taken

with the source and front separated by 100 m and NIWs

FIG. 6. (Color online) Same as Fig. 5 except reflection coefficient calcu-

lated using the multiple layer expressions in Eqs. (30) and (31) for two

fronts. The value of s is fixed at 400 m (yF¼�400 m). Magnitude of Dc and

NIW width w1 are (a) 12 m/s and 200 m, (b) 12 m/s and 400 m, (c) 6 m/s and

400 m, and (d) 6 m/s and 800 m. In (d) w1 gets large enough such that sec-

ondary reflections are visible.

FIG. 7. (Color online) Same as Fig. 6, except four fronts simulate two

waves in a train. Widths w1, and w3 of NIWs are 100 m and all sound speed

jumps are 12 m/s. Spacing between the two waves w2 is (a) 25 m, (b) 100 m,

(c) 350 m, and (d) 820 m. Prominent beam interference is seen for large

wave spacings.

FIG. 8. (Color online) Same contours as Fig. 5 except fronts are moving.

The region to the right of the white dashed line is expected to have a strong

HLM pattern via Eq. (26). Snapshots taken when the front, represented by

the solid white line, is at �100 m in cross range, and the source and front are

100 m apart. Range is 15 km and total cross range is 1800 m. The speed V of

the NIW is (a) 0 m/s, (b) 0.6 m/s, (c) 1.3 m/s, and (d) 2 m/s. As V increases

more strong beams are observed and they begin to curve.
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moving with speeds between zero and 2 m/s. Calculations

for the same source and front separation eliminate the nontri-

vial effects from different separations. A stationary front in

Fig. 8(a) has one strong straight beam and with increasing

speed a second strong beam appears in Fig. 8(b). Curvature

of the beams is seen for speeds above 1 m/s in Figs. 8(c) and

8(d) due to the sin(h1) correction in the horizontal wavenum-

ber in Eq. (35). Section III C shows the resulting change in

the horizontal wavenumber, of about 0.6 km�1, that modifies

the intensity and shapes.

B. Curved fronts

Effects of NIW front radius of curvature on HLM pat-

terns are illustrated in Figs. 9 and 10 with sound speed

increase of 12 m/s and s¼ 400 m. For r � 5 km, the term M
containing curvature in Eq. (43) has negligible contributions

for parameter values of interest. Therefore, it is the term con-

taining m, representing front tilt at the interaction point,

which is relevant.

Both figures show r values from 500 to 50 km, and the

dashed lines enclosing regions of strong HLM pattern are

found from the constraints in Eqs. (46) and (47). Figure 9,

on a cross range scale from �2200 to 1400 m, has the source

oriented before the front so that the NIW appears convex,

and the minus root of Eq. (44) is chosen. As curvature

increases in Fig. 9, the beams spread slightly. A low inten-

sity region on the source side appears in Fig. 9(b) near the

front when L � 12 km. Receivers in this region produce no

HLM pattern without direct or reflected paths. This region

visibly increases in area in Figs. 9(c) and 9(d). Thus patterns

produced by convex fronts are similar to straight fronts

except for the additional low intensity region.

Figure 10 shows a source oriented inside the front, so

the NIW appears concave. At r¼ 500 km in Fig. 10(a), the

contours show little influence of curvature. As r increases,

the beams become considerably narrower and occur over a

smaller area. Increasing curvature brings fewer receiver

positions with incident angles below 7 deg, so the area with

total internal reflection and strong HLM pattern decreases,

as in Fig. 10(b) with r¼ 100 km. In Fig. 10(c) with

r¼ 70 km, not only does the region decreases in size, but

also a second dashed line appears because fewer incident

angles for the front position yF¼�400 m satisfy the critical

angle condition. Consequently, the phenomenon of an HLM

window arises. For r¼ 50 km in Fig. 10(d), no dashed lines

appear because incident angles for these range and cross

range positions forbid strong HLM patterns due to the curva-

ture. Although NIW curvature radii are observed as low as

5 km, the critical angles forbid HLM patterns, as suggested

by the results in Table II. In contrast to convex fronts, NIW

fronts that appear concave influence the critical angle and

decrease regions of strong HLM patterns to eventually pro-

duce HLM windows.

VI. CONCLUSIONS

Interference patterns in horizontal planes can be pro-

duced by the propagation of a single mode in the presence of

a nonlinear internal wave and have a direct analogy with

classical Lloyd mirror patterns that occur in vertical planes.1

These horizontal Lloyd mirrors (HLMs) arise from a direct

path and a refracted path through a NIW front and have been

observed recently in experimental data.15 Three representa-

tions for the NIWs are considered: soliton solutions of the

KdV equation, boxcar approximations consisting of two

sound speed jumps, and single sound speed jumps. Compari-

sons are made among solutions for these cases, using an adi-

abatic mode parabolic equation method and asymptotic

solution formulas from Huygens’ Principle and the

FIG. 9. (Color online) Same contours as Fig. 5. Calculations use curved

fronts with Dc¼ 12 m/s and the convex wavefront shape f�(x) of Eq. (44).

The distance s from top of the internal wave front to source is 400 m. The

NIW front is denoted by the solid white line, and the white dashed lines

enclose the region expected for a strong HLM pattern from the constraints

of Eqs. (46) and (47). Images neglect beam displacement. Note cross range

extends to 3600 m. The radius of curvature of the front is (a) 500 km, (b)

100 km, (c) 70 km, and (d) 50 km. As radius of curvature decreases, strong

HLM patterns are seen over larger regions.

FIG. 10. (Color online) Same as Fig. 9, except using the concave wavefront

shape fþ(x) of Eq. (44). Total cross range is 1900 m. Frontal radius of curva-

ture is (a) 500 km, (b) 100 km, (c) 70 km, and (d) 50 km. As radius of curva-

ture decreases, strong HLM patterns are seen over smaller regions.
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stationary phase method. The results show the advantages

and limitations of using a single jump model, which is used

for most subsequent calculations in this paper.

When modeling the front as a single sound speed jump,

it was seen that as separation between source and front

increases beam widths and regions of strong interference

patterns decrease. Also, with increases in the sound speed

jump, which can be associated with NIW amplitude, the

region of strong patterns broadens. Multiple fronts not only

influence beam intensity but also introduce secondary reflec-

tions. Two identical waves are also discussed. Waves closely

spaced behave as one NIW, and as separation increases, sec-

ondary reflections appear that show a superposition of pat-

terns from the different waves. Additionally, wave speed can

change HLM patterns. For speeds of about 1 m/s, the number

of strong beams increases, and as the speed tends toward

2 m/s the beams become curved.

Huygens’ Principle works well for extensions incorpo-

rating curved fronts. Results are shown for convex and

concave fronts relative to a source. Convex fronts cause a

shadow region in areas where there are no direct or reflect

paths to the receiver. Concave fronts decrease regions of

strong HLM patterns and eventually show an HLM win-

dow along the front as curvature increases. It was seen

that strong HLM patterns do not occur in the region of

interest for r � 50 km. Investigating the HLM parameter

dependence of multiple and moving fronts with curvature,

along with the use of multiple modes, deserves

investigation.
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