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ABSTRACT  36 

 37 

Classically, the estrogen signaling system has two core components: cytochrome P450 38 

aromatase (CYP19), the enzyme complex that catalyzes the rate limiting step in estrogen 39 

biosynthesis; and estrogen receptors (ERs), ligand activated transcription factors that interact 40 

with the regulatory region of target genes to mediate the biological effects of estrogen. While the 41 

importance of estrogens for regulation of reproduction, development and physiology has been 42 

well-documented in gnathostome vertebrates, the evolutionary origins of estrogen as a hormone 43 

are still unclear. As invertebrates within the phylum Chordata, cephalochordates (e.g. the 44 

amphioxus of the genus Branchiostoma) are among the closest invertebrate relatives of the 45 

vertebrates and can provide critical insight into the evolution of vertebrate-specific molecules 46 

and pathways. To address this question, this paper briefly reviews relevant earlier studies that 47 

help to illuminate the history of the aromatase and ER genes, with a particular emphasis on 48 

insights from amphioxus and other invertebrates. We then present new analyses of amphioxus 49 

aromatase and ER sequence and function, including an in silico model of the amphioxus 50 

aromatase protein, and CYP19 gene analysis. CYP19 shares a conserved gene structure with 51 

vertebrates (9 coding exons) and moderate sequence conservation (40% amino acid identity with 52 

human CYP19). Modeling of the amphioxus aromatase substrate binding site and simulated 53 

docking of androstenedione in comparison to the human aromatase shows that the substrate 54 

binding site is conserved and predicts that androstenedione could be a substrate for amphioxus 55 

CYP19. The amphioxus ER is structurally similar to vertebrate ERs, but differs in sequence and 56 

key residues of the ligand binding domain. Consistent with results from other laboratories, 57 

amphioxus ER did not bind radiolabeled estradiol, nor did it modulate gene expression on an 58 
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estrogen-responsive element (ERE) in the presence of estradiol, 4-hydroxytamoxifen, 59 

diethylstilbestrol, bisphenol A or genistein. Interestingly, it has been shown that a related gene, 60 

the amphioxus “steroid receptor” (SR), can be activated by estrogens and that amphioxus ER can 61 

repress this activation. CYP19, ER and SR are all primarily expressed in gonadal tissue, 62 

suggesting an ancient paracrine/autocrinesignaling role, but it is not yet known how their 63 

expression is regulated and, if estrogen is actually synthesized in amphioxus, whether it has a 64 

role in mediating any  biological effects . Functional studies are clearly needed to link emerging 65 

bioinformatics and in vitro molecular biology results with organismal physiology to develop an 66 

understanding of the evolution of estrogen signaling.  67 

 68 

69 
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1. INTRODUCTION 70 

Based primarily on evidence from humans and laboratory mammals, it is well established 71 

that estrogens play a critical regulatory role in many different life processes beginning in early 72 

stages of embryogenesis. The term “estrogen” derives from its first perceived function as a 73 

female reproductive hormone, specifically associated with the period of sexual receptivity in 74 

female mammals (estrus = Latin oestrus meaning frenzy or gadfly). Although early investigators 75 

used the urine of pregnant women to isolate estrone, the first steroid found to have hormonal 76 

activity, subsequent studies soon reported the presence of estrogens and the biosynthesis of 77 

estradiol, estrone and estriol from small acyclic precursors in both males and females of a wide 78 

range of vertebrates from fish to mammals [1]. It is now generally accepted that estrogen not 79 

only is required for the normal growth, development and functioning of the reproductive system 80 

but also has a critical role in diverse other tissue types and organ systems, including brain, bone, 81 

skin, fat, cardiovascular and metabolic.. Excesses or deficiencies of estrogen are associated with 82 

various pathological states, such as breast and prostate cancer and osteoporosis. Environmental 83 

chemicals that are estrogen-like in their bioactivity have been implicated in developmental 84 

abnormalities and endocrine-disrupting effects in humans and animals. Not surprisingly, factors 85 

and mechanisms regulating estrogen production and signal transduction continue to be a matter 86 

of intense research interest (reviewed by [2,3]). 87 

Classically, the estrogen signaling system has two core components: cytochrome P450 88 

aromatase, the enzyme complex that catalyzes the rate limiting step in estrogen biosynthesis; and 89 

estrogen receptors (ERs), ligand activated transcription factors that interact with the regulatory 90 

region of target genes to mediate the biological effects of estrogen. While this viewpoint 91 

continues to serve as a valuable template for basic and clinical studies, advances in molecular 92 
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endocrinology reveal that the complexity and diversity of estrogen physiology is accomplished 93 

by multiple signaling modes (endocrine, paracrine, autocrine/intracrine), as defined by the 94 

nature, proximity and topographical relationship of aromatase and ER expressing cells; two or 95 

more genetically distinct ER subtypes and multiple ER splice variants; diverse other classes of 96 

membrane- and nuclear-localized receptors; and an array of different cellular signal transduction 97 

pathways (genomic, nuclear-mediated; non-genomic/membrane-mediated)(see section 1.2.1, 98 

below).  99 

  Fundamental questions remain regarding the evolution of the estrogen mediated signaling 100 

system. What are the evolutionary origins and molecular nature of the core components 101 

(aromatase and ER)? Which receptor signal transduction pathway is most ancient? Is the original 102 

messenger molecule the endogenously synthesized estrogen we know in vertebrates (estradiol, 103 

estrone)? Or did estrogen-like environmental molecules have the earliest signaling role?  The 104 

basic anatomy, physiology and biochemistry of estrogen signaling have been extensively studied 105 

in representatives of all major groups of jawed vertebrates, signifying an ancient and 106 

evolutionarily conserved regulatory role.  More recently, the structures and phylogenetic 107 

distribution of genes encoding aromatase (Figure 1a, [4,5]) and ER (Figure 1b, [6-10])  have 108 

been documented, reinforcing the earlier work, but mechanistic details of estrogen-mediated 109 

signaling in organisms that predate the gnathostomes is not entirely clear. One approach to 110 

addressing the question is to study the closest invertebrate relatives of vertebrates and to 111 

determine precursors of vertebrate-specific molecules and pathways in these organisms. In 112 

addition to vertebrates, the phylum Chordata includes two invertebrate groups: urochordates (e.g. 113 

the ascidian Ciona intestinalis) and cephalochordates (e.g. the amphioxus of the genus 114 

Branchiostoma).  In this paper, we briefly review the evolutionary history of the aromatase and 115 



 7 

ER genes, with a particular emphasis on insights from amphioxus and other invertebrates, and 116 

then present new analyses of aromatase and ER in amphioxus.  117 

  118 

1.1 Cytochrome P450 aromatase and the CYP19 gene  119 

1.1.1. Structure and function 120 

      The critical enzyme for estrogen synthesis is aromatase, a member of the cytochrome 121 

P450 (CYP) superfamily of monooxygenase enzymes [11]. The membrane-associated aromatase 122 

complex catalyzes the transformation of androgens (androstenedione and testosterone) to 123 

estrogens (estradiol and estrone) and is the product of a single CYP19A1 gene in humans. 124 

Although most highly expressed in estrogen secreting glandular tissues, such as placenta and 125 

gonads, aromatase is expressed in a wide array of other tissue types: brain, fat, bone, pituitary in 126 

humans; brain, pituitary, retina in teleost fish. Of these, certain cell/tissue types are competent to 127 

transform acyclic precursors stepwise through cholesterol all the way to estrogen (ovary), 128 

whereas others are competent in the final aromatization step but are lacking one or more of the 129 

earlier enzymes in the steroidogenic pathway. Human placenta, for example, lacks C17,20 lyase 130 

(CYP17) and relies on androgen precursors supplied by the fetal adrenal for estrogen production.   131 

The aromatase protein is monomeric and is anchored within the endoplasmic reticulum 132 

by a membrane-spanning region of the amino terminus [12,13]. The crystal structure of the 133 

human aromatase protein has recently been determined [14]. The 503-residue polypeptide chain 134 

folds into 12 major -helices and 10 -strands and forms a heme group and adjacent steroid 135 

binding site near the geometric center of the protein [15]. This overall folding pattern is similar 136 

to other membrane-bound P450s, and several regions show strong sequence conservation 137 

including helices H-K, the aromatic region and especially the heme-binding region. Of the 138 
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conserved helices, the “I-helix” is particularly important because it contains several hydrophobic 139 

residues that help to form the catalytic cleft and incorporates a key bend at Pro308 that provides 140 

additional space to accommodate a steroid substrate [15,16].   141 

  142 

1.1.2. Phylogenetic context  143 

      Aromatase activity (for review [17]) and the CYP19 gene(s) have been well-documented 144 

in all major classes of gnathostome (jawed) vertebrates. The CYP19 gene has undergone 145 

independent duplications in several lineages, most notably the teleost fish [18,19] and suiform 146 

mammals [20,21]. Whereas the teleostean gene duplicates are thought to reflect a whole genome 147 

duplication event [22], the three CYP19 genes of pigs are the result of much more recent tandem 148 

duplication events. Duplicate aromatases retain the ability to synthesize estrogens but also 149 

exhibit functional differences. Within the teleost fish, duplicated CYP19 genes differ 150 

dramatically in their tissue expression patterns [19,23] as well as in their relative affinity for 151 

different androgen and inhibitor substrates [24,25]  and inducibility by estrogens and 152 

xenoestrogens [18,23,26,27]. Similarly, in suiform mammals, duplicated aromatase genes differ 153 

in expression patterns, substrate affinity and product formation [20,21].  While humans possess 154 

only a single CYP19 gene, expression is regulated by 11 promoters and alternative first exons, 155 

which are used in a tissue specific manner [28,29]. Along with the diverse roles played by 156 

estrogens, this complexity of aromatase regulation indicates the importance and richness of the 157 

estrogen signaling pathway.  158 

     Phylogenetic analyses of the CYP superfamily have not revealed close relationships of CYP19 159 

with any other family members [4,30]; thus, it is not currently possible to trace the origin of 160 

aromatase activity from ancestral CYPs that served other metabolic functions. CYP19 orthologs 161 
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have recently been identified within amphioxus  [4,5]. However, CYP19 has not been identified 162 

within the sequenced genomes of urochordates, echinoderms, or protostomes, nor have they been 163 

identified outside of the bilaterian animals [31,32].  Although we cannot rule out the possibility 164 

that a recognizable ancestral CYP19-like gene or CYP19 itself was secondarily lost in these 165 

groups, the cephalochordate lineage represents the earliest known occurrence of CYP19 to date. 166 

In addition to CYP19, amphioxus contains orthologs of other enzymes in the steroidogenic 167 

sequence leading to estrogen biosynthesis: CYP17, and 17 -hydroxysteroid dehydrogenase 168 

[5,33]. In addition, Amphioxus contains CYP11-like genes that, along with some uncharacterized 169 

cnidarian and placozoan CYPs, are positioned as an outgroup to the vertebrate CYP11 clade 170 

[5,31]. CYP11A catalyzes cleavage of the side chain from the sterol D-ring; side chain cleavage 171 

by CYP11A (or a functional equivalent) is necessary for de novo synthesis of steroids. Because 172 

the catalytic activities of the amphioxus CYP11-like genes have not been determined and side-173 

chain cleavage has not been documented, it remains unclear whether amphioxus can synthesize 174 

steroids from sterol precursors. 175 

      Measurements of steroidogenic activity using radiolabeled precursors and steroid-like 176 

immunoreactivity in amphioxus are consistent with the molecular studies described above. 177 

Aromatase activity in amphioxus was first demonstrated through the conversion of tritiated 19-178 

hydroxyandrostenedione to estrone and estradiol by homogenates of body segments containing 179 

gonads  [34]. Interestingly, activity was not detected in homogenates of brain or tail segments. 180 

Mizuta and colleagues [35] similarly measured estrogen synthesis by amphioxus ovarian 181 

homogenates and documented a suite of steroidogenic conversions. Estrogen synthesis primarily 182 

occurred in mature ovarian tissues prior to spawning. Estradiol-like, as well as progesterone- and 183 

testosterone-like molecules, have been quantified in amphioxus gonads using radioimmunoassay 184 
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[5]. Similar to the patterns in aromatase activity, immunoactive estrogen was present in both 185 

ovaries and testes, but not in non-gonadal extracts, and concentrations in the ovary were greatest 186 

prior to spawning [5].   187 

   188 

1.2. ERs and Esr genes  189 

1.2.1. Structure and function  190 

      In vertebrates, the classical mechanism of estrogen signaling occurs through specific 191 

binding of estradiol to ERs , which are are encoded by Esr genes.  Within the nuclear receptor 192 

superfamily, the ERs form a family with two other receptor groups:  the estrogen-related 193 

receptors (ERRs), and other vertebrate-type steroid receptors (SRs, which include androgen 194 

receptors, progesterone receptors, and corticoid receptors). The human genome contains two 195 

ERs, ER  (NR3A1, Esr1 [36]) and ER  (NR3A2, Esr2 [37]), due to a duplication of the Esr 196 

gene early in the vertebrate lineage [38]. Unique among the vertebrates, however, teleost fish 197 

have one ER but two ER s (ER a and ER b) .  198 

     Like other nuclear receptors, ERs have a modular structure divided into key functional 199 

domains (A-F) [39]. At the amino terminus, the A/B domains contain the ligand-independent 200 

AF-1 activation function [40]. The DNA-binding domain (DBD, C domain) is the most highly 201 

conserved region and contains two zinc fingers that enable binding of the ER to specific estrogen 202 

responsive elements (EREs) on the DNA. The hinge region (D-domain) has a more variable 203 

sequence, contains a nuclear localization signal, and enables synergism between the activation 204 

functions (AF-1 and AF-2) for full transcriptional activity [41]. At the amino terminus, the ligand 205 

binding domain (E/F) LBD is highly conserved, and serves to bind ligands, enable dimerization, 206 

recruit co-factors and stimulate transcription through the ligand-dependent AF-2 region.      207 
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      In the absence of ligand, ERs generally occur in complexes with chaperones, such as 208 

Hsp90 [42]. Upon binding of estradiol or another agonist, ERs dissociate from the chaperones, 209 

form homo- or heterodimers [43]), recruit cofactors, bind to DNA and modulate transcription of 210 

target genes. Utilization of multiple promoters and alternative splicing creates additional 211 

complexity in ER signaling. Eight promoters have been identified for human ER  and two for 212 

ER  which function in tissue-specific expression [44-47]. Alternate splicing generates an 213 

exceptional number of ER isoforms lacking one or more functionally important domains; these 214 

variants differ in their expression patterns and functional properties [47]. For example, a human 215 

ER cx) truncated at the C-terminus has been reported heterodimerize with wild-216 

type ER  and function as a dominant negative [47-49].   217 

      In addition to modulating the activity of nuclear receptors, steroids can also stimulate 218 

rapid cellular responses which are mediated through membrane-bound receptors [50,51]. With 219 

respect to estrogen signaling, rapid effects have been attributed to interactions with classical 220 

nuclear ERs that are localized within the cell membrane [52-54] as well as with GPR30, a G-221 

protein coupled receptor [55]. To date, membrane-bound ERs have only been rigorously 222 

characterized in mammals and fish [56,57]. Estrogens have been shown to exert similar rapid 223 

effects on cell signaling in molluscs [58]; however, the genes encoding membrane-bound ERs 224 

have not yet been identified in invertebrates, and it has not yet been demonstrated that estradiol 225 

is the endogenous activator of this receptor. 226 

 227 

1.2.2. Phylogenetic context  228 

ERs have been identified and shown to be activated by steroidal estrogens in all classes 229 

of vertebrates, including the agnathan sea lamprey [6]. Among invertebrates, homologs to the 230 
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ERs have been identified in amphioxus [7,33] as well as in molluscs [9,59] and annelids [10]. 231 

Previous phylogenetic analyses conducted using a variety of methods (parsimony, likelihood, 232 

Bayesian) have shown that chordate ERs (vertebrate and amphioxus) form a clade [7,10] and that 233 

the protostome ERs (mollusc and annelid) comprise a sister group [9,10].  In addition, Keay and 234 

Thornton [10] found that this bilaterian ER clade was supported as a sister group to the SRs. In 235 

their study, the position of the protostomes ERs was only moderately supported, but much of the 236 

observed uncertainty could be attributed to the effects of a long branch associated with the 237 

amphioxus SR.  238 

As demonstrated by reporter assays in mammalian cell lines, ERs from amphioxus 239 

[6,8,60] and from molluscs [9,59] are not activated by steroidal estrogens. In contrast, ERs from 240 

two annelid species bind estrogens with high affinity and activate transcription in response to 241 

low doses (EC50 < 10 nM estradiol) of estrogens [10], although it remains to be determined 242 

whether steroidal estrogens are physiological ligands for these annelid receptors.  Based on 243 

phylogenetic patterns and reconstructions of predicted ancestral receptors, it has been 244 

hypothesized that the ancestral ER originated early in the bilaterian lineage and was activated by 245 

estrogens ([10,61], but see also [6,31]). One interpretation is that ER activation by estrogens was 246 

a property that was lost within the lineage leading to the cephalochordates and that the ER gene 247 

per se was lost from echinoderms, urochordates and several protostome lineages.  248 

      Within the large nuclear receptor superfamily (48 genes in human, 33 in amphioxus 249 

[33]), the ERs form a family (NR3A) with two other receptor groups:  the estrogen-related 250 

receptors (ERRs, NR3B), and other steroid receptors (SRs, NR3C, which include androgen 251 

receptors, progesterone receptors, and corticoid receptors). Amphioxus has one representative 252 

gene in each of these three groups [7,33]. As mentioned above, cell-based reporter assays 253 
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indicate the amphioxus ER ortholog does not stimulate transcription of ERE-driven reporters or 254 

interact with the coactivator SRC-1 in response to estradiol. Somewhat surprisingly (but as 255 

hypothesized by Paris and colleagues [6]), reporter assays indicate that the amphioxus SR 256 

stimulates transcription through EREs and AREs (androgen-responsive elements) in response to  257 

estradiol and estrone [8,60]. Amphioxus ER and SR share overlapping affinities for DNA 258 

binding sites, and reporter assays indicate that ER can competitively repress estradiol-induced 259 

signaling by SR [8] as well as by human ER and ER  [6]. Binding of ligands to amphioxus ER 260 

was not directly measured in these studies, but limited proteolysis assays suggested that the 261 

amphioxus ER is unlikely to bind estradiol or several other ligands for vertebrate ERs [6]. Cell-262 

based reporter assays have been used to screen a variety of ligands (e.g., 3 -androstenediol, 263 

resveratrol, enterolactone, diethylstilbestrol [6]) for their ability to modulate signaling by 264 

amphioxus ER, but no functional ligands have been identified. Interestingly, although limited 265 

proteolysis assays suggested that the plasticizer bisphenol A can bind amphioxus ER, this ligand 266 

did not affect transactivation [6].  267 

      Bridgham and colleagues [8] noted that 11 of the 18 residues that line the ligand-binding 268 

pocket of human ER  are altered in amphioxus ER, but only 4 of 18 in amphioxus SR. Through 269 

comparison with the human ER  crystal structure, they identified two key substitutions likely to 270 

disrupt hydrogen bonding and packing interactions that would normally stabilize the ligand 271 

within the binding pocket in a trancriptionally active conformation. They then conducted site-272 

directed mutagenesis, and experimentally demonstrated that the two substitutions (corresponding 273 

to amino acids 394 and 404 in the LBD of human ER ) are indeed sufficient to confer repressive 274 

activity on the SR.   275 
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As part of a long term program of research in this laboratory that focuses on the origin and  276 

evolution of estrogen signaling in vertebrates, we sought to obtain insights by studying 277 

aromatase and ER in amphioxus. Here we confirm and extend studies cited above, and present 278 

new information on CYP19 gene organization, including an in silico model of the aromatase 279 

protein.        280 

 281 

2. MATERIALS AND METHODS 282 

2.1. Animals, treatments, and nucleic acid extraction 283 

Amphioxus (Branchiostoma floridae) were purchased from Gulf Specimen Marine Lab 284 

(Panacea, FL). Animals were obtained in May, when adults were reproductively active and 285 

readily sexed by visualizing the gonads through the transparent body wall. Immediately upon 286 

receipt, animals were chilled to 4
o
C on ice, sexed, and divided into cephalic (anterior to the 287 

gonads), caudal (posterior to the gonads), and central (gonad-containing) regions under a 288 

dissecting microscope as previously described [34].  289 

 Tissues were used to prepare RNA (as in [18,62]) for cloning and semi-quantitative PCR 290 

analysis. For analysis of genomic sequence, DNA was extracted from tail segments of individual 291 

amphioxus. Briefly tissue (250 mg) was incubated overnight at 56
o
C in 500 µl of lysis buffer (50 292 

mM Tris-HCl
 
[pH 8.0], 5 mM EDTA [pH 8.0], 200 mM NaCl, 1% [w/v] sodium dodecyl sulfate 293 

containing
  
proteinase K to a final concentration of 0.1 mg/mL). After addition of 500µl 294 

isopropanol, the sample was centrifuged for 5 min at 3500 rpm at 4
 o
C.  The resulting DNA 295 

pellet was washed once with 100% ethanol (1 ml) and once with 75% ethanol (1 ml), air dried 296 

for 10 min, and resuspended in 30 µl TE buffer (10 mM Tris- HCl/1 mM EDTA).  297 

 298 
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2.1 cDNA cloning and analysis  299 

Using total RNA from ovarian segments and methods previously described in detail for 300 

teleostean cDNAs [63,64] , amphioxus aromatase and ER cDNAs were amplified stepwise by 301 

RT-PCR and 5’- and 3’-RACE. Oligonucleotide primers are shown in Supplementary Table 1. In 302 

the case of aromatase, initial primers were designed to target sequences in an in silico P450 303 

aromatase predicted by Nelson [65]. For cloning of ER, initial primer sequences were designed 304 

to amplify a portion of the ER detected bioinformatics queries of the amphioxus whole genome 305 

database using the discontinuous megaBLAST algorithm with human ERα (NM_000125) and 306 

ERβ (X99101), Aplysia ER (AY327135) and lamprey ER (AY028456) The sequence identified 307 

as a putative amphioxus DBD was extended in the 3’ and 5’ directions using an in silico DNA-308 

walking approach in combination with 5’ and 3’-RACE. 309 

     For both aromatase and ER, full coding sequences were then amplified as single products, 310 

confirming assembly of the cDNA fragments. Deduced aromatase and ER sequences were 311 

aligned using Clustal W with sequences previously reported from representative vertebrate taxa 312 

(Accession numbers shown in Fig 1 caption). To confirm the phylogenetic relationship of the 313 

cloned amphioxus sequences, trees were constructed using Neighbor-Joining and/or maximum 314 

likelihood criteria. For Cyp19, the tree was rooted using the human Cyp17 and Cyp21 sequences, 315 

which are both members of the Cyp2 clan [30,65]. A maximum likelihood tree was constructed 316 

using RAXML  [66] with a WAG matrix (selected by AIC using ProtTest version 2.4 [67]) and 317 

100 bootstrap replicates. For ER, a Neighbor-Joining tree was constructed in Phylip 3.6 [68] with 318 

1000 bootstrap replicates and  a PAM Dayhoff matrix.  319 

2.2. Genomic DNA cloning and sequence analysis 320 
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 Intronic sequence was obtained for the CYP19 gene by PCR amplification of genomic 321 

DNA using primers which were specific for sequences in adjacent exons or spanning exon-intron 322 

junctions (Supplementary Table 1). 5’-flanking sequence was amplified from genomic DNA 323 

using a forward primer targeting genomic sequence and a reverse primer targeting a sequence 324 

downstream of putative translational start site in the second exon. Putative cis regulatory 325 

elements were identified within the 5’-flanking sequence by comparison with the TRANSFAC 326 

database using MATCH with default parameters [69]. 327 

 328 

2.3. Molecular analysis of amphioxus aromatase 329 

2.3.1. Modeling  330 

 The crystal structure of the human aromatase protein has recently been determined [14] 331 

and is available in the Protein Data Bank [70], PDB code 3EQM. We used the homologous 332 

extension program MODELLER [71,72]  to generate a model of amphioxus aromatase.  After 333 

specifying the target sequence (GenBank ID DQ165086.1), the template sequence and structure 334 

(PDB code 3EQM), and an alignment of the two sequences, MODELLER was used to 335 

automatically build a 3-dimensional protein model containing all non-hydrogen atoms. The 336 

model was refined using energy minimization within MODELLER. 337 

 338 

2.3.2. Mapping of aromatase structures 339 

 The main goal of constructing a model of the amphioxus aromatase was to compare the 340 

binding sites of the human and amphioxus proteins. The comparison uses a very sensitive tool 341 

called computational solvent mapping [73,74], originally developed for the identification of “hot 342 

spots”, i.e., pockets of a protein that bind a variety of small organic molecules. An established 343 
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experimental approach to finding such hot spots is screening for the binding of fragment-sized 344 

organic compounds [75,76]. Since the binding is very weak, it is usually detected by nuclear 345 

magnetic resonance (SAR by NMR [75]) or by X-ray crystallography [76] methods. The 346 

FTMAP solvent mapping algorithm used here is a computational analog of the screening 347 

experiments, and has been described previously [74]. FTMAP places molecular probes, small 348 

organic molecules containing various functional groups, around the protein surface on a dense 349 

grid, finds favorable positions by further search using empirical free energy functions, clusters 350 

the low energy conformations, and ranks the clusters on the basis of the average free energy.  We 351 

used 16 small molecules as probes (ethanol, isopropanol, tert-butanol, acetone, acetaldehyde, 352 

dimethyl ether, cyclohexane, ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, 353 

benzene, acetamide, and N,N dimethylformamide). The low energy clusters of different probes 354 

are further clustered to identify consensus sites, and the importance of such sites is measured in 355 

terms of the probe clusters contained. The sites with the largest number of probe clusters are 356 

considered as predictions of binding hot spots. Applications to a variety of proteins show that the 357 

probes always cluster in important subsites of the binding site and the amino acid residues that 358 

interact with many probes also bind the specific ligands of the protein.  Since the differences in 359 

the number of probe clusters that bind to a particular site highlight even very small 360 

conformational changes if those affect the size or surface properties of the pocket, mapping is 361 

very useful for comparing homologous proteins or different structures of a protein [77-80]. The 362 

comparison is based on residue contact fingerprints. To obtain such fingerprints, the non-bonded 363 

interactions and hydrogen bonds between all atoms of the computational probes and the 364 

individual protein residues are counted using the HBPLUS program [81].  365 

 366 
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2.3.3.Docking 367 

After the identification of the important residues in the binding site, we docked androstenedione 368 

to both the human aromatase structure and the homology model of the amphioxus aromatase 369 

using version 4.0 of the AutoDock program [82].  AutoDock is a suite of automated docking 370 

tools. It is designed to predict how small molecules, such as substrates or drug candidates, bind 371 

to a receptor of known 3D structure. The docking is restricted to a 40 Å x 40 Å x 40 Å box, 372 

centered at the center of the protein. The box is large enough to enclose the entire ligand binding 373 

site. Other parameters are assigned the default values given by the AutoDock program. The 374 

protein structure is kept fixed during docking. AutoDock employs a genetic algorithm (GA) for 375 

conformational sampling, each GA run resulting in a single docked conformation. We performed 376 

100 individual GA runs, thus generating 100 docked conformations for each complex.  377 

 378 

2.4. ER binding and transcriptional analysis 379 

     The full length Amphioxus ER was subcloned into a v5-tagged expression vector 380 

(pcDNA3.1/nV5-DEST, Invitrogen). A similar expression vector was obtained for the human 381 

ER  (pcDNA3.1nv5-hERalpha, [83]). To assess the ability of amphioxus ER to bind estradiol, 382 

amphioxus ER and human ER  proteins were synthesized using the TnT Quick Coupled 383 

Reticulocyte Lysate System (Promega).  The specific binding of tritiated estradiol ([6,7-
3
H] 384 

estradiol, 45.0 Ci/mmol, Amersham Biosciences) to in vitro expressed ERs was measured using 385 

charcoal-based binding assays [84,85]. Briefly, in vitro synthesized proteins were diluted in 386 

MEEDGM buffer (25 mM MOPS, 1 mM EDTA, 5 mM EGTA, 0.02% NaN3, 20 mM Na2MoO4, 387 

10% (v:v) glycerol, 1 mM DTT, pH 7.5) containing a mixture of protease inhibitors [85]. To 388 

correct for variation in expression efficiency, amphioxus ER was diluted 1:10 and human ER  389 
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was diluted 1:20. Aliquots (100 l) of the diluted proteins were incubated overnight at 4°C with 390 

tritiated estradiol in 2.5 l DMSO. The activity of tritiated estradiol was directly measured in 10 391 

l from each tube. At the end of the incubation, 30 l was transferred from each tube in duplicate 392 

aliquots to 1.5 ml polypropylene microcentrifuge tubes containing 30 l of 4 mg/ml dextran-393 

coated charcoal in MEEDGM. Tubes were incubated on ice for 10 min with periodic vortex 394 

mixing. The tubes were centrifuged for 2 min at 2000 x g, and activity was quantified in 40 l of 395 

the supernatant by liquid scintillation counting. Nonspecific binding was directly measured using 396 

TnT lysate incubated with an empty expression vector [85]. Specific binding of tritiated estradiol 397 

to the ERs was calculated by subtracting non-specific binding from total binding. Binding curves 398 

were fitted using a one-site binding equation with PRISM software (GraphPad). 399 

     Transactivation by amphioxus ER was assessed using a cell-based reporter assay with 400 

methods similar to those described by Karchner et al. [86]. COS-7 cells (ATCC) were plated (3 x 401 

10
4
 cells/well) in triplicate wells of 48-well plates in phenol red-free MEM (Invitrogen), 402 

supplemented with non-essential amino acids, 1 mM sodium pyruvate, 2 mM L-glutamine and 403 

10% charcoal-stripped fetal bovine serum. After 24 hours, cells were transiently transfected 404 

using 1 l  Lipofectamine 2000 (Invitrogen) in fresh media along with expression plasmids for 405 

an ER (human or amphioxus, 100 ng), a luciferase reporter (3xERE-TATA-LUC, Addgene 406 

plasmid 11354 [87], 100 ng) and transfection control (pRL-TK, Promega, 3 ng). The total 407 

amount of DNA per well was adjusted to 300 ng through addition of an empty expression vector 408 

(pcDNA3.1).  Five hours after transfection, cells were treated with vehicle control (0.5% DMSO 409 

final concentration), estradiol (1-100 nM), or other potential ligands. Twenty-four hours after 410 

transfection, the cells were lysed with passive lysis buffer (Promega), and luminescence was 411 

measured using the Dual Luciferase Assay kit (Promega) in a TD 20/20 luminometer (Turner 412 
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Designs, Sunnyvale, CA). Transactivation in the presence of DMSO and estradiol was measured 413 

in three independent experiments. The other compounds were tested in two independent 414 

experiments.   415 

 416 

2.6. RT-PCR analysis of aromatase and ER mRNAs   417 

Semi-quantitative RT-PCR was performed using cDNAs from head, gonadal and tail 418 

segments from individual amphioxus.  Primer sequences are given in Supplementary Table 1. 419 

The PCR reactions utilized Platinum Taq polymerase (Invitrogen) according to the 420 

manufacturer’s instructions. PCR conditions were set to approximate the linear range by 421 

optimizing the quantity of input template and cycle number. PCR conditions for aromatase were 422 

94° C/ 5 min, 30 cycles of (94° C/ 30 s, 50°C/ 45 s, and 72°C/ 2 min), followed by 72°C / 10 423 

min. PCR conditions for ER were 94°C for 5 min, 5 cycles of (94°C/ 30 s, 43°C/ 45 s, and 72°C/ 424 

90), then 20 cycles of (94°C/ 30 s, 50°C/ 45 s, and 72°C/ 2 min), followed by 72°C/ 10 min.  425 

 426 

3. RESULTS AND DISCUSSION 427 

 428 

3.1 Isolation of aromatase cDNA and sequence analysis  429 

      The assembled amphioxus CYP19 cDNA consensus sequence (GenBank Accession 430 

number DQ165086) consisted of a single translation initiation site, a 1581 bp open reading frame 431 

(ORF) that encoded a predicted protein sequence of 527 aa, and 5′ and 3’ UTR of 5 and 1194 bp, 432 

respectively. The 3’-UTR terminated in a polyA tail. Compared with the in silico sequence 433 

initially reported by Nelson [65], our cloned sequence showed 13 overall residue substitutions 434 

and a 5 amino acid insertion at the boundary of exons 4 and 5 (amino acid 173, not shown). Two 435 
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of the differences were within the conserved I-helix domain. Compared with the partial cDNA 436 

sequence reported by Castro and colleagues [4], our sequence contained 3 residue substitutions 437 

and a single amino acid insertion (amino acid 373). Our sequence was 88% identical to the B. 438 

belcheri sequence (433/492 residues). The amino terminus of the B. floridae CYP19 aromatase is 439 

elongated relative to the human and killifish aromatase B sequences and is similar in length to 440 

the dogfish and killifish aromatase A sequences. While the B. belcheri sequence is not elongated, 441 

the predicted start codon aligns with the second methionine in our B. floridae sequence. Because 442 

no 5’-UTR sequence has been reported for B. belcheri, we consider it likely that a portion of the 443 

amino terminus has been truncated.  444 

     Phylogenetic analysis confirmed that the amphioxus sequence identified in this study is 445 

orthologous to the vertebrate aromatases (Fig 1A), consistent with  previously published analyses 446 

of amphioxus aromatase conducted using neighbor-joining [4,5] and maximum likelihood 447 

methods [31]. The tree topology corresponded with the evolutionary relationship between 448 

amphioxus and vertebrates [5]. 449 

 450 

3.2. Isolation of ER cDNA and sequence analysis  451 

The assembled cloned amphioxus ER cDNA (GenBank accession number EF554313.1) 452 

contained an ORF of 1383 bp, a 5’-UTR of 684 bp, and two 3’-UTR sequences (988 bp and 633 453 

bp). The long and short UTRs overlapped and were essentially identical in sequence at their 5’ 454 

ends. Both had polyA tails suggesting they are products of a single mRNA with alternate polyA 455 

addition sites. The ORF of the assembled mRNA encoded a polypeptide of 460 aa, and was 456 

amplified, cloned and sequenced. The cloned cDNA had >99% identity when compared to the in 457 

silico derived ER cDNA; however, the protein predicted from the genomic sequence 458 
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(JGI_210589), is missing the entire A/B domain 5’ of residue 83 of our cloned sequence and 459 

contains several indels due to incorrectly predicted exon boundaries.  Our cloned sequenced 460 

differed by two amino acids from the sequence reported and characterized by Paris et al. [6]: one 461 

in the A/B domain (histidine at residue 33 in our sequences replaced by arginine) and one in the 462 

hinge domain (arginine at residue 164  replaced by lysine); both of these differences result in 463 

conservative substitutions. A phylogenetic tree constructed using our ER sequence was 464 

consistent with previously published trees and the evolutionary relationships among taxa (Fig 465 

1B, [6,8,88]). . 466 

 467 

3.3 CYP19 gene analysis.  468 

3.3.1. Exon-intron size and organization  469 

 Through interrogation of the amphioxus genome assembly and cloning of all the B. 470 

floridae CYP19 exons and  introns, we determined the complete sequence of the gene (GenBank 471 

Accession Number HQ010363). Like all other CYP19 genes, the amphioxus CYP19 has nine 472 

coding exons, and these are well conserved in size (Figure 2, Table 1). As previously reported 473 

for CYP19a1 the predominant ovarian aromatase in goldfish [17] and zebrafish [89], the 474 

amphioxus CYP19 gene most closely resembles the situation of the human gene in which the PII 475 

(ovarian) promoter and untranslated first exon are contiguous with and immediately upstream of 476 

the ATG site in exon II [90,91]. In contrast, CYP19a2, the predominant brain aromatase of 477 

teleostean fish, has an untranslated first exon farther upstream and, in this respect, resembles the 478 

human ortholog, in which multiple promoters/untranslated first exons located as far as -93 kb 479 

from the translation initiation site are alternatively spliced in a tissue-specific manner to a 480 

common site in exon II such that the aromatase protein synthesized is identical in all tissues 481 
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[90,91], suggesting that tissue-specific promoters were acquired sequentially during the course of 482 

evolution (ovary>brain>placenta). From the ATG in exon II, the amphioxus CYP19 is 483 

approximately 7 kb, much smaller than the human CYP19 (30 kb) or either zebrafish CYP19a1 484 

(15 kb) or CYP19a2 (12 kb), due primarily to shorter introns (Figure 2; Table 1). Worth noting 485 

here, our experimentally determined intronic sequences, when aligned with the amphioxus whole 486 

genome database, had a number of indels and mismatches, most notably a 1300 bp insert in 487 

intron III and a 216 bp insert in intron IV at the junction with exon V.  488 

 489 

3.3.2 Identification of putative cis-regulatory elements 490 

      Regulation of CYP19 expression and promoter structure varies considerably among taxa. 491 

In contrast to teleost fish in which aromatase expression in brain and ovary is controlled by two 492 

distinct genes and promoters, the CYP19 of humans, other mammals and birds is a single gene 493 

with multiple promoters (also see section 3.3.1 above, and legend to Fig. 2). From genomic 494 

DNA, we amplified, cloned and sequenced 5’-flanking sequence 1184 bp upstream of the ATG 495 

in exon II (Genbank Accession Number HQ010363), which includes a TATA box at –187. 496 

Although overall sequence identity in the 5'-flanking region of the different CYP19 genes was 497 

low, statistically over-represented motifs corresponding to known cis elements were identifiable. 498 

TRANSFAC analysis of the B. floridae 5’-flanking sequence revealed at least six potential 499 

transcription factor binding sites, each of which have been identified within the aromatase 500 

promoter from other taxa (Table 2). Notably, some forms of aromatase from other taxa (e.g., 501 

CYP19a1b  expressed predominantly in teleostean brain [19,92] and several human tissue-502 

specific CYP19 promoters [91,93]) can be induced by estradiol exposure through direct ER 503 

interactions with estrogen-responsive elements (ERE) or indirect ER interactions with other 504 
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transcription factors and binding sites. A typical ERE consists of two hexameric half-sites 505 

(AGGTCA) in opposite orientation (inverted repeats), separated by three nucleotides [94]. In 506 

addition, several nuclear receptors, including ER , ERR  and SF-1 can bind to ERE half-sites or 507 

extended half-sites (TCAAGGTCA, also called ERREs or SFREs) [95]. While we did not 508 

identify EREs upstream of the B. floridae CYP19, three largely conserved putative ERE half-509 

sites were found within the amphioxus CYP19 promoter (designated by MATCH as ERR and 510 

SF-1 binding sites, Table 2). Availability of a putative promoter of the amphioxus CYP19 511 

provides an entry point for studying transcriptional regulation at this key phyletic level. 512 

 513 

3.4. Alignment of deduced amino acid sequences in conserved functional domains of 514 

amphioxus and vertebrate aromatases  515 

      Key functional domains of our deduced amino acid sequence were aligned with reported 516 

CYP19 sequences from the congener B. belcheri and representative vertebrates (Fig. 3). 517 

Boundaries of conserved functional domains are as described by Simpson et al. [11] and 518 

correspond to the following residues: human (I-helix 294-324, aromatic region 376-398, heme-519 

binding 424-443), B. floridae (I-helix 327-357, aromatic region 399-430, heme-binding 460-520 

475). Comparison among taxa revealed moderate conservation between amphioxus and 521 

vertebrate sequences. Relative to B. belcheri, our sequence contained one difference in the 522 

aromatase-specific conserved region, and one in the heme-binding region. Compared with the 523 

human sequence, the B. floridae sequence exhibited 54% identity (17/31 residues) in the I-helical 524 

domain, 56% (18/32 residues) in the aromatic region, and 56% (10/18 residues) in the heme-525 

binding domain. Within these regions, the four residues shown to contact the substrate by the 526 

human aromatase (A306, D309, T310, F427; Fig. 4b, 4d) are also predicted to contact the 527 
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substrate by the amphioxus aromatase (A339, D342, T343, F463; Fig. 4a, 4c, Section 3.5). These 528 

four residues are perfectly conserved among all taxa shown.  529 

 530 

3.5. Aromatase modeling, mapping and docking  531 

Using MODELLER, the human and amphioxus aromatase sequences are 40% identical 532 

overall and, considering conservative mutations, show similarity for 60% of the amino acid 533 

residues. In addition, the identical and similar residues are distributed evenly along the sequence, 534 

and there are only 14 residues in gap regions for the sequence of 452 amino acids. Based on this 535 

high level of sequence conservation, it is expected that a useful model of the amphioxus 536 

aromatase can be constructed based on the structure of the human protein. 537 

Figure 4A shows the amino acid residues in the binding site of the resulting amphioxus 538 

aromatase model and the position and orientation of androstenedione (shown in grey) obtained 539 

by docking. We note that the docking is predicted to be fairly accurate. Indeed, the 100 540 

independent docking runs yielded docked androstenedione poses that can all be confined to a 541 

cluster with a mean root mean square deviation (RMSD) of less than 0.8 Å, and all docked 542 

structures have very similar interactions with the surrounding residues.  In order to further test 543 

the docking algorithm, we also docked androstenedione to the known structure of the human 544 

aromatase (Figure 4B). The docked poses from the 100 docking runs formed a  cluster with the 545 

RMSD of less than 1.2 Å, and the lowest energy docked pose (grey) had an RMSD of less than 1 546 

Å from the androstenedione pose in the X-ray structure (shown in violet). In addition to the 547 

similar binding modes, the binding energies obtained in the two docking experiments (-10.7 and 548 

-11.3 kcal/mol for human and amphioxus aromatase, respectively) suggest that androstenedione 549 

is likely to bind to the human and amphioxus proteins with similar affinity.  550 
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Figure 4C and 4D show the percentage of nonbonded interactions between the small 551 

molecular probes from the computational solvent mapping and the amino residues in the human 552 

and amphioxus aromatase, respectively. We consider only the binding site residues within 6 Å 553 

from any androstenedione atom. The two fingerprints confirm the conservative character of the 554 

mutations in the binding site, and explain why the binding modes of androstenedione are so 555 

similar in the two proteins. The site includes 21 amino acid residues that have more than 1% of 556 

the nonbonded interaction contacts in one or both structures, but only one of these residues is 557 

mutated (from L372 to F404). In addition, as shown for F404 in Figure 4A and for L372 in 558 

Figure 4B, these residues interact with the bound androstenedione using backbone atoms rather 559 

than their side chains, and hence do not affect the binding features. Thus, all residues that are 560 

critical for the binding of small molecules are also highly conserved during the course of 561 

evolution. The conservation is not as strong for the less important residues: among the five 562 

positions in the binding site that have less than 1% of the nonbonded interaction contacts, two 563 

are mutated during the course of evolution (I305 to V338 and A307 to G340). 564 

     Based on the results described above, there is a remarkable degree of conservation in the 565 

predicted structure of the amphioxus and human aromatase proteins despite the approximately 566 

500 million years of divergence between the cephalochordate and vertebrate lineages. While the 567 

overall amino acid identity is moderate (40%), binding site residues are highly conserved, and 568 

docking results indicate that androstenedione is likely to react within the catalytic site of the 569 

amphioxus protein as it does with human aromatase. In this regard, it would be of interest to 570 

compare the substrate affinity and catalytic activity of the two aromatase enzymes in the same 571 

membrane context. 572 

 573 
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3.6  Functional characterization of amphioxus ER       574 

      Paris et al. [6] inferred from limited proteolysis assays that bisphenol A binds the 575 

amphioxus ER but other classic ER ligands (estradiol, 3b-androstane-diol, 4-hydroxytamoxifen, 576 

diethylstilbestrol, enterolactone, ICI-182780) do not. The limited proteolysis assay indicates the 577 

ability of a compound to induce a conformational change in a protein that protects it from typsin 578 

digestion, as is generally observed upon binding of estrogens to the vertebrate ER LBD [6,96].   579 

In this report, we quantified specific binding of radiolabeled estradiol to the human and 580 

amphioxus estrogen receptors as a more direct measurement of binding. When expressed in 581 

vitro, human ER  specifically bound tritiated estradiol in a saturable manner with high affinity 582 

(Fig. 5, Kd =  0.23 ± .046 nM). In contrast, no specific binding of estradiol to the amphioxus ER 583 

was detected in this assay (Fig. 5A).  584 

     When human ER and amphioxus ER were transiently transfected into COS-7 cells, they 585 

produced proteins of the expected size (59 kD amphioxus, 66 kD human) with a similar 586 

efficiency. As expected, estradiol, bisphenol A, diethylstilbestrol and genistein activated human 587 

ER , and 4-hydroxytamoxifen (an ER antagonist) did not activate human ER As shown in Fig. 588 

5B, activation of human ER by the weak estrogens bisphenol A and genistein was more 589 

variable (larger error bars), although this variability was not consistently observed. The 590 

amphioxus ER showed no constitutive activity beyond that of an empty expression vector. 591 

Transactivation by the amphioxus ER was not increased in the presence of estradiol or the other 592 

estrogenic compounds tested (Fig. 5B). These results are consistent with previous studies 593 

showing that amphioxus ER is not activated by ligands for the vertebrate ER [6,8,60]. Indeed a 594 

ligand for amphioxus ER has not been identified, although it has been demonstrated that 595 

amphioxus ER can serve as a competitive repressor for the hormone-activated SR [8,60]. 596 
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 597 

3.7 Tissue distribution of aromatase and ER mRNA  598 

      Semi-quantitative RT-PCR was conducted to examine the expression of aromatase and 599 

ER transcripts in different amphioxus body segments (Fig 6A). As previously reported for 600 

aromatase enzyme activity [26], aromatase mRNA expression was limited to central (gonad-601 

containing) segments, and expression was somewhat higher in females. Although ER mRNA 602 

was detectable in all three regions, the relative band intensity was tissue-related: expression was 603 

highest in gonad-containing segments (ovary > testis) and lower but approximately equal in 604 

cephalic and caudal segments (Fig 6B). Overall, these expression patterns are consistent with 605 

results from Bridgham et al [8], who used in situ hybridization to demonstrate that ER and SR 606 

are primarily expressed in gonads: ER and SR were co-expressed in oocytes, but in testes SR 607 

was broadly expressed and ER expression was more restricted. 608 

 609 

4.  CONCLUSIONS AND FUTURE PERSPECTIVES 610 

 611 

The basic requirements of a functional chemical signaling system are (a) a messenger 612 

molecule; (b) a cellular receptor for recognition and signal transduction; and (c) a biological 613 

response. Results presented here reinforce the view that the cephalochordate amphioxus has the 614 

ability to synthesize estrogen, and also has the core molecular elements of a classical vertebrate 615 

ER-mediated signal transduction pathway. While modeling and docking studies predict that 616 

amphioxus aromatase will bind androgen, the substrate affinity, catalytic activity and other 617 

reaction properties of this enzyme remain to be evaluated. In addition, functional differences 618 

between vertebrate and amphioxus ERs and SRs indicate that mechanistic differences in estrogen 619 
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signaling must exist between the two groups. Indeed, evidence that aromatizable substrate is 620 

available and that estrogen is actually recognized as a chemical messenger that activates a 621 

cellular response in a biologically relevant context remains to be established.  622 

 What is clear from our new analyses of the amphioxus CYP19 gene and aromatase protein is 623 

the remarkable degree of structural and functional conservation from amphioxus to humans. To 624 

place this in an evolutionary timeframe, the ancestral chordate represented by the common ancestor 625 

to contemporary vertebrates, amphioxus, and tunicates is estimated to have emerged 500 million 626 

years ago (Cambrian era). In view of this ancient history, it is surprising that a recognizable 627 

ancestral CYP19 has not yet been found among the CYP genes in invertebrates. Although the 628 

possibility that CYP19 was secondarily lost in invertebrates cannot be ruled out, a renewed search 629 

using the larval forms of invertebrates and a wider range of species could be productive in 630 

illuminating the evolution of this important member of the CYP family of genes. 631 

In itself, conservation of a character, such as the ability to synthesize estrogen, signifies 632 

an important adaptive value. Moreover, coexpression of aromatase and ER in the gonads 633 

suggests a functional interaction, perhaps a paracrine/autocrine signaling role in regulating  634 

seasonal or cyclical gonadal growth as occurs in vertebrates. How can this be accomplished if, as 635 

we show here, amphioxus ER does not bind estradiol?  One explanation is that estradiol is not a 636 

surrogate for the actual amphioxus estrogen. Certainly, many natural steroidal chemicals 637 

(estrone, estriol, catechol estrogens) have estrogenic or antiestrogenic bioactivity but differ 638 

substantially in their binding properties and spectrum of bioactivities when compared to 639 

estradiol, even when tested with mammalian ER. It is worth noting here that aromatization of 640 

androgen to estrogen occurs in three hydroxylation steps and accumulation of intermediates such 641 

as 19-nortestoserone is substantial with some aromatases (e.g., porcine blastocyst isoform; [97]). 642 
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To our knowledge, these steroids have not been tested with amphioxus ER although 19-643 

nortestosterone is reported to bind to the mammalian ER [98]. Additionally, estrone and 644 

estradiol can be further metabolized to a variety of hydroxylated forms (e.g., at C2, C4). 645 

Although these estrogens generally do not interact to any extent with mammalian ER, they 646 

cannot be ruled out as ligands of the amphioxus ER.  647 

Another way to explain discordance between estrogen synthesis and estrogen action is 648 

that the early estrogen signaling system involved ER indirectly, for example, through 649 

heterodimerization with another estrogen-activated nuclear receptor (ERR, SR), or through 650 

binding with a different class of membrane-associated receptors (GPR30). These, in turn, could 651 

activate ER through phosphorylation or other post-translational modification. Additionally, ERs 652 

partner in protein-protein interactions with other nuclear factors by which they are tethered to 653 

DNA binding motifs including Sp-1 and AP-1 recognition elements (Safe & Kim Journal of 654 

Molecular Endocrinology (2008) 41, 263–275). Without testing a variety of reporter constructs,  655 

it would be premature to conclude that the amphioxus estrogen/ER complex lacks 656 

transcactivational activity.   657 

If it can be proven that the role of ER in estrogen signaling in amphioxus is indirect, then 658 

it is reasonable to postulate that direct estrogen binding/transactivation of ER is a feature that 659 

was acquired secondarily during the course of evolution, concomitant with the ever-increasing 660 

complexity of vertebrate organisms. This theory could explain the remarkable diversity and 661 

complexity of estrogen signaling pathways in contemporary mammals: genomic/transcriptional; 662 

rapid non-genomic/membrane-mediated; ligand- and ERE-dependent and independent (see 663 

Introduction).The value of an evolutionary perspective is that it provides a conceptual framework 664 

for organizing and analyzing information, thereby revealing common themes,  unanswered 665 
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questions and new hypotheses for testing. At this point we cannot rule out the possibility that 666 

endogenously synthesized estrogen is just a metabolic byproduct, or that the ER of adult 667 

amphioxus is preadaptive or degenerate. The information provided here provides an entry point 668 

for new molecular analysis. A key remaining challenge, however, is to demonstrate that estrogen 669 

has biologically relevant effects at this phyletic level.  670 
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LEGENDS 681 

  682 

Figure 1: Phylogenetic trees of (A) aromatase and (B) ER proteins. Trees were 683 

constructed to demonstrate the phylogenetic position of our  amphioxus aromatase and ER 684 

sequences; topologies were consistent with previously published trees [5,7,31]  and the 685 

evolutionary relationships among taxa [22].  GenBank Accession numbers are given 686 

parenthetically. (A) Deduced amino acid sequence of amphioxus aromatase was aligned with 687 

vertebrate CYP19 sequences and other representative CYP sequences. The maximum likelihood 688 

tree was rooted with the human CYP17 and CYP21 sequences (CYP Clan 2). Accession 689 

numbers: Amphioxus CYP19 (ABA47317.1) zebrafish CYP19a1/A (AA65788.1), zebrafish 690 

CYP19a2/B (AAK00642.1), killifish CYP19a1/A (AAR97268.1), killifish CYP19a2/B 691 

(AAR97269.1), Human CYP19 (NP_112503.1), mouse CYP19 (P28649.1), Human CYP17 692 

(AAA36405; Human CYP21 (NP_000491). Numbers indicate percentage of 100 bootstrap 693 

replicates supporting each node. (B) Deduced amino acid sequence of amphioxus ER was 694 

aligned with vertebrate ER and ERR sequences, and a Neighbor-Joining tree was constructed. 695 

Protostomes (mollusc and annelid) ER sequences were not included in this analysis (see [10] for 696 

a thorough analysis of the evolutionary position of these genes). Amphioxus ER (EF 554313.1), 697 

teleost ER b (zebrafish,  NP_777287; goldfish, Q9IAL9), teleost ER a (zebrafish, NP_851297; 698 

trout, CAC06714; goldfish, Q9W669; medaka, AAX14000; Salmon AAR92486), mammal ER  699 

(human, CAA67555; rat, U57439; mouse, AAB51132), Lamprey ER (AAK20929), teleost 700 

ER ( Medaka, P50241; Salmon, P50242; Trout, P16058; Goldfish ER, AAL12298; zebrafish, 701 

NP_694491; mammal ER  (Mouse, NP_031982; Rat, P06211), ERRs (Amphioxus ERR 702 

AAU88062; Human ERRα (NP_004442), ERR  (O95718), and ERR  (AAQ93381).  Numbers 703 
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on nodes indicate percentage of 1000 bootstrap replicates supporting each node, and triangles 704 

indicate nodes collapsed for simplicity.  705 

 706 

Figure 2. Comparison of CYP19 genes in amphioxus, human and zebrafish. The genomic 707 

organization of the coding region of the single copy CYP19 gene in the human (A, upper panel; 708 

NM 000103.3; [108] is compared to that of amphioxus (HQ010363) and zebrafish CYP19a1(A) 709 

and CYP19a2(B) genes (NM 131154.2 and NM131642.1 [109]) (B, lower panel). Exons II – X 710 

are labeled in human (panel A) and correspondingly color coded in amphioxus and zebrafish 711 

(panel B). The translation initiation (*) and the stop (°) codons are indicated. Note that the 712 

ovarian promoter/untranslated first exon of the human CYP19 (PII) is contiguous with exon II, 713 

whereas the placental (I.1) and brain (I.f) promoters and first exons are located ~93 kb and 33 kb 714 

upstream of the ATG in exon II. The untranslated first exon in amphioxus and zebrafish 715 

CYP19A1(A) is contiguous with exon II, while the untranslated first exon of zebrafish 716 

CYP19A2(B), like that of human I.f is further upstream. Also, the very long exon X (3'-717 

untranslated region) of zebrafish CYP19A2(B) has a ~250-bp region deleted from the mRNA.  718 

 719 

Figure 3: Sequence alignment of conserved functional domains of aromatases in amphioxus 720 

and representative vertebrates.  Boundaries are as described by Simpson et al. [11] for amino 721 

acid residues of the human aromatase: I-helix 294-324: aromatic region 376-398: heme-binding 722 

domain 426-443). Identical and similar amino acid residues are marked by asterisks and dots, 723 

respectively. GenBank accession numbers given in Figure 1 legend or as follows: amphioxus (B. 724 

floridae, EF554313.1; B. belcheri, BAF61105.1), Dogfish (ABB53418.1), Killifish 725 
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(CYP19A1(A): AAR97268, CYP19A2(B): AAR97269), Xenopus (BAA90529), Zebra finch 726 

(AAB32404.1), Turtle (AAG09376), Rat (NP_036885.1), Pig (AAB51387). .  727 

 728 

 729 

Figure 4:  Homology model of androstenedione docked within the active site of aromatase 730 

in (A) amphioxus and (B) human and plot of non-bonded interactions in (C) amphioxus 731 

and (D) human. See sections 2.3 and 3.5 for detailed methods and results describing 732 

evolutionarily conserved residues. Also, compare with conserved residues identified by sequence 733 

alignment (Fig. 3; section 3.3.2). 734 

 735 

Figure 5: Functional comparison of amphioxus ER through binding experiments and cell-736 

based reporter assays. Amphioxus estrogen receptor (BfER) and human estrogen receptor alpha 737 

(HsER ) constructs containing a V5 epitope tag were expressed in rabbit reticulocyte (A) and in 738 

COS-7 cells (A inset, B). (A) Tritiated estradiol was specifically bound by the human ER  739 

(triangles) as expected, but not by the amphioxus ER (squares). Representative results from one 740 

of four independent experiments are shown. (inset) A western blot with a v5 antibody showing 741 

expression of BfER and ER  transfected into COS-7 cells. (B) Amphioxus ER (white bars), 742 

human ER  (grey bars), or an empty expression vector (pcDNA, black bars) were transfected 743 

into COS-7 cells along with a luciferase reporter driven by three estrogen responsive elements 744 

(see methods). The y-axis shows the ratio of luminescence by the luciferase reporter to 745 

luminescence by a transfection control reporter. Units are normalized such that the value for the 746 

DMSO-treated empty expression vector is equal to one.  747 

 748 
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Figure 6: Tissue-specific expression of (A) CYP19 and (B) ER mRNAs in amphioxus, as 749 

determined by semiquantitative RT-PCR analysis. Tissues were collected during the period of 750 

reproductive activity. H, head; T, testis; O, ovary; Ta, tail; C, control (no template). Products 751 

were separated on 1% agarose gels in 0.5X TBE, stained with ethidium bromide and visualized 752 

under ultraviolet light.  753 

 754 
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ORGANISM I-HELICAL DOMAIN AROMATIC REGION HEME BINDING DOMAIN
. * *.: *:::*.***:*:.::.:*. : . :*** : **:: .:* ::*  : :***:*:* * *** * *.*.*:

Amphioxus(Bf) SCVRQCVTEMLVAGPDTMSVNIYFILLHIAE RPVVTFVMRHAEEEDHVDGYVIPKGTNVIINL FMPFGLGVRSCVGRTIAP
Amphioxus(Bb) ............................... .....L...R...............A...... .......P..........
Dogfish DN...SML.I.I.G......S.F.M.ML..Q Q...D.T..K.LKD.VI...PVK....I.L.L .Q...C.P.S...KY..M
ZebrafishB DD.....L..VI.A...L.ISLF.M..LLKQ H...D.I..QSL.D.YI...RVA....L.L.I .Q...C.P.A...KH..M
KillifishB DD.....L..VI.A...L.ISLF.M.MLLKQ H...D.T..RALDD.D.E.TK.K....I.L.I .Q...C.P.S...KH..M
ZebrafishA EN.....L..VI.A...L.ISLF.M..LLKQ H...D.T..R.LDD.VIE..NVK....I.L.V .Q...S.P.A.A.KY..M
KillifishA EN T L VI A L ISLF M LLKQ H D T R LSD VI RV I L T Q S P A KH MKillifishA EN.T...L..VI.A...L.ISLF.M..LLKQ H...D.T..R.LSD.VI...RV.....I.L.T .Q...S.P.A...KH..M
Xenopus  EN.N.CIL...I.A...M..SLF.M.VL..Q Q...DL...K.L.D.II...YVK....I.L.. .Q...S.P.A.A.KY..M
Chicken EN.N...L..MI.A...L..TLFIM.IL..D Q...DLI..K.LQD.VI...PVK....I.L.I .Q...F.P.G...KF..M
Zebrafinch  EN.N...L..MI.A...L..TLF.M.IL... Q...DLI..K.LQD.VI...PVK....I.L.I .Q...F.P.S...KF..M
Turtle EN.N...L..MI.A...L..TLF.M.VL... Q...DL...K.LQD.VI...PVKR...I.L.I .Q...F.P.G...KF..M
Alligator EN.N...L..MI.A...L..TLF.M.VL... Q...DLI..K.LQD.VI...PVK....I.L.I .Q...F.P.A...KF..M
Rat EN.N..IL...I.A......TL.VM..L... Q...DL...R.L.D.VI...PVK....I.L.I .Q...F.P.S.A.KY..M
Pig EN.N..IL...I.A...L..TVF.M.FL..K Q...DL...K.L.D.VI...PVK....I.L.I .Q...F.P.A.A.KY..M
Human   EN.N..IL...I.A......SLF.M.FL..K Q...DL...K.L.D.VI...PVK....I.L.I .Q...F.P.G.A.KY..M

Figure 3
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Table 1. Comparison of exon and intron sizes in coding region of amphioxus and human 

CYP19 genes.  

 

 

 Size (bp) 

Exon  amphioxus Human 
II 219 183 
III 151 151 
IV 155 155 
V 186 177 
VI 118 115 
VII 133 115 
VIII 160 163 
IX 245 242 
X 1,413 1,582 
Intron    
II 332 5,758 
III 368 8,925 
IV 1,516 5,253 
V 292 3,693 
VI 338 2,723 
VII 379 470 
VIII 459 2,508 
IX 463 1,263 

 



Table 2. Position and sequence of putative transcription factor binding motifs identified in 
the 5’-flanking region of the amphioxus CYP19 gene. Putative cis regulatory elements were 
identified using the MATCH program. Core  and matrix match values indicate the quality of a 
match between the sequence and the cis regulatory element matrix, with 1.0 being a complete 
match [69]; where multiple matrices match a given site, the highest quality match is indicated.  
 
 

 
* Identified through a manual search; nearly perfect match with consensus sequence 
(TCAAGGTCA [95]) 
 

Putative TF 
Match Quality 
(core/matrix) 

Position from 
ATG 

(+/-) Strand 

Sequence Identification in other 
CYP19 promoters 

[reference] 
TATA 
1.0/0.997 

-187 to -195 (+) TATAAAAA goldfish and zebrafish 
A1 and A2 [19,89]; 
human I.3, 1.6 [99,100], 
zebra finch 1b [101], 
mouse [102,103] 

ERR; ER ½ 
1.0/0.918 

-319 to  -348 (+) ATGTGTCTTTT(TGAC 
C)TCTGCATATTACT 

EREs in goldfish and 
zebrafish A1, A2 
[19,104]; mouse II and  
human 1f [reviewed in 
104] 

OCT-1 
1.0/0.969 

-319 to -331 (-) TCTGCATATTACT zebra finch 1a [101] 

CREB 
1.0/0.985 
1.0/0.948 

 
-354 to –363 (+) 
-637 to -642 (-) 

 
TGACGTCT 

ACACGTCATAGG 

zebrafish A1 and A2 
[89]; rat II ([105]), 
Human I.3/II  [106] 

ERR; SF-1* 
 

-461 to -469 (-) TCAAGGTTA goldfish and zebrafish 
A1  [19,104], human II 
[107], zebra finch 1b 
[101] 

GATA1/GATA2 
1.0/0.987 

-430 to -444 (+) AACAAAGATAAGTGT zebra finch 1b [101],  
goldfish A2 [19], human 
endothelial 1.7 [28] 



Supplementary Table 1. Oligonucleotide primers. The nucleotide position of sequences 
targeted by primers A1-30 and E1-6 refers to newly isolated amphioxus aromatase and ER 
cDNA sequences (GenBank Accession Numbers: DQ165086 and EF554313, respectively) or to 
sequence obtained in whole or in part by interrogation of the amphioxus genome database (*).   
 

Primer Application Sequence 5’ – 3’ (F, forward; R, reverse) (nt) 

A1 cDNA cloning F-ATTGAACAGAAGTCGTACCAGACA 47-70 

A2 cDNA cloning R-GGTGTTTCCTGTACAGGGTAGGAT 796-819 

A3 cDNA cloning R-AAGACTTCCCTGATTTCCCTAAGT 1097-1120 

A4 cDNA cloning F-TACCAGACACGGCATAACCA 62-81 

A5 cDNA cloning R-GCAGTAGCGTGATGAGGACA 1450-1469 

A6 3’ RACE F-GCAAGGCCAGTGGTCACTTTCGTCAT 1197-1222 

A7 5’ RACE R-AACTTCCAGCTCTGCACGTCGTTGTT 476-502 

A8 5’ RACE R-CGGATGTTAGCCAGTTGTCGTCTGGT 576-601 

A9 RT-PCR F-AGGACAGGAGTCAATTATCA 30 – 49* 

A10 RT-PCR R-CGCTACTAGGACAGAAGAAG 1981-1999 

A11 RT-PCR F-AAAGCAGAGGTAGCTTCCCATT 28-39 

A12 RT-PCR R- TGGATACTTTCCCTCAGATCGT 1581-1602 

A13 Intron II F-GGGATATTTCCCCCAGGTAA 204-221 

A14 “ R-CTGCTGATGATGAAAGTCTGCT 349-370 

A15 Intron III F-CATCAGCAGGTGCGTTCTTA 362-386 

A16 “ R-GCACGTCGTTGTTGAAGATG 470-489 

A17 Intron IV F-CGCTTCTTCTTCGTCAAAGG 507-525 

A18 “ R-AAATAGCCGGTTTCCGATTT 670-688 

A19 Intron V F-ATCGGAAACCGGCTATTTCT 672-691 

A20 “ R-GATAAACCAACTGCAGCACCT 778-798 

A21 Intron VI F-GGAGGTGGTGAACACAATCA 716-735 

A22 “ R-TTGGGATGCTGAATTCTTCC 902-921 

A23 Intron VII F-GGAAGCTGGTGGACAAGAAG 853-872 

A24 “ R-ACATTTCTGTCACGCACTG 996-1012 

A25 Intron VIII F-CAGTGCGTGACAGAAATGCT 996-1015 



A26 “ R-ATCGAGGAACACCATCTTGC 1153-1172 

A27 Intron IX F-CACCAAGACCCTCGTCACTT 1305-1324 

A28 “ R-TCCCTCAGATCGTCTCCAAC 1573-1593 

A29 Promoter F-ACGAACACAACCAATCCAG 1164 – 1184* 

A30 “ R-ACAAGCACAACAAGCAGCAC 134-156 

E1 cDNA cloning F-TGGAGTCTGGTCATGTGAGG 968-987 

E2 cDNA PCR R-CAGTTTCTCCCCCTTGTGTC  1642-1661 

E3 5’ RACE R-GGCAGCTTTTTCGTCTATTCCTGTCAATG 1064-1092 

E4 3’ RACE F-TGGGGACCATGCTTCAGGCTTCCAC 941-965 

E5 RT-PCR F-CATGTCTCCTGTCATGTCTGTC 656-673 

E6 RT-PCR R-GCAATCATCTCTCTTTCTCTGG 2142-2163 

 

*bp upstream of ATG translation start site 
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