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Grain-size distribution in the mantle wedge of subduction zones
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[1] Mineral grain size plays an important role in controlling many processes in the mantle
wedge of subduction zones, including mantle flow and fluid migration. To investigate
the grain-size distribution in the mantle wedge, we coupled a two-dimensional (2-D)
steady state finite element thermal and mantle-flow model with a laboratory-derived
grain-size evolution model. In our coupled model, the mantle wedge has a composite olivine
rheology that incorporates grain-size-dependent diffusion creep and grain-size-independent
dislocation creep. Our results show that all subduction settings lead to a characteristic
grain-size distribution, in which grain size increases from 10 to 100 pm at the most
trenchward part of the creeping region to a few centimeters in the subarc mantle. Despite
the large variation in grain size, its effect on the mantle rheology and flow is very small, as
>90% of the deformation in the flowing part of the creeping region is accommodated
by grain-size-independent dislocation creep. The predicted grain-size distribution leads to
a downdip increase in permeability by ~5 orders of magnitude. This increase is likely to
promote greater upward migration of aqueous fluids and melts where the slab reaches
~100 km depth compared with shallower depths, potentially providing an explanation
for the relatively uniform subarc slab depth. Seismic attenuation derived from the
predicted grain-size distribution and thermal field is consistent with the observed seismic
structure in the mantle wedge at many subduction zones, without requiring a significant

contribution by the presence of melt.

Citation: Wada, I., M. D. Behn, and J. He (2011), Grain-size distribution in the mantle wedge of subduction zones, J. Geophys.

Res., 116, B10203, doi:10.1029/2011JB008294.

1. Introduction

[2] Many processes in the mantle wedge, such as mantle
flow, the migration of aqueous fluids and melts, and the
attenuation of seismic waves, depend on mineral grain size
(Figure 1). For example, at a relatively high temperature in
the upper mantle, grain size determines the relative impor-
tance of the two main deformation mechanisms, diffusion
and dislocation creeps [e.g., Karato and Wu, 1993], which
in turn affect mantle rheology and mantle wedge flow. Grain
size also influences grain-scale permeability and the migra-
tion of aqueous fluids and melts in the mantle wedge [e.g.,
Hirth and Kohlistedt, 2003; Wark et al., 2003]. Furthermore,
grain size affects the attenuation of seismic waves and thus
the interpretation of observed seismic structures [e.g.,
Jackson et al., 2002; Faul and Jackson, 2005; Behn et al.,
2009]. Therefore, understanding the distribution of grain
size is critical to the study of the mantle wedge geodynamics.

[3] In earlier studies on the evolution of grain size [e.g.,
Twiss, 1977; Karato et al., 1980; Ross et al., 1980; Van der
Wal et al., 1993], grain size was directly related to stress and
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was used as a paleopiezometer. However, more recent
studies indicate that grain size is also sensitive to tempera-
ture and strain rate [e.g., De Bresser et al., 1998, 2001; Hall
and Parmentier, 2003; Montési and Hirth, 2003; Austin and
Evans, 2007]. Based on microstructural observations of
the evolution of grain size during laboratory experiments,
grain-size evolution at the relatively high temperatures of
the upper mantle is related to two competing processes,
static grain growth and dynamic recrystallization [Karato,
1984]. Static grain growth occurs through grain boundary
migration driven by reduction of total interfacial energy [e.g.,
Urai et al., 1986; Karato, 1989; Evans et al., 2001]. Dynamic
recrystallization occurs through reconfiguration of crystalline
defects driven by reduction of stored energy associated with
the defects and results in grain-size reduction [e.g., Twiss,
1977; Karato et al., 1980; Ross et al., 1980; Van der
Wal et al., 1993]. Grain-size evolution models that include
static grain growth and dynamic recrystallization explicitly
incorporate the temperature and strain rate dependence of
these two mechanisms [e.g., Hall and Parmentier, 2003;
Austin and Evans, 2007].

[4] Another proposed theory for grain-size evolution is
based on damage theories [e.g., Bercovici and Ricard, 2005;
Ricard and Bercovici, 2009], in which the generation of
grain boundaries occurs because of the imposed deformation
field as in the dynamic recrystallization theory. Whether the
dynamic recrystallization and damage theories are recon-
cilable has yet to be investigated. Phase transformation can
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Figure 1. (a) Schematic diagram of a typical subduction
zone with a relatively young and warm subducting slab
along a continental margin and (b) the corresponding sur-
face heat flow. Insets in la show how the effect of slab-
mantle (de)coupling is modeled by using a thin layer along
the plate interface in our model. The strength contrast
between the interface layer (1) and mantle (7.¢) controls
the slab-mantle coupling.

also influence grain size as a grain of a new phase nucleate
and grows at the expense of an old phase [Aaronson, 1993].
This mechanism has been applied to explain the rheology of
the subducting slab [e.g., Riedel and Karato, 1997] and the
lower mantle [e.g., Solomatov et al., 2002], but its effect on
grain size in the mantle wedge is likely minimal because no
phase transformation of the main constituent mineral of the
upper mantle, olivine, is expected to occur in this region.

[5] In the mantle wedge, the thermal and deformation
conditions are expected to vary significantly over relatively
short distances [e.g., Kincaid and Sacks, 1997; van Keken
et al., 2002; Kelemen et al., 2003; Wada et al., 2008], and
thus a large variation in grain size is expected. Grain size in
mantle xenoliths, such as those from continental extension
zones [e.g., Avé Lallemant et al., 1980], subarc upper mantle
[Blatter and Carmichael, 1998] and kimberlites in stable
cratons [e.g., Kopylova et al., 1999], ranges from a few microns
in ultramylonites formed in localized shear zones to a few
centimeters. In the mantle wedge, given the wide range of
thermal and deformation conditions, a comparable variation
in grain size of up to 4 orders of magnitude can be
expected. Such a large variation can have a significant influ-
ence on the physical state of the mantle wedge.

[6] In this study, we explore the distribution of grain size
in the mantle wedge by coupling a two-dimensional (2-D)
steady state thermal and mantle-flow model with the grain-
size evolution model of Austin and Evans [2007]. In the
model, we use a composite mantle rheology that accounts
for grain-size-dependent diffusion creep and grain-size-
independent dislocation creep. Thus, the resulting defor-
mation and thermal fields not only affect grain size but also
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depend on grain size, resulting in nonlinear feedback
between the two fields and grain size. The coupled model
calculates the three variable fields that are in equilibrium
with one another. Using this approach, we map the distribution
of grain size in the wedge for a range of subduction settings and
investigate the variability of the grain-size distribution and
its implications for grain-scale permeability, fluid and melt
migration, and seismic attenuation in the mantle wedge.

2. Modeling Approach

2.1. Steady State Grain-Size Model

[7] In this paper, we consider laboratory-derived grain-
size evolution (GSE) models that are based on the theories
of static grain growth and dynamic recrystallization. Among
those, two models proposed by Austin and Evans [2007]
(hereafter referred to as the A&E) and Hall and Parmentier
[2003] were previously tested against the experimental data
of Behn et al. [2009]. Although the difference in the two
models is arguably small compared with the uncertainties
associated with extrapolating the laboratory data to the upper
mantle conditions, the tests conducted by Behn et al. [2009]
showed a better fit of the A&E GSE model to the experi-
mental data.

[8] We couple the A&E GSE model with a mantle-flow
model parameterized for wet olivine, assuming a water
content of 1000 H/10° Si [Hirth and Kohlstedt, 2003; Behn
et al., 2009]. The A&E GSE model assumes that static grain
growth and dynamic recrystalhzatlon operate independently,
and the rate of change in grain size (d) is equal to the sum of
the rates of the two processes:

[l 5]
g

RT
where d is the grain size, G, is the grain growth rate
constant, p, is the grain growth constant, £, and V, are the
grain growth activation enthalpy and volume, respectively,
P is confining pressure, R is the universal gas constant
(8.3145 I mol ' K™"), T'is absolute temperature,  is the frac-
tion of the work done by dislocation creep associated with
changing grain boundary area, o is the shear stress; €4 is the
strain rate of dislocation creep, c¢ is a geometric constant, and
~ is the average specific grain boundary energy [Austin and
Evans, 2007, Behn et al., 2009]. The parameter values are
given in Table 1. The first and second terms on the right-hand
side describe the rates of static grain growth and dynamic
recrystallization, respectively. The negative sign in the sec-
ond term indicates that dynamic recrystallization results in
grain-size reduction. When the rates of the two mechanisms
are balanced, grain size achieves a steady state value (ds):

XUEdISl 2
—d 1
cy } M

1

E, + PV, g
G _ g g
oc'yexp( =T >
2pgXOCaisi

dy = (2)

Table 1. Parameter Values for the Steady State Grain-Size
Evolution Model (Equation (2)) [Behn et al., 2009]

Gom™s"Yy p, X v x ¢ Vg (m*/mol)

45 %107 3 3 1 01 3

E, (J/mol)

3.50 x 10° 8 x 107°
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Figure 2. Steady state grain size calculated for the range of
temperature and deformation conditions (expressed by the
product of shear stress and dislocation-creep strain rate) that
are expected for the creeping regions of the mantle wedge in
the fore-arc and arc regions.

As grains travel through the mantle wedge, their size
evolves toward steady state with the changing thermal and
deformation conditions. For typical mantle wedge condi-
tions, we find that the rate at which the grain size evolves
toward steady state is much faster than the rate at which the
thermal and deformation conditions change (see Appendix A).
This implies that the grain size can be approximated based
on its steady state value. The one exception is just above the
slab, where grain growth kinetics are slightly slower than
those in the rest of the creeping region (see Appendix A). In
sections 3 and 4, we discuss how the slower grain growth
kinetics may affect the grain-size distribution derived from
our modeling results. For the range of temperature and
deformation conditions expected for the fore-arc and subarc
mantle wedge, the expected range of dg is ~10 pum to a few
centimeters (Figure 2).

[s] Using the A&E GSE model, we solve for the grain size
everywhere in the mantle wedge. However, the model does
not account for the effect of brittle deformation and is
applicable only in regions where creep deformation is the
dominant deformation mechanism. We approximate the
brittle-ductile transition by the 600°C isotherm and interpret
our results only for the region with >600°C (hereafter
referred to as the creeping region).

[10] Secondary phases, such as pyroxene and spinel, are
present in naturally occurring mantle rock, and their pres-
ence limits grain boundary migration and thus “pin” the
maximum extent of grain growth [Olgaard and Evans, 1986].
The pinning-limited grain size of the primary phase depends
on the grain size of secondary phases and the spacing
between them, which are in turn controlled by a process
called Ostwald ripening [Lifshitz and Slyozov, 1961]. This
process is limited by the solubility and diffusivity of sec-
ondary phase material in the matrix and results in the coars-
ening of secondary-phase particles and an increase in spacing
between the particles. At mantle wedge conditions, secondary
phases such as pyroxene are likely stable [Behn and Kelemen,
2006; Hacker, 2008]. Laboratory experiments on grain-size
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evolution of olivine in the presence of pyroxene indicate that
the maximum extent of olivine grain growth is about a few
centimeters because of the combined effects of Ostwald
ripening and grain boundary pinning [Evans et al., 2001,
and references therein]. The A&E GSE model is based on
experimental data on a single-phase (olivine) system and
thus does not include the effect of grain boundary pinning.
We will, however, test this effect on the grain-size distri-
bution by prescribing an upper bound on the maximum
extent of grain growth of a few centimeters in section 3.1.

[11] In addition to the effects of pinning, GSE models
based on single-phase systems are likely to overestimate
grain growth kinetics in the presence of secondary phases
because the solubility and diffusivity of the secondary phase
is slower than the diffusivity of material across grain
boundaries of the primary phase [e.g., Wang et al., 1996;
Ohuchi and Nakamura, 2007]. Opposite effects are likely to
be exerted by the presence of a fluid phase (water and/or
melts), which allows faster grain boundary migration because
of enhanced lattice or boundary diffusion kinetics [Cooper
and Kohlstedt, 1986; Karato, 1989; Hirth and Kohlstedt,
1995a, 1995b].

2.2. Mantle Rheology Model

[12] We adopt a composite mantle rheology that accounts
for both dislocation creep and diffusion creep and use
parameters determined for wet olivine [Hirth and Kohlstedt,
2003; Behn et al., 2009] (See Table 2 for parameter values).
The general form of the flow law for diffusion creep and
dislocation creep is

3)

E; + PV,
& = Aid 70" Cjyy exp {— ZT ’}

where 4 is the preexponential factor; p is grain-size expo-
nent, n is the stress exponent, Coy represents water content,
and 7 is the water exponent [Karato and Wu, 1993]. The
subscript 7 denotes the deformation mechanism, either “disl”
for dislocation creep or “diff” for diffusion creep. Disloca-
tion creep is grain-size independent, and thus pg;g is zero.
The flow law above is cast into a form suitable for 2-D and
three-dimensional (3-D) modeling by defining the viscosity
n; for each deformation mechanism:

El»+PV,-D‘%.

1-n
i = | A; P — (T) 4
w= (i ey em|-E ) @)

Diffusion and dislocation creeps operate in parallel, and the
total strain rate (€,,,;) is the sum of the two strain rates:

Etotal = Ediff + Edisl- (5)

[13] The mechanism that operates at a faster rate repre-
sents the dominant deformation mechanism. In our model,

Table 2. Rheological Parameter Values for Wet Olivine
(Equation (4)) [Hirth and Kohlstedt, 2003; Behn et al., 2009]

COl 1

Creep A®Pa"s') n p r E/mol) V(m*mol) (H/10° Si)
Diffusion 0.333 1 3 1 335x10° 4x10° 1000
Dislocation 3.0 x 1072° 3.5 0 1.2 4.80 x 10° 1.1 x 107> 1000
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Table 3. Density and Thermal Properties Used in the Thermal
Model

Density Thermal Conductivity Radiogenic Heat

Material (kg/m®) (W/m K) Production (1zW/m?)
Upper crust 2750 2.5 1.3
Lower crust 2750 2.5 0.4
Mantle wedge 3300 3.1 0.02
Subducting slab 3300 3.1 0.02

we prescribe a maximum effective viscosity (7max) to avoid
unrealistically high shear stress, and the effective viscosity
(netp) 1s described as

ne/f:<1 + : +L)l~ (6)

Ndif ~ Mdist ~ TImax

We set the maximum effective viscosity to 10%° Pa s, which
is large enough relative to the effective viscosity of the
flowing part of the mantle that it has little effect on wedge
flow.

[14] Recent studies indicate that dislocation glide, which
follows an exponential flow law, may operate in the
mantle wedge corner where shear stress is relatively high
(>100 MPa) [Katayama and Karato, 2008]. However, as
will be shown, our model predicts that the stress is largely
<100 MPa in the creeping region, and thus the role of
dislocation glide is likely to be negligible.

2.3. Thermal and Mantle-Flow Model

[15] To solve for grain size in the mantle wedge, we
couple the GSE model described in section 2.1 with a 2-D
steady state finite element thermal and mantle-flow model.
The thermal and mantle-flow model consists of a subducting
slab with kinematically prescribed motion, an overriding
nondeforming 35 km thick crust, and a viscous mantle wedge
with the composite mantle rheology described in section 2.2.
The governing equations for heat transfer and conservation
of mass and momentum for the thermal and mantle-flow
model are as described by Wada et al. [2008], except that
the effect of frictional heating along the plate interface is
excluded in this paper since it is applicable only to the
shallow part (<~30 km depth) of the interface and has little
effect on the region of interest. At the depths of interest
(<150 km depth), the PV terms in the grain-size evo-
lution model (equation (2)) and the mantle rheology model
(equation (3)) are small compared with £ and are thus
neglected in this paper. Material properties for all the sub-
domains are summarized in Table 3.

[16] Viscous coupling between the subducting slab and
the overriding mantle drives wedge flow, which controls the
thermal and deformation conditions in the mantle wedge.
To satisfy geophysical observations, such as surface heat
flow and seismic attenuation data and petrologically and
geochemically constrained subarc mantle temperature, sub-
duction zone thermal modeling studies have showed that the
slab and the mantle are decoupled at relatively shallow
depths, and the downdip change from decoupled to coupled
interface occurs at a relatively uniform depth of 70-80 km
[e.g., Honda, 1985; Furukawa, 1993; Kincaid and Sacks,
1997; van Keken et al., 2002; Currie et al., 2004; Wada and
Wang, 2009] (Figure 1). To be consistent with these obser-
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vations and previous thermal modeling studies, a maximum
depth of decoupling (MDD) of ~75 km is assumed, unless
otherwise stated.

[17] The degree of slab-mantle coupling is controlled by
the strength contrast between the interface and the overrid-
ing mantle. Following Wada et al. [2008], we apply a thin
layer with a uniform thickness (100 m) and a uniform vis-
cosity (7') to the slab-mantle interface to represent the
strength of the interface in our model (Figure 1). Although
the interface strength does not vary with depth in the model,
its strength contrast with the mantle decreases with depth
because the mantle becomes weaker with increasing tem-
perature. This leads to a rheologically controlled transition
from a decoupled to a coupled interface, and this transition
marks the MDD. In our models, we prescribe a value of 1’
such that the MDD is ~75 km. This approach simulates a
range of stress conditions along the interface from full
decoupling to full coupling without having to prescribe
them and thus allows better inferences of the deformation
conditions and the grain-size distribution in the mantle
wedge than other approaches with a fixed-velocity or fixed-
stress condition along the interface.

[18] The geotherm for the incoming oceanic plate of a
given age is calculated by using the GDHI1 plate cooling
model [Stein and Stein, 1992]. This model assumes a 95 km
thick lithosphere with a basal temperature of 1450°C. We
assign this geotherm to the trench-side vertical boundary of
the model and a constant temperature of 1450°C to the
bottom boundary of the 95 km thick slab.

[19] The geotherm assigned to the shallow part (<~60 km
depth) of the back-arc side vertical boundary is calculated
by using a one-dimensional (1-D) steady state conductive
heat equation to give the observed average back-arc surface
heat flow of 80 mW/m? [Currie and Hyndman, 2006]. To
the deeper part of the back-arc vertical boundary, we assign
a geotherm calculated by assuming a back-arc mantle
potential temperature (7,,) of 1350°C [e.g., Herzberg et al.,
2007; Putirka, 2008] and an adiabatic temperature gradient
of 0.3°C/km, unless otherwise stated. A constant tempera-
ture of 0°C is assigned to the top boundary of the model.

[20] The heat and flow equations are solved simulta-
neously and iteratively. At each iteration, the steady state
grain size used in the grain-size-dependent diffusion-creep
portion of the flow equations (equation (3)) is calculated
from equation (2) with stress and dislocation-creep strain
rate taken from the previous iteration. The solution is con-
sidered to have converged when the residuals of temperature,
velocity, and dynamic pressure (defined as the maximum
difference between consecutive iterations normalized by the
values in the respective fields) are reduced to 107°. The
convergence of the solutions for the heat and flow equations
naturally leads to the convergence of steady state grain size
because of the mutual dependence of grain size, temperature,
and mantle rheology on one another. The maximum differ-
ence in the grain size between the last and second-to-last
iterations normalized by the value from the second-to-last
iteration before convergence is typically of the order of ~10~*.

[21] We use simple slab geometries with a constant dip to
facilitate comparison between models with different sub-
duction parameterization. The width of the model domain is
set such that the distance between the horizontal position of
the MDD and the back-arc side vertical boundary is 150 km
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Table 4. Model Parameters

Subduction
Slab Age Rate Slab Dip Back Arc MDD 7

(Ma) (cm/yr) ©) T, (°C)  (km) (Pa s) Figure
10 4 30 1350 75 38x10"% 3

100 4 30 1350 75 5.0 x 10" 5a, 5b
10 8 30 1350 75 4.0 x 10" 3¢, 5d
10 4 60 1350 75 49 x 10'® 3¢, 5f
10 4 30 1250 75 49 x 10" 6a, 6b
10 4 30 1450 75 2.7 x10"% é6c, 6d
10 4 30 1350 65 18x10" 7a,7b
10 4 30 1350 90 58 x10"% 7¢,7d

in all models. We note that some geophysical and geological
observations indicate a complex 3-D mantle wedge flow
[Tamura et al., 2002; Hoernle et al., 2008; Wiens et al.,
2008]. Various mechanisms for three-dimensional mantle
flows have been proposed, including Rayleigh-Taylor-type
instabilities from the subducting slab [e.g., Zhu et al., 2009],
foundering of the lower crust off the base of the overriding
plate [e.g., Behn et al., 2007], pressure gradients caused by
variations in slab geometry along the margin [e.g., Kneller
and van Keken, 2008], and the edge effects of the sub-
ducting slab [e.g., Piromallo et al., 2006]. In this paper,
however, we focus on the effect of slab-driven mantle
wedge flow on grain-size evolution.

[22] We found that in all the models that we developed,
the smallest grain size in the creeping region is of the order
of 10-100 pm, which is comparable to that of the smallest
grain sizes in mantle xenoliths (section 1). We also found
that prescribing a minimum grain size of 10 pm or less does
not affect the model result in the creeping region. Therefore,
in all of our models except in the reference model, we
prescribe a lower limit of 10 ym.

3. Modeling Results

[23] We developed a suite of models for different sub-
duction parameterizations (Table 4). Below, we first present
one of these models for the purpose of describing the key
characteristics of the grain-size distribution and its relation
to the thermal and deformation fields in the creeping region
of the mantle wedge. This model has a slab age of 10 Ma, a
subduction rate of 4 cm/yr, and a slab dip of 30°. Using this
model as a reference model, we then describe how the grain-
size distribution changes with subduction parameters and
assumed values of the back arc 7, and the MDD (section 2.3).

3.1.

[24] Significant changes in the temperature and deforma-
tion conditions occur over relatively short distances within
the wedge (Figures 3a—3d), giving rise to a large spatial
variation in grain size (Figure 3e). Temperature increases
from 600°C at the most trenchward part of the creeping region
to >1300°C in the subarc mantle (Figure 3a), resulting in the
lowest rate of grain growth toward the trench. The product of
shear stress and dislocation-creep strain rate (the driving
force for dynamic recrystallization) varies by more than
7 orders of magnitude (10"°~107° Pas™") across the creeping
region (Figures 3b-3d), reaching a maximum immediately
above the MDD. The thermal and deformation fields
together thus result in a general increase in grain size from

Grain-Size Distribution Characteristics
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the corner of the mantle wedge above the MDD toward the
subarc mantle (Figure 3e).

[25] On the basis of the grain-size distribution, four sub-
regions can be identified within the creeping region (sub-
regions I, II, III, and IV in Figure 3e). Subregion I
immediately above the MDD is characterized by a sharp
arcward increase in grain size, from ~30 ym to 1 cm over a
distance of ~12 km in the reference model (Figure 4a). This
sharp increase is caused by a combination of the sudden
increase in temperature from the shallower cold stagnant
mantle to the deeper hot flowing mantle (Figure 3a) and the
sharp decrease in shear stress from the MDD toward the
hotter and weaker subarc mantle (Figure 3b). In subregion II
at the base of the creeping region, the strong thermal con-
trast between the subducting slab and overriding mantle
causes a sharp upward increase in temperature and grain
size. In the downdip direction, however, grain size increases
more gradually (Figure 4b) because the downdip changes in
the thermal and deformation condition are more subdued.
Moreover, we note that the downdip increase may even be
more gradual if the grain size does not reach steady state
because of the slower grain growth kinetics in this subre-
gion compared with those of the other subregions (see
Appendix A). Subregion III in the shallow, nearly stagnant
part of the creeping region is also characterized by a gradual
arcward increase in grain size that is due a to lateral change
in the thermal and deformation conditions. Finally, subre-
gion IV beneath the arc is characterized by largest grain
sizes (>1 cm) because of the high-temperature and low-
deformation conditions. The implications of these variations
in grain size for fluid-melt transport and the seismic prop-
erties of the mantle wedge are discussed in section 4.

[26] Although our models predict that grains can grow to
20-30 cm in the hottest part of the subarc mantle, grain sizes
that are greater than a few centimeters are rare in mantle
xenoliths (section 1). As discussed above (section 2.1), the
maximum extent of grain growth is limited by the presence
of secondary phases via grain boundary pinning; however,
this effect is not included in the A&FE GSE model, which is
based on a single-phase system. Thus, we interpret these
large grain sizes in subregion IV as an indication that grain
boundary pinning places an upper bound on olivine grain
size in this subregion.

[27] To test whether secondary-phase pinning affects the
distributions in the rest of the creeping region, we performed
a series of calculations with an imposed upper limit on grain
size ranging from dj,x = 1 to 20 cm. We found that the
maximum grain size is limited by d,., in subregion IV,
where the model without pinning predicted larger grain sizes.
However, in all models with a prescribed d,,,.«, the grain-size
distributions in the rest of the creeping region are almost
identical to those predicted by the model without a pre-
scribed dax (Figure 3e). These results indicate that grain
boundary pinning, which likely controls the maximum grain
size in subregion IV, does not affect the grain growth in
other subregions.

3.2. Effects of Subduction Parameters, 7,,, and the
MDD on Grain-Size Distribution

[28] We next examined the effect of subduction parameters
(slab age, subduction rate, slab dip, and MDD) on the dis-
tribution of grain size in the mantle wedge. Compared with
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Figure 3. The reference model with a slab age of 10 Ma, slab dip of 30°, and subduction rate of 4 cm/yr
(17 = 3.8 x 10'® Pa s). The model assumes a back arc 7, of 1350°C and an MDD of 75 km. (a) Thermal
and flow fields, (b) shear stress, (c) dislocation-creep strain rate, (d) the product of shear stress and dis-
location creep strain rate, (e) grain size, and (f) the percentage of deformation accommodated by disloca-
tion creep. No upper limit on the grain size is placed in this model. Grain sizes >3 c¢cm (dashed contours)

are unlikely to occur in natural settings because of

the effect of grain boundary pinning by secondary

phases. The dark gray region in each part indicates where the temperature is <600°C. Light gray regions
in 3e indicate subregions of different characteristics in the grain-size distribution discussed in the text. The
thick dotted line in 3e indicates a profile line for Figure 4a. Other models exhibit a similar distribution of
deformation by dislocation creep, as shown in 3f. Solid triangles at the top of the panels indicate the
expected location of the volcanic arc, which typically occurs where the slab is about 100 km deep.

that of the reference model, the subduction of an older,
colder slab (100 Ma) causes a cooler condition in the shal-
low stagnant wedge corner (“brittle” region) and at the base
of the deeper part of the wedge (Figure 5a). By contrast, in
the flowing portion of the wedge, temperatures are similar to
those in the reference model because the thermal effect of
the colder slab is overshadowed by the heating effect of the
hot, flowing mantle. Thus, except in the shallowest part of
the creeping region, the thermal and deformation conditions

are very similar to those predicted by the reference model.
The cooler condition in the “brittle” region makes a stronger
thermal contrast with the flowing part of the mantle,
resulting in a more rapid arcward temperature increase in
subregion I. Because the mantle rheology is strongly tem-
perature dependent, this temperature increase leads to an
abrupt arcward decrease in shear stress. These thermal and
deformation conditions result in a sharper arcward increase
in grain size in subregion I (Figures 4a and 5a), as well as in
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Figure 4. Grain size variation along (a) the profile line in subregion I (thick dotted line in respective
figures for the grain-size distribution) and (b) the slab-wedge interface in subregion II (50 m above
the slab surface) predicted by models shown in Figures 3, 5, 6, and 7.
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Figure 5. Thermal and flow fields (top) and grain-size distribution (bottom) predicted by models with
(a, b) an older (100-Ma), colder slab (i = 5.0 x 10" Pa s), (c, d) a faster subduction rate of 8 cm/yr

(n = 4.0 x 10" Pa s), and (e, f) a steeper slab dip of 60° (17 = 4.9 x 10'® Pa s). Thick dotted line in
Figures 5b, 5d, and 5f indicates a profile line for Figure 4a.
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Figure 6. (top)Thermal and flow fields and (bottom) grain-size distribution predicted by models with
(a, b) a colder back arc T, of 1250°C (' = 4.9 x 10" Pa s) and (c, d) a hotter back arc 7, of 1450°C
(1 = 2.7 x 10'® Pa s), relative to the reference model (Figure 3).

subregion III compared with the reference model. Moreover,
in subregion II, the cooler condition along the interface
results in systematically finer grain sizes (Figure 4b). In
subregion 1V, grain size is uniformly large as in the refer-
ence model owing to the dominance of grain growth asso-
ciated with the hot flowing mantle in this subregion.

[29] Faster subduction rates advect the cold slab into the
mantle more rapidly, leading to colder temperatures in the
slab at a given depth compared with the reference model
(Figure 5c). This leads to a cooler wedge base (subregion I)
and systematically smaller grain size than in the reference
model (Figures 4b and 5d). Faster subduction also drives
a more vigorous mantle wedge flow, supplying more hot
material to the fore arc. This leads to slightly higher tem-
perature in the flowing part of the wedge, resulting in a
larger region of uniformly large grain size in subregion IV
(Figure 5d). The cooler slab and hotter subarc mantle lead to
a sharper arcward increase in temperature and grain size in
subregion I (Figure 4a). A steeper slab dip also results in
deeper advection of the slab isotherms and thus causes
slightly cooler conditions in subregions I and II (Figure Se),
compared with those of the reference model. This also
results in a sharper arcward grain size increase in subregion |
and systematically finer grain sizes in subregion I (Figures 5f
and 4).

[30] The amount of heat advected into the wedge by
mantle flow depends strongly on the thermal state of the
back arc and deeper mantle. Recent petrological estimates
for the T, at midocean ridges are in the range of 1250°C—
1450°C [e.g., Herzberg et al., 2007; Putirka, 2008], and
those for the 7,, in back arcs are in the range of 1350°C—
1500°C [Kelley et al., 2006], indicating that there can be
regional variations in the mantle wedge temperatures of up
to 200°C that are due to variations in back arc T7,,. To
understand the effect of variations in 7,, on mantle wedge
temperature and grain size, we constructed models with
T,, = 1250°C and 1450°C to compare with the reference
model (Figure 6). The results show that a higher T, causes
systematically higher temperatures and larger grain sizes
in subregion IV and a more rapid arcward increase in
temperature and grain size in the other three subregions
(Figure 4b).

[31] The above results indicate that while the details of the
grain-size distribution vary with subduction parameters and
T,,, the key characteristics of the grain-size distribution
are relatively consistent across a wide range of subduction
parameters. Specifically, all models predict a sharp arcward
increase in grain size above the MDD (subregion I), a
gradual downdip increase at the base of the wedge (subre-
gion II), a gradual arcward increase in the shallow part of
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Figure 7. (top)Thermal and flow fields and (bottom) grain-size distribution predicted by models with
(a, b) a shallower MDD of 65 km (' = 1.8 x 10'® Pa s) and (c, d) a deeper MDD of 90 km (7' = 5.8 x
10'® Pa s), relative to the reference model (Figure 3). Arrow and dashed triangle at the top of 7a and 7c
indicate the expected direction of shift in the location of arc as a result of the change in the wedge
thermal structure that is due to the deviation of the MDD from its common 70-80 km depth.

the wedge (subregion III), and a uniformly large grain size
beneath the arc with the maximum size controlled by grain
boundary pinning (subregion IV). The consistency in the
locations of the characteristic subregions results from the
assumption of a common MDD, which gives rise to a rel-
atively invariant flow and thermal fields in the creeping
region. Deviations of the MDD from this common depth,
which are due, for example, to a temporal change in regional
tectonics or slab geometry, will lead to a systematic change
in the thermal and flow fields in the wedge (Figures 7a and
7¢). Because of the dependence of grain size on temperature
and deformation, the absolute locations of the characteristic
subregions shift systematically with the MDD, but without
altering their key distribution characteristics (Figures 7b and
7d). Furthermore, the geometric relations between the loca-
tions of the MDD, the four subregions, and the arc are
unaffected by the MDD.

3.3. Effect of Grain Size on Mantle Rheology, Flow,
and Temperature

[32] To first order the spatial variations in grain size have
little influence on the overall pattern of mantle wedge flow.
This occurs because in the majority of the creeping region

more than 90% of the deformation is accommodated by
grain-size-independent dislocation creep in all models (e.g.,
Figure 3f). This implies that the application of a dislocation-
creep rheology in kinematic subduction zone models, as
commonly practiced [e.g., van Keken et al., 2002; Currie
et al., 2004], provides a reasonable approximation of the
flow and thermal fields.

[33] Grain size, however, has an important effect on the
absolute strength of the overriding mantle, particularly at the
base of the mantle wedge. We found that for the same
interface strength and subduction parameterization, the MDD
is shallower by ~10 km in the reference model than in a
model with a dislocation-creep rheology (results not shown).
The shallower MDD indicates that the mantle with the
composite rheology is slightly weaker, resulting in a smaller
strength contrast with the interface and a shallower extent of
decoupling along the interface. The weaker mantle results
from the relatively fine grain size at the base of the wedge,
weakening the mantle via diffusion creep. Therefore, models
that do not include the effect of the grain-size dependence of
the mantle rheology are likely to overestimate the strength of
the mantle at the base of the wedge, where grain size is
relative small.
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Figure 8. (a) Permeability in the mantle wedge calculated
by using the reference model (Figure 3) and assuming ¢ =
0.01 and d,,,,x = 3 cm. (b) Conceptual model for the effect of
the permeability structure on the fluid migration and arc
location. In 8b, thin gray curves are permeability contours
from 8a, and the light gray region indicates a region with
temperature >1200°C.

[34] The strength contrast between the mantle and the
interface determines the degree and depth extent of slab-
mantle coupling, as explained in section 2.3. It is not clear
what causes the MDD to be relatively uniform. The thermal
conditions along the slab-mantle interface are highly vari-
able among different subduction zones, and thus the strongly
temperature-dependent mantle strength is also expected to
be highly variable. For example, a cooler interface leads to a
stronger overriding mantle, which would lead to a deeper
MDD (provided that the interface strength is relatively
invariant). Therefore, the mantle strength is thought to be
an unlikely factor that regulates the MDD. However, as
presented in section 3.2, the cooler condition at the base of
the wedge also leads to systematically finer grain sizes
(Figure 4b) and thus a weaker mantle. In other words, the
effect of grain-size evolution on the mantle strength com-
petes with the thermal effect, reducing the variation in the
mantle strength among different subduction zones. This
effect of grain size on the mantle strength may partly be
responsible for the apparent uniformity of the MDD. Finally,
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because the MDD may vary with changes in regional tec-
tonics and/or slab geometry, grain-size evolution may be
important in controlling slab evolution in dynamic subduc-
tion models that simulate changes in slab geometry and
subduction initiation.

4. Implications of Grain-Size Variations
on Mantle Wedge Dynamics

4.1. Grain-Scale Permeability in the Wedge
and the Location of the Volcanic Arc

[35] At temperatures above the brittle-ductile transi-
tion, fluid migration occurs via porous flow through the
interconnected pore space between grains. The common
form of the empirical-derived relation between grain size
and permeability £ is

nd2
=2 7)

where ¢ is the fluid fraction, C is a constant; and » ranges
from 1 to 3 [e.g., Wark and Watson, 1998]. Using this
relation and the predicted grain-size distribution, we calcu-
lated permeability in the creeping region (Figure 8a). In the
calculation, we used C =270 and n = 3, following Wark et al.
[2003], and assumed ¢ =0.01 and d,,,,x = 3 cm. The grain-size
distribution leads to an arcward increase in permeability by
~5 orders of magnitude in the creeping region, with the
lowest permeability at the most updip part of the creeping
region near the MDD (Figure 8a).

[36] Aqueous fluids play an important role in hydrous flux
melting in the mantle wedge [e.g., Grove et al., 2006], and
thus their migration path is critical to the study of arc vol-
canism. To date, models of fluid migration in the mantle
wedge have assumed a constant grain size [e.g., Cagnioncle
et al., 2007; Hebert et al., 2009]; however, they are useful
for understanding the importance of grain size on fluid
migration. Cagnioncle et al. [2007] showed that if the
mantle grain size is small (<~0.3 mm) the majority of fluids
that enter the base of the wedge become trapped in the
mantle because of its low permeability and are dragged
downdip by the flowing mantle. However, if the grain size is
relatively large (>~1 mm), the permeability is sufficiently
high for the fluids to migrate upward through the wedge.
From these results, we can interpret the importance of the
grain-size and permeability variations predicted by our
model to fluid transport in the mantle wedge.

[37] In most subduction zones, except where the slab is
very young (<~15 Ma) and warm, the subducting crust starts
to dehydrate as it approaches the MDD because of the
heating effect of the hot flowing overriding mantle, resulting
in a release of aqueous fluids over the depth range of 70—
140 km [Wada and Wang, 2009]. However, we find that the
permeability in the shallow part of the wedge base is rela-
tively low (Figure 8a), owing to the fine grain sizes (Figure 4b).
Fluids released from the slab at these depths may migrate
updip along the plate interface if the permeability of the
overlying interface material is sufficiently high (Figure 8b).
Fluids that migrate into the wedge are likely to become
trapped in the low-permeable mantle and dragged downdip.
These trapped fluids are expected to migrate upward when
they reach the more permeable deeper “wedge-base” mantle
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Table 5. Parameter Values for the Shear Wave Attenuation Model
(Equation (8)) [Behn et al., 2009]

B (m™ s Py w a E,, (J/mol) ¥, (m*/mol)

1.6689 x 107 1 1 0.27 42 x 10° 12 x107°

(Figure 8b). As noted above, grain growth kinetics at the
wedge base may not be fast enough to keep up with the
changing thermal and deformation fields (see Appendix A).
Thus, the narrow region of finer grains at the base may extend
deeper than predicted, and trapped fluids may travel even
farther downdip before they can migrate upward. By contrast,
fluids released at deeper depths will migrate directly upward
through the wedge, as there is no low-permeability barrier
immediately above the interface. Thus, the predicted perme-
ability distribution may lead to an optimal upward migration
of aqueous fluids some distance downdip of the MDD and
promote hydration melting and arc volcanism.

[38] The thermal state of the mantle wedge likely allows
hydrous melting over a relatively wide region [Grove et al.,
2006], yet intriguingly, the arc tends to form at a relatively
uniform location: above the point at which the slab reaches a
depth of about 100125 km [England et al., 2004; Syracuse
and Abers, 2006]. The grain-scale permeability variation at
the wedge base may be an important factor that controls the
focusing of melting beneath the arc by localizing the upward
migration of fluids into the region of high temperature in the
mantle wedge. Furthermore, because the grain-size distri-
bution is generally consistent among different subduction
zones, the optimal depth of permeability-controlled upward
fluid migration is expected to be relatively invariant. This
may help explain the paradox of why the subarc slab depth
is relatively uniform [England et al., 2004; Syracuse and
Abers, 2006], 20-50 km deeper than the MDD.

[39] To fully quantify the effect of grain-size variations on
fluid migration in the wedge, a self-consistent fluid migra-
tion model that incorporates spatial variations in both grain
size and fluid fraction is needed. Such a model would help
to understand the relative importance of different modes of
volatile transport into the mantle wedge, i.e., the migration
of slab-derived fluids via porous flow versus other proposed
mechanisms, such as the migration of slab-derived melts
[e.g., Plank et al., 2009] and diapirism initiated by the
buoyancy of subducted sediments [Currie et al., 2007;
Behn et al., 2011] or hydrated mantle wedge material [e.g.,
Hall and Kincaid, 2001; Gerya and Yuen, 2003]. The effect
of the H,O entrapment on density variations and gravita-
tional instabilities could also be tested through modeling
fluid migration.

4.2. Grain-Size Effect on Seismic Attenuation
in the Mantle Wedge

[40] Seismic attenuation, commonly described by Q" is
often used to infer a wedge thermal structure because of the
strong temperature dependence of O '. However, attenua-
tion also depends on other factors, such as grain size, H,O
content, and the presence of melt. Laboratory experiments
on melt-free olivine polycrystalline aggregates at upper
mantle temperatures show a decrease in seismic wave speed
and an increase in attenuation with decreasing grain size that
is due to enhanced grain boundary sliding [Jackson et al.,
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2002]. To calculate the effect of grain-size variation on
0!, we use an experimentally derived model for shear wave
attenuation,

E,+ PV )\ \"
Q:](wa T7P7 C0H7d) = (Bd?pqwil exp(7w>) ’
(8)

where B is a preexponential factor calculated for Cop of
1000 H/10° Si, Pg is the grain-size exponent, w is frequency,
and « is nondimensional frequency dependence [Behn et al.,
2009, and references therein] (parameter values are given in
Table 5). The model does not include the effect of melt on
attenuation. We use w = 1 Hz, which is the frequency that
has been used in the inversion of measurements for the shear
wave attenuations in Costa Rica and Nicaragua [Rychert
et al., 2008] and Alaska [Stachnik et al., 2004]. This model
provides a good fit to the laboratory-derived attenuation data
of Tan et al. [2001] and Jackson et al. [2002] and is com-
parable to the fit of the model of Faul and Jackson [2005].
Comparison of the model described by equation (8) to a
more recent attenuation model of Jackson and Faul [2010]
derived from newly obtained attenuation data indicates
that the attenuation predicted here may be slightly higher (up
to half an order of magnitude at high temperatures and a
large grain size when calculated for a “dry” condition of
Cou =50 H/ 10° Si), but the relative variation in attenuation
with grain size and temperature remains robust.

[41] Seismic attenuation calculated from equation (8) and
the predicted temperature and grain-size distribution
increases from the most trenchward part to the hottest part of
the subarc mantle (Figure 9a). If a constant grain size of
1 cm is assumed, the subarc mantle is slightly more atten-
uating than for the variable grain-size distribution (Figure 9b),
but the difference is within the range of observational
uncertainties or regional variability [e.g., Stachnik et al.,
2004; Rychert et al., 2008]. By contrast, if a constant grain
size of 1 mm is assumed, the wedge becomes significantly
more attenuating (Figure 9c). These results show that an
assumption of a constant grain size of 1 cm can provide a first-
order approximation when interpreting the observed subarc
mantle attenuation; however, accounting for grain-size var-
iations may be important for detailed studies of seismic
attenuation.

[42] The shear wave attenuation structure of the mantle
wedge has been reported for Costa Rica and Nicaragua
[Rychert et al., 2008] and central Alaska [Stachnik et al.,
2004]. The value for 1000/Q increases from <5 in the cold-
est part to 7-20 in the hottest part of the subarc mantle in the
three subduction zones. The predicted attenuation structure
(Figure 9a) is consistent with the trend and magnitude of the
observed attenuation, indicating that the first-order char-
acteristics of the attenuation structure can be explained by its
dependence on temperature, grain size, and water content.
Seismic attenuation structures reported for other subduction
zones, such as Hikurangi [ Eberhart-Phillips et al., 2008], the
central Andes [Schurr et al., 2003], and northeast Japan
[Tsumura et al., 2000], cannot be directly compared with our
modeling results because of differences in the seismic phase
and parameterization used to calculate the attenuation, but
they all show the same trend of increasing attenuation toward
the subarc mantle.

11 of 16



B10203 WADA ET AL.: GRAIN SIZE IN THE MANTLE WEDGE B10203
60
€
=
<
a
)
O ;\’\7};
100Ha) 1000/Q with the Hb) 1000/Q with the {c) 1000/Q with
predicted thermal field “S predicted thermal fiel predicted thermal fie
and grain size distribution | and d=1cm p and d=1 mm
120 180 120 180 120 180
Distance (km) Distance (km) Distance (km)
Figure 9. 1000/Q calculated from the reference model (). All three cases are calculated by using the pre-

dicted thermal structure, but based on (a) the predicted grain-size distribution with d,.x = 3 cm, (b) a
uniform grain size of 1 cm, and (c) a uniform grain size of 1 mm. The solid diamond in 9a indicates

the data sampling point for Figure 10.

[43] The observed high subarc attenuation is often par-
tially attributed to the presence of melt. Experimental
observations suggest that the presence of melt facilitates
grain boundary sliding, increasing seismic attenuation [Faul
et al., 2004]. Moreover, attenuation may be enhanced
by relaxation via bulk melt flow [e.g., Gribb et al., 1994];
however, this effect has yet to be quantified through
experiments. On the other hand, experimental observations
and theoretical treatments indicate that anelastic relaxation
within individual melt pockets or via flow within connected
pockets occurs at higher frequencies than the seismic band,
resulting in no seismic attenuation [Mavko, 1980; Faul et al.,
2004].

[44] To assess whether attenuating effects of melt is
required to explain the subarc attenuation observations in
Nicaragua, Costa Rica, and Alaska, we calculated subarc
attenuation for an expected range of back arc 7,,, Coy, and
dimax (equation (8)). For Coy = ~1000 H/10° Si, the results
show that the attenuation predicted for the expected range of
dmax (1-3 cm) can satisfy the observed range in Nicaragua
(Figure 10) as long as T, is <~1400°C. The effect of melt
can be added to the predicted values without exceeding the
observed attenuation range: however, the magnitude of the
effect is likely to be relatively small, particularly if 7, is
~1350°C. The observed attenuation in Costa Rica can be
satisfied if T, is <~1325°C, and there is even a smaller
portion of the observed attenuation that requires additional
effects of melt than in Nicaragua (Figure 10). In the wedge,
the mantle may at or above saturation (Coy >~ 5000 H/10” Si
[Hirschmann et al., 2005]). The addition of water beyond its
solubility in olivine further increases attenuation [Karato,
2003]. Therefore, in both Nicaragua and Costa Rica, it
appears that the high subarc attenuation does not necessarily
require a significant contribution by the presence of melt.
Given that melt is almost certainly present in the mantle in
both of these settings, a possible interpretation of our results
is that melt is efficiently focused into melt channels and thus
has a relatively small influence on the bulk seismic prop-
erties of the mantle wedge. Furthermore, depending on the
partitioning of water into the melt phase, melting can even

reduce attenuation [Karato and Jung, 1998]. Finally, to
explain the observed attenuation in central Alaska requires
T,, < 1250°C with little contribution of the melt effect
(Figure 10). This inference is in good agreement with the

P

40} Observed W
sub-arc Vo
range i)

01250 1350 1450
Back-arc Tm (°C)
Figure 10. 1000/Q in the subarc mantle (the location is indi-

cated by a solid diamond in Figure 9a) calculated by using a
suite of modeling results for variable 7,,, Coy, and d. and
assuming w = 1 Hz. The subduction parameterization of the
reference model (Figure 3) is used in all models. Black, dark
gray, and light gray curves indicate values for Coy = 50,
1000, and 5000 H/10° Si, respectively. Dotted, dashed, and
solid curves indicate values dp,.x = 1 cm, 2 cm, and 3 cm,
respectively. The light gray region indicates the typical range
of 1000/Q observed beneath the arc: Double-headed arrows
with labels CR, N, and AK indicate the observed subarc
values in Costa Rica, Nicaragua, and central Alaska,
respectively [Rychert et al., 2008; Stachnik et al., 2004].
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interpretation of the observed attenuation in central Alaska
by Stachnik et al. [2004], i.e., that the subarc mantle is
colder compared with that of other subduction zones, con-
sistent with the absence of arc volcanism. Further observa-
tions on 7, and Coy beneath the arc and experimental data
on dp,.x at subarc mantle conditions will help isolate their
effects on attenuation and in turn help us to understand the
magnitude of the melt effect.

5. Conclusions

[45] In this paper, we calculated the steady state grain-size
distribution in the creeping part of the mantle wedge, using a
thermal and mantle-flow model coupled with the grain-size
evolution model. The results showed that in all subduction
settings, a fine grain size of 10-100 um is found in the most
trenchward portion of the creeping region, near the maxi-
mum depth of slab-mantle decoupling (MDD), and grain
size increases rapidly arcward to a few centimeters over a
short distance of ~10 km. At the base of the wedge, grain
size increases more gradually downdip away from the
MDD, reaching ~1 mm at 85-140 km depths. In the nearly
stagnant top part of the creeping region, grain size increases
gradually arcward. Within the hottest part of the creeping
region, grain boundary pinning is likely to limit the maxi-
mum grain growth, leading to a uniform size of a few
centimeters. Our results show that all subduction settings
share these grain-size distribution characteristics and that
the geometric relations between the characteristic sub-
regions and the MDD are also consistent across a wide range
of subduction settings.

[46] Grain size varies by more than 2 orders of magnitude
within the creeping region, but its effect on the large-scale
pattern of mantle wedge flow is small because grain-size-
independent dislocation creep is the dominant deformation
mechanism in the flowing part of the wedge. On the other
hand, the decrease in grain size at the base of the wedge
immediately above the slab results in a greater contribution
of diffusion creep, weakening the mantle in this region. This
weakening effect competes with the strengthening effect of
the cool condition at the wedge base and moderates the
variability in the mantle strength among different subduction
settings, possibly controlling the strength contrast between
the plate interface and wedge base. This rheological effect
of grain size may partly be responsible for a common MDD
of 70-80 km.

[47] The large variations in grain size throughout the
wedge result in an arcward increase in grain-scale perme-
ability by ~5 orders of magnitude. Fluids that migrate from
the subducting slab into the shallow fore-arc part of the
creeping region may become trapped in the fine-grained,
low-permeable mantle immediately above the slab and
dragged downdip. By contrast, the larger grains size above
the slab at greater depths will promote a more efficient
upward migration of fluids. Thus, the grain-size variations
may help localize fluid migration and hydration melting
over a relatively narrow region and regulate the location of
the volcanic arc. The seismic attenuation structure derived
from the predicted grain-size and temperature variations
captures the first-order characteristics of observed attenua-
tion structures: The value of 1000/Q increases from <5 in
the most trenchward part of the creeping region to 10-20
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beneath the arc. The high subarc attenuation does not appear
to require a significant contribution by the presence of melt.

Appendix A: Evolution Toward a Steady State
Grain Size

[48] Grain size in the mantle wedge can reach steady state
with the thermal and deformation conditions if the change in
grain size occurs faster than the change in these conditions
as the grain travels through the wedge. We approximate this
condition by

tAd < Ay, (Al)
where fp, and fa, are the grain-size evolution time and
travel time, respectively, of a grain that undergoes a change
in grain size Ad as it travels over a small distance Ax along
the mantle flow streamline. Here, we introduce a dimen-
sionless time lag parameter, motivated by the use of a
similar parameter in evaluating the efficiency of LPO
development [e.g., Kaminski and Ribe, 2002],

I (A2)
IAx

such that, if IT < 1, grain size reaches steady state with its

environment.

[49] For the models presented in this study, we calculate
IT in the creeping region using the following approach. The
models provide the steady state grain size (d;), thermal and
deformation conditions (7, oy, €41), and flow velocity (i)
at a given point p; (Figure Ala). Using i, we backtrack the
position of a grain from p, to p, for a short distance Ax and
obtain the steady state grain size (dgy) at po. The time it takes
for dgs to grow or shrink to dg; at the thermal and defor-
mation conditions at p, is £a4 and is calculated by integrating
equation (1) (Figure Alb). Specifically, we assume a con-
stant 5, and calculate Ax from ii; £a,. The smaller ¢4, is, the
smaller Ax will be and the more accurate the travel time
estimate becomes. Given the model resolution, however, we
cannot reliably resolve the grain-size variation below the
10 m scale in some portion of the creeping region, and
therefore we choose 7a, such that Ax is <~100 m in the
creeping region. For example, for a subduction rate of 4 cm/
year in the case of the reference model, we use £5, = 2500 yr,
and the largest Ax value is ~100 m, which occurs at the
wedge base where the flow velocity is nearly compatible
with the subduction rate. The relatively small values of
Ax allow reasonable approximations for #n; The small
velocities in the nearly stagnant top part of the creeping
region result in very small Ax, making it difficult to reliably
resolve the difference in grain size over Ax. We exclude the
top part the creeping region where Ax is <1 m from the IT
calculation as this lies below the reasonable resolution of
our model.

[50] The distribution of II calculated for the reference
model (Figure 3) is shown in Figure A2. Models with other
choices of subduction parameters show a similar IT distri-
bution. In the II calculation, d.,x of 3 cm is assumed
(section 3.1). In the hottest part of the subregion IV, II
approaches zero because the grain size in that part of the
subregion is fixed at d,,x, resulting in z5, = 0 (Figures 3e
and A2). In a narrow region where the flow direction
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Figure A1. Schematic diagram illustrating (a) the variables and (b) the grain-size evolution time curve
used to calculate the grain-size evolution time (¢54) and travel time (¢o, = Ax/i;). The time curve is
obtained from equation (1) with an initial condition of d = dy for each grid point.

changes rapidly over a short distance, the position of pg
calculated from ii; deviates too far from the flow streamline
to reliably determine II (Figure A2). However, given that II
immediately outside of this region is <1 and that the
thermal and deformation conditions do not vary significantly
across the boundary of the region, II values in this region are
likely to be <1. In the rest of the creeping region, II is <1,
indicating that the steady state assumption is reasonable
(Figure A2). The one exception to this is at the base of the
wedge in portions of subregion II, where IT approaches 1-10.
In subregion II, grain size increases as it moves downdip. The
relatively high IT indicates that there may not be sufficient
time for the grain size to reach equilibrium with the thermal

Y (Brittle)

~

.
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determined reliably
due to a rapid change
in the flow direction.
100
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Figure A2. The grain-size evolution time lag parameter II
in the creeping region calculated at 1 km grid spacing for the
reference model (Figure 3). White arrows indicate mantle-
flow velocities. The top part of the creeping region where
Ax is <I m is excluded from the calculation because Ax is
too small to reliably interpolate the difference in grain sizes
over Ax. The white dashed curve indicates a region with
rapid change in the mantle-flow direction. In the calculation
of I, dpax = 3 cm is assumed.

and deformation conditions, and thus the actual grain size
may be smaller than the predicted steady state value. There-
fore, the steady state GSE model provides a reasonable
approximation in most part of the creeping region except at
the wedge base, where it can overestimate grain size.
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