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Abstract 

 

    Albatrosses fly long distances over the Southern Ocean, even around the world 

(almost) without flapping their wings, which has raised interest in how they perform such 

a feat. On a cruise to the South Atlantic I observed albatrosses soaring in a characteristic 

swooping zigzag flight that appears to combine two soaring techniques to gain energy—

wind-shear soaring (dynamic soaring) using the vertical gradient of wind velocity and 

wave-slope soaring using updrafts over waves. The observed characteristic swooping 

flight is shown in a new illustration and interpreted in terms of the two soaring 

techniques. The energy gain estimated for “typical conditions” in the Southern Ocean 

suggests that wind-shear soaring provides around 80-90% of the total energy required for 

sustained soaring. A much smaller percentage is provided by wind shear in light winds 

and significant swell when wave-slope soaring dominates. A simple dynamical model of 

wind-shear soaring is proposed based on the concept of a bird flying across a sharp wind-

shear layer as first described by Lord Rayleigh in 1883 and later developed with 

Pennycuick’s (2002) description of albatrosses “gust soaring.” In gust soaring a bird 

exploits structures in the wind field, such as separated boundary layers and eddies in the 

lee of wave crests, to obtain energy by climbing headed upwind and descending headed 

downwind across a thin wind-shear layer. Benefits of the model are that it is simple to 

understand, it captures the essential dynamics of wind-shear soaring, and it provides 

reasonable estimates of the minimum wind shear required for travel velocity in different 

directions with respect to the wind. Travel velocities, given in a travel velocity polar 

diagram, can be combined with tacking to fly in an upwind direction faster than the wind 

speed located at the top of the wind-shear layer.  
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1. Introduction 

 

    Albatrosses fly long distances over the Southern Ocean, even around the world 

(almost) without flapping their wings (Croxall et al., 2005; Safina, 2002, 2007). How 

they soar for such long times has intrigued observers, who have often speculated as to 

how an albatross can extract energy from the wind. Two theories have been proposed to 

explain how the birds fly without flapping their wings. The first, which has gained 

prominence, proposes that an albatross uses wind shear, the increase in wind speed with 

height above the ocean surface, to gain energy (wind-shear soaring). The second theory 

proposes that an albatross uses updrafts caused by wind blowing over waves to gain 

energy (wave-slope soaring). 

 

    Wind blowing over waves has both wind shear and vertical motions, so the individual 

effects are not easily separated. Wind interacting with waves often contains structures 

such as gusts, lee eddies and rolls, which have updrafts and wind shear. Since wind 

generates waves, given sufficient time wind waves coexist with wind shear in the open 

ocean. In the Southern Ocean where most albatrosses soar there are strong winds and 

large waves, including both locally-generated wind waves and swell waves generated 

elsewhere.  All mathematical model studies of albatross flight in wind shear assume 

horizontal winds and no waves thus excluding the effect of wave-slope soaring and lee 

eddies which the birds appear to use effectively. In addition, most models assume either a 

linear, logarithmic, or exponential vertical profile of average wind, which can be very 

different from the structure of the instantaneous wind field as it interacts with waves. 

Even with these simplifying assumptions, the resulting aerodynamical differential 

equations describing the accelerated twisting, turning, swooping flight of albatrosses in 

wind shear are very complex (Lissaman, 2005; Sachs, 2005), which makes it difficult to 

understand the details and relevant dynamics of their flight.  

 

    The approach here is to use the characteristics of an observed swoop to estimate the 

energy gained from each soaring technique and to develop a simple dynamical model of 

wind-shear soaring based on Rayleigh’s (1883) concept of a bird soaring across a sharp 



 4 

wind-shear layer, on Pennycuick’s (2002) observations and description of albatrosses 

“gust soaring” across thin wind-shear layers in the lee of waves, and on the 

aerodynamical equations of motion (Lissaman, 2005). The modeled flight pattern is 

referred to here as the Rayleigh cycle because he was first to describe the concept of 

wind-shear soaring. The model provides a relatively easy way to understand the essential 

dynamics of wind-shear soaring and provides predictions of soaring travel velocities, 

which agree well with observations of albatross flight and more complicated simulations 

(Lissaman, 2005; Sachs, 2005). The Rayleigh cycle, which uses two homogenous wind 

layers, is the most efficient way for a bird to gain energy from a wind profile and thus 

indicates the minimum amount of wind speed that can support sustained soaring or, more 

precisely, energy-neutral flight. 

 

    When an albatross flies in wind, the bird’s airspeed is different from its ground speed. 

This should be kept in mind because airspeed, and not ground speed, is the quantity most 

relevant to flying. Aerodynamic forces on a bird depend on its airspeed not ground speed. 

To understand this, imagine trying to fly horizontally in a downwind direction with a 

large ground speed but near-zero airspeed (due to wind shear). In this situation if ground 

speed were used to calculate kinetic energy, there would appear to be sufficient energy to 

support flight, but without any airspeed, down you would go in a stall. The use of 

airspeed and ground speed leads to different conclusions about where kinetic energy is 

gained in wind-shear soaring. An increase of airspeed comes from crossing the wind-

shear layer. Most increase of ground speed occurs as a bird turns from a direction headed 

upwind to downwind. This difference complicates interpretations of energy conservation 

in soaring and has led to seemingly contradictory conclusions. 

 

    Gravity and drag relentlessly force a gliding albatross downward through the air. In 

balanced flight the bird’s sinking velocity through the air represents the bird’s rate of 

energy loss. In order to continuously soar, an albatross must extract sufficient energy 

from the atmosphere to balance the loss due to drag. No strong thermals exist in the high 

southern latitudes of the Southern Ocean where most albatrosses soar, so they extract 

energy from the wind using wind-shear soaring (also called dynamic soaring) and wave-
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slope soaring, which is somewhat similar to using the updrafts of wind blowing over a 

ridge. Albatrosses probably also exploit energy gained from gusts, updrafts and wind 

shear associated with turbulent winds.  

  

2. Observations 

 

    I observed albatrosses soaring during a research cruise to the South Atlantic off Cape 

Town, South Africa in September 1997. It was surprising and delightful to see them 

almost magically soar upwind in wind speeds of 5-10 m/s (10-20 knots). The albatrosses 

flew in a characteristic and distinctive flight pattern consisting of a swooping motion 

where each swoop was tightly coupled to a wave crest (Fig. 1). Each swoop began with a 

fast flight parallel to and just above the windward side of a wave. This was followed by a 

turn into the wind and climb of around 10-15 m, followed by a downwind descent 

towards another wave and a turn parallel to the wave. The typical time to complete a 

swoop was around 10 s. These observations are largely in accord with previous studies 

(Alerstam et al., 1993; Idrac, 1925, 1931; Pennycuick, 1982). The close coupling between 

the swoops and waves suggests that wave-induced features of the wind field are 

important for sustained soaring, but these are often neglected in models of soaring flight. 

 

     I was not able to find a good schematic showing this pattern of albatross soaring, so I 

have tried to develop one. Figure 1 shows the zigzag swooping flight pattern in 

relationship to the waves. Each swoop is coupled to a wave as observed, although an 

Albatross can cross over intervening waves before pulling up over a wave. Wind shear 

and updrafts and downdrafts are indicated schematically in Figure 1, and under certain 

conditions the wind field can look somewhat like that shown. Often, however, the wind 

speed at a height of 10 m is only slightly faster than the wave phase speed. In that case 

wind vectors viewed in the frame moving with the waves reverse direction below a 

critical layer where the wind speed equals the wave speed. Structures such as lee eddies 

are ignored in Figure 1 for simplicity but can be important as mentioned later in 

describing details of albatross soaring. 
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     The goal of the paper is to interpret the observed flight pattern in terms of wind-shear 

soaring and wave-slope soaring as described below.  

 

3. Wind-shear soaring 

 

    Average wind velocity generally increases with height from near zero velocity at the 

level of the ocean surface. The largest vertical gradient of wind velocity (largest wind 

shear) is located in a thin boundary layer located within around 2 m of the water surface 

(Fig. 2).  Most of the increase of wind speed in an average wind profile is located in this 

thin wind-shear boundary layer near the surface. However, the structure of the wind field 

near the ocean surface is complicated by the presence of waves. Strong wind flowing 

over sharp-crested and breaking waves separates from the wave crest forming an area of 

weaker wind or a lee eddy just downwind of the wave crest (Fig. 3) as described by 

Pennycuick (2002). Located above this region of weak wind is a thin wind-shear region, a 

wind-shear boundary layer that has separated from the upwind wave crest, and above that 

a layer of stronger wind and reduced wind shear.  

 

3.1. Gust Soaring and Rayleigh cycle 

 

    Pennycuick (2002) proposed that albatrosses take advantage of the strong wind shear 

located between these two layers downwind of sharp-crested waves in order to gain 

energy from the wind in what he calls “gust soaring,” which is a special case of more 

general wind-shear soaring. A wind “gust” usually refers to a temporal variation of wind 

speed, but Pennycuick uses the term to mean the rapid increase of wind speed 

encountered by a bird as it climbs across the thin wind-shear layer located above a lee 

eddy. Gust soaring can be understood by using a two-layer approximation first described 

by Rayleigh (1883) in which a lower layer has zero wind speed and an upper layer has a 

uniform wind speed of 5 m/s (for example) (Fig. 4). An albatross flying at a typical 

airspeed of 15 m/s in an upwind direction in the lower layer pulls up a short distance into 

the upper layer encountering a “gust” of 5 m/s, which increases the bird’s airspeed to 20 

m/s and adds a pulse of kinetic energy. If the albatross now descends back into the lower 
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layer again without changing direction, the bird’s airspeed would decrease back to 15 

m/s, and there would be no net gain in kinetic energy to balance loss due to drag.  

 

    Albatross flight reveals that the trick of wind-shear soaring is to climb headed upwind, 

to then turn downwind, and to descend headed downwind. After rising into the upper 

layer and increasing airspeed to 20 m/s, the bird banks and turns downwind to fly in the 

opposite direction.  If we ignore drag, which is small for an albatross, then just before 

descending, the bird’s airspeed is 20 m/s in a downwind direction and the (tail) wind 

speed is 5 m/s also in a downwind direction. Thus, the bird’s speed over the lower layer 

(ground speed) is 25 m/s, and when the bird descends into the lower layer airspeed 

increases to 25 m/s, adding another pulse of airspeed and kinetic energy. In order to 

continue gaining energy the bird could bank and turn toward the wind direction and climb 

up into the upper layer again. It is apparent that the bird could maximize the rate of gain 

of airspeed and kinetic energy by increasing the frequency of swoops. Several things tend 

to limit the airspeed of a real albatross: increased sinking rate with faster airspeeds and 

steeply banked turns, the physical strength of the bird as the aerodynamic force on its 

wings increases, and smaller wind shear compared to the step-like increase used in the 

example. 

    Some radio controlled (RC) glider pilots have recently used wind shear caused by 

strong winds blowing over ridges to fly gliders at surprisingly fast speeds. By repeatedly 

climbing upwind and descending downwind through the separated wind-shear layer 

located downwind of a ridge, RC gliders have achieved airspeeds over 150 m/s in gust 

soaring (http://www.youtube.com/watch?v=Vi0hrjqU15I). The duration of a fast glider 

swoop is around 3 s, which implies a lift force of around 30 times gravity (30g), much 

too large for an albatross. These exceedingly fast glider speeds clearly demonstrate how 

effective wind-shear gust soaring can be given the right circumstances. A Google search 

under “dynamic soaring” provides many relevant websites that discuss this topic. Wind-

shear soaring can also be performed with horizontal wind shear. 

 

    Since an albatross crosses the shear layer twice during a typical 10 s swoop, the time 

scale of the 5 m/s velocity increase and the corresponding energy pulse due to crossing 

http://www.youtube.com/watch?v=Vi0hrjqU15I
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the shear layer once is 5 s. This is a much shorter time than the ~ 40 s required for an 

equivalent velocity increase estimated for wave-slope soaring.  

 

    An albatross wind-shear soaring can and often does convert the increase in airspeed 

(kinetic energy) to a gain in height (potential energy) similar to the motion of a 

pendulum. The increase in wind speed (5 m/s) across the wind-shear layer used in the 

above example could provide around 9 m of altitude gain (assuming no drag). The bird 

could then trade height for airspeed on descending back down to the ocean surface.  

 

    Temporal wind gusts, in contrast to the structure gusts encountered in gust soaring, can 

be used to gain additional energy. A faster-than-average wind-speed gust contains 

greater-than-average wind shear, through which a bird could swoop extracting a greater-

than-average amount of energy. The trick of temporal-gust soaring is to maximize time in 

gusts and minimize time in lulls. An albatross undoubtedly knows how to identify 

gusts—rougher water surface, blowing spray—to use for additional energy gain. 

 

3.2. Minimum wind shear required for sustained soaring 

 

    The Rayleigh cycle of wind-shear soaring as shown in Figure 4 was used to model an 

albatross gust soaring in nearly-circular flight along a plane tilted slightly upward into the 

wind. The essential assumptions are that 1) the plane crosses the wind-shear layer at a 

small angle with respect to the horizon so that vertical motions can be ignored, 2) the 

mean airspeed and mean glide ratio can be used to represent flight in the circle, and most 

importantly, 3) conservation of energy in each layer requires a balance between the 

sudden increase of airspeed (kinetic energy) due to crossing the shear layer and the 

gradual loss of airspeed due to drag over half a loop, resulting in energy-neutral flight. 

The motion during each half loop is somewhat similar to a landing flare when a glider 

maintains constant altitude and airspeed is slowly dissipated by drag. 

  

     Conservation of energy indicates that the vertical increase of wind speed (∆W) across 

the wind-shear layer required for energy-neutral wind-shear soaring is given by ∆W = 
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gt/2(V/Vz), where g is gravity, t is the period (10 s) of the nearly-circular flight, and V/Vz 

is the ratio of the bird’s airspeed (V) to sinking speed through the air (Vz) (see appendix 

for details). The glide ratio, V/Vz, very closely equals lift/drag for values >> 1 typical of 

albatross flight. Relevant values of airspeed (V), sinking speed (Vz), and glide ratio in the 

modeled Rayleigh cycle were calculated using the aerodynamical equations of motion 

(Lissaman, 2005, 2007; Torenbeek and Wittenberg, 2009) and the maximum glide ratio 

V/Vz = 21.2, and associated cruise airspeed, Vc = 16.0 m/s, of a wandering albatross 

(Diomedea exulans) in straight flight (Pennycuick, 2008) (Tables 1 and 2, appendix). The 

minimum ∆W for the Rayleigh cycle was found to be 3.55 m/s with an associated average 

airspeed V = 16.0 m/s, average glide ratio V/Vz = 13.8, and average bank angle of 45.7° in 

the circle. 

 

     The 16.0 m/s average airspeed in the circle and the ∆W = 3.55 m/s increase of airspeed 

encountered by a bird crossing the wind-shear layer indicate that the bird’s airspeeds 

before and after crossing the wind-shear layer are V1 = 14.22 m/s and V2 = 17.78 m/s. 

These values are greater than the airspeed of minimum sinking speed in the circle (14.12 

m/s), and they fall within the range of the nearly constant values of V/Vz (13.6-13.9) and 

∆W (3.5-3.6 m/s) in Table 1, which justifies the use of averages of airspeed, glide ratio 

(V/Vz), and ∆W in modeling the nearly-circular flight.  

 

     The minimum wind shear ∆W calculated above is based on the 10 s observed swoop 

period. However, minimum ∆W is a function of loop period. The optimum loop period 

for absolute minimum ∆W in the Rayleigh cycle was found to be 7.25 s, and this 

coincides with the cruise airspeed of 16.0 m/s and bank angle of 54.7°. The absolute 

minimum ∆W is 3.36 m/s (appendix, Table 3).       

    

3.3. Discussion of minimum wind shear (∆W) 

 

     Why is the observed period (10 s) of an albatross swoop greater than the 7.2 s loop 

period associated with the absolute minimum ∆W in the Rayleigh cycle? An obvious 

answer is that the 10 s observed swoop period was of birds soaring in wind shears (∆W) 
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larger than the absolute minimum, and that given sufficiently large ∆W a bird flies with a 

larger loop period in order to reduce aerodynamic wing loading. It is possible that for a 

given ∆W greater than the absolute minimum a bird increases its swoop period to control 

energy gain in order to maintain an average airspeed of around 16 m/s. An implication is 

that an albatross trying to wind-shear gust soar near the absolute minimum wind shear 

(3.4 m/s) needed for energy-neutral soaring must reduce the period of swoops from 10 s 

toward 7.2 s in order to continue soaring. 

 

    The minimum amount of wind shear (∆W = 3.4-3.5 m/s) across the wind-shear layer 

found above is small enough to suggest that the associated total wind speed might not be 

fast enough to generate large waves with sharp crests required for gust soaring and that 

therefore gust soaring might not be an appropriate model for such low wind-shear values. 

However, in the presence of decreasing winds, which had generated large waves, or in 

the presence of large swell propagating into an area from elsewhere, the waves might be 

sufficiently large and sharp enough with the addition of local wind waves to generate lee 

eddies, which can be used for gust soaring. In addition, lee eddies not associated with a 

separated boundary layer could be present and useful for gust soaring (more on this 

below). 

 

     The value of absolute minimum ∆W determined with the simple model described 

above closely agrees with results of a study by Lissaman (personal communication, 

2010), who integrated the aerodynamic equations to determine the minimum increase of 

wind speed for energy-neutral wind-shear soaring in the Rayleigh two-layer case (Table 

3).  He found a minimum ∆W of 3.36 m/s (same as present study) for a loop with the end 

point located downwind of the starting point, similar to the simple model described 

above. The loop period associated with this minimum ∆W is 7.35 s, and the (constant) 

bank angle is 54°, very close to the values found in the present study. In another case, 

Lissaman (personal communication, 2010) forced the end point of a cycle to match the 

starting point in order to eliminate leeway in a circuit, and he found that the minimum 

∆W increased slightly to 3.56 m/s and the loop period increased to 7.70 s (Table 3).  
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     Sachs (2005) modeled an albatross soaring in a logarithmic wind profile and estimated 

the minimum wind velocity required for energy-neutral wind-shear soaring to be around 

9 m/s at a reference height of 10 m. The increase of wind speed (∆W) encountered by the 

simulated bird was 3.8 m/s (Table 3) over the actual range of heights flown in the model 

swoop, 1.5-20 m above sea level. Most of the wind shear in a logarithmic profile below 

20 m height is located within 1.5 meters of the ocean surface (Fig. 2) and was missed 

because the simulated bird did not fly closer to the surface than this height due to the 

bird’s long wings. This suggests that Sachs’ (2005) minimum reference wind speed of 9 

m/s overestimates the minimum wind speed required for gust soaring, which includes the 

large shear located in the lower part of the shear layer. Lissaman (2005) included the 

lower part of an exponential wind profile and found a rather similar minimum ∆W of 3.7 

m/s over the heights flown, 0-18 m (Table 3). This estimate using the whole wind profile 

(0-18 m) appears to be a better model of gust soaring since the simulated bird starts and 

ends at the bottom of the shear layer. The implication is that the minimum wind velocity 

at a height of 10 m required for sustained gust soaring in a smooth wind profile over the 

ocean is only around 3.4 m/s (Lissaman, 2005) not 9 m/s (Sachs, 2005). These results of 

the minimum ∆W = 3.7-3.8 m/s, based on smooth wind profiles, imply that the simple 

Rayleigh cycle (∆W = 3.4-3.5 m/s) is also a fairly good approximation for a bird soaring 

in the reduced wind shear region located higher above sea level. 

 

         Important missing ingredients in these numerical simulations of wind-shear soaring 

are updrafts, separated boundary layers, and lee eddies that real albatrosses appear to 

exploit. An advantage of the gust-soaring technique is that a bird dives down into a lee 

eddy across the strongest part of the wind-shear layer and then climbs upward across it 

again (Figs. 3 and 4), thereby making good use of the available wind shear. In Sachs’ 

(2005) simulation of wind-shear soaring, the albatross missed most of the strong wind 

shear located close to the ocean surface. Another advantage of gust soaring is that a bird 

remains below the wind-shear layer for part of the loop, thereby minimizing leeway. This 

could be an advantage for a bird trying to soar upwind. 

 

 3.4. Mean travel velocity 



 12 

 

    The mean travel velocity of an albatross gust soaring was modeled by dividing the 

Rayleigh cycle into semi-circular pieces and connecting a series of them together in a 

snaking flight pattern to simulate the observed zigzag flight. For example, a clockwise 

semi-circle located above the shear layer was connected to a counter-clockwise semi-

circle located below the shear layer to simulate flight in a direction 60° to the right of the 

wind as illustrated in Figure 5A. A bird was assumed to quickly switch banking 

directions during the climbs and descents. The 16.0 m/s mean airspeed in the series of 

connected semi-circles results in a mean travel velocity through the air of 2V/π = 10.2 

m/s. During the half loop located in the upper layer, a bird is carried downwind by the 

wind at a speed of ∆W so that the end point of a loop is displaced downwind of the 

starting point. This results in an average leeway over a loop equal to half of the wind 

speed in the two layers (∆W/2), which equals 1.8 m/s for flight perpendicular to the wind. 

 

    Travel velocity was calculated for mean flight directions oriented at various angles 

with respect to the wind direction (Table 4). It was assumed that the average airspeed of 

16.0 m/s and the maximum glide ratio in the flight remain constant, and that as the mean 

flight direction through the air varies from being perpendicular to the wind, which is the 

most efficient course for gaining energy, an increase of wind shear ∆W is required to 

sustain soaring. The increase is needed because the bird would cross the wind-shear layer 

at an angle with respect to the wind direction, resulting in a smaller increase of airspeed 

for a given amount of wind shear. A complication is that real flown “semicircles” could 

depart from the assumed semicircles. Results are displayed as a travel velocity polar 

diagram in the shape of a valentine (Fig. 6), which gives travel velocity in any direction 

relative to the wind. Although this type of diagram is common for sailboats, Figure 6 

appears to be the first one based on model simulations of an albatross sailing through the 

wind. The valentine can be compared with the observations of Alerstam et al. (1993, their 

Fig. 11), plotted as a similar diagram. 

 

    Results shown in Figures 6 and 7 and Table 4 indicate that a mean travel velocity can 

be in any direction relative to the wind given sufficient wind shear (∆W), including 
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directly upwind, although this direction is not the fastest way to travel upwind. The 

fastest upwind travel velocity is 6.2 m/s (∆W = 6.8 m/s) in a direction ~ 30° relative to the 

wind. This suggests that the fastest way to soar directly upwind is by tacking like a 

sailboat through angles of ~ 30° to the right and left of the wind direction. Tacking 

upwind with this angle can also be accomplished with less wind shear than by flying on a 

mean course directly upwind (∆W = 10.6 m/s). Table 4 also indicates that an albatross 

tacking at an angle of 50° relative to the wind can soar upwind at 5.4 m/s, faster than the 

wind speed (∆W = 4.9 m/s) located at the top of the wind-shear layer. Tacking refers to 

the bird alternating the mean travel velocity to the left and right of the wind direction, not 

the 10 s zigzag swoops along the mean travel velocity. 

 

    The fastest model travel speed is directly downwind at 15.5 m/s (∆W = 10.6 m/s), 

although it is almost as fast (~ 12-13 m/s) to travel obliquely downwind at angles of 

140°-165° relative to the wind in ∆W = 4.3-6.8 m/s (Table 4, Fig. 7). Flying at these 

angles requires only around half the minimum wind shear for direct downwind flight 

(Table 4, Fig. 7) and would maximize distance over the ocean at these ∆Ws for foraging 

and circumnavigations. The most efficient directions to fly, as defined by the travel 

airspeed divided by ∆W being greater than 2.5, are 80°-150° over the ocean, or directions 

extending from nearly perpendicular to the wind to obliquely downwind, with the most 

efficient direction at around 110° relative to the wind.     

 

    Travel velocities given above used a 16.0 m/s airspeed. If wind shear were greater than 

the minimum ∆W for soaring in a particular direction (Table 4, Fig. 7), then in principle 

an albatross could gain additional energy during a swoop and use it to fly faster than 16.0 

m/s. Thus, the travel velocities in Table 4 and Figures 6 and 7 could underestimate real 

albatross travel velocities in larger wind shears. For example, the mean travel velocity 

perpendicular to the wind could be ~ 22 m/s in wind shear (∆W) equal to 7 m/s, which is 

twice the minimum shear required for travel velocity perpendicular to the wind at 10.2 

m/s. However, albatrosses do not appear to fly this fast (Wakefield et al., 2009) probably 

because of the large associated aerodynamic forces acting on the bird’s wings at fast 

airspeeds. For example, a travel velocity of 22 m/s corresponds to an airspeed of 35 m/s, 
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bank angle of 66°, and lift force of 2.5g, which is almost twice that encountered with an 

airspeed of 16 m/s and bank angle of 45°. 

 

     In summary, the model Rayleigh snaking cycle indicates that an albatross can fly in 

any direction including directly upwind when tacking is combined with travel velocities. 

Upwind flight velocity can be faster than the wind speed located at the top of the wind-

shear layer when flying at angles of 40-60° relative to the wind (Table 4). Wind shears 

that are larger than the minimum wind shear for energy-neutral soaring could enable an 

albatross to fly faster the than travel velocities calculated for minimum wind shear, but 

albatrosses do not appear to do this. Instead, they appear to control airspeed in order to 

limit aerodynamic force on their wings. 

 

3.5. Discussion of travel velocity 

 

     The across-wind travel velocity calculated above (10.2 m/s) was based on a simplified 

Rayleigh cycle consisting of a series of linked semi-circles and average airspeed, bank 

angle, and glide ratio. Lissaman (personal communication, 2010) numerically simulated 

the details of a Rayleigh cycle loop and circuit. The implied across-wind travel velocity 

of the loop is 10.0 m/s, close to that found above (Table 3). The implied travel velocity of 

the Rayleigh cycle circuit is somewhat smaller than this (8.8 m/s) because the bird was 

forced to return to the starting position. Sachs (2005), using a logarithmic wind profile, 

found an across-wind travel velocity of 9.2 m/s and a leeway of 9.0 m/s. This across-wind 

value is somewhat slower than the Rayleigh cycle loop because Sachs used smaller 

values of glide ratio (20) and cruise velocity (12.6 m/s) (Table 3). Sachs’ leeway value is 

much larger than that for the Rayleigh cycle because the simulated bird remains in the 

region of fast wind speeds above 1.5 m in elevation. This could be advantageous for a 

bird trying to fly downwind but a disadvantage in trying to fly upwind. The resulting 

travel velocity over the ocean is 12.9 m/s in a direction 134° relative to the wind. 

 

    Some of the albatrosses I observed soared upwind at the same speed (~ 6 m/s) as our 

ship steamed upwind, which matches the upwind travel velocity (6 m/s at 25-40°) of the 
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Rayleigh cycle (Figs. 6 and 7).  Alerstam et al. (1993) report observed albatross travel 

velocities in a travel polar diagram very similar to those estimated with the Rayleigh 

cycle, including across-wind travel speed of 10.2 m/s (in wind speeds of 8-13 m/s) 

compared to 10.2 m/s in the Rayleigh cycle (Fig. 6). The fastest travel velocity observed 

by Alerstam et al. was 22 m/s at a downwind angle of 140° and in fast wind speeds of 13-

20 m/s, compared to a travel velocity of 12 m/s in the Rayleigh cycle. However, this fast 

observed speed no doubt includes a large downwind leeway velocity. 

     Wakefield et al. (2009) found a strong linear relationship between the ground speed of 

albatrosses and the wind-speed component in the direction of flight. For example, the 

travel velocity through the air of wandering albatrosses was found to equal an average 10 

m/s plus 0.4 times the wind component (at 5 m height) in the direction of flight. Values 

for the Rayleigh cycle (Table 4) give a similar 10 m/s travel velocity through the air and a 

similar linear relationship with the wind-speed component (∆W) in the direction of flight, 

indicating that the Rayleigh cycle is a good model for observed albatross flight speeds. 

The observed speeds suggest that albatrosses generally fly with a 10 m/s travel velocity 

through the air even in relatively fast winds (6-9 m/s) and large wind shear. The 

implication is that the birds control the amount of energy gain in wind-shear soaring in 

order to maintain a nearly-constant average airspeed.  

 

     In order to fly with a 10 m/s travel velocity in wind shear that is much larger than the 

minimum required for energy-neutral soaring at that airspeed (Table 4), an albatross must 

modify its flight to gain less energy than the maximum possible. To reduce energy gain a 

bird could increase the period of its swoops. It could climb less high through the wind-

shear layer or could remain in the weak wind shear located higher up in the wind profile 

as modeled by Sachs (2005). A bird could also cross the wind-shear layer with a large 

horizontal angle relative to the wind direction. 

 

     In principle, an albatross could fly on a nearly-straight course perpendicular to the 

wind and also in other directions but not directly upwind or downwind by using the net 

energy gained from climbing and descending across the wind-shear layer. A hypothetical 

flight pattern might consist of the following: A bird flying eastward (for example) in the 
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lower layer below a north wind of 8.7 m/s rises into the upper layer. As the bird 

encounters the wind velocity, airspeed increases by ∆V = 2.3 m/s, and the relative wind 

shifts ~ 30° in an upwind direction. The bird quickly turns (yaws) left and heads into the 

relative wind to avoid side slipping.  It then banks slightly (~10°) to the right and turns 

eastward by the end of the 5 s half loop. During the 5 s turn, airspeed decreases by 2.3 

m/s due to drag. The bird then descends into the lower layer and encounters another 

increase of airspeed (∆V = 2.3 m/s) and a shift of the relative wind ~ 30° in a downwind 

direction. The bird quickly turns (yaws) right to head into the relative wind and then 

banks slightly (~10° degrees) to the left and turns eastward again, etc. The airspeed 

increase (∆V = 2.3 m/s) for nearly-straight flight is smaller than the minimum (∆V = 3.5 

m/s) for the Rayleigh cycle because of the smaller bank angle and larger glide ratio in the 

nearly-straight flight. The resulting travel velocity over the ocean would be 15.5 m/s at a 

direction of 105° relative to the wind. 

 

     This hypothetical flight trajectory suggests that the snaking Rayleigh cycle is 2.5 times 

more efficient at increasing energy (smaller required ∆W) than the nearly-straight across-

wind flight. More importantly, it indicates that the general rule of wind-shear soaring—

climbing headed upwind and descending headed downwind—can be relaxed given 

sufficiently-large wind shear. Furthermore, it suggests that an albatross could control 

energy gain and airspeed by reducing the curvature (smoothing) of the Rayleigh semi-

circular snaking flight pattern to make it straighter as illustrated in Figure 6C and D and 

as observed by Idrac (1924, 1931). Along with straighter flight come a smaller bank 

angle and smaller aerodynamic force, which would be less stressful for a bird.  

 

4. Wave-slope soaring 

 

    A common perception is that updrafts over a wave are caused mainly by wind flowing 

up the windward face of a wave (see Pennycuick, 1982; Wilson, 1975). However, the 

causes and structures of updrafts are considerably more complicated than this and include 

air displaced upward by the orbital velocity of the wave surface and vertical velocities 

from wind-wave interactions. These can occur simultaneously, their effects adding and 
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subtracting from each other in complicated ways. Soaring using any updraft caused by 

wind interacting with waves is referred here to be “wave-slope soaring,” realizing that 

this term is a simplification. A bird flying horizontally in an updraft over waves could 

gain altitude (potential energy) from the wind. This energy gain could be used to balance 

the bird’s loss of energy due to drag in energy-neutral flight. 

 

    The following summarizes observations of albatross soaring and model simulations of 

wind over waves with the intent to infer methods of wave-slope soaring. First, when the 

air is still and the seas calm, albatrosses are observed to usually sit on the ocean surface 

or, infrequently, fly by alternating flapping and gliding (Pennycuick, 1982; Alerstam et 

al., 1993). This indicates that thermals are not effective for albatross soaring or that 

albatrosses have not learned how to soar in thermals, which seems unlikely.  

 

    Reports of albatrosses soaring over swell waves in zero wind (Alerstam et al., 1993; 

Froude, 1888; Pennycuick, 1982) illustrate that the orbital velocity of the wave surface 

forces a substantial updraft over the slope of a wave facing its direction of propagation. 

Froude estimated an updraft velocity of around 1 m/s above a wave of wavelength 150 m, 

amplitude 1.5 m, period 10 s, and phase speed 15 m/s. Since the minimum sinking rate of 

a wandering albatross is around 0.6 m/s (Pennycuick, 2008), this bird could easily soar 

over these waves in zero wind. The trick in wave-slope soaring is to maximize the time in 

the strongest updrafts and minimize time outside this region especially in downdrafts.  By 

flying in the strongest updrafts an albatross could gradually increase its airspeed over the 

airspeed of minimum sink and use the excess either to climb or to fly in an across-wave 

direction through a downdraft. 

 

    When a swell wave propagates in an upwind direction then the updraft created by wind 

flowing up the windward wave face is added to the updraft due to the orbital motion of 

the wave surface. This would provide an ideal situation for sustained wave-slope soaring 

that could be accomplished with smaller waves than those required to soar in zero wind. 

A similar situation of enhanced updraft occurs when a swell wave propagates downwind 
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faster than the wind speed. Sullivan et al. (2008) describe model simulations and 

observations that include illustrations of updrafts over swell waves. 

 

    A fast wind flowing over a relatively slow wave can cause an updraft over the 

windward wave face, but the updraft is countered somewhat by a downward orbital 

velocity there. Leeward of the wave crest and centered just upwind of the wave trough a 

lee eddy can form (Fig. 8), which is a region of closed streamlines centered about the 

critical layer and synchronous with the wave (Sullivan et al., 2000). The updraft region 

located over the leeward wave face is forced mainly by upward orbital velocity of the 

wave surface. Sometimes the lee eddy is known as a cat’s eye for its distinctive pattern as 

shown in Figure 8. The region of closed streamlines in the lee eddy deflects the outer 

mean streamlines away from the wave surface creating a region of updraft over the eddy 

(Fig. 8). Sullivan et al., (2000) show streamlines for three examples corresponding to the 

increasing ratio of wave speed to wind speed, c/u* = 3.9, 7.8 and 11.5, where c is the 

wave phase speed and u* is the friction velocity. As the ratio increases, the cat’s-eye 

pattern thickens, its center moves upward and upwind toward the wave crest, and the 

region of updraft shifts upwind to extend vertically over the wave crest. Hristov et al. 

(2003) also show observations and model calculations of wave-induced lee eddies, which 

include an updraft over the lee side of a wave below the critical layer, forced mainly by 

the orbital velocity, and extending over the wave crest above the critical layer. Lee-eddy 

structures and the associated pressure perturbations are thought to be important in 

generating wind waves. 

 

    The waves modelled by Sullivan et al. (2000) are sinusoidal. Wind waves tend to have 

sharper crests than this and can break in sufficient wind speed. When swift wind blows 

over a sharp-crested wave or a breaking wave, streamlines can separate from the wave as 

described by Pennycuick (2002) and shown in Figure 3. The resulting lee eddy or 

separation bubble contains closed clockwise streamlines (illustrated very schematically in 

Fig. 3) and thus a region of updraft along the leeward face of the wave due to the orbital 

velocity and upslope wind. Other examples of lee eddies are shown by Hsu et al. (1981, 

Fig.15), Gent and Taylor, (1977, Figs 2, 3, 7, 8), Reul et al. (1999, Fig.1). Vertical 
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velocities of 1.0 to 1.2 m/s have been measured in lee eddies downwind of sharp-crested 

and breaking waves associated with a free-stream wind velocity of 6 m/s (Kawai, 1982; 

Reul et al., 1999). The updraft associated with lee eddies might explain the observations 

by Idrac (1925, 1931) of some albatrosses soaring there as part of low-level flight in a 

swoop. 

 

    Three main points of this discussion add to previous descriptions of albatross wave-

slope soaring as follows: 1) Lee eddies with updrafts can form downwind of a wave crest 

with or without a separated boundary layer (Figs. 3 and 8). 2) An updraft region is often 

located over the leeward slope of a wave and over a lee eddy, not just over the windward 

slope of a wave. The regions of updrafts over the leeward and windward wave slopes and 

the wave crest merge and extend upwards above a wave crest (Fig. 8).  3) Starting in the 

lower part of a lee eddy, an albatross can climb upwind over a wave crest and descend 

downwind back into the lee eddy (wind-shear gust soaring) and remain in a region of 

updraft during the whole swoop. Combining both wind-shear soaring and wave-slope 

soaring in this maneuver would maximize total energy gain in a swoop. This would be 

very useful for soaring in low wind speeds. 

 

5. Relative Energy gain from the two soaring techniques 

 

    The gain of energy in wave-slope soaring during a typical swoop in a typical updraft 

was estimated crudely by assuming that an albatross spends around half of each swoop in 

a 1 m/s updraft over waves (as discussed above), resulting in an average vertical velocity 

of 0.5 m/s (over a swoop). During the 5 s of a half swoop this vertical velocity would 

result in a height gain of 2.5 m, assuming horizontal flight through the air. In the same 5 s 

of a half swoop the bird could gain 9 m from wind-shear gust soaring as estimated above 

for an increase in wind speed of 5 m/s across the wind-shear layer or could gain 20 m for 

an increase of wind speed of 10 m/s across the wind-shear layer. These values indicate 

that wind-shear soaring during a swoop in these typical conditions in the Southern Ocean 

(Table 2) provides around 4-8 times more energy than wave-slope soaring or 80-90% of 
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the total. Of course, in zero wind 100% of the energy for soaring would have to come 

from wave-slope soaring. 

 

    The energy gained from wave-slope soaring during a swoop could be critical to soaring 

in smaller wind shears. For example, if wind shear fell below a certain threshold (∆W ~ 

3.4 m/s) below which energy-neutral soaring could not exist by itself, wave-slope soaring 

could provide the additional energy to make soaring possible. In such a situation the bird 

would need to combine the two techniques as observed by Alerstam et al. (1993), 

Pennycuick (1982), and this present study. During the lower part of a swoop albatrosses 

often fly very close to the surface of a wave with a wingtip just grazing the water surface. 

This is interpreted to be how a bird maximizes the effect of wave-slope soaring by flying 

both in the region of maximum updraft to gain energy and in ground effect to reduce 

energy loss from wingtip vortices and downwash.  

 

6. Summary 

 

    The general rules of albatross soaring are: 1) No wind, no waves, no soaring; 2) Wave-

slope soaring can be accomplished in swell without wind; 3) Wind-shear soaring can be 

accomplished in wind without waves. 4) Wave-slope soaring and wind-shear soaring are 

usually combined when wind and waves coexist. In “typical conditions” in the Southern 

Ocean (Table 2), consisting of an increase of wind speed ~ 5-10 m/s across the wind-

shear layer and an updraft velocity ~ 1 m/s, wind-shear soaring provides around 80-90% 

of the energy for soaring.  

 

     The albatrosses I observed appeared to use both wind-shear and wave-slope soaring 

techniques. The birds periodically flew very close to the ocean surface along the 

windward face of a wave, which is interpreted to be wave-slope soaring. They then 

turned sharply upwind and pulled up just downwind of another wave, climbed above the 

windward face of that wave, banked steeply to turn downwind then descended toward the 

windward side of that wave; this is interpreted to be wind-shear gust soaring. Wave-slope 

soaring might also have been used during the climb and descent. Each swoop crossed 
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twice through the wind-shear layer, once by climbing into the wind and once by 

descending downwind (or obliquely downwind), so that energy was gained on both 

crossings. The lower across-wind part of the swoop appeared to coincide with the 

windward face of a wave, where fast airspeeds could lead to large sinking rates. Flying in 

the updraft region of a wave during this part of the swoop provides a gain in energy 

where none is possible from wind shear. Winds interacting with waves can generate eddy 

structures, which can be used by an albatross to wave-slope soar over the leeward face 

and over the crest of waves in combination with gust soaring. 

 

       A simple dynamical model based on the Rayleigh (1883) cycle of wind-shear soaring 

and Pennycuick’s (2002) concept of gust soaring over waves was developed to simulate 

the observed zigzag flight pattern. The Rayleigh cycle indicates that albatrosses can soar 

in any direction including directly upwind, although across-wind and down-wind flight is 

faster. Simulated travel velocities in different directions were shown in a travel velocity 

polar diagram (Fig. 6), which is somewhat similar to ones generated for sailboats but a 

first for albatrosses. Mean travel velocity perpendicular to the wind is around 10.2 m/s. 

Maximum upwind velocity of 6.2 m/s can be achieved by a bird tacking through angles 

of 30° relative to the wind. The minimum increase of wind speed across the thin wind-

shear layer necessary for energy-neutral soaring at 16.0 m/s airspeed was estimated to be 

around 3.5 m/s for across-wind flight with a 10 s period (Table 4, Fig. 7). This result 

agrees closely with some detailed numerical simulations of albatross flight by Lissaman 

(personal communication, 2010) (Table 3). In large wind shear an albatross modifies its 

flight pattern in order to limit energy gain, airspeed, and aerodynamical force on its 

wings. 

 

    Real albatross flight patterns appear to combine both wind-shear gust soaring and 

wave-slope soaring, which suggests that models that exclude waves and wind-wave 

interactions do not simulate real albatross flight. The simple Rayleigh cycle modeled 

here, which includes the effect of waves by simulating gust soaring through a detached 

wind-shear boundary layer, captures the essential dynamics of wind-shear soaring and 

appears to reproduce quite well the observed features of albatross soaring, including 
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realistic travel speeds in all directions, even upwind velocity faster than the wind speed at 

the top of the wind-shear layer. The model Rayleigh cycle balances the sudden gain of 

airspeed (kinetic energy) due to crossing the wind-shear layer in gust soaring with the 

gradual loss of airspeed due to drag during each half loop and simply illustrates how an 

albatross can use wind shear to soar in different directions. 

 

7. Conclusions 

 

    My conclusion about the relative importance of the two soaring techniques has evolved 

since I first watched albatrosses soaring over the South Atlantic Ocean and thought they 

mainly used updrafts over waves. I now believe they mainly use wind-shear in gust 

soaring, except in light winds and in the presence of significant swell. Convincing 

evidence of the overall importance of the wind-shear soaring technique is given by 

modeling studies of wind-shear soaring (Lissaman, 2005; Sachs, 2005) including the 

simple Rayleigh cycle described above, the gust-soaring concept developed by 

Pennycuick (2002), the exceedingly fast RC glider speeds obtained by wind-shear gust 

soaring downwind of ridges, and the large relative energy gain from wind shear estimated 

here for a swoop in “typical conditions” in the Southern Ocean. Albatrosses appear to 

combine both soaring techniques in their swooping flight, with wave-slope soaring 

providing additional energy gain on the lower across-wind flight path where no energy 

gain is possible from wind-shear soaring and possibly additional energy gain in updrafts 

during the upper part of a swoop over a wave crest.  

 

    To further investigate the soaring techniques of albatrosses, it would be helpful to 

instrument them to measure in high resolution their positions, orientations, velocities over 

the ground and through the air as well as information about wind and wave fields. If these 

kinds of data were obtained they might also provide new information about the 

interactions of wind and waves and wave generation. Models of albatross soaring would 

be improved by including waves and the interactions of wind and waves, which could 

help provide information about gust soaring and the wave-slope-soaring part of a swoop. 
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Interpreting such model simulations could be difficult since even model simulations of 

albatross soaring that exclude waves have been a challenge to interpret. 
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Appendix  

 

Modeled Rayleigh cycle 

 

    In the modeled Rayleigh cycle (Fig. 4) the loss of energy over a half loop (t/2 = 5 s) is 

given by mg(t/2)Vz, where m is mass, g is gravity, t is the period of a loop, and Vz is the 

bird’s sinking speed through the air due to drag. Conservation of energy for energy-

neutral soaring requires that this energy loss must equal the sudden gain in kinetic energy 

(airspeed) from crossing the wind-shear layer, which is given by m(V2² - V1²)/2, where V1 

is the airspeed before crossing the wind-shear layer, and V2 is the airspeed after crossing 

the layer. In this latter term, V2² - V1² = (V2 - V1)(V2 + V1). V2 + V1 is assumed to equal 

twice the average airspeed (2V) in the nearly-circular flight, and V2 - V1 is the increase of 
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airspeed, ∆V, of a bird crossing the wind-shear layer, which is assumed to equal the 

vertical increase of wind speed (∆W) across the layer.  Conservation of energy and the 

approximations given above indicate that  

 

                         



V 
gt

2(V /Vz)
 ,           (A1) 

 

where V/Vz is the glide ratio averaged over 5 s of a half loop and over ∆V.  

 

     The decrease in airspeed at constant height during a half loop was obtained by 

balancing the rate of change of airspeed (kinetic energy) with dissipation due to drag. 

This balance indicates that dV/dt = g/(V/Vz). Since V/Vz is virtually constant in the 

relevant airspeed range ∆V centered on the cruise airspeed of 16.0 m/s (Table 1), airspeed 

decreases linearly in time. Therefore, the total decrease of airspeed, ∆V, in a half loop 

(t/2) is equal to gt/2(V/Vz) as derived above (Eq. A1). 

 

     Values of V/Vz for circular flight were calculated using a quadratic drag law (drag 

proportional to lift squared), the aerodynamic equations of motion (Lissaman, 2005; 

Torenbeek and Wittenberg, 2009), the maximum glide ratio (V/Vz )max = 21.2, and the 

associated cruise airspeed Vc = 16.0 m/s of a wandering albatross in straight flight 

(Pennycuick, 2008). Specifically, values of V/Vz were calculated using  

 



V /Vz 
2(V /Vz)max

(V /Vc)2  (Vc /V cos)2
 ,   (A2) 

 

where φ is the bank angle. For balanced circular flight, cosφ is given by  

 

                   



cos 
1

(2V /gt)2 +  1
 .     (A3) 

 

     The airspeed at minimum sink rate in straight flight was found by setting the 

derivative dVz/dV (Eq. A2) equal to zero  and solving for V, which is given by V = 

0.760Vc = 12.2 m/s. The minimum sink rate (Vz = 0.66 m/s) at this airspeed is achieved 
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with a large lift coefficient. The airspeed of minimum sink rate in a balanced circle was 

calculated using this same lift coefficient and by assuming that the added lift required to 

balance centrifugal force in the turn is provided by an increase of airspeed. This results in 

the airspeed of minimum sink rate (often called minimum power) in a 10 s circle being 

given by V = 0.760Vc/√cosφ = 14.1 m/s (Tables 1 and A1). The minimum sink rate at this 

airspeed is Vz = 1.04 m/s. These values are close to those corresponding to the minimum 

height loss in a circle, which occurs at a bank angle φ = 45.0°.  Using φ = 45.0° and V = 

0.760Vc/√cosφ, we find that values for minimum height loss in a circle are t = 9.26 s, V = 

14.5 m/s, and Vz = 1.11 m/s (Table A1). 

 

     The minimum ∆V (and ∆W) for an energy-neutral Rayleigh loop was determined by 

first calculating a ∆V using the V/Vz at 16.0 m/s cruise airspeed in the loop (Table 1) and 

then calculating average values for that range in airspeeds (∆V) centered on an airspeed 

of 16.0 m/s, etc. The minimum vertical increase of wind speed across the wind-shear 

layer for a 10 s loop was found to be ∆W = 3.55 m/s; this value corresponds to an average 

V/Vz = 13.8, average equivalent Vz = 1.14 m/s, and average φ = 45.6° (Table A1). The 

Rayleigh cycle is based on a constant height loop (zero sink); the value for Vz given 

above is the equivalent sink rate that would balance drag if dV/dt = 0. 

 

     The minimum airspeed loss ∆V (and ∆W) calculated above for energy-neutral soaring 

used the observed 10 s loop period.  However, minimum ∆V is a function of the loop 

period, and there is an absolute minimum ∆V, which occurs at the cruise airspeed Vc = 

16.0 m/s and at an optimum loop period topt , given by  

 



topt 
Vc 2

g
 7.25s .    (A4) 

 

Equation A4 was derived by setting the derivative d(∆V)/dt (Eq. A1) equal to zero and 

solving for t. At topt and Vc  = 16.0 m/s, the glide ratio in the loop is just one half of the 

maximum glide ratio in straight flight, and the equivalent sink rate (1.51 m/s) in the loop 

is equal to twice the sink rate (0.755 m/s) at 16.0 m/s in straight flight. The small 
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optimum loop period (7.25 s) results in more frequent crossings of the shear layer and a 

larger rate of energy gain than that in the 10 s loop. 

 

      Using topt and Vc = 16.0 m/s, the absolute minimum ∆V (and ∆W) was found to be 

 



V 
Vc 2

(V /Vz)max
 3.35m /s.   (A5) 

 

Equation A5 can be simplified to ∆V = Vz2, where Vz is the sinking speed (0.755 m/s) 

corresponding to (V/Vz)max. Values for the absolute minimum ∆V in a Rayleigh cycle 

loop were calculated as averages within the ∆V range in airspeeds (3.35 m/s) centered on 

16.0 m/s.  The absolute minimum ∆V (and ∆W) = 3.36 m/s; this value corresponds to an 

average V/Vz = 10.6, average equivalent Vz = 1.51 m/s, and average φ = 54.7° (Table A1).   
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Table 1. Characteristics of circular flight and the minimum wind speed increase (∆W) across 

the wind-shear layer required for energy-neutral soaring in a Rayleigh cycle (t = 10 s). 

 

Airspeed 

in circle, 

V (m/s) 

Bank 

angle φ 

Sinking 

speed Vz 

(m/s) 

Glide ratio 

in circle  

(V/Vz) 

Wind speed 

increase ∆W 

(m/s) 

Comments 

 

14.1 42.1 1.04 13.7 3.6 Minimum sink rate 

15.0 43.8 1.08 13.8 3.5  

16.0 45.7 1.15 13.9 3.5 Maximum glide ratio 

17.0 47.4 1.23 13.8 3.5  

18.0 49.1 1.32 13.6 3.6  

19.0 50.6 1.42 13.4 3.7  

20.0 52.0 1.53 13.0 3.8  

21.0 53.4 1.66 12.6 3.9  

22.0 54.6 1.80 12.2 4.0  

23.0 55.8 1.95 11.8 4.2  

24.0 57.0 2.12 11.3 4.3  

25.0 

26.0 

27.0 

28.0 

29.0 

30.0 

58.0 

59.0 

60.0 

60.9 

61.7 

62.5 

2.30 

2.50 

2.71 

2.93 

3.17 

3.43 

 

10.9 

10.4 

10.0 

9.6 

9.1 

8.7 

 

4.5 

4.7 

4.9 

5.1 

5.4 

5.6 

 

 

Values for circular flight were calculated using a quadratic drag law, the maximum glide 

ratio (21.2) and associated cruise airspeed (Vc = 16.0 m/s) of straight flight for a 

wandering albatross (Pennycuick, 2008) (see appendix). Minimum sink rate was 

calculated with V = 0.760Vc/√cosφ. 
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Table 2. Characteristics of a wandering albatross (Diomedea exulans), the ultimate 

soaring bird. 

Mass: 10 kg 

Maximum wing span: 3.5 m (largest of all birds) 

Wing aspect ratio: 15 

Straight flight characteristics (Pennycuick, 2008): 

Maximum glide ratio: 21.2 at cruise airspeed of 16.0 m/s and sink rate of 0.755 m/s 

Minimum sink rate: 0.624 m/s at airspeed 11.5 m/s and glide ratio 18.4
  

Range: ~Ten million kilometers. This range is based on a bird flying 2/3 of the time at an 

average travel velocity of 10 m/s for 50 years and is equivalent to approximately 400 

circumnavigations in the latitude band of the Southern Ocean. 

Life span: ~ 50 years 

Food: Squid, fish, krill 

Nesting sites: Islands in the Southern Ocean 

Distribution at sea: Most albatross species, including wandering albatrosses, forage over 

the Southern Ocean between latitudes 30-60°S. 

Albatross flight: As a result of their long, narrow, high aspect ratio (~12-15) wings, 

albatrosses have the largest glide ratios (horizontal velocity/vertical velocity) and are the 

greatest soaring birds. A shoulder lock system holds their wings in a horizontal position 

so that little energy is expended while soaring (Pennycuick, 1982). Soaring efficiency 

enables the heart rate of a soaring albatross to be close to the basal heart rate when 

resting. Most albatross species lack the muscles to undertake sustained flapping flight and 

thus are dependent on obtaining energy from the wind for sustained soaring. In contrast, 

most petrels, which are smaller than albatrosses, have smaller wing aspect ratios (< 10) 

and tend to flap-glide (Pennycuick, 1982). 

Typical winds and waves in the Southern Ocean: Maximum average wind speeds, 

located near 50°S, are westerly at ~ 11 m/s. Maximum average significant wave heights 

near 50°S are ~ 5 m. Wind speeds and wave heights decrease from this latitude 

southward towards Antarctica and northward towards 30°S, where values of average 

wind speed are ~ 6-7 m/s and average significant wave heights are ~ 2 m. Thus, typical 

average wind speeds in the Southern Ocean are 6-11 m/s and typical average wave 

heights are 2-5 m (Young, 1999; Hanley et al., 2010).  Based on these values, this paper 

used wind speeds of 5-10 m/s and a wave height of 3 m (period ~ 9-10 s) as approximate 

“typical conditions” in order to crudely estimate the relative energy gains from wind-

shear soaring and wave-slope soaring. An updraft of approximately 1 m/s is generated by 

the orbital motion of a 3 m wave (period ~ 9.5 s) and wind-wave interactions as described 

in the text. 
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Table 3.  Minimum increase of wind speed ∆W required for energy-neutral wind-shear 

soaring. 

 

Wind 

Profile 

Max 

V/Vz 

Vc  

(m/s) t(s) 

∆W 

(m/s) 

Travel 

Vel (m/s) 

Flight 

Cycle Reference 

Rayleigh 21.2 16.0 10.0 3.55 10.2 Loop This paper 

Rayleigh 21.2 16.0 7.25 3.36 10.2 Loop This paper 

Rayleigh 21.2 16.0 7.35 3.36 10.0 Loop 
Lissaman (pers. 

com.) 

Rayleigh 21.2 16.0 7.70 3.58 8.8 Circuit 
Lissaman (pers. 

com.) 

Exponential 25.0 15.0 -- 3.74 -- Circuit Lissaman (2005) 

Logarithmic 20.0 12.6 6.9   3.8 9.2 Snaking Sachs (2005) 

 

The Rayleigh wind profile has two layers with zero wind in the lower layer and a wind 

speed of ∆W in the upper layer.  For the exponential and logarithmic profiles, the listed 

increase of wind speed (∆W) is over the range of heights flown, 0-18 m (Lissaman, 

2005), 1.5-20 m (Sachs, 2005). Maximum glide ratio (V/Vz) and the associated cruise 

airspeed (Vc) for straight flight define the glide polar (see appendix). Values consistent 

with a wandering albatross, V/Vz = 21.2, Vc = 16.0 (Pennycuick, 2008), were used in this 

table where possible. The period of a flight cycle is t, and the observed swoop period is 

10 s. The absolute minimum ∆W for a Rayleigh cycle loop occurs at a period of 7.25 s. 

Travel velocities are perpendicular to the wind velocity and consist of averages over two 

half loops, assuming that the half loops could be connected in a snaking cycle. A 

“circuit” returns to the starting height, velocity, and ground position. A “loop” returns to 

the starting height and velocity but not ground position because of leeway.  
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Table 4. Travel velocity and the increase of wind speed (∆W) across the wind-shear layer required for 

Rayleigh snaking flight in different directions (θ) relative to the wind direction. 

 

Travel 

direction 

through 

the air 

relative to 

wind  θ 

Increase of 

wind speed 

∆W (m/s) 

         

 

Upwind velocity 

Across-

wind 

velocity 

(10.2)sin(θ) 

(m/s) 

Travel velocity over 

the       ocean 

(course made good) 

Leeway 

∆W/2 

(m/s) 

(10.2)cos(θ) 

(m/s) 

Sum of 

components 

(m/s) 

Speed 

(m/s) 

Direction 

Relative to 

wind 

0  10.6 - 5.3 10.2 4.9 0.0   4.9 0 

10 8.5 - 4.2 10.0 5.8 1.8   6.1 17 

20 6.8 - 3.4 9.6 6.2 3.5   7.1 30 

30 5.7 - 2.8 8.8 6.0 5.1   7.9 40 

40 4.9 - 2.4 7.8 5.4 6.6   8.5 51 

50 4.3 - 2.2 6.6 4.4 7.8   9.0 61 

60 4.0 - 2.0 5.1 3.1 8.8   9.4 71 

70 3.7 - 1.9 3.5 1.6 9.6   9.7 80 

80 3.6 - 1.8 1.8 0.0 10.0 10.0 90 

90 3.5 - 1.8 0.0 - 1.8 10.2 10.3 100 

100 3.6 - 1.8 - 1.8 - 3.6 10.0 10.7 110 

110 3.7 - 1.9 - 3.5 - 5.4 9.6 11.0 119 

120 4.0 - 2.0 - 5.1 - 7.1 8.8 11.3 129 

130 4.3 - 2.2 - 6.6 - 8.7 7.8 11.7 138 

140 4.9 - 2.4 - 7.8 - 10.2 6.6 12.2 147 

150 5.7 - 2.8 - 8.8 - 11.7 5.1 12.7 156 

160 6.8 - 3.4 - 9.6 - 13.0 3.5 13.5 166 

170 8.5 - 4.2 -10.0 - 14.3 1.8 14.4 173 

180 10.6 - 5.3 -10.2 - 15.5 0.0 15.5 180 

Note: Mean airspeed in snaking flight is 16.0 m/s, and mean travel velocity through the 

air is 10.2 m/s. 
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Table A1. Summary of flight characteristics of a wandering albatross. 

 

Flight characteristic t (s) φ (º) V (m/s) Vz (m/s) V/Vz ∆W (m/s) 

Straight flight       

     Minimum sink rate -----   0   12.2   0.66 18.4   ----- 

     Maximum V/Vz  -----   0   16.0   0.76 21.2   ----- 

Circular flight       

     Minimum sink at t = 10 s 10.0 42.1   14.1   1.04 13.7   ----- 

     Minimum height loss   9.3 45.0   14.5   1.11 13.0   ----- 

Rayleigh cycle loop       

     Minimum ∆W at t = 10 s 10.0 45.6   16.0   1.14 13.8   3.55 

     Absolute minimum ∆W  7.2 54.7   16.0   1.51 10.6   3.36 

 

Note that t is the period of a loop (observed t = 10 s), φ is the bank angle, V is the 

airspeed, Vz is the sinking speed, V/Vz is the glide ratio, and ∆W is the minimum increase 

of wind speed across the wind-shear layer needed for energy-neutral flight in a Rayleigh 

cycle loop. Values were calculated using a quadratic drag law, the aerodynamic equations 

of motion (Lissaman, 2005), the maximum glide ratio (21.1) and the associated cruise 

airspeed (16.0 m/s) of a wandering albatross in straight flight (Pennycuick, 2008) (see 

appendix). A Rayleigh cycle is based on a constant height loop (zero sink); listed values 

of Vz represent the equivalent sinking speeds due to drag, assuming that dV/dt = 0. 
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Figure captions 

 

Figure 1. Schematic summary of the zigzag swooping flight pattern of an albatross 

soaring over waves observed during a cruise to the South Atlantic. The swooping motion 

is shown relative to the waves, which are moving downwind. Each climb is upwind and 

each descent is downwind since the waves are going downwind, although the downwind 

component is difficult to show in the figure and looks almost parallel to the wave crest. 

The average direction of flight has an upwind component. Schematic waves are uniform 

for simplicity; real ocean waves are much more complicated. Regions of updraft and 

downdraft due to wind blowing over waves are indicated schematically. The wave phase 

speed was not subtracted from the wind speed in this diagram. Simplified vectors of 

typical average wind velocity over the ocean surface are indicated in the right part of the 

figure. Most of the vertical gradient of wind velocity (wind shear) is located in a thin 

boundary layer near the ocean surface. 

 

Figure 2. Vertical (logarithmic) profile of average wind speed over the ocean (after 

Sachs, 2005). An assumed reference velocity of 10 m/s is located at a height of 10 m. 

Note that most (72%) of the increase of wind speed within the lowest 10 m of the profile 

is located in a ~ 2 m thick wind-shear boundary layer near the surface (shaded layer). 

   

Figure 3. Schematic of an albatross “gust soaring” (after Pennycuick, 2002). Starting in a 

lee eddy (or separation bubble) located downwind of a sharp-crested wave a bird climbs 

up through a thin wind-shear layer (separated boundary layer) that has detached from the 

wave crest. On crossing the wind-shear layer, the bird’s airspeed abruptly increases, and 

the bird experiences a “gust.” The increase in airspeed can be used to climb up to heights 

of 10-15 m by trading airspeed (kinetic energy) for height (potential energy). A lee eddy 

is a region of closed streamlines with clockwise circulation in this figure. 

 

Figure 4. Idealized example of the airspeeds of a dragless albatross gust-soaring through 

a thin wind-shear layer, which is assumed to consist of an increase in wind speed from 

zero below the layer to 5 m/s above. It shows how an albatross could gust soar in the 
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region downwind of a wave crest as indicated in Figure 3. This schematic is based on the 

written description of Rayleigh (1883) who first suggested that a bird could continuously 

soar in nearly circular flight on an inclined plane that crosses a thin wind-shear layer. 

Starting in the lower layer with an airspeed 15 m/s a bird climbs upwind a short distance 

vertically across the wind-shear layer, which increases airspeed to 20 m/s. The bird then 

turns and flies downwind with the same airspeed of 20 m/s. During the turn, ground 

speed increases to 25 m/s downwind and consists of the bird’s 20 m/s airspeed plus (tail) 

wind speed of 5 m/s. The bird descends downwind a short distance vertically across the 

wind-shear layer, which increases airspeed to 25 m/s. The bird turns upwind flying with 

an airspeed of 25 m/s. Thus one swoop through the wind-shear layer increases airspeed 

from 15 m/s to 25 m/s (two times the 5 m/s wind speed increase). By descending upwind 

(dashed line) the bird’s airspeed would have decreased from 20 m/s back to 15 m/s with 

no net gain in airspeed.  

 

Figure 5. Plan view, showing examples of snaking (zigzag) flight at an angle of 60° to the 

right of the wind similar to the flight shown in Figure 1. A) Rayleigh snaking cycle 

created by linking together semi-circular pieces of the circular Rayleigh cycle to simulate 

the observed albatross zigzag flight pattern (Fig. 1) and average travel velocity. B) Semi-

circular snaking cycle modified to cross the wind-shear layer parallel to the wind 

direction for maximum energy gain. C) Snaking cycle modified so that the upwind climb 

is parallel to the wind and the descent is obliquely downwind and parallel to wave crests; 

this pattern closely resembles my observations of albatross soaring and those of Idrac 

(1925, 1931). D) Snaking cycle further smoothed so that the climb is obliquely upwind 

and the descent is mainly across-wind (observed by Idrac, 1925, 1931). Flight patterns in 

panels C and D could be used to reduce energy gain in large wind shear (∆W). 

 

Figure 6. Travel velocity polar diagram in the shape of a valentine based on an average 

airspeed of 16.0 m/s and the minimum wind shear (∆W) values required for sustained 

soaring in different directions relative to the wind direction. Travel speed in a particular 

direction is given by the length of a line starting at the origin (x = 0, y = 0) and ending on 

the valentine. For example, the travel speed in a direction 30° to the right or left of the 
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wind direction is 7.1 m/s, and the associated travel speed in an upwind direction is 6.2 

m/s (Table 4). Values were calculated using the Rayleigh snaking cycle shown in Figure 

6A, a mean airspeed of 16.0 m/s, and leeway equal to the average wind speed of the two 

layers as given in Table 4. Two components of travel velocity were combined to create 

the valentine—the mean travel velocity through the air equal to 10.2 m/s and the 

downwind leeway equal to ∆W/2. 

 

Figure 7. Mean travel velocity over the ocean using an average airspeed of 16.0 m/s 

plotted versus the angle between travel direction and the wind as shown in Figure 6. The 

associated minimum wind shear across the wind-shear layer (∆W) required for energy-

neutral soaring in the different directions is also shown. Values were calculated using the 

Rayleigh snaking cycle shown in Figure 5A, a mean travel velocity of 10.2 m/s and 

leeway equal to the average wind speed of the two layers (∆W)/2 as given in Table 4. The 

minimum wind speed increase across the sharp wind-shear layer required for energy 

neutral soaring (t = 10 s) ranges from a minimum of ∆W = 3.5 m/s for across-wind flight 

to a maximum of ∆W = 10.6 m/s for flight directly upwind and downwind. 

 

Figure 8. Example illustrating that wind blowing over a wave forms a lee eddy, which is 

a region of closed streamlines shaped like a cat’s eye (after Sullivan, et al., 2000, their 

Figure 16b). In this example, wind speed at a height of one wavelength is equal to around 

four times the wave phase speed c, and c/u* = 3.9, where u* is the friction velocity. The 

lee eddy is centered just upwind of the wave trough and deflects streamlines upwards 

above the eddy. Updraft wind velocity (shaded) is centered over the leeward (right) side 

of the wave, over the windward (left) side of the eddy, and extends upward over the lee 

eddy. The dotted line indicates the critical layer, where the wind changes direction, as 

viewed moving with the wave speed, from a downwind direction (to the right) above the 

critical layer to the opposite direction (to the left) below as caused by friction and surface 

boundary conditions.  
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