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Abstract 

 

Mercury concentrations in largemouth bass and mercury accumulation rates in age-dated sediment cores 

were examined at Lake Ozette and Lake Dickey in Washington State.  Goals of the study were to compare 

concentrations in fish tissues at the two lakes with lakes in a larger statewide dataset and evaluate factors 

influencing lake loading at Ozette and Dickey, which may include: catchment disturbances, coastal 

mercury cycling, and the role of trans-Pacific Asian mercury.  Mercury fish tissue concentrations at the 

lakes were among the highest recorded in Washington State.  Wet deposition and historical atmospheric 

monitoring from the area show no indication of enhanced deposition from Asian sources or coastal 

atmospheric processes.  Sediment core records from the lakes displayed rapidly increasing sedimentation 

rates coinciding with commercial logging.  The unusually high mercury flux rates and mercury tissue 

concentrations recorded at Lake Ozette and Lake Dickey appear to be associated with logging within the 

catchments. 
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1 Introduction 

 

Mercury contamination of aquatic food webs is a widespread global phenomenon with mercury levels 

found in remote aquatic ecosystems rendering fish unsuitable for consumption (Fitzgerald et al. 1998).  

Anthropogenic mercury releases from coal combustion and waste incineration, for example, have severely 

altered the natural mercury cycle.  Once mercury is emitted to the atmosphere it can be transported globally 

depending on its chemical speciation (Schroeder and Munthe 1998). 

 

The complex biogeochemical cycling characteristics of mercury make it difficult to identify the important 

factors influencing loading and subsequent biological uptake at any single lake location.  Land use activity 

leading to increased soil erosion can result in increased mercury export from watersheds, enhancing fluxes 

to waterbodies (Engstrom et al. 2007; Grigal 2002).  Additionally, marine atmospheric boundary layer 

processes influencing mercury speciation may have implications for enhanced loading in coastal settings 

(Malcolm and Keeler 2003).   

 

Recent mercury monitoring of largemouth bass (Micropterus salmoides) in Washington State has resulted 

in a large database to evaluate differences in tissue concentrations among lakes (Fischnaller et al. 2003; 

Furl et al. 2007; Furl 2007; Furl and Meredith 2008).  Unexpectedly, the highest mercury concentrations 

were found at Lake Ozette and Lake Dickey located in the remote coastal region of the Olympic Peninsula.  

We examined available mercury concentrations among largemouth bass from 24 lakes in Washington State, 

mercury accumulation in age-dated sediment cores from Lake Ozette and Lake Dickey, and wet deposition 

data from a national Mercury Deposition Network (MDN) station near Lake Ozette and Lake Dickey.  

Specific goals of the study are to compare levels of mercury contamination in largemouth bass at the 

remote lakes with lakes in the larger statewide dataset and evaluate factors influencing lake loading at Lake 

Ozette and Lake Dickey which may include: catchment disturbances, coastal mercury cycling, and the role 

of trans-Pacific Asian mercury. 

 

2 Methods   

 

2.1 Setting 

 

Located within the coastal strip of the Olympic National Park 5 km from the Pacific Ocean, Lake Ozette is 

the third largest natural lake in Washington State with a surface area of 29.5 km
2
 and an average depth of 

40 m (Bortleson et al. 1976) (Figure 1).  The National Park Service owns 15% of the 118 km
2 
drainage 

basin while over 80% of the lake catchment is zoned as commercial forest land.  Approximately 60% of the 

Ozette drainage basin flows to the lake by three large creeks.  In addition to three main inflows, numerous 

unnamed perennial streams contribute surface water to Lake Ozette.  The lake is drained by the Ozette 

River at its north end into the Pacific Ocean.  The average lake level is 10 m above sea level; drainage 

basin elevations range up to 580 m.  Watershed geology consists of glacio-fluvial deposits situated between 

resistant marine deposited sedimentary rocks.  Human population of the Lake Ozette watershed is estimated 

to be less than 100 (Haggerty et al. 2007). 

 

Lake Dickey is located approximately 10 km directly east of Lake Ozette outside of the Olympic National 

Park at 59 m above sea level (Figure 1).  The lake is considerably smaller than Ozette with an area of 2 km
2
 

and an average depth of 7.6 m.  The lake receives perennial inputs from the 38.1 km
2
 drainage basin and is 

drained by a small outflow at its south end flowing to the Quillayute River (Bortleson et al. 1976). 

 

Forests within the catchments can be classified as a coastal temperate rainforest.  Both catchments are 

dominated by coniferous species, and commercial logging is the largest land-use activity with private 

timber companies owning the majority of the land.  The nearest urban population centers are Seattle and 

Vancouver, BC located approximately 180 km to the east.  Climate in the area can be characterized as 

temperate coastal-marine, resulting in mild winters and cool summers.  Average annual precipitation in the 

area is in excess of 250 cm per year with greater than 80% occurring between October and April.  Fog drip 

is also believed to be a large contributor to ground surface precipitation.  Air flows from the west occur 

greater than 50% of the time at the nearest weather station 20 km to the south of Lake Ozette (Haggerty et 

al. 2007).   
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In addition to Lake Ozette and Lake Dickey, mercury tissue concentrations were examined among 22 

additional Washington State lakes (referred to as statewide lakes) to determine if tissue concentrations at 

Lake Ozette and Lake Dickey were significantly different from the statewide lakes.  Diverse morphology, 

hydrology, and land uses are found amongst the statewide group (Fischnaller et al. 2003; Furl et al. 2007; 

Furl 2007; Furl and Meredith 2008) (Figure 1 and Table 1). 

 

Table 1 Lake information 

Lake 

Surface 
Area 
(km

2
) 

Drainage 
Area 
(km

2
) 

Max 
Depth 

(m) 

Avg. 
Depth 

(m) 
Collection 

Date 

Avg. 
Rainfall 
1982-
2007 
(cm) Study 

Dickey 2.0 38.1 13.7 7.6 8/15/2007 276.7 
Colman et al. 2009 
manuscript in prep.

a
 

Ozette 29.5 118.0 97.5 40.0 9/12/2007 250.0 Furl and Meredith 2008
b
 

Deer 4.5 47.1 22.9 15.8 9/18/2007 53.6 " 

Fazon 0.1 2.4 5.2 3.0 9/5/2007 113.1 " 

Lower Goose 0.2 - 22.9 7.6 9/19/2007 21.1 " 

St. Clair  0.4 37.6 33.5 12.2 8/23/2007 141.3 " 

Samish 2.8 23.8 22.9 9.4 9/4/2007 105.7 " 

Moses 27.5 7,976.9 11.6 5.8 10/9/2006 24.6 Furl 2007
b
 

Newman 4.9 74.1 9.1 5.8 9/27/2006 47.2 " 

Offut 0.8 7.0 7.6 4.6 10/30/2006 138.5 " 

Sammamish 19.8 253.8 32.0 17.7 10/4/2006 110.0 " 

Meridian 0.6 3.0 27.4 12.5 10/5/2006 136.9 " 

Loon 4.6 36.5 30.5 14.0 10/26/2005 60.7 Furl et al. 2007
b
 

Silver 9.3 101.8 3.0 1.8 9/22/2005 308.0 " 

Banks 1.1 - 25.9 14.3 11/7/2001 21.8 Fischnaller et al. 2003
c
 

Terrell 1.8 7.4 3.0 2.1 9/26/2001 86.2 " 

Long - - 54.9 14.6 6/18/2001 47.4 " 

Vancouver 9.3 - 4.6 1.0 10/3/2002 105.6 " 

Black 2.3 26.2 8.8 5.8 10/7/2002 116.0 " 

Duck 1.1 3.7 9.1 3.4 10/10/2002 193.2 " 

Loomis 0.7 3.7 2.7 1.5 10/11/2002 204.2 " 

Palmer 8.5 766.6 24.1 15.5 10/15/2002 36.7 " 

Kitsap 1.0 7.1 8.8 5.5 10/31/2002 99.2 " 

Padden 0.6 6.8 18.0 8.2 9/27/2001 100.1 Seiders 2003
c
 

a
 Analytical method EPA 7473      

b
 Analytical method EPA 245.6      

c
 Analytical method EPA 245.5      

 

2.2 Fish Tissue Collection, Processing, and Analysis 

 

Largemouth bass were collected by electroshocking and gillnetting from 2001 – 2007.  Fish were 

measured, double wrapped in aluminum foil, placed on ice in the field, and frozen (-20°C) within 72 hours 

of collection until further processing.  Fish from Lake Dickey were filleted skin-off in the field and shipped 

on ice overnight to the laboratory of William X. Wall Experiment Station, Massachusetts Department of 

Environmental Protection, in Lawrence, Massachusetts for analysis. 
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Fish were prepared for analysis by filleting with skin left on, passed three times through a Kitchen-Aid 

food grinder, and homogenized to a uniform color and texture.  Utensils contacting the samples were 

cleaned using sequential rinses with tap water, Liquinox detergent and hot tap water, 10% nitric acid, and 

deionized water.  Tissues were analyzed using EPA Method 245.5, 245.6, or 7473 (Table 1).   

 

Quality control for tissue analysis included analysis of laboratory control samples (80 - 120%), standard 

reference material (± 15%), method blanks, matrix spike recoveries (75 – 125%), and matrix spike 

duplicates (<25% RPD) .  Data were generally good across all lakes with the exception of inadequate 

matrix spike duplicates (> 25% RPD) at Duck Lake.  Detailed methodology descriptions and results for 

tissue monitoring is included in Fischnaller et al. (2003), Furl et al. (2007), Furl (2007), Furl and Meredith 

(2008), and Colman et al. manuscript in prep. (2009). 

 

2.3 Sediment Core Collection, Processing, and Analysis 

 

Sediment cores were collected using a 13x13x50 cm Wildco box corer containing an acrylic liner.  Cores 

were collected from deep areas of the lake with uniform bathymetry removed from significant surface 

water inputs.  Cores reflecting the least disturbed sediments and a distinct sediment-water interface were 

immediately sectioned in the field.  Subsamples were extruded in 1-cm intervals for the entire length of the 

core, stored in pre-cleaned 8oz Nalgene bottles, and placed on ice in the field.  One sediment core was 

collected at Lake Ozette while two cores from approximately the same location were collected at Lake 

Dickey. 

 

Sediment cores were analyzed for 
210

Pb activity in order to assign dates and sedimentation rates over the 

past 100 – 150 years.  For Lake Ozette, 
210

Pb activity was determined in selected composites comprised of 

two to three 1-cm intervals using gamma spectroscopy for 1000 minutes per sample.  Samples were 

measured to a method detection limit of at least 0.45 pCi/g.  Sample counts were done in one batch, and 

quality control measures consisted of one control sample, one method blank, and one duplicate.  The 

control samples were recovered at an average of 104%, the method blanks were not detected above 0.300 

pCi/g, and duplicates had a relative percent difference of 1.8 %.  For Lake Dickey, 
210

Pb activity was 

determined for each 1-cm horizon at Lake Dickey using planar germanium detectors counting gamma ray 

emissions for 48–96 hours, which provided an average 
210

Pb counting error of less than 2.6%.  A correction 

for self-absorption was made based on the geometry of the gamma-counted sample (Cutshall et al. 1983). 

Accuracy was confirmed by analyses of standard reference materials, which yielded agreement within 5% 

of certified values. 

 

Mercury analyses for selected 1-cm intervals from the Lake Ozette core were conducted by the Washington 

State Department of Ecology’s Manchester Environmental Laboratory using EPA method 245.5.  Matrix 

spikes, blanks, and control samples were included for quality assurance.  Two matrix spikes were recovered 

at 82% and 84% respectively.  A single blank was undetected at 0.0050 ppb and two control samples were 

recovered at 104% and 111%.  The data were not adjusted for matrix spike recoveries.  Sediment mercury 

analyses for Lake Dickey were conducted by the Wall Experiment Station where tissue analyses were 

performed.  EPA Method 7473 was used for the determination of mercury concentrations on freeze dried 

sediments.  Average of 26 measurements of standard reference material was 101 percent of standard, range 

of 85 to 115 percent; spike recoveries ranged from 99 to 102 percent.  Detailed methodology descriptions 

and results for the sediment cores are included in Furl (2007a), Furl (2008), and Colman et al. manuscript 

in prep. (2009a). 

 

2.4 Age and Sedimentation Rate Calculations 

 

The constant rate of supply (CRS) model was used to estimate dates and varying sedimentation rates 

throughout the cores (Appleby and Oldfield 1978).  For Lake Ozette, supported 
210

Pb was estimated as the 

amount of 
210

Pb present at deep intervals where it appeared to no longer decline.  Lake Dickey supported 
210

Pb levels were determined from 
222

Rn assays in each 1-cm horizon.  An assumed sediment density of 2.5 

g/cm
3
 was used to compute dry mass for core dating.   
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Several horizons were analyzed for mercury without an accompanying 
210

Pb measurement in the Lake 

Ozette core.  Dates were assigned to these measurements by working back in time from the most recent 
210

Pb derived date using an estimated interval mass accumulation rate (MAR) modeled from the 
210

Pb 

sedimentation curve along with the mass of the interval: 

iiPbi MARcumDateDate /  

Where 

 

Datei = deposition date of sample without 
210

Pb measurements, 

DatePb = date assigned to the bottom of the interval last measured for 
210

Pb, 

Cumi = cumulative mass from Datei to midpoint of sample i, 

MARi = interval MAR for sample i estimated from the 
210

Pb derived MAR curve. 

 

Mercury flux rates (μg/m
2
/yr) were calculated as the product of the sedimentation rate and dry weight 

mercury concentration.  The results estimate net deposition to the lake.   

 

2.5 Statistical Calculations 

 

Differences among Lake Ozette and Lake Dickey tissue concentrations were examined by regressing 

mercury concentration against fish length and examining differences in the slope of the best fit line using a 

t-test.  Tissue concentrations from each of the 22 statewide lakes were then compared to the combined 

Ozette and Dickey data using an analysis of covariance with a post hoc Dunnett’s test.  Length was selected 

as the covariate to isolate the effect of fish size on mercury concentrations.  After the model accounted for 

variability associated with regression of mercury concentration on fish length, mean mercury 

concentrations for each lake were compared to Lake Ozette and Lake Dickey.  Data for the statewide 

comparison were log10 transformed to improve the normality of the data.  The analysis is designed to show 

which lakes accumulate mercury at higher rates based on fish length.  Statistical calculations were 

performed with Minitab. 

 

3 Results 

 

3.1 Fish Tissue 

 

Mercury concentrations in fillets from  Lake Ozette and Lake Dickey largemouth bass ranged from 190 – 

2,500 ng/g ww (n=17).  Mean tissue concentrations were 715 and 889 ng/g for Lake Ozette and Lake 

Dickey, respectively.  Average fish length was slightly greater at Lake Dickey (358 mm) than Lake Ozette 

(342 mm).  Length explained 49% and 83% of the variability in mercury concentrations for Ozette and 

Dickey, respectively (Figure 2).  The slopes of the regression lines did not significantly differ (p > 0.05, F = 

2.14), suggesting fish at both lakes accumulate mercury at similar rates based on fish length.  

 

Comparisons made between each of the 22 statewide lakes and the combined data of Lake Ozette and Lake 

Dickey found mean mercury concentrations at each lake to be significantly lower in all cases than the 

combined data from Lake Ozette and Lake Dickey (p < 0.001, F = 52.01, DF = 22).  The analysis shows 

largemouth bass at Lake Ozette and Lake Dickey accumulate mercury at higher rates based on length 

compared to the other 22 statewide lakes.  Figure 3 displays regression of mercury concentrations against 

fish length for the combined Lake Ozette and Lake Dickey data along with other statewide lakes. 

 

3.2 Sediment Cores 

 

Sedimentation rates at the three coring locations ranged from 0.02 – 0.12 g/cm
2
/yr with the highest 

sedimentation rates occurring at or near the top or the core.  Unsupported atmospheric 
210

Pb fluxes 

estimated from core inventories were 0.72, 0.77, and 0.93 pCi/cm
2
/yr at Dickey 1, Dickey 2, and Ozette, 

respectively.  Typically, unsupported 
210

Pb fluxes calculated from measured data fall within 0.2 – 1.0 
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pCi/cm
2
/yr (Appleby and Oldfield 1984).  The greatest incremental increases in sedimentation rates occur 

during the last half of the 20
th  

 century.  Recent mercury flux rates estimated from the uppermost core 

horizon ranged from 196 μg/m
2
/yr at Ozette to 249 μg/m

2
/yr at Dickey 2.  Post-1950 dry weight 

concentrations varied little at the Dickey cores 200 – 230 ng/g (n = 39) with the exception of a single 

anomalous value in the 2-3 cm horizon of Dickey 2 (140 ng/g).  Dry weight concentrations in the Ozette 

core experienced a slightly more erratic pattern with a narrow range of concentrations during the same 

post-1950 time period (170 – 271 ng/g, n = 9).  Sediment core profiles displaying sedimentation, mercury 

concentration, and mercury flux for all three cores are displayed in Figure 4. 

 

3.3 Regional Atmospheric Deposition 

 

Preliminary wet deposition data measured by an MDN station 15 km from the north end of Lake Ozette 

recorded deposition of 7.77 μg/m
2
 from March 2007- February 2008.  Average monthly volume weighted 

mercury concentration in precipitation was 4.51 ng/L.  Concentrations in precipitation were low and 

experienced little variability with the exception of August when they were nearly 4 times the average 

(16.98 ng/L).  Higher concentrations in summer precipitation are typical among MDN sites (Mercury 

Deposition Network 2008).  Deposition rates were strongly influenced by rainfall which was approximately 

200 cm during the sampling period.  Annual deposition measured concurrently at a Seattle MDN site was 

6.99 μg/m
2
 with a monthly average volume weighted concentration of 12.11 ng/L in precipitation.  The 

Seattle site received approximately 40% of the rainfall (75 cm) collected at the Ozette station with similar 

deposition values.  Higher mercury concentrations in precipitation recorded at the Seattle station are 

presumably the result of local point sources.  The low variance recorded in monthly precipitation 

concentrations at the Ozette site compared to the Seattle station (SD = 4.1 and 7.0 respectively) suggest that 

the Ozette station is not affected by the same point sources.  Additionally, atmospheric measurements of 

mercury recorded over a 13 month period (2002-2003) 15 km north of Ozette at Cheeka Peak Observatory 

(CPO) were 1.5 ng/m
3 
(Weiss-Penzias et al. 2003), consistent with the northern hemisphere background 

(Temme et al. 2003).  Atmospheric concentrations in the Seattle metro area averaged 2.5 ng/m
3
 over a two 

year period from 1994-1995 (Bloom et al. 1995).  

 

4 Discussion 

 

Considering the remote location of Lake Ozette and Lake Dickey it was unexpected to find significantly 

higher mercury concentrations in fish tissues when compared to lakes statewide.  Many factors have been 

correlated with elevated tissue concentrations in past investigations including pH, sulfate, chloride, and 

DOC (Grieb et al. 1990; Hanten et al. 1998; Hrabik and Watras 2002). These constituents were measured in 

the water column from Lake Ozette along with 29 other randomly selected statewide lakes as part of the 

U.S. Environmental Protection Agency’s 2007 National Lake Assessment.  Lake Ozette concentrations for 

all 4 parameters were within 1 standard deviation of the dataset mean (Maggie Bell-Mckinnon, personal 

communication).  No data were obtained for Lake Dickey.  Mercury mining, which has contaminated many 

drainages in the west, also is not spatially correlated with the tissue concentrations observed in this 

investigation. Mercury mining has been prevalent in the cental part of the state but is absent on the Olympic 

Peninsula (USGS 2007).  Point sources within the immediate vicinity of Lake Ozette and Lake Dickey are 

lacking; however, using available wet deposition/atmospheric mercury data and the sediment core records 

from the lakes, three possible sources of mercury to the lakes are evaluated. 

 

4.2 Effects of Watershed Disturbance on Mercury Loading 

 

Mercury flux rates measured in the uppermost intervals of sediment cores of Lake Ozette and Dickey Lake 

(≈ 200 μg/m
2
/yr) were greater than fluxes measured in other coring studies in regional remote locations.  

Landers et al. (2008) found recent mercury fluxes were generally less than 50 μg/m
2
/yr at two lakes located 

within the interior of the Olympic National Park and two lakes within Mount Rainier National Park, WA.  

Furl (2008) estimated mercury fluxes were less than 50 ug/m
2
/yr in two eastern Washington lakes removed 

from point sources.   

 

Examination of dry weight mercury concentrations and sedimentation rates reveal sedimentation at Lake 

Ozette and Lake Dickey is the dominant factor responsible for the increase in modern flux rates (Figure 5).  
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Post-1950 mercury flux rates correlated strongly with sedimentation rates at lake Ozette (r = 0.925) and 

sedimentation rates explained 86% of the variance in flux rates (F = 23.8, p < 0.05).  Conversely, mercury 

concentrations at Lake Ozette had no correlation with flux rates (r = 0.032) and explained 0% of the 

variance in mercury flux (F = 0.004, p > 0.05).  A similar relationship was found between the variables in 

the Lake Dickey cores.  Correlations between flux and sedimentation were strong for Lake Dickey core 1 

and core 2 (r = 0.995 and r = 0.947, respectively), and sedimentation explained 99% and 90% of the 

variance in flux (F = 1774, p < 0.05; F = 157, p < 0.05, respectively).  Concentration had a weak correlation 

with flux rate at Dickey 1 (r = 0.412) and no correlation at Dickey 2 (r = 0.040).  Concentration explained 

17% and 0% of the variance in flux rates at Dickey 1 and Dickey 2, respectively (F = 3.485, p > 0.05; F = 

0.029, p > 0.05)  These findings are contrary to those of Engstrom et al. (2007) who found a negative 

correlation between sediment accumulation and dry weight concentrations over a large dataset of 55 

Minnesota cores.  The authors explained this relationship as increased sedimentation having a diluting 

effect on atmospheric inputs.   

 

Logging in the catchment has been determined to be the source of increased sedimentation within the Lake 

Ozette catchment (Haggerty et al. 2007; Ritchie 2009; Herrera 2006).  Currently, only 20% of the Lake 

Ozette catchment remains as primary forest (Ritchie 2009).  Herrera (2006) estimated current 

sedimentation rates to be at least 3 times greater than pre-logging levels.  Haggerty et al. (2007) attributed 

elevated sedimentation rates at Ozette to high road density and a large percentage of hydrologically 

immature forest due to logging. The sediment cores from Ozette and Dickey indicate current sedimentation 

rates are 4 times higher than average baseline values.  Figure 6 displays sedimentation rates estimated from 

the cores plotted with remaining primary forest as a percent of watershed in the Lake Ozette catchment 

reconstructed from aerial photography (Ritchie 2009).   

 

Increased terrestrial output of mercury to lake ecosystems resulting from clear-cut logging practices have 

been recorded elsewhere.  In a 7 year study, Porvari et al. (2003) found significant increases in the total 

mercury and methylmercury load in runoff water after clear-cutting in a small forested catchment in 

Norway.  Additionally, similar to the present study, the authors found no increase in mercury 

concentrations, but rather an increase in total flux due to elevated water runoff.  The effects of logging 

practices on lake biota have also been studied in Quebec.  Significantly higher concentrations of mercury in 

zooplankton were observed in lakes with recently logged watersheds compared to lakes with undisturbed or 

recently burned watersheds (Garcia and Carignan 1999).  The same authors found mercury concentrations 

to be significantly higher in northern pike in logged watersheds compared with undisturbed catchments 

(Garcia and Carignan 2000).  No other lake catchments included in the statewide tissue statistical analysis 

have been as extensively logged in recent times as Lake Ozette and Lake Dickey. 

 

4.3 Coastal Effects on Mercury Deposition 

 

The role of coastal mercury cycling was also considered in examining mercury deposition to the lakes.  

Studies investigating mercury cycling and deposition at coastal environments have focused on in situ 

production of reactive gaseous mercury (RGM) and the role of sea salt aerosols on particulate deposition 

(Laurier and Mason 2007; Engle et al. 2008; Malcolm and Keeler 2003).  RGM is an important factor in 

evaluating atmospheric deposition as it is easily scavenged from the atmosphere via wet or dry deposition.   

 

Rapid production of atmospheric RGM has been recorded in arctic environments and termed mercury 

depletion events (eg. Lindberg et al. 2002).  Similar diurnal patterns in RGM have been documented at 

coastal and open ocean areas, correlating temporally with UV radiation, resulting in mid-day maximums 

and night time minimums.  Accumulating evidence suggests the cycle is mediated by reactive halogen 

particles liberated from sea salt aerosols resulting in O3 destruction and RGM production (Laurier and 

Mason 2007; Hedgecock and Pironne 2001).  During atmospheric mercury monitoring conducted at CPO, 

Weiss-Penzias et al. (2003) measured RGM in 4 hour intervals from September 2001 – May 2002.  RGM 

concentrations from marine segregated air masses were nearly always less than the detection limit (1.6 

pg/m
3
) suggesting the marine boundary layer is not a significant source of readily deposited mercury in the 

area.  Continental flows brought occasionally enhanced RGM air masses (10 – 20 pg/m
3
), but were 

generally very low (< 2.0 pg/m
3
).  The low RGM concentrations are in contrast to similar studies at other 

coastal locations (Laurier and Mason 2007; Engle et al. 2008; Malcolm and Keeler 2003).  RGM 
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measurements at CPO were not recorded during the summer months (June, July, August) when UV 

radiation and RGM would be expected to be at their highest.  The low RGM concentrations measured at the 

site may result from the cloudy conditions found on the Olympic Peninsula.  Near continuous cloud cover 

during the winter months could limit the UV radiation required for photochemically produced RGM.  

 

Particulate deposition of mercury has also been suggested as an important pathway for mercury deposition 

in coastal areas.  In a study along the coast of Rhode Island, Malcolm et al. (2003) hypothesized a mass 

transfer of atmospheric mercury to coarse sea salt particles to account for concentrations in particulates that 

could not be explained by mercury concentrations in seawater alone.  Additionally, Engle et al. (2008) 

found mercury concentrations in particulates to increase with proximity to the ocean.  Particulates were 

monitored for a very short time at CPO where concentrations were found to be similar to RGM levels.  The 

role of particulate deposition in overall loading to Lake Ozette and Lake Dickey is largely unknown given 

the limited data available and current knowledge gaps concerning aerosol deposition in coastal locations.  

Additionally, coastal effects do not appear to be affecting tissue concentrations for Loomis Lake and Duck 

Lake included in the statewide lakes dataset.  Mean mercury concentrations from 10 fish collected at Duck 

and Loomis were 247 and 311 respectively.  Average fish length at Duck (367 mm) and Loomis (354 mm) 

were similar to Ozette (342 mm) and Dickey (358 mm).  Both lakes are located along the Pacific Ocean 

south of Lake Ozette and Lake Dickey (Figure 2). 

 

4.4 Asian Mercury Sources 

 

Developing economies and increased energy needs have resulted in a transfer of dominant global emissions 

of atmospheric mercury from North America/Europe to Asia (Pacyna et al. 2006; Seigneur et al. 2001).  

Led by China, Asian sources emitted approximately 54% of the global total in 2000 (Wu et al. 2006).  

Estimates for total Asian emissions including contributions from terrestrial surfaces range from 1260 – 

2270 Mg/yr (Jaffe et al. 2005; Pan et al. 2007; Strode et al. 2007).  Increasing Asian mercury emissions 

have been of particular concern in the Western United States due to its position downwind from Asia (eg. 

Jaffe et al. 2005; Weiss-Penzias et al. 2003; Jaffe and Strode 2008).  The unique far westerly location of 

Lake Ozette and Dickey places them as the closest lakes to Asia within the conterminous United States.  

 

Asian air masses containing elevated levels of mercury have been documented at CPO and in central 

Oregon (Jaffe et al. 2005; Weiss-Penzias et al. 2006).  The Asian air masses can reach the region in as little 

as 5 days and bear a similar signal to the global reservoir dominated by elemental mercury with a small 

percentage of RGM (Jaffe et al. 2005; Weiss-Penzias et al. 2003).  Recent modeling studies examining the 

Asian contribution to deposition within the United States have found Asian deposition to be broadly 

dispersed due to elemental mercury being the dominate species.  Location or orientation to Asia appears to 

be a less important factor controlling deposition than rates of in situ production of RGM from the Asian 

elemental mercury pool (Strode et al. 2007; Jaffe and Strode 2008).  The near background concentrations 

recorded at the Ozette MDN station and CPO atmospheric monitoring indicate deposition to the area is not 

enhanced from direct transport of Asian mercury emissions.      

 

5 Summary and Conclusion 

 

The data presented in this paper document unprecedented concentrations of mercury in Washington State 

largemouth bass, which appears to be associated with logging in the catchment area of the lakes.  

Atmospheric concentrations and depositional data indicate the two lakes are relatively unaffected by local 

and regional point source polluters.  In addition, there is no evidence that coastal processes are enhancing 

mercury fluxes to the lakes or their catchments.  The high levels of contamination found in fish tissue at the 

lakes have occurred under atmospheric conditions near the global background.  Sediment core data from 

both lakes indicates logging has greatly increased the net flux of mercury to the waterbodies. Clear-cut 

logging has been correlated with increased mercury and methylmerucry flux in other investigations.  

Specific factors influencing methylmercury production and biological uptake were beyond the scope of this 

study.  Additional work is necessary to determine the relative contributions of catchment and in-lake 

processes to the elevated tissue levels.  
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Fig. 1  Study lakes locations along with major population centers in Oregon, Washington, and British 

Columbia 
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Fig. 2  Fish Tissue Concentrations versus Length for Lake Ozette and Dickey 
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Figure 3. Mercury Regressions against Fish Length for Combined Lake Ozette and Lake Dickey data and 

all Statewide Lakes 
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Fig. 4  Sediment Core Concentrations, Sedimentation Rates, and Flux Profiles  
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Fig. 5  Post – 1950 mercury flux rates plotted with sedimentation rates and mercury concentrations 
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Fig. 6  Estimated Sedimentation Rates plotted with Percent Remaining Primary Forest (Ritchie 2009) in the 

Ozette Drainage Basin  
 


