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[1] In this study, we demonstrate that mid-latitude surface
measurements of diurnal temperature range (DTR) can be
used to reconstruct decadal variability of regional-scale
terrestrial photosynthetic activity 1) during and prior to
the period with satellite retrievals of land greenness and
2) without the need for moisture data. While the two relative
maxima present in the seasonal evolution of DTR can
determine the beginning and the end of the growing season,
the summertime average DTR can be used as a proxy of
summertime terrestrial photosynthesis. In a case study in
the eastern United States (1966–1997), the DTR
reconstructions indicate significant natural decadal
variability in photosynthetic activity, but no secular,
long-term trend. The summertime photosynthesis was
found to be controlled primarily by moisture availability.
Also, contrary to existing model parameterizations, the
timing of spring onset was found to depend on both
temperature and moisture. Citation: Bonfils, C., A. Angert,

C. C. Henning, S. Biraud, S. C. Doney, and I. Fung (2005),

Extending the record of photosynthetic activity in the eastern

United States into the presatellite period using surface diurnal

temperature range, Geophys. Res. Lett., 32, L08405, doi:10.1029/

2005GL022583.

1. Introduction

[2] Understanding the decadal response of the terrestrial
biosphere to climate variability and climate change requires
a time record of photosynthesis longer than provided by the
satellite-derived Normalized Difference Vegetation Index
(NDVI) (1982 to present). Diurnal temperature range
(DTR) signatures can be utilized to hindcast the long
evolution of photosynthetic activity [Bonfils et al., 2004]
(hereinafter referred to as B04). Because carbon assimila-
tion and transpiration are simultaneously regulated by
stomatal conductance in C3 plants, anomalously high
photosynthesis is accompanied by an increase in latent heat
loss that 1) strongly reduces the summertime daily maxi-
mum temperature and thus the DTR and 2) produces
discontinuities in the seasonal evolution of these two
variables when leaves emerge (as seen in observations
[Schwartz, 1996], land surface models [Collatz et al.,

2000], and global climate models with prognostic leaf area
[Levis and Bonan, 2004]). In the eastern United States, DTR
exhibits a winter minimum and a local summer minimum
framed between two maxima [Leathers et al., 1998].
According to Durre and Wallace [2001] the two peaks
correspond to spring initiation and autumn termination. In
addition, B04 showed that the variations in the summer
‘‘dip’’ are related to the variability in summer terrestrial
photosynthetic intensity, particularly in temperate regions
and water-limited ecosystems.
[3] In this study, we employ daily DTR observations

from 1966 to 1997 at different stations located in the eastern
US in order to: (1) detect the beginning and the end of the
growing season as well as the intensity of summertime
photosynthetic activity; (2) validate the detection method by
comparing three DTR-photosynthetic indices to NDVI (and
net primary productivity derived from it) and Lilac bloom
proxies for growing season onset; and (3) hindcast and
interpret the long term evolution of vegetation growth and
activity prior to satellite observations.

2. Data and Methodology

[4] We examine daily surface measurements of maximum
and minimum temperatures from the First Order Summary
of the Day for the available stations in the eastern US
(101W–55W), the most documented region in this dataset
(http://ingrid.ldgo.columbia.edu/SOURCES/.NOAA/
.NCDC/.DAILY/.FSOD/). We select only time series of
DTR (computed as the difference between daily maximum
and minimum temperatures) that are at least 99% complete
(162 stations, Figure 1). Because the photosynthesis-DTR
relationship is valid only for C3 plants when there is local
water limitation (B04), we eliminate 12 stations that do not
display, in climatology, the expected growing season DTR
depression. Cloudiness, identified as the major cause of
DTR interannual variability [Dai et al., 1997], can strongly
mask the influence of vegetation on DTR and obfuscate the
detection of the summer ‘‘dip’’ observed in the seasonal
evolution of DTR. To obtain the best signature of vegetation
activity without information on daily cloudiness over this
period, we create a composite time series, for each station,
by selecting the maximum DTR over every 5-day period,
the typical weather cycle in the eastern US. The technique is
very similar to the compositing procedure used to minimize
cloud contamination from NDVI data sets. Next, the time
series of the cloud screened DTR are smoothed by using
two successive 6-point running averages and then used to
calculate, for each year, the mean midsummer (JJA) DTR
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and the day of year (DOY) of spring and autumn DTR
maxima. Years with only one peak or indistinct peaks are
excluded (�15% of the total years at each station, on
average). Sensitivity experiments show that changing the
number of days chosen for cloud screening, the number of
points used for smoothing, or the way that the spring and
autumn maxima are found lead to very similar results. We
define three DTR indices: (1) Growing-season Onset DTR
Index (GODI), the negative of the normalized anomaly
in DOY of the spring DTR maximum; (2) Summer Photo-
synthesis DTR Index (SPDI), the negative of the normalized
anomaly in JJA DTR; and (3) Growing-season Termination
DTR Index (GTDI), the normalized anomaly in the fall
DTR maximum DOY. The negative signs are included in
definitions of GODI and SPDI so that positive index values
reflect an earlier growing season or stronger photosynthetic
activity, respectively. Each index is normalized, for each
latitude band, by subtracting the seasonal mean and dividing
by the seasonal standard deviation over the entire time-
record (1966–1997).
[5] To validate the summer and termination indices, we

use monthly satellite-derived vegetation index (NDVI) and
Net Primary Productivity (NPP) time-series from 1982 to
1997. NDVI fields in 1� by 1� spatial resolution are from
GIMMS (the Global Inventory Modeling and Mapping
Studies) version g [Tucker et al., 2005]. NPP time series
are calculated with the CASA model [Randerson et al.,
1996] using monthly interannual NDVI, temperature
[Kalnay et al., 1996], and precipitation [Chen et al.,
2002] data with climatological solar radiation fields [Bishop
and Rossow, 1991]. For the validation of GODI, the bloom
DsOY of Lilac (Syringa chinensis clone and Syringa
vulgaris) [Schwartz and Caprio, 2003] are normalized for
each station from 32N to 40N (map available at http://
www.ncdc.noaa.gov/paleo/phenology.html) and averaged
together for each year from 1968 to 1981. These are the
years during which the number of stations in this region
exceeds 40 with a roughly uniform station coverage. Daily
observations of DTR and Gross Primary Productivity (GPP)
from Harvard Forest (Massachusetts, US) [Barford et al.,
2001] are also examined.
[6] Finally, to interpret the DTR signals, we use temper-

ature anomalies, calculated from the GISS dataset [Hansen
et al., 1999], and soil-moisture variations, captured by the

three month Standardized Precipitation Index (SPI3). SPI3
is the standardized sum of precipitation (from Chen et al.
[2002]) over three months (starting two months before the
month of interest).

3. Results and Discussion

3.1. DTR Climatology

[7] The seasonal changes in the climatological DTR are
presented (similar to Durre and Wallace [2001]) by latitude
bands centered at 30N, 32.5N, 35N, 37.5N, 40N, 42.5N and
45N (Figure 1). The latitude bands include 13, 16, 22, 17,
35, 36, and 11 stations respectively. Moving from the
southern to the northern latitudes, the climatological season-
alities show that, as expected, the spring and the autumn
peaks get closer together, reflecting a shorter plant growing
season (the DOY of the peaks is highly correlated with
latitude, r = 0.88, �0.85 respectively). In summer, the DTR
minimum value shows a general increasing trend with
latitude, but with only a small trend between 32.5–40N;
however, the CASA NPP does not show any latitudinal
gradient for the region (not shown). B04 showed that the
monotonic relationship between summer DTR and NPP
varies with the land cover type, and the vegetation at 30N
(coastal stations), and 42.5N to 45N (stronger grassland
influence) differs from that in 32.5N to 40N (largely
deciduous forest), as shown in Figure 1. For this reason,
we will focus only on 32.5N to 40N to ensure we are
analyzing similar biomes.

3.2. Validation of the DTR Indices

[8] To validate the three DTR indices, we have averaged
them from 32.5N to 40N and compared them to the mean
NDVI, NPP, and Lilac bloom over the same region
(Figure 2). SPDI is found to be correlated with the summer
(JJA) NPP (r = 0.74, p = 0.001) and also somewhat
correlated with summer NDVI (r = 0.40). GODI is well
correlated with the mean (inverse) Lilac bloom DOY (r =
0.69, p = 0.006). There is no appropriate proxy for fall
termination. However, a later growing season termination is

Figure 1. Climatological seasonal variation in the surface
diurnal temperature range (DTR) in the eastern US averaged
over the period 1966–1997 for all latitude bands; map of
the stations kept (dots) and excluded (+), color coded by
latitude band.

Figure 2. Comparison of the normalized anomalies in
(a) SPDI with summer (JJA) satellite-derived vegetation
index (NDVI) and CASA net primary production (NPP);
(b) GODI with (inverse) Lilac Bloom DOY; (c) GTDI with
fall (SON) NDVI and NPP. Correlation coefficients (r) are
given for SPDI with summer NPP, GODI with Lilac bloom,
and GTDI with fall NPP.
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expected to result in higher fall photosynthetic activity.
Indeed, GTDI is correlated with the fall (SON) NPP (r =
0.49, p = 0.06) and with fall NDVI (r = 0.43).
[9] Another way to validate our DTR indices is to

compare them with GPP (assumed to be linearly related to
NPP) derived from flux tower measurements, and Harvard
Forest is the only station that provides a long enough record
for such analysis (1992–1999). B04 showed that the
summertime DTR and GPP anomalies at this station are
strongly correlated (r = 0.85). Performing additional anal-
yses of these daily time series of DTR and GPP, we find that
the timing of the spring DTR peak (between May 10 and
June 4) is strongly correlated (r = 0.9) with the beginning
of the growing season (i.e., when the GPP slope is
changing the most rapidly – i.e. the second derivative is
maximized). The fall DTR peak (between Sept. 12 and
Oct. 17) is slightly less, but still significantly, correlated
(r = 0.7) with the end of the growing season.
[10] These two independent validations suggest the DTR

indices are capturing the interannual variations in the NPP
and growing season length well.

3.3. Long-Term Photosynthetic Variability in the
Eastern US

[11] Using DTR data, we reconstruct the long-term var-
iations of photosynthetic activity in our study area prior to
the satellite era (Figure 3). This reconstruction shows high
spring and summer photosynthetic activity in the 1970’s,
followed by low activity in the mid to late 1980’s. The high
activity in the 1990’s, concurrent with the satellite period,
thus reflects a recovery from these low values and demon-
strates the decadal variability of plant activity but no long-
term trend.
[12] To gain a better understanding of the observed

variations, we compare the interannual variability of our

three indices with normalized temperature and precipitation
(expressed by SPI3) anomalies averaged seasonally over the
region (Figure 3). The long-term regional variations of the
indices, derived from the daily local day-night difference in
temperature, are related to the monthly averaged tempera-
ture and precipitation. In summer, the variability in SPDI
(Figure 3a) is correlated with the variability in precipitation
(r = 0.81, p = 2 � 10�8) and less correlated with temperature
(r = 0.48, p = 0.006), confirming that moisture is the
primary control in the summer in this region. During spring
(Figure 3b), the variation in GODI is attributable to spring
temperature (or alternatively ‘‘growing degree days’’) var-
iability for years without strong drought-stress (r = 0.69, p =
0.001 for the period 1967–1984). However, extreme
drought years (e.g., the late 1980s) show a delayed spring
onset, suggesting a control of both moisture and tempera-
ture. This dual control is in contrast to model studies that
use only temperature as a predictor of spring leaf out in mid-
latitude regions [e.g., Foley et al., 1996]. The additional
variability in spring and summer, which is not captured
by the climate variables, can be the result of changes in
land-use, crops yields, or species composition. In the fall, no
clear relationship appears between the variability of the end
of the growing season and the SON temperature and
precipitation variability (Figure 3c). While the variability
of GTDI is well correlated to the variability in NPP and
NDVI (Figure 2c), none of these 3 variables is correlated
with climate variability. This is in agreement with previous
studies [Randerson et al., 1999], which found that the end of
the growing season is less controlled by climate than the start.
[13] Thus, the photosynthesis variability in spring and

summer in the study area responds to decadal variability in
monthly mean temperature and precipitation, with no long-
term trend.

3.4. Discussion of the DTR Indices Method

[14] DTR is derived from routine meteorological mea-
surements and its wide availability and long record makes it
a useful proxy for plant activity in water-stressed regions.
Historically, phenological changes and tree ring data also
provide similar proxies. However, while many phenological
records show gaps, DTR remained continuously available
over the last half century. Also, while tree ring data give an
estimate of wood production that is integrated over the
entire growing season [Kaufmann et al., 2004], the DTR
method offers a complementary estimate of past-variations
in both the beginning and the end of the growing season, as
well as variations in the photosynthetic activity during
summer.
[15] The estimation of summertime photosynthesis using

SPDI has several shortcomings, including variations in
DTR with: vegetation type, land-use and management,
species composition, and non-vegetation effects (such as
aerosols and solar radiation). For example, a decrease in
surface incident shortwave radiation was observed from the
1960s to the 1990s [Stanhill and Cohen, 2001] which
should cause lower summertime DTR values. Urbanization
is also reported to decrease DTR [Kalnay and Cai, 2003].
However, no long-term trend is obvious in the summer DTR
record in the past 32 years in our study area. The absence of
such a DTR trend reinforces our conclusion that there was
no secular increase in summer photosynthetic activity, since

Figure 3. Comparison of the long-term variations in
(a) SPDI, (b) GODI, and (c) GTDI (black) with the
corresponding normalized anomalies in summer (JJA),
spring (MAM) and fall (SON) temperature and precipitation
expressed by SPI3 (red and blue, respectively). Most
correlated climate time-series are indicated by a solid line,
and correlation coefficient (r) is indicated.
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both an increase in photosynthesis and a decrease in
radiation (and increased urbanization) should cause a
decrease in DTR. Because of the potential station-to-station
uncertainties introduced by these factors, we are not able to
convert the DTR indices into quantified carbon fluxes, but
the indices can still be used to deduce the regional scale,
long-term variability of the vegetation. It is important to
note that variability in the DTR maxima, and thus the
inference of both GODI and GTDI, are not affected by
long-term radiation and urbanization trends or by the
vegetation type.
[16] We found a strong correlation between SPDI and

precipitation, which we interpreted as variations in transpi-
ration and hence photosynthesis. Alternatively, Dai et al.
[1997] suggest a DTR-precipitation correlation can be
explained by either the attenuation of solar irradiance at
the surface by precipitating clouds or by surface evaporative
cooling. We maintain our conclusion since 1) contrary to
Dai’s study, our analysis is based on cloud screened DTR
and 2) in the eastern United States, 50–75% of surface
evaporation is due to transpiration, while soil-evaporation
contributes less than 10% (the rest is attributed to inter-
cepted water) [Choudhury and DiGirolamo, 1998].
[17] The primary strength of the DTR method is that it

uses readily available temperature data to extract the
temperature and moisture driven signal of plant activity
without the need for relatively sparse moisture data or
precipitation data. This provides an independent cross-
check of the models that parameterize NPP based on inputs
of both temperature and precipitation and find a decadal
variability in summer NPP that follows the precipitation
variability [Pan et al., 1998].

4. Conclusions

[18] In this study, we develop a novel approach for
hindcasting long-term variations in the growing season on
land. It represents an effective way to obtain a photo-
synthetic proxy in regions, such as the eastern US, where
both moisture and temperature are important in spring onset
given the limited availability of moisture data. By providing
an expanded historical context using the DTR data, we
conclude that over the last 32 years the vegetation there
shows a natural decadal variability and not a secular, long
term trend.
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