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Abstract:

Hydraulic connectivity of petroleum reservoirs represents one of the biggest uncertainties for
both oil production and petroleum system studies. Here, a geochemical analysis involving bulk and
detailed measures of crude oil composition is shown to constrain connectivity more tightly than is
possible with conventional methods. Three crude oils collected from different depths in a single well
exhibit large gradients in viscosity, density, and asphaltene content. Crude oil samples are collected
with a wireline sampling tool providing samples from well-defined locations and relatively free of
contamination by drilling fluids; the known provenance of these samples minimizes uncertainties in the
subsequent analysis. The detailed chemical composition of almost the entire crude oil is determined by
use of comprehensive two-dimensional gas chromatography (GCxGC) to interrogate the nonpolar
fraction and negative ion electrospray ionization Fourier transform ion cyclotron resonance mass
spectrometry (ESI FT-ICR MS) to interrogate the polar fraction. The simultaneous presence of 25-
norhopanes and mildly altered normal and isoprenoid alkanes is detected, suggesting that the reservoir
has experienced multiple charges and contains a mixture of oils biodegraded to different extents. The
gradient in asphaltene concentration is explained by an equilibrium model considering only gravitational
segregation of asphaltene nanoaggregates; this grading can be responsible for the observed variation in
viscosity. Combining these analyses yields a consistent picture of a connected reservoir in which the
observed viscosity variation originates from gravitational segregation of asphaltene nanoaggregates in a
crude oil with high asphaltene concentration resulting from multiple charges, including one charge that
suffered severe biodegradation. Observation of these gradients having appropriate magnitudes
suggests good reservoir connectivity with greater confidence than is possible with traditional techniques

alone.
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1. Introduction:

One of the biggest risk factors in oil production is reservoir connectivity—the question of
whether a reservoir consists of a single flow unit or a set of compartmentalized flow units separated by
sealing barriers. Fundamental reservoir management issues such as the appropriate number of wells to
drill depend critically on this important aspect of reservoir architecture. Similarly, geochemical studies
of petroleum systems must consider potential compartmentalization. For example, it is now recognized
that reservoir fluids are often compositionally graded, with several mechanisms potentially responsible
for the grading (Hgier and Whitson, 2001; Ratulowski et al., 2003; Stainforth, 2004; Wilhelms and Larter,
2004). Before the composition of reservoir fluids can be used to assess reservoir history and dynamics,
reservoir architecture must be understood at least well enough to determine how well the collected oil

samples represent fluids from the remainder of the reservoir.

Despite the importance of reservoir connectivity, current methods of assessing connectivity can
have large errors (Mullins, 2008). For example, the most common method of assessing connectivity is
measuring fluid pressure at various depths in the oil column. If the pressures are continuous with a
gradient consistent with the fluid density, the reservoir is assumed to be connected over the interval
investigated. However, pressure communication can build up over geologic time through very low
permeability and does not guarantee sufficient permeability to permit appreciable flow over production
time; pressure communication is a necessary but not sufficient condition for flow connectivity.
Petrophysical logs such as gamma-ray measurements detect lithologic changes potentially indicating
sealing barriers, but such near-wellbore measurements do not guarantee the aerial extent of the layers
throughout the reservoir and do not necessarily have the vertical resolution to detect relevant barriers
(Mullins, 2008). Geochemical fingerprinting of oils from different locations in the column is another

common method for assessing connectivity. If the fingerprints are similar, the reservoir is assumed to



be connected over the interval sampled. However, oils generated from the same source rock can yield
similar fingerprints even if the reservoir is currently compartmentalized and oils from different locations
in a connected reservoir can have different composition due to various factors besides
compartmentalization. The only proof of reservoir connectivity comes during production, which in

deepwater reservoirs occurs after most of the development costs.

This contribution describes the application of a geochemical study and colloidal analysis of
asphaltenes to assess reservoir connectivity prior to production. In this example, fluids collected from
well-defined depths over a 53 m range in the reservoir are found to have marked gradients in viscosity,
asphaltene content, and API gravity. A diverse set of geochemical analyses leads to a consistent picture
of a connected reservoir in which the viscosity gradient results from a gradient in asphaltene content in
a crude oil that is the commingled product of multiple charges including one biodegraded charge. The

analysis constrains connectivity more tightly than is possible with pressure or geochemical fingerprints.

One unique aspect of this study is that it combines bulk and chemically specific methods to
analyze the composition of crude oil. The detailed fluid composition is determined by comprehensive
two-dimensional gas chromatography (GCxGC) and electrospray ionization Fourier transform-ion
cyclotron resonance mass spectrometry (ESI FT-ICR MS). This pair of sophisticated, complementary
analytical techniques is capable of determining the detailed composition of almost an entire petroleum
sample: GCxGC interrogates the nonpolar fraction and ESI FT-ICR MS interrogates the polar fraction. We
note that only negative ion electrospray results are presented here, so only the acidic sub-fraction of the
polar fraction is detected; a similar experiment also employing positive ion ESI FT-ICR MS would come
closer to the ultimate goal of measuring the entire petroleome (Marshall and Rodgers, 2008). The great
detail with which the composition of crude oil can be determined by these high resolution and high

accuracy techniques enhances the confidence of the geochemical analysis. Moreover, the relative



abundance of light and heavy ends is determined by optical spectroscopy. Although its resolution is
inferior to that of the above techniques, optical spectroscopy provides a bulk analysis that effectively
ties together the detailed analyses to provide an even more complete characterization of the

composition of crude oil.

2. Geological Context:

Three oil samples were collected from a petroleum reservoir undergoing active development.
The oilfield samples were acquired with the Modular Formation Dynamics Tester (MDT, mark of
Schlumberger) in an openhole setting, shortly after the well was drilled and prior to casing the oil-
bearing zone. The MDT sample acquisition and analysis tool has a probe module for extracting fluid
samples from the formation. This probe module (Figure 1) has a stout steel tube (with a concentric
flowline) that is pushed firmly against the permeable zone of interest. An onboard pump reduces the
flowline pressure causing formation fluids to flow into the tool; sample bottles can then be filled with
formation fluids. Downhole fluid analysis (DFA) tools employing optical spectroscopy validate the
identity of the fluids in the flowline and can confirm that the fluids are virgin formation fluids (Mullins,
2008). In addition, the DFA tools can be used to quantify compositional variation of crude oils in the
reservoir enabling validation of corresponding laboratory results. The sample bottles containing the
reservoir fluids are brought to surface, restored to downhole pressures and temperatures at the well
site, transferred to transportable sample bottles, and shipped to the laboratory. The exact provenance
and identity of the samples analyzed in the laboratory are validated with the complete MDT-DFA log
report. The samples are all taken from the same well at the following depths: xx17 m, xx51 m, and xx70
m; the first digits of the depths are obscured to preserve the anonymity of the reservoir and are not

essential to the analysis presented here.



Figure 1 near here

The bulk composition and physical properties of the samples are determined by standard
analyses and are listed below. The oils gas-oil ratio (GOR) is similar for all samples and is approximately
50 scf/bbl, the saturation pressure is approximately 300 psi, and the reservoir temperature is
approximately 65 °C. Figure 2 presents the viscosity (dead oil at room temperature), asphaltene content
(asphaltenes are defined operationally as the toluene-soluble, n-heptane insoluble fraction), and API
gravity for each oil; a gradient in all quantities is apparent. Live oil viscosities are similar to the dead oil
viscosities presented here, consistent with the low gas-oil ratio of the live fluids. Viscosity gradients are
frequently observed in petroleum reservoirs and can be quite steep or even discontinuous in the vicinity
of an oil-water contact, i.e., a tar mat (Head et al., 2003; Hetherington and Horan, 1960). It is common
for low GOR black oils to exhibit significant heavy end gradients and almost no GOR gradient (Hgier and
Whitson, 2001; Mullins, 2008). However, such an extensive gradient occurring over a larger depth range
in the reservoir as found here has different and important implications for oil production. Such
gradients can arise from biodegradation, charge history, or gravitational segregation and may occur
much more frequently than presently recognized (Betancourt et al., 2009; Head et al., 2003; Huang et
al., 2004; Khavari-Khorasani et al., 1998; Larter et al., 2006; Larter et al., 2003; Mullins et al., 20073;

Stainforth, 2004).

Figure 2 near here

Compositional gradients similar to those observed here often suggest reservoir
compartmentalization. Compartmentalization can be assessed though pressure surveys and
petrophysical logs, although those techniques suffer significant limitations (see Introduction). Figure 3
presents such measurements, showing constant pressure gradients and the absence of any obvious

sealing barriers. This result suggests that the observed compositional grading exists in a single



connected reservoir, and the remainder of the manuscript demonstrates how such compositional
grading can be used to assess reservoir connectivity with greater confidence than is available from

pressure surveys and petrophysical logs alone.

Figure 3 near here

3. Experimental:

The composition of these three oil samples is investigated by use of comprehensive two-
dimensional gas chromatography (GCxGC), electrospray ionization Fourier transform ion cyclotron

resonance mass spectrometry (ESI FT-ICR MS), and optical spectroscopy.

3.1 GCxGC

GCxGC is a multidimensional version of gas chromatography (GC) in which components are
separated according to two distinct chemical properties (Frysinger et al., 2002). The second dimension
of separation greatly enhances the resolution of the technique, and for complex mixtures such as crude
oil and environmental samples the number of components resolved with GCxGC exceeds that resolved
with traditional GC by an order of magnitude (Arey et al., 2007; Arey et al., 2005; Bertsch, 2000;
Betancourt et al., 2009; Gaines et al., 2006; Liu and Lee, 2000; Phillips and Beens, 1999; Prazen et al.,
2001; Wang and Walters, 2007). The instrumentation used for this measurement has been described
previously, and details particular to this application are presented as Supplementary Material

(Betancourt et al., 2009; Nelson et al., 2006).

This implementation of GCxGC separates components of the non-polar fraction of petroleum
according to their volatility and polarizability. GCxGC data are typically represented using a two-
dimensional contour plot, with color representing magnitude and the values of the x and y axes

representing the two retention times (Figure 4). Although this representation differs from traditional



GC-MS data, previous studies have demonstrated that direct comparisons between GCxGC and GC-MS
show excellent abundance correlation and identities for petroleum biomarkers (Frysinger and Gaines,
2001). Moreover, in GCxGC the mass spectrum of each compound is not affected by other compounds
that might co-elute in GC-MS, due to the increased resolving power and the absence of column bleed

(Gaines et al., 2006).

3.2 ESI FT-ICR MS

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is a high
resolution mass spectrometric technique that permits determination of the elemental formulas of most
components in a complex mixture (Marshall et al., 1998). In the application described here, ESI FT-ICR
MS is not used to detect the effluent of a GC; rather the crude oil is analyzed without prior separation.
The benefit of this technique is that ESI FT-ICR MS is sensitive to the polar and high molecular weight
fraction of crude oil, providing access to an important class of petroleum that is not detected by GC
(Hughey et al., 2002b). FT-ICR MS is considered the highest-resolution technique for investigating the
composition of the asphaltene fraction, which is relevant to flow assurance, wettability, upgrading, and

many other aspects of petroleum (Mullins et al., 2007b).

Unlike the 70 eV electron ionization that is commonly employed in GC-MS analysis, electrospray
ionization (ESI) is a soft ionization technique that ionizes polar components of petroleum without
fragmentation or formation of multiply charged ions (Hughey et al., 2002b; Zhan and Fenn, 2000);
instead, singly charged molecular ions are detected. The soft ionization of petroleum molecules
provided by ESI has been corroborated by good agreement of molecular weights measured by ESI with
those measured by other soft ionization techniques such as two-step laser mass spectrometry (Hortal et
al., 2007; Hortal et al., 2006; Pomerantz et al., 2008; Pomerantz et al., 2009; Rodgers and Marshall,

2007). ESI FT-ICR MS is useful for the analysis of complex mixtures because each elemental composition



(C.HnN,O,Ss) has a unique molecular mass. With the high mass resolution and accuracy of ESI FT-ICR MS,
more than 10,000 peaks in the mass spectrum of a crude oil can be resolved and their chemical
formulae identified (Hughey et al., 2002a; Hughey et al., 2002b; Marshall and Rodgers, 2004; Marshall
and Rodgers, 2008). Unlike GC, mass spectrometry of unfragmented ions does not in general distinguish
isomers, although it is possible to distinguish 5- from 6- membered nitrogen heterocycles (Purcell et al.,
2007). However, ESI FT-ICR MS can provide a detailed chemical composition of the polar components of
petroleum not detected by GC. Hence, ESI FT-ICR MS and GCxGC can be combined to provide a detailed
description of the composition of almost an entire crude oil. The ESI FT-ICR MS method has been
described previously, and details particular to this application are presented as Supplementary Material

(Betancourt et al., 2009; Mullins et al., 2006; Senko et al., 1996).

3.3 Optical spectroscopy

Optical spectra of crude oils are recorded by traditional techniques. The oils are diluted in CCl,
to reduce scattering. Optical absorption in the range 500 — 800 nm is proportional to the relative
asphaltene content of the oils (Mullins et al., 2007a). Optical spectroscopy involves far less wet
chemistry than traditional measures of determining asphaltene content such as SARA (saturates-
aromatics-resins-asphaltenes) analysis and has been shown to provide more accurate measurements of
relative asphaltene content in related oils than is typically achieved in SARA analysis. (Mullins et al.,
2007a) Based on optical absorption at different wavelengths in this range, the error associated with the
spectroscopy is less than 1% of the average value. The actual error in the technique is likely larger
because some wet chemistry is involved in preparing the sample for spectroscopic analysis. In this case
the ratio of the asphaltene contents of the xx17 oil and the xx70 oil agree within 10% for optical
spectroscopy and SARA analysis, although that result is potentially dominated by experimental error in

the SARA technique.
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4. Results

4.1 GCxGC

Figure 4 and table 1 near here

The oils studied here have high viscosities and asphaltene contents relative to most conventional crude
oils (see Figure 2). High viscosity and asphaltene content in petroleum are usually associated with either
low thermal maturity or post-generative degradational processes, most commonly biodegradation;
therefore, biomarkers relating to thermal maturity and biodegradation are examined to understand the
origin of this high viscosity and asphaltene content (Peters et al., 2005; Zumberge, 1987). Figure 4
shows the GCxGC chromatogram for one of the oils. Chromatograms for the other two oils (not shown)
are equivalent within typical experimental error; the full names of compounds identified in Figure 4 are
presented in Table 1. Figure 5 and Table 2 present various maturity and source correlation parameters
for the three oils extracted from the chromatograms. One set of biomarker ratios useful for assessing
thermal maturity are the 225/22(S+R) ratios for the C3; — C35 17a-hopanes. The ratios for these oils (0.53
—0.78) have reached their equilibrium values (0.55 — 0.62), suggesting that the main phase of oil
generation has been reached or surpassed (Peters et al., 2005). It is notable that this ratio increases for
higher carbon number hopanes, as has been observed previously (Zumberge, 1987). The 225/22(S+R)
ratio potentially is influenced by biodegradation, with 22R being more susceptible. If biodegradation
were affecting these hopanes, the 225/22(S+R) would likely be greater than observed here and the ratio

would decrease for larger carbon number hopanes, opposite of what is observed here. Hence the
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225/22(S+R) ratios for the C3; — C35 17a-hopanes are likely robust maturity indicators for these oils.

Another set of biomarker ratios useful for assessing thermal maturity are the 20S/20(S+R) ratios for the
C27 aaa steranes. The ratios for these oils (0.44 — 0.49) are near their equilibrium values (0.52 —.055 ),
consistently suggesting that these samples have reached the peak phase of oil generation (Peters et al.,

2005).

Figure 5 and Table 2 near here

As shown in the top panel of Figure 4, these oils contain essentially unaltered normal and
isoprenoid alkanes, suggesting only light biodegradation. However, the highlighted section of Figure 4
(expanded in the bottom panel) demonstrates the presence of a sequence of 25-norhopanes. Although
several theories explaining the interpretation of 25-norhopanes have been offered, it is commonly
accepted that the presence of 25-norhopanes suggests extensive biodegradation; perhaps the most
accepted theory suggests that a major mechanism in the appearance of 25-norhopanes is the
biodegradation of hopanes, such that an oil containing an abundant sequence of 25-norhopanes must
have experienced biodegradation to a level of at least 6 on the scale of Peters and Moldowan (PM 6)
(Bennett et al., 2006; Moldowan and McCaffrey, 1995; Peters and Moldowan, 1993; Peters et al., 1996;
Peters et al., 2005; Seifert and Moldowan, 1979; Volkman et al., 1983). It is possible for 25-norhopanes
to occur in unaltered oils, but in those cases the concentration of 25-norhopanes is below the 3 ppm
level detected here and a homologous series of 25-norhopanes is not observed (Moldowan and

McCaffrey, 1995).
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The simultaneous presence of unaltered alkanes and 25-norhopanes may appear to imply a
contradiction: the unaltered alkanes indicate light biodegradation whereas the 25-norhopanes indicate
severe biodegradation. However, this observation can be explained if the oil is considered to contain a
mixture of lightly and heavily biodegraded oils (Nascimento et al., 1999; Pan et al., 2003; Philp, 1983;
Rooney et al., 1998; Volkman et al., 1983). Thus, this assemblage of biomarkers is consistent with a
reservoir mechanism involving at least two charges, with an earlier charge experiencing heavy

biodegradation while a subsequent charge is essentially unaltered by microbes.

4.2 ESI FT-ICR MS

Detailed analysis of the nonpolar fraction of petroleum is attractive due to the relative
experimental accessibility and the availability of a large body of literature relevant to its interpretation.
However, the composition of the polar fraction of petroleum should not be neglected, especially when
high asphaltene content oils are involved. A detailed measure of the composition of the polar fraction
of these three oils can be obtained from ESI FT-ICR MS and some of the data are presented in Figure 6.
This plot shows the relative abundance of different O, species (molecular formula: C.H,0;) as a function
of carbon number (c) and double bond equivalents (DBE); DBE is the number of rings plus double bonds
to carbon in a compound and for O, species is computed as DBE = c— h/2 + 1. In addition, Figure 7
shows the DBE distribution for O, species obtained by summing the relative abundances over all carbon

numbers; this plot contains less information than Figure 6 but is more readable.

Figures 6 and 7 near here

Kim et al. (2005) proposed a parameter that can assess the extent of biodegradation in oils from

the same source rock based on data such as that shown in Figure 7. They find that O, species typically

13



correspond to naphthenic acids and that the ratio of acyclic O, species (DBE = 1.5 for the detected
deprotonated species, corresponding to the carbonyl bond in the carboxylic acid group and no rings) to
cyclic O, species (sum of species of DBE = 2.5, 3.5, and 4.5 for the detected deprotonated species)
correlates well with the biodegradation (PM) scale of Peters and Moldowan (1993): the acyclic:cyclic
ratio decreases with more extensive biodegradation due to the preferential mineralization of saturated
naphthenic acids. The oils studied here are found to have acyclic:cyclic naphthenic acid ratios near 1:20,
corresponding to a biodegradation index of approximately PM 4. The acyclic:cyclic naphthenic acid
ratios of these three oils are constant within a factor of two, whereas acyclic:cyclic naphthenic acid
ratios ranging over three orders of magnitude have been observed previously, again indicating the
compositional similarity of these oils. A slightly higher abundance of cyclic naphthenic acids may exist in
the xx70 oil relative to the xx17 and xx51 oils, but the well-known matrix effect in electrospray ionization
makes such a small difference difficult to interpret without the use of naphthenic acid internal

standards. given the well-known matrix effect in electrospray ionization.

There is currently no known way to identify a multiple charge history from the composition of
an oil’s polar fraction in analogy to the above-mentioned non-polar fraction analysis. However, a
biodegradation index of PM 4 is consistent with the hypothesis that the oils studied result from
commingling of a charge having biodegradation index of at least PM 6 with another charge having PM 0
or 1. Hence, ESI FT-ICR MS results are consistent with those from GCxGC, even though the two

experiments examine different fractions of the oils, thereby increasing confidence in the analysis.

5. Origin of the compositional gradient

The GCxGC and ESI FT-ICR MS measurements suggest that these petroleum samples are
mixtures of multiple charges including at least one charge that experienced extensive biodegradation.
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The contribution of the biodegraded oil accounts for the high viscosity and asphaltene content.
However, this analysis alone does not explain the steep gradients observed in Figure 2. The detailed
composition of the fluids measured by GCxGC and ESI FT-ICR MS shows virtually no variation between
the three samples, even though the viscosity varies by a factor of two. Although GCxGC and ESI FT-ICR
MS provide excellent measures of the detailed composition of the nonpolar and polar ends of petroleum
respectively, those techniques are less appropriate for measuring the abundance of broad chemical
classes in the oil. Figure 8 presents the relative color of the oil samples, which is linearly proportional to
their asphaltene content. Although the detailed composition of these samples varies little with depth,
the asphaltene content (a much coarser measure of composition) is found to vary to a great extent. Itis
noteworthy that neither GCxGC nor ESI FT-ICR MS, the two best techniques for analyzing the detailed
compositions of complex mixtures, readily detect a bulk quantity such as the variation in asphaltene
content that is easily observed by the comparatively coarse optical spectroscopy. This result reinforces
the notion that multiple techniques—detailed and bulk—are presently required for accurate

characterization of the composition of petroleum.

Figure 8 near here

A similar increase in the relative asphaltene content with depth has been observed in other
reservoirs and has been modeled as a Boltzmann distribution with the Archimedes buoyancy in the
energy term (Betancourt et al., 2009; Mullins et al., 2007a). This model assumes that the only cause of
grading in asphaltene content is gravitational segregation (Khavari-Khorasani et al., 1998) of dense
asphaltene nanoaggregates toward the bottom of the reservoir at equilibrium, and the only adjustable
parameter in the model is the size of the asphaltene nanoaggregate. This equilibrium model assumes

15



that although the concentration of heavy ends varies in the reservoir, their composition is mostly
unchanged; that assumption is supported in this case by the similarity of the ESI FT-ICR MS data for the
three samples (Figure 6). Figure 8 includes a fit of the measured relative asphaltene content versus
depth to the Boltzmann-Archimedes model. The fitted nanoaggregate size is 2.0 nm, which is consistent
with asphaltene nanoaggregate sizes measured in other crude oil reservoirs (Betancourt et al., 2009;
Mullins et al., 2007a) as well as measured in solvents by various laboratory techniques: ultrasonics
(Andreatta et al., 2005), magnetic resonance (Kawashima et al., 2008; Lisitza et al., 2009), electrical
conductivity (Zeng et al., 2009), and centrifugation (Mostowfi et al., 2009). This agreement suggests
that the observed grading in asphaltene content can be explained solely by gravitational segregation of

dense asphaltene nanoaggregates.

Lin et al. (1995) demonstrated that the viscosity of an asphaltene containing mixture increases
faster than exponentially with asphaltene content. Hence, for oils containing more than a few percent
asphaltenes, the viscosity should increase dramatically for a small increase in asphaltene content.
Indeed, the observed doubling in viscosity is consistent with Lin and coworkers’ measurements for ~20%
variation in the asphaltene content of oils having ~ 10 wt% asphaltenes, as is the case here. Therefore,
the origin of the viscosity gradient can be explained: the viscosity gradient results from a gradient in
asphaltene content due to gravitational segregation in a series of oils that contain high asphaltene
content as a result of extensive biodegradation in at least one of the multiple charges that filled the

reservoir.

6. Assessment of Reservoir Connectivity

Reservoir connectivity is among the most important uncertainties for petroleum production and
geochemical studies. Thus, any technique to address connectivity that can be performed prior to the
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expensive operation of producing reservoir fluids has value. Connectivity is presently assessed though
pressure surveys, petrophysical logs, and geochemical fingerprints, but each of those techniques can fail
to recognize compartmentalization (Mullins, 2008). Here we present a novel technique for assessing
connectivity. This analysis is based on different physics than the conventional methods, and a
combination of this analysis with conventional analyses can assess connectivity with greater confidence

than is achievable with conventional analyses alone.

In this reservoir, these three traditional techniques all suggest good connectivity. In particular, a
pressure survey shows a constant gradient and the gamma-ray log shows no indication of a sealing
barrier. The GCxGC and ESI FT-ICR MS measurements provide exquisitely detailed fingerprints of almost
the entire petroleum, and in this reservoir those fingerprints are nearly identical, positively constraining

connectivity almost as tightly as possible with fingerprinting techniques.

Simultaneously, compositional grading is observed in this reservoir, with pronounced gradients
in the fluids’ viscosity, asphaltene content, and density over a 53 m interval. Such compositional grading
is often associated with reservoir compartmentalization. However, there are several notable examples
of extensive compositional grading in connected reservoirs (Betancourt et al., 2009; Mullins et al.,
2007a); Figure 9 presents an extreme example from a field in which a single oil column contains oils with
obvious compositional variations. In fact, connected reservoirs at or near equilibrium must exhibit
compositional grading due to gravitational segregation and potentially other forces (Khavari-Khorasani
et al., 1998; Larter et al., 2006). The observation of such compositional grading with the correct
magnitude provides another indication of connectivity based on different reservoir physics than the
three standard measurements. For the present work, in addition to the traditional techniques and a
gradient in asphaltene content, connectivity is suggested by gradients in fluid density and viscosity. The

consistency of the magnitude of the viscosity gradient with predictions from the magnitude of the

17



asphaltene content gradient further supports connectivity. Moreover, a reservoir history involving
multiple charging events was established which suggests that asphaltenes have achieved an equilibrium
distribution but were initially out of equilibrium (Khavari-Khorasani et al., 1998; Larter et al., 2006;
Larter et al., 2003); this migration on the reservoir scale of the least mobile fraction strongly suggests
good vertical connectivity. Therefore, addition of biomarker analysis and observation of bulk
compositional gradients of the proper magnitude positively constrain connectivity more tightly than is
possible with only the conventional techniques of pressure surveys, petrophysical logs, and geochemical

fingerprints.

7. Conclusion

Three oil samples collected from well-defined depths spanning a 53 m interval in the same well
exhibit marked gradients in viscosity, asphaltene content, and API gravity while pressure surveys,
petrophysical logs, and geochemical fingerprints suggest that the oils come from a single, connected
reservoir. The compositions of these fluids are studied with detailed and bulk measurements to
determine the origin of the compositional grading: GCxGC probes the detailed composition of the non-
polar fraction, negative ion ESI FT-ICR MS probes the detailed composition of the polar fraction, and
optical spectroscopy measures the bulk distribution of light and heavy ends. The combination of GCxGC
and ESI-FT-ICR MS provides a detailed measurement of the composition of almost the entire petroleum,
but optical spectroscopy provides important information about bulk composition absent from the

detailed measurements alone.

GCxGC experiments detect the simultaneous presence of unaltered normal and isoprenoid
alkanes as well as 25-norhopanes, which is interpreted to indicate a mixture of multiple charges with
one charge having been extensively biodegraded. ESI FT-ICR MS experiments are sensitive to a separate
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fraction of petroleum but provide consistent results. Hence, the high asphaltene content in these oils
(10% by weight) originates from early biodegradation of the initial charge. Additionally, the asphaltene
content of these oils increases with depth, which can be explained by a Boltzmann-Archimedes model
that considers only gravitational segregation of dense asphaltene nanoaggregates. Increases in
asphaltene content are known to increase the viscosity of oils, and the magnitude of the viscosity
increase observed here is consistent with the asphaltene gradient. Therefore, the viscosity gradient
arises from gravitational segregation of asphaltenes in a fluid with high asphaltene content due to a

highly biodegraded charge.

The compositional grading described here results from gravitational segregation and hence must
exist in every connected reservoir at or near equilibrium. Therefore, the identification of such gradients
of the correct magnitude represents another test of reservoir connectivity based on different physics
from the traditional techniques of pressure surveys, petrophysical logs, and geochemical fingerprints.
Combining this analysis of continuous gradients of predictable magnitudes with traditional
measurements constrains reservoir connectivity much more tightly than is possible with current
techniques prior to the expensive process of producing the reservoir. In this example, a biomarker study
establishes a reservoir history involving reservoir-scale migration of relatively immobile asphaltenes, and

this reservoir history positively constrains connectivity even further.
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Table 1:

Compound ID |Compound Name Molecular Weight
(g/mol)
|Hopanes, Moretanes, and Gammacerane
Ts 18a(H)-22,29,30-trinorneohopane (C27H46) 370
Tm 17a(H)-22,29,30-trinorhopane (C27H46) 370
BNH 17a(H),21B(H)-28,30-bisnorhopane (C28H48) 384
NH 17a(H),21B(H)-30-norhopane (C29H50) 398
NM 17B(H),21a(H)-30-norhopane (C29H50) 398
H 17a(H),21B(H)-hopane (C30H52) 412
M 17B(H),21a(H)-hopane (C30H52) 412
HH (S) 17a(H),21B(H)-22S-homohopane (C31H54) 426
HH (R) 17a(H),21B(H)-22R-homohopane (C31H54) 426
G Gammacerane 412
2HH (S) 17a(H),21B(H)-22S-bishomohopane (C32H56) 440
2HH (R) 17a(H),21B(H)-22R-bishomohopane (C32H56) 440
3HH (S) 17a(H),21B(H)-22S-trishomohopane (C33H58) 454
3HH (R) 17a(H),21B(H)-22R-trishomohopane (C33H58) 454
4HH (S) 17a(H),21B(H)-22S-tetrakishomohopane (C34H60) 468
4HH (R) 17a(H),21B(H)-22R-tetrakishomohopane (C34H60) 468
5HH (S) 17a(H),21B(H)-22S-pentakishomohopane (C35H62) 482
5HH (R) 17a(H),21B(H)-22R-pentakishomohopane (C35H62) 482
25-Norhopanes
25-nor-Tm 17a(H)-22,25,29,30-tetranorhopane (C26H44) 356
25-nor-BNH 17a(H),21B(H)-25,28,30-trinorhopane (C27H46) 370
25-nor-NH 17a(H),21B(H)-25,30-bisnorhopane (C28H48) 384
25-nor-H 17a(H),21B(H)-25-norhopane (C29H50) 398
25-nor-HH (S) 17a(H),21B(H)-22S-25-norhomohopane (C30H52) 412
25-nor-HH (R) 17a(H),21B(H)-22R-25-norhomohopane (C30H52) 412
25-nor-2HH (S)  [17a(H),21B(H)-22S-25-norbishomohopane (C31H54) 426
25-nor-2HH (R) |17a(H),21B(H)-22R-25-norbishomohopane (C31H54) 426
25-nor-3HH (S)  [17a(H),21B(H)-22S-25-nortrishomohopane (C32H56) 440

Table caption: Full names of compounds identified in the lower panel of Figure 4.
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Table 2:

Pr/

Pr/

Ph/ C,; DiaSt S/ Cy TT Cys TT/ Ts/ C,; Hop/ CyHop/ Cso Hop/
Depth (m) Ph' n-Ci n-Cs® (s+R)* S/(S+R)’ Hop® (Ts+Tm)’ CzoHop® Cso Hop® Cs, Hop®
xx17 1.39 0.94 0.97 0.58 0.38 0.21 0.29 0.38 0.77 1.39
xx51 1.39 0.93 0.98 0.55 0.37 0.22 0.28 0.38 0.80 1.36
xx70 1.39 0.94 0.99 0.59 0.40 0.21 0.28 0.38 0.76 1.41
Mor/ Cs; Hop Cs; Hop Cs3 Hop Cs4 Hop Css Hop
Depth (m) Hop® | S/(s+R)® | s/(s+R)® S/(S+R)™ S/(S+R)° | S/(S+R)®
xx17 0.15 0.58 0.53 0.66 0.71 0.73
xx51 0.16 0.60 0.57 0.66 0.76 0.73
xx70 0.15 0.58 0.57 0.66 0.78 0.69

Table Caption: Source correlation and thermal maturity parameters for the three oil samples. Biomarker
ratios are calculated from integrated GCxGC-FID peak volumes. Full names of compounds are listed
below.

1Pr/Ph = pristane/phytane.

2Pr/n-Cy, = pristane/heptadecane.

*Ph/n-Cy5 = phytane/octadecane.

% C,7 DiaSt S/(S+R) = C,, diacholestane 205/20(S+R).

> C30 TT S/(S+R) = Cy tricyclic terpane 225/22(S+R).

® C,3 TT/Hop = Cy; tricyclic terpane/(C,s tricyclic terpane + Cso 17a(H),21B(H)-hopane).

" Ts/(Ts+Tm) = Cy7 17a(H)-22,29,30-trisnorhopane and 18a(H)-22,29,30-trisnorhopane, respectively.
8,7 Hop/Cae Hop = (Ts +Tm)/Cys 17a(H),21B(H)-hopane; Co Hop/Cso Hop = Cyg 17a(H),21B(H)-
hopane/Csq 17a(H),21B(H)-hopane; C3o Hop/Cs; Hop = C3917a(H),21B(H)-hopane/Cs; 17a(H),21B(H)-
hopane 22(S +R).

® Mor/Hop = mortane/hopane.

19¢,,5/(S+R) = C3; 17a(H),21B(H)-homohopane 225/Cs; 17a(H),21B(H)-homohopane 22(S+R) higher
carbon number series follow the same formula.
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Figure Captions:

Figure 1) Schematic diagram of the sampling tool that acquires crude oil samples and performs optical
spectral analysis on these samples for a chemical analysis in situ in the oil well. This tool is used in open-
hole just after the well is drilled and prior to casing the well. The probe (pictured) is pressed firmly
against the borehole wall to make hydraulic communication with permeable zones in the oil well to
extract formation fluids.

Figure 2) Viscosity (dead oil at room temperature), asphaltene content, and API gravity of the three
samples, plotted as a function of depth. Viscosity is reported in centipoise (cP).

Figure 3) Wireline well log. The first track shows the gamma-ray log; no obvious vertical lithological
barriers are indicated in the reservoir section. The first track also shows a continuous pressure profile.

Figure 4) GCxGC chromatogram for the xx17 m oil. The top panel shows the total ion count for the
entire two-dimensional chromatographic plane. The bottom panel focuses on the region containing the
25-norhopane peaks and shows the summed counts for the ions of m/z = 177 and 191; this region is
indicated in the yellow dotted box in the top panel. The simultaneous presence of unaltered normal and
isoprenoid alkanes (top panel) and 25-norhopanes (bottom panel) implies that the measured oil is a
mixture of at least one lightly biodegraded charge with at least one heavily biodegraded charge.

Figure 5) Spider plot of several oil source correlation and thermal maturity parameters. The
compositions of the three different oils are barely discernible: xx17 m in blue, xx51 min red, and xx70 m
in green. Full names of these molecules are provided in Table 1. These ratios, especially the
22S/22(S+R) ratios for the C3; — C35 17a-hopanes, suggest that the main phase of oil generation has been
reached or surpassed.

Figure 6) Isoabundance-contours for plots of double bond equivalents (DBE) vs. carbon number for O,
species from each of the three oils.

Figure 7) Double bond equivalents (DBE) distribution for the O, class of each oil. From this display the
acyclic:cyclic ratio of naphthenic acids is determined and found to correlate with a biodegradation rank
of PM 4.
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Figure 8) Markers: relative asphaltene content of the three oils, determined by optical spectroscopy,
plotted as a function of depth. Line: fit to the Boltzmann-Archimedes model. This fit results in an
asphaltene nanoaggregate size of 2.0 nm, consistent with other reservoirs and laboratory studies and
suggesting that the gradient in asphaltene content can be explained solely by gravitational segregation.

Figure 9) Compositional grading in a series of dead oils from different depths in a single oil column. Qils
are aligned from the shallowest at left to the deepest at right. Ccourtesy of Hani Elshahawi, Shell
International E&P.
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Figure 3)
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Figure 4)
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Figure 5)
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Figure 6)
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Figure 7)
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Figure 8)
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