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Abstract 

A mathematical model, based on current knowledge of gas exchange and physiology of marine 

mammals, was used to predict blood and tissue tension N2 (PN2
) using field data from three 

beaked whale species: northern bottlenose whales, Cuvier’s beaked whales, and Blainville’s 

beaked whales. The objective was to determine if physiology (body mass, diving lung volume, 

dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) 

would lead to differences in PN2
 levels and thereby decompression sickness (DCS) risk between 

species. Diving lung volume and extent of the dive response had a large effect on end-dive PN2
.  

The dive profile had a larger influence on end-dive PN2
 than body mass differences between 

species. Despite diel changes in dive behaviour, PN2 
levels showed no consistent trend. Model 

output suggested that all three species live with tissue PN2
 levels that would cause a significant 

proportion of DCS cases in terrestrial mammals. Cuvier’s beaked whale diving behaviour 

appears to put them at higher risk than the other species, which may explain their prevalence in 

strandings after the use of mid-frequency sonar.  
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1. Introduction 

Multiple mass strandings of beaked whales have been documented over the last decade 

following acoustic exposure to anthropogenic sounds (reviewed in Cox et al., 2006).  In terms of 

species composition, Cuvier’s beaked whale (Ziphius cavirostris) have predominated, with 

Blainville’s beaked whale (Mesoplodon densirostris) also occurring in several events, and 

occasional occurrence of other beaked whale species (northern bottlenose whale Hyperoodon 

ampullatus, and Gervais’ beaked whale M. europaeus, Simmonds and Lopez-Jurado, 1991; Cox 

et al. 2006).  Gas-bubble disease, induced through a precondition of tissue N2 supersaturation 

coupled with a behavioural response to acoustic exposure, has been suggested as a possible 

pathologic mechanism for these beaked whale deaths (Jepson et al., 2003; Cox et al., 2006).  

Beaked whales dive deeply more frequently than most other cetacean species (Hooker 

and Baird, 1999; Baird et al., 2006, 2008; Tyack et al., 2006; Minamikawa et al., 2007) and this 

behaviour has been suggested to result in tissue N2 supersaturation. It is possible that these 

mammals live continuously with elevated levels of N2 (Cox et al., 2006) which could render 

them prone to decompression sickness (DCS) if they altered their diving behaviour. Suggestions 

include disturbance caused by an acoustic signal that could (1) affect the normal diving 

behaviour, e.g. increased or decreased surface interval, ascent rate, or dive duration, leading to 

increased supersaturation, thereby increasing DCS risk, (2) the acoustic signal could activate 

existing stabilized bubble nuclei allowing them to grow by passive diffusion, and/or, (3) drive 

activated bubbles to expand through rectified diffusion (Cox et al., 2006). Each of these 

hypotheses assumes that these breath-hold diving marine mammals live with significantly 

elevated blood and tissue tension N2 (PN2
) levels.  

Increasing concentrations of N2 have been observed in bottlenose dolphin (Tursiops 

truncatus) tissues following trained repetitive dives (Ridgway and Howard, 1979), in freely 

diving Weddell seals (Leptonychotes weddellii, Falke et al., 1985) and forced diving Weddell, 

harbour (Phoca vitulina) and elephant seals (Mirounga angustirostris, Kooyman et al., 1972).  

Houser et al. (2001) used the results published by Ridgway and Howard (1979) in a theoretical 

model based on gas diffusion to show that beaked whale diving patterns (based on simulated 

dive data) could lead to chronic tissue accumulation of N2 gas.  Their simulations illustrated the 

potential increase in N2 caused by relatively shallow (100 m, 9 min) dives with short (1 min) 

surface intervals.  However, their simulated time at the surface (5 min at surface in 60 min of 
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diving) was much shorter than recorded from logged field-data (30-38% time spent at the 

surface, Hooker and Baird 1999), suggesting that re-evaluation of DCS risk based on logged-data 

would be valuable. Zimmer and Tyack (2007) have previously estimated blood and tissue PN2
 

values for a Cuvier’s beaked whale, and also emphasized the danger of repetitive shallow dives 

rather than deep dives per se. However, both of these previous models incorporated the 

assumption that alveolar collapse is immediate and occurs at a pre-determined depth (~ 70 m, 

Zimmer and Tyack 2007). Here we use a revised model (described in Fahlman et al., 2009) 

which incorporates the recent lung collapse model developed by Bostrom et al (2008) and the 

circulatory adjustments of the diving response (Fahlman et al., 2006). 

 Since sonar-related strandings have occurred for several species of beaked whale, we 

compare and contrast results for previously published time depth recorder data (Hooker and 

Baird 1999; Baird et al., 2006, 2008) from Cuvier’s beaked whale (referred to as Ziphius), 

Blainville’s beaked whale (referred to as Mesoplodon) and northern bottlenose whale (referred to 

as Hyperoodon). We investigate how differences in behaviour and physiology would affect end-

dive tissue and blood PN2
 and thus the susceptibility to DCS-like symptoms.  

 Whole body N2 saturation is a reliable index of DCS risk in terrestrial animals of varying 

body size (Berghage et al., 1979). To predict DCS risk in beaked whales it is therefore important 

to use a gas exchange model that has been calibrated against empirical data and to compare these 

estimated levels against those in terrestrial mammals. A previously published model that has 

been calibrated against known tissue and blood N2, O2 and CO2 levels in several different species 

of marine mammals (Fahlman et al., 2009) was used and we (1) examined the predicted blood 

and tissue N2 levels resulting from differences in normal diving behaviour (dive depth and 

duration).  Several of the recorded beaked whale strandings appear to have contained a 

disproportionate number of subadult whales (Freitas, 2000; Anon., 2001; Martín et al., 2004), 

possibly suggesting an effect of body mass (Mb). Together with our lack of knowledge of the 

dive response or diving lung volume in these species, we therefore investigate (2) the effect of 

changes in body mass (Mb), diving lung volume (and changes in pulmonary shunt), and cardiac 

output ( totQ ) on blood and tissue PN2
 levels. In terms of behaviour, in addition to looking at dive 

depth and duration, we (3) assessed whether changes in ascent rate (Jepson et al., 2003; Zimmer 

and Tyack, 2007) and diel changes in diving behaviour (Baird et al., 2008) would influence the 

likelihood of DCS in these whales, the latter of which could help direct mitigation efforts for 
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sonar-related threats to these whales.  While we do not know the underlying physiology for these 

species, this comparison enables us to determine whether differences in dive behaviour or in the 

aspects of physiology we investigate using this model could explain possible differences in 

estimated PN2
 and thereby DCS risk.  

  

2. Material and methods 
 
2.1. Model 

 The first model, Model A, was adapted from the breath-hold model developed by 

Fahlman et al. (2006) with addition of pulmonary shunt and exchange of O2 and CO2 as detailed 

in Fahlman et al. (2009) and summarized below. The body was partitioned into four different 

tissue compartments (brain, fat, muscle, and central circulation) and one blood compartment 

(arterial and mixed venous). The central circulatory compartment included heart, kidney, liver 

and alimentary tract while the muscle compartment included muscle, skin, bone, connective 

tissue and all other tissues (Fahlman et al., 2009). 

 Gas exchange occurred between lung and blood and between blood and each 

compartment. The same assumptions were used for the blood N2 stores as those detailed in 

Fahlman et al. (2006). The totQ  and fraction of blood to each tissue were not fixed and could be 

varied to mimic diving bradycardia and changes in regional blood flow due to peripheral 

vasoconstriction. Hence, cardiovascular changes seen in freely diving animals could be 

simulated (Zapol et al., 1979; Andrews et al., 1997; Froget et al., 2004).  

 Unless specified, in the instances in which we had no direct anatomical or physiological 

data for the species in this study, we used the data reported for the Weddell seal (Davis and 

Kanatous, 1999). We used a model that predicted alveolar volume (VA) with depth (Bostrom et 

al., 2008) and estimated pulmonary shunt from the ratio between VA and the total alveolar 

capacity (TAC) as previously detailed (Fahlman et al., 2009). The relative size of each 

compartment was estimated from data reported by Mead (1989) for the genus Mesoplodon and 

from Scholander (1940) for the genus Hyperoodon, as 57.0% for muscle, 3.0% for central 

circulation, 0.2% for brain, 20.7% for fat and 19.1% for blood. It was assumed that the relative 

proportion of each compartment remained constant between species and for animals of different 

size.  
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A second variation (Model B) was derived from Model A, and this was used to determine 

the extent to which the diving bradycardia affected inert gas uptake. The mass specific totQ  

( totQs  ) was estimated as detailed in Fahlman et al. (2009). The resulting totQs   at the surface was 

206 ml • min-1 • kg-1 for Mesoplodon (Mb = 1000 kg), 172 ml • min-1 • kg-1 for Ziphius (Mb = 

2050 kg) and 138 ml • min-1 • kg-1 for Hyperoodon (Mb = 5000 kg).  For model A, it was 

assumed that totQ  during diving was 50% of that at the surface, while for model B it was 12.5%.  

 Blood flow distribution to each tissue at the surface was assumed similar to that measured 

in forced dived Weddell seals resting at the surface (Zapol et al., 1979, Fahlman et al., 2009). 

During diving, we assumed that blood flow was directed to each tissue according to the 

metabolic rate ( 2OV ) of that tissue and the available O2 in the tissue (see Fahlman et al., 2009 for 

details on how tissue 2OV  and O2 stores were estimated). Consequently, during diving both 

Model A and B assumed that 80% of totQ  was directed to the central circulation, 1% to the 

muscle, 12% to the brain and 7% to the fat.  

 

2.2. Tissue metabolic rate and O2 stores 

   The metabolic rates for each tissue compartment were estimated from the data presented 

in Davis and Kanatous (1999, Table 1). The O2 available during a dive came from lung, blood 

and tissue stores (mainly muscle, see below). The Ostwald solubility coefficient was used to 

calculate the dissolved O2 content in blood and we used a value of 0.0261 l O2 • l
-1 blood 

(Weathersby and Homer, 1980). The same solubility coefficient was used to estimate O2 content 

of muscle and central circulation. For the fat and brain compartment we used a value of 0.133 l 

O2 • l
-1 tissue.  

 In addition to dissolved O2, the muscle compartment was assumed to contain a significant 

amount of endogenous O2 bound to myoglobin and available for muscle metabolism. When 

calculating the total O2 stored in the muscle compartment, we assumed that 49% of the total Mb 

was skeletal muscle, i.e. the muscle compartment was composed of a variety of tissues not all 

having myoglobin, with a specific gravity of 1.06 kg • l-1 (Kayar et al., 1997). We used the 

reported myoglobin concentration (63 g • kg-1 muscle, Butler and Jones, 1982) reported for 

Hyperoodon and an O2-binding capacity of 1.34 ml O2 (STPD) • g-1 muscle tissue (Stephenson, 
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2005).  The muscle was assumed to be completely saturated at the beginning of a trial run, i.e. 

the initial conditions. 

 The blood was assumed to have a hemoglobin (Hb) concentration of 0.26 kg • l-1 

blood and the same O2-binding capacity as myoglobin (Stephenson, 2005). Initially, it was 

assumed that arterial blood was 97% saturated and venous blood 87% saturated. The resulting O2 

stores for each species is reported in Table 1.  Body mass for each species was estimated based 

on data recorded from stranded animals (Heyning, 1989; Mead, 1989) or from length-weight 

equations and length estimates (Bloch et al., 1996; Whitehead et al., 1997).  

 

2.3. Lung compression and pulmonary shunt 

 The model published by Bostrom et al. (2008) was used to estimate alveolar volume at 

depth (DVA).  Initial parameters used to estimate DVA were: total lung capacity (TLC, total 

respiratory volume), the volume of the upper respiratory system, including trachea and bronchi 

(VT), and maximal alveolar volume (VA), i.e. TLC = VT + VA. It was assumed that gas exchange 

occurred only in the alveoli and when DVA = 0, no gas exchange occurred. For all species, TLC 

was assumed equal to that reported for the bottlenose whale (25 ml • kg-1, Scholander, 1940). 

Dead space volume was assumed to be 9% of TLC (Bostrom et al., 2008). For our investigation 

of an animal diving with a lung volume lower than TLC, the reduction in gas volume was taken 

from the alveolar gas space. That is, DVA = DVL - VT. Thus, for a 1000 kg beaked whale diving 

on a DVL that was 50% of TLC: TLC = 25 l, VT = 2.25 l, DVL = 12.5 l, DVA = 10.25 l. 

 Estimated DVA was used to compute pulmonary shunt, sometimes also termed venous 

admixture (see Eq. 4 in Fahlman et al., 2009). The power function (1-shunt = a • (DVA • VA)-b, 

Bostrom et al., 2008; Fahlman et al., 2009) established from harbour seal data was used to 

establish the relationship between pulmonary shunt and estimated DVA • VA
 -1.  

 

2.4. Dive data and estimated PN2
 levels  

 The dive data used to estimate blood and tissue PN2
 levels were previously published for 

Ziphius and Mesoplodon by Baird et al. (2006, 2008) and for Hyperoodon by Hooker and Baird 

(1999). Two dive traces were used for each species, and summary statistics for each dive series 

are presented in Table 2. Each dive trace is indicated by the species abbreviation and the duration 

of the trace (e.g., Md78 is a 78-hour trace for Mesoplodon densirostris). 
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A dive was defined as a submergence for > 10 sec to a depth > 5 m. Dives were separated 

into shallow, intermediate and deep dives depending on the maximum depth recorded. For all 

species, shallow dives were defined as > 5 m and ≤ 50 m, intermediate dives were > 50 m and ≤ 

200 m, and deep dives were > 200 m. These categories were based on the assumption that 

shallow dives < 50 m may serve to reduce bubble formation and be potentially helpful as 

decompression dives (Fahlman et al., 2007), intermediate dives 50-200 m are likely to include 

gas exchange for a high proportion of the dive, whereas deep dives >200m will almost certainly 

have no gas exchange beyond this depth and so the lungs are likely to be collapsed for a portion 

of the dive (Bostrom et al., 2008).  Within these categories we present mean maximum dive 

depth (the maximum depth reached during the dive), mean dive depth (the average depth of the 

dive), and surface interval (the time spent at the surface between dives). For each dive series, 

tissue and blood PN2
’s were estimated throughout the entire duration of the series. Following this, 

we extracted the end-dive PN2
 values for each dive and these end-dive levels are presented for 

different categories of dives for each series.  

To look at diel changes in dive behaviour and how these affect estimated blood and tissue 

PN2
, the dive data were divided into day (D) or night (N) based on location and times for each 

dive. We used sunrise and sunset to separate D and N 

(http://aa.usno.navy.mil/data/docs/RS_OneDay.php, Table 4), for the longer traces (Md22, Md78, 

Zc34 and Ha28).     

 

3. Results  

The average hourly dive rate was significantly different (P < 0.01) between Ziphius (2.5 

dives • hr-1) and Hyperoodon (7.1 dives • hr-1), but neither was different from the hourly dive rate 

of 5.0 dives • hr-1 for Mesoplodon (P > 0.3, Mixed model ANOVA). There was no difference in 

the proportion of shallow (P > 0.4), intermediate (P > 0.1) or deep dives (P > 0.5) between 

species. 

 Except for the short 2-hour dive trace from Hyperoodon, the mean dive duration, 

maximum and mean dive depths for deep dives were similar between individuals and species. 

For intermediate dives, both the mean and maximum dive depth was shallower for Ziphius 

compared with Mesoplodon and Hyperoodon (Table 2). For all species, there was a significant 

correlation between the maximum depth and the mean depth for each dive (P < 0.05). 
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3.1. Predicting tissue and blood PN2
 model variations 

Rather than assigning an arbitrary initial PN2
 at the start of the dive trace, we simply 

assumed this matched with surface N2 at the model outset. For tissues with a fast time constant 

(central circulation and brain), a diving PN2
 equilibrium was established during the first few 

dives while for tissues with a slow time constant, equilibrium took several hours (Fig.1). To 

avoid bias we therefore removed the initial 4 hours for Mesoplodon, 8 hours for Ziphius and 13 

hours for Hyperoodon. We also excluded the 9 hour data set for Ziphius (Zc9) and the 2 hour data 

set for Hyperoodon (Ha2). Therefore, the number of dives reported in Table 2 includes all dives 

and the number within parentheses is the number of dives after excluding the initial period until 

equilibrium. Equilibrium values converged when the model was started with different initial 

conditions and the time to equilibrium was the same. 

Model A (50% bradycardia) generally showed highest PN2
 levels for Ziphius, although 

high fast tissue PN2
 levels were also seen for intermediate dives of Hyperoodon (Table 3 Model 

A). Predicted end-dive PN2
 increased linearly with mean dive depth (Fig. 2A) or dive duration 

(Fig. 2B) until a maximum at which time estimated mixed venous PN2 (PvN2
) levelled off.  

Comparing between dive classes and body compartments, end-dive PN2
 for central circulation 

increased by 107% for Mesoplodon (146% and 67%), 131% for Ziphius and 275% for 

Hyperoodon for the intermediate compared with the shallow dives ([intermediate-

shallow]/shallow x 100, Table 3). For the deep dives, end-dive PN2
 for central circulation only 

increased by an additional 1% to 34% (Table 3). Similar changes were seen for the brain, with 

end-dive PN2
 increasing substantially as depth increased (shallow to intermediate, Table 3). For 

muscle and fat, end-dive PN2
 did not change much and even decreased in some cases for deeper 

dives (Table 3).  

 

3.2. The effect of cardiac output, totQ , on estimated tissue and blood PN2
  

With enhanced diving bradycardia ( totQ , 12.5% of the surface value during diving), 

central circulation PN2
 and PvN2

 generally increased while fat PN2
 decreased in all animals and at 

all depths (Table 3, Model A vs. B).  A greater dive response (i.e. reduction in totQ ) only resulted 
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in lower end-dive PN2
’s for all body compartments for intermediate and deep dives of 

Hyperoodon (Table 3, Model A vs. B). For Mesoplodon and Ziphius results were more variable 

depending on body compartment.  

 

3.3. The effect of diving lung volume (DVL) on estimated tissue and blood PN2
  

To investigate the effect of partial inhalation on N2 levels, we varied DVL for each 

dataset and examined the effect on model output (Model A) for blood (Fig. 3) and tissue PN2
.  As 

diving lung volume was reduced, end-dive PN2
 decreased for all tissues and for PvN2

.  For the 

shallow dives, a 75% reduction in DVL reduced mixed venous PN2
 by between 12% and 19% for 

all individuals and species except Md22, for which the reduction was only 4% (Fig. 3A). The 

reduction in end-dive PN2
 for central circulation and muscle were similar to PvN2

 and ranged 

between 5% and 21%, while it was substantially higher for brain (range: 9% to 31%) and fat 

(range: 28% to 51%).  

A 75% reduction in DVL reduced PvN2
 between 16% to 43% for the intermediate depth 

dives. For the deep dives, the same reduction in DVL resulted in a reduction in PvN2
 between 

32% to 45% (Figure 3B and C). Interestingly, it appeared that end-dive PvN2
 decreased 

exponentially toward a minimum value for the shallow and intermediate dives but this became 

more or less linear for the deep dives (Fig. 3). The reduction in end-dive PN2
 for the tissue 

compartments varied between animals without any obvious trends except that as depth increased 

the relative reduction in end-dive PN2
 increased. The most notable exception was the fat 

compartment for which the reduction against DVL appeared to be relatively unaffected by the 

dive depth and when DVL was reduced by 75% the end-dive PN2
 reduction ranged between 33% 

to 49% for all depths, presumably due to the slow response time of this tissue.  

 

3.4. The effect of body mass, Mb, on estimated tissue PvN2
  

While Model A did not indicate any obvious trends in end-dive PN2
 against Mb when the 

species were compared (Table 3), we were concerned that this might be due to species-specific 

differences in dive trace profiles. We therefore ran the model for each dive trace and varied Mb 

within each (Fig. 4). As Mb decreased from 5000 kg to 100 kg, end-dive mixed venous PN2
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decreased exponentially for all depths (Fig. 4). From 5000 kg to 500 kg the reduction was linear 

by between 2% and 14% for the shallow dives (Fig. 4A), 7% to 21% for the intermediate dives 

(Fig. 4B) and 3% to 18% for the deep dives (Fig. 4C).  Muscle and brain PN2
 also decreased with 

a reduction in Mb, central circulation PN2
 decreased or increased between 17% and 27%, while 

fat PN2
 increased between 4% and 40%.  

 

3.5. The effect of ascent rate on estimated tissue and blood PN2
  

Some beaked whale dives appear to show a deceleration in the ascent rate prior to 

surfacing.  This was first noted for northern bottlenose whales (Hooker and Baird, 1999) but is 

also apparent in the near surface waters for several of the dives analyzed here.  To determine 

how such changes in ascent rate would affect end-dive PN2
, we modified one of the dives from 

the Mesoplodon 78-hour trace (Fig. 5). Model A was used to determine end-dive PN2
 for this dive 

trace before and after the ascent rate had been modified as the whale approached the surface. 

When PvN2
 > ambient N2 pressure (Pamb) bubbles may form, and the extent of the supersaturation 

is a measure of the risk of DCS (Fahlman et al., 2001). As the ascent rate increased for the 

modified dive trace, the PN2
 gradient between mixed venous blood and the ambient pressure 

increased rapidly and then decreased rapidly as the animal surfaced. A similar increase was seen 

in the partial pressure gradient for the original dive profile but here the gradient remained 

elevated as the animal slowly approached the surface. 

 

3.6. Diel variation in dive behaviour and estimated tissue and blood PN2
  

The three species varied in the extent of differences between dive profiles in the day and 

night (see examples in Fig. 1), with Cuvier’s beaked whales showing the most pronounced 

differences in decreased frequency of dives >200m, and increased frequency of dives <50m at 

night (see also Baird et al., 2008).   

There was no clear cut consistent elevation of end-dive PN2
 for day vs. night across all 

species.  The two Mesoplodon traces differed in their day/night differences in both behaviour and 

resulting end-dive PN2
 (Table 4). This was most striking for shallow dives with the 22-hour trace 

showing higher values in the day while the 78-hour trace showed higher values at night.  For the 

latter, it appears that the increase in maximum and mean dive depth, and dive duration at night 
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increased end-dive PN2
 for all tissues and mixed venous blood despite the 75% increase in the 

surface interval (Md78 N vs. D, Table 4). For the 22-hour trace, only the fast tissues and the 

mixed venous blood changed as dive depth changed without concomitant changes in dive 

duration or surface interval (Md22 shallow dives, Table 4). For Hyperoodon and Ziphius, a 

reduction in dive depth and duration during shallow dives at night reduced end-dive PN2
 for the 

slow tissues (fat and muscle).  

The intermediate dives showed some of the highest end-dive PN2
 levels, particularly for 

the fast tissues of both Hyperoodon at night and for Ziphius in the day, associated with deeper 

and longer dives (Table 4).  For the 22-hour Mesoplodon trace deep dives, end-dive PN2
 

increased in the day for fast tissues (central circulation and brain) despite lower depths and 

shorter duration dives. In contrast, the only significant increase for the 78-hour Mesoplodon trace 

deep dives was for slow tissue (fat) at night (Table 4). The number of deep dives per hour for 

Hyperoodon increased at night although the depth and duration were reduced, which resulted in 

an increase in muscle, brain and fat end-dive PN2
. 

For the shallow dives, there was a significant correlation between dive duration and the 

duration of the surface interval that followed a dive both during the night and day for Md78, Md22 

and Zc34 (P < 0.001), but there was no correlation for intermediate or deep dives (P > 0.7).  For 

Ha28 there was no relationship between dive duration and subsequent surface interval for any 

depth. 

 

4. Discussion 

This work uses gas exchange models of diving to analyze the effect of physiology (extent 

of diving bradycardia, diving lung volume and body mass) and diving behaviour (dive depth and 

duration, variation in ascent rate, and diel variation) on tissue and blood PN2
 levels and thereby 

the risk of decompression sickness in three species of beaked whales. The near impossibility of 

conducting physiological experiments on beaked whales necessitates such a modelling approach.  

Overall, our work concurs with previous modelling efforts showing that blood flow 

(Fahlman et al., 2006, 2007) and the level of pulmonary shunt (Bostrom et al., 2008; Fahlman et 

al., 2009) during diving will greatly affect blood and tissue PN2
 levels. The dive behaviour of 

Ziphius, with longer dives and shorter surface intervals compared with the other species (Table 2 



 13

and 4) resulted in estimated tissue and blood PN2
’s that were generally higher for all depth ranges 

(Zc34, Model A, Table 3). Zimmer and Tyack (2007) previously published estimated blood and 

tissue PN2
 values for a Cuvier’s beaked whale. They used the assumption that alveolar collapse is 

immediate and occurs at a pre-determined depth (~ 70 m, Zimmer and Tyack, 2007). While they 

did not report end-dive PvN2
 values, end-dive PN2

 for the central circulation reached 1.6 ATA, for 

the brain reached 1.3 ATA, and for muscle and fat reached values as high as 2.0 ATA (see Fig. 2 

in Zimmer and Tyack, 2007). Equivalent values in the current study are generally higher (Table 

3) emphasizing the importance of properly understanding how gas exchange changes with depth.  

 

4.1. The importance of long dive profile series for estimation of PvN2
 and DCS risk 

Although the deep and long dives of beaked whales are remarkable in themselves, alone 

these would be unlikely to trigger DCS.  Rather it is the accumulation of dives that would result 

in sequential increase of N2 in tissues causing a higher risk of DCS. As Scholander noted, “by 

repeated dives, conditions as regards diving disease would certainly tend to be worse on account 

of an accumulation of invaded N2. There is every reason to believe that this risk exists unless 

there is sufficient ventilation between dives” (p. 112, Scholander 1940).  

   Our analysis demonstrated that models which incorporate gas exchange within multiple 

body compartments will necessitate longer datasets particularly for larger animals. Short datasets 

are not a problem for tissues with short time constants, e.g. the central circulation and brain, as 

these tissues rapidly reach an equilibrium state in which end-dive PN2
 remains more or less 

constant (see Fahlman et al., 2006). However, tissues with a long time constant, such as fat, are 

highly dependent on the length of the data set (Fig. 1). End-dive PN2
 for these tissues slowly 

increases with each repeated dive and only reaches equilibrium after hours (Fig. 1) or even days 

(Fahlman et al., 2007).  

 It has previously been suggested that tissues with slow time constants could help buffer 

PN2
 at the beginning of a dive bout, but they would be a liability after a long bout and possibly 

lead to dive bout terminations (Fahlman et al., 2007). Consequently, these models require 

sufficient data for the N2 levels to reach equilibrium so that appropriate conclusions can be made. 

With this dataset, it took Mesoplodon 4 hrs (Md78), Ziphius 8 hrs (Zc34) and Hyperoodon 13 hrs 

(Ha28) to reach steady state values for the slow tissues (Fig. 1). The lower mass specific totQ  in 
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larger whales appears to increase the time to equilibrium and emphasizes the need for longer 

dive traces from larger species. To avoid such a bias others have increased the tissue PN2
 at the 

start of the dive trace (Zimmer and Tyack 2007).  However, it is unclear without the analysis 

presented in Fig. 1, what starting value should be chosen and we therefore do not advocate this 

approach.  

 

4.2. The effect of cardiac output, totQ  , on estimated tissue PvN2
  

 The dive response is primarily thought to extend the aerobic dive duration by conserving 

available O2 to the core (heart and brain), but it has been suggested that this redistribution  of 

blood flow is also a useful mechanism for altering inert gas uptake (Scholander 1940; Ponganis 

et al., 1999; Fahlman et al., 2007). This makes intuitive sense and one study showed that mixed 

venous PN2
 could be reduced by as much as 45% when an animal exhibited diving bradycardia 

during the descent and bottom phase with a reduced ascent rate and a pre-surface tachycardia 

(Fahlman et al., 2006). However, that study only analyzed a 1-hour dive bout consisting of 23 

dives. A more recent theoretical study, estimating tissue and blood PN2
 levels in deep diving king 

penguins during a foraging trip, showed that an increase in blood flow during diving led to an 

increased PN2
 at the end of an extended dive bout in some tissues (muscle and fat PN2

), but a 

substantial reduction in PN2
 in brain and central circulation (Fahlman et al., 2007). These 

surprising results suggest that the diving related reduction in blood flow does not always reduce 

N2 levels during repeated diving. The results in the current study suggest a similarly complex 

relationship between end-dive PN2
 and blood flow during diving.  A reduction in totQ  generally 

increased end-dive PN2
 in fast tissues while it caused a reduction in PN2

 in fat (Table 3). 

Consequently, modelling predicts that blood flow adjustment is an efficient strategy for reducing 

end-dive N2 levels in diving animals. However, as the circulatory system is also responsible for 

removing CO2 and supplying O2, blood flow changes to each tissue are a trade-off between the 

need to exchange metabolic gases and the need to reduce DCS risk. The question is to what 

extent blood flow changes are used as a means to reduce extreme PN2
 without ischemic injury 

and this will be an interesting area of research. 
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4.3. The effect of diving lung volume, DVL, on estimated tissue PvN2
  

 Adjustment of DVL can help to adjust the depth at which the alveoli collapse (Bostrom et 

al., 2008) and increase the level of the pulmonary shunt (Eq. (6A) and (6B), in Fahlman et al., 

2009), thereby reducing the N2 taken up during the dive (Kooyman and Sinnett, 1982). As most 

species of marine mammals (e.g. cetaceans, otariid seals) dive on either full or partial inhalation, 

we tested how efficient this adjustment would be for beaked whales to modify gas exchange 

during a dive. Fahlman et al. (2009) concluded that end-dive PvN2
 decreases with a decreasing 

DVAo • VD
-1 ratio and that gas exchange and the level of pulmonary shunt cannot be investigated 

separately because they are correlated. Thus, gas tensions reported from gas exchange models 

that do not account for the pulmonary shunt should be viewed with caution and conclusions from 

such studies may have to be re-assessed (Fahlman et al., 2006, 2007; Zimmer and Tyack, 2007).  

 While previous work showed that pre-dive exhalation or partial inhalation is an efficient 

way to reduce the collapse depth and thereby limit gas exchange at depth, this investigation was 

only done for a single dive (Fahlman et al., 2009). Visual observations suggest that beaked 

whales dive on inhalation (Baird and Hooker, unpublished observations), but the actual DVL is 

not known and may vary between dives. We were therefore interested in determining the extent 

to which DVA affects tissue and blood PN2
 in whales that dive repeatedly. In the current study, 

Model A suggested that a 75% reduction in DVL decreased end-dive PvN2
 by as much as 43% 

and 45% for the intermediate and deep dives, respectively (Fig. 3B and C), while the reduction 

for shallow dives was only between 6% to 19% (Fig. 3A). Consequently, pre-dive exhalation 

appears to be most efficient for reducing end-dive PN2
 during intermediate or deep dives and one 

would therefore expect larger variation in DVL during shallow dives.  

  

4.4. The effect of body mass, Mb, on estimated tissue PvN2
  

 There is an allometric relationship between Mb and resting metabolic rate (RMR), or totQ  

between species (e.g. Kleiber, 1975). As inert gas uptake and removal is affected by totQ , one 

would expect that DCS risk correlates with Mb. In fact, past studies have shown a correlation 

between DCS risk and Mb, both within and between animal species (Berghage et al., 1979; Lillo 

et al., 2002; Fahlman et al., 2006) and the allometric mass exponent between Mb and DCS risk 

was shown to be 0.79 for seven species of terrestrial mammals (Fahlman et al., 2006), ranging 



 16

from 22 g to 78 kg (Berghage, 1979). Therefore, even with similar end-dive PvN2
 levels one 

would expect larger animals to be more susceptible to DCS. Assuming the physiology of DCS is 

the same between species and that metabolic rate and totQ  scales to the same mass-exponent, it 

would be expected that Hyperoodon would be most susceptible for the same end-dive PN2
 level, 

followed by Ziphius and Mesoplodon (Table 1). In addition to physiological adjustment, i.e. dive 

related changes in DVL, totQ  and blood flow distribution, dive behaviour is another way for 

species of different size to reduce blood and tissue PN2
 and therefore reduce the risk of DCS.  

 Running Model A for a range of Mbs for each dataset allowed us to investigate if 

differences in dive behaviour affected estimated end-dive PvN2
. Irrespective of changes in Mb, 

Ziphius’ dive profile had the highest end-dive PN2
’s for each depth range (Fig. 4), suggesting that 

the dive behaviour of Cuvier’s beaked whales makes them most susceptible to suffer DCS. 

Interestingly, this is the species that appears to be particularly sensitive to anthropogenic sound 

and their diving behaviour may be an underlying factor (Cox et al., 2006).  

 In general, reduction in body size showed decreasing end-dive PN2
s for most body 

compartments, which would suggest that larger animals would be at increased risk of DCS for 

the same dive profile (Fig. 4 and 6).  However, results for central circulation were variable, and 

fat PN2
 increased with decreasing Mb.  It is possible that higher fat PN2

 in smaller animals could 

be linked to the prevalence of immature and sub-adult animals in strandings (Freitas, 2000; 

Anon., 2001; Martín et al., 2004).  Current experimental work detailing the behavioural response 

to anthropogenic sound may help shed some light on this.    

 

4.5. Calculating DCS risk  

There is a good correlation between Mb and the saturation pressure resulting in 50% DCS 

in terrestrial mammals after a rapid decompression (Berghage et al., 1979). If we assume that 

PvN2
 is a reliable measure of the overall saturation of an animal, estimated end-dive PvN2

 from 

the beaked whales allow a comparison with terrestrial species (Fig. 6). It appears that all three 

species of beaked whales live with end-dive PvN2
 levels that would result in a high incidence of 

severe DCS in terrestrial mammals. Although our estimated N2 levels probably have an 
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uncertainty of at least 20%, it is clear that these whales live with high blood and tissue N2 levels 

during most of their lives.     

How do they avoid DCS during routine diving?  One possibility is that there is a 

minimum pressure difference, or threshold, that is necessary to form bubbles from pre-existing 

nuclei (Tikuisis and Gerth, 2003). For example, in a 70 kg human the PN2
 saturation pressure to 

cause 50% DCS was 2.2 ATA while in a 1000 kg, 2000 kg and 5000 kg animal the predicted 

values were, respectively 1.3 ATA, 1.1ATA and 0.9 ATA, values not very different from Pamb at 

the surface (0.74 ATA). If we assume that the relationship holds for end-dive PvN2
 for large 

whales (Mb > 1000 kg), this would have resulted in a 50% DCS incidence for the intermediate 

and deep dives for all species. It has been shown that repeated decompression stress in terrestrial 

mammals reduces DCS risk (Montcalm-Smith et al., 2005). Consequently, the DCS incidence in 

Fig. 6 is probably much less in acclimated animals such as deep diving whales.  

 Although beaked whales appear to dive on inhalation (Hooker and Baird, unpublished 

observations), this may not be a full inhalation. If DVL were 50% of TLC, this would reduce 

end-dive PvN2
 for Ziphius during deep dives by 25% (Fig. 3C) resulting in an end-dive PN2

 of 

1.96 ATA. This is still a high saturation partial pressure, but because of the sigmoidal shape of 

the DCS risk curve against saturation pressure (Dromsky et al., 2000), small changes in inert gas 

load (5%) result in large changes in DCS risk (50%,Fahlman et al., 2001; Fahlman and Kayar, 

2003).  

 

4.6. Ascent rate 

 Decompression sickness research on terrestrial mammals shows a distinct relationship 

between ascent rate and DCS risk (Flynn and Lambertsen, 1971; Fahlman and Kayar, 2003). In 

the mouse, the decompression rate from 13.8 ATA to 1 ATA resulting in a 50% DCS was ~ 0.58 

ATA • sec-1, or 5.8 m • sec-1 (see Fig. 9 in Flynn and Lambertsen, 1971). As the decompression 

rate was reduced to 0.13 ATA • sec-1 (1.3 m • sec-1), an ascent rate similar to those reported in 

these three species of beaked whales (Hooker and Baird, 1999; Baird et al., 2006, 2008), the 

incidence decreased to ~ 28% (Flynn and Lambertsen, 1971). 

Modelling efforts on diving mammals, on the other hand, have reported divergent results 

when investigating the effect that changes in ascent rate has on tissue and blood PN2
 (Houser et 

al., 2001; Fahlman et al., 2006, 2007; Zimmer and Tyack, 2007). Fahlman et al. (2006) 
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suggested that a reduction in the ascent coupled with an increase in totQ  close to the surface 

could reduce PvN2
 by as much as 45%. Zimmer and Tyack (2007), on the other hand, reported 

that an increase in the ascent rate after a deep dive from 1 m • sec-1 to 20 m • sec-1 actually 

decreased end-dive tissue PN2
.  

For the data in Fig. 5 the ascent was increased at a depth of 15 m (2.5 ATA) and the 

animal rapidly (within a few seconds) decompressed to the surface (1 ATA). The spike in 

supersaturation that results from a more rapid ascent rate may overcome the threshold necessary 

to initiate bubble formation and growth while a more gradual ascent keeps tissue PN2
 at a 

moderate level above Pamb, reducing the risk of bubble formation (Fig. 5). Thus, the effect of 

changes in ascent rate will differ depending on the blood and tissue PN2
 and the ambient pressure 

(depth). When tissue PN2
 < Pamb, the ascent rate should be high to prevent further uptake of N2. 

When tissue PN2
 > Pamb the risk increases for bubbles to form and grow (Tikuisis and Gerth, 

2003). At this time, a reduction in the ascent rate helps to safely remove N2 from the tissues. 

Consequently, the effect of changes in ascent or descent rate is complicated and depends on 

several variables. An increase in ascent rate could either increase or decrease end-dive PvN2
. 

While some diving species reduce their ascent rate as they approach the surface, possibly to 

reduce end-dive PvN2
 levels (e.g. penguins and elephant seals, Fahlman et al., 2006), beaked 

whales have the lowest ascent rates in midwater between 300 m and 600 m (Tyack et al., 2006). 

This suggests that beaked whales either do not experience tissue and blood PN2
 levels that put 

them at risk of DCS or that they have other strategies to deal with an excessive N2 load. In 

Cuvier’s and Blainville’s beaked whales, Tyack et al. (2006) noticed that deep foraging dives 

were commonly followed by a series of shallower dives. This dive behaviour has been suggested 

as an alternate strategy to deal with elevated N2 levels and help reduce DCS risk (Fahlman et al., 

2007). Thus, diving mammals and birds may use different strategies to deal with excessive levels 

of N2 and the choice may depend on the need to also exchange O2 and CO2 (Fahlman et al., 

2009). 

The natural dive profiles of marine mammals are less severe than those used in DCS 

research using terrestrial animals as models. Nevertheless, our results suggest that beaked whales 

probably live with N2 levels that would elicit DCS in non-diving mammals. That diving marine 

mammals at least experience N2 levels that would result in bubble formation during an 
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immediate ascent has been empirically shown in bycaught animals where bubbles were observed 

while stranded animals showed little evidence of bubbles (Moore et al., 2009). If the natural 

diving behaviour of these whales is significantly altered this could well result in DCS symptoms. 

 

4.7. Diel variation in dive behaviour and estimated tissue and blood PN2
  

Changes in diving behaviour between day and night are relatively common and often 

associated with diel changes in prey distribution. Although not thought to be related to changes 

in prey distribution, Baird et al. (2008) reported that Blainville’s and Cuvier’s beaked whales 

spend proportionally more time at in shallow depths (< 100 m) at night.  If such behavioural 

changes affect PN2
 levels and DCS risk, this could present a simple mitigation avenue if 

disturbing whales is less likely to have dangerous consequences at night vs. in the day, for 

example.  

 In this study, the data showed a clear diel divergence in dive depth and duration for all 

species, and these were also apparent in the estimated tissue and blood PN2
 (Table 4). Notable 

was the change in dive mode for Ziphius in which deep dives (> 200 m) were more common 

during the day while shallow dives (< 50 m) were more common at night (Table 4). Unlike 

Mesoplodon and Hyperoodon, Ziphius showed few diel changes in maximum and mean dive 

depth and duration within each dive category, yet their behaviour resulted in higher blood and 

tissue PN2
 levels during the day (Table 4).  

 The much higher estimated blood and tissue PN2
 in Ziphius compared with either 

Mesoplodon or Hyperoodon (Figs. 3, 4 and 6), indicate that mean dive depth and duration is a 

poor index for estimating DCS risk and that more subtle behavioural differences exist that 

differentiate diving physiology in these species. In other words, looking at the dive 

characteristics alone (depth and dive duration) is less useful than to investigate the dive trace as a 

whole. Although longer dives or shorter surface intervals will result in elevated levels of N2, it 

appears that fat PN2
 in beaked whales reaches a more or less steady value during natural dives 

(Fig. 1). Thus, each dive and surface interval will only have an effect against a background 

“reservoir” PN2
 level.  Therefore, for modelling efforts to be useful at unravelling the 

physiological constraints, real dive profiles encompassing diel changes as well as seasonal 

alterations in dive behaviour need to be considered.  
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 It has been proposed that short and shallow dives following a series of deep dives may 

serve to reduce tissue and blood supersaturation (Pamb - PN2
) and thereby DCS risk (Fahlman et 

al., 2006, 2007, 2009). To reduce DCS risk, the shallow decompression dives need to be deep 

enough to reduce supersaturation but shallow enough to allow removal of N2 (Fahlman et al., 

2007). Such dive behaviour was observed in both Mesoplodon (Fig. 1A e.g. short shallow dives 

following the deep and long dive ending at 19:43) and Ziphius (Fig. 1B), but less so in 

Hyperoodon (Fig. 1C). This agrees with the dive data reported by Tyack et al (2006) where it 

was reported that both Mesoplodon and Ziphius perform very shallow dives (< 20 m) in the 

period between deep dives. Thus, this dive behaviour could possibly be an important feature to 

reduce supersaturation and bubble formation in Mesoplodon and Ziphius. If sonar activity 

interrupts this behaviour this could result in a higher risk of DCS.  

 

4.8. Additional adaptations to reduce DCS risk?   

The interplay between diving lung volume, gas exchange within different body 

compartments, the extent of bradycardia, and alterations in dive depth, duration and dive history 

suggest that, despite some leeway, beaked whales generally live with elevated blood and tissue 

N2 levels, and therefore a high risk of DCS.  Yet it is only under unusual circumstances that DCS 

symptoms are observed, suggesting the possibility that they may have additional specialized 

adaptations to reduce DCS risk during their normal diving routine.  Research has shown a 

potential link between bubbles and nitric oxide levels in terrestrial mammals (Wisloff et al., 

2004; Mollerlokken et al., 2006). It has been suggested that nitric oxide alters the endothelial 

interface and reduces bubble nuclei, thereby preventing formation of bubbles. It is possible that 

diving marine mammals and birds have a vascular anatomy that prevents bubble nuclei forming 

or that they have elevated levels of nitric oxide during diving that reduces the likelihood of 

bubble formation. A better understanding of the physiology of these animals will be important to 

determine the reasons for the apparent relationship between anthropogenic noise and mass 

strandings (Cox et al., 2006). Such knowledge may also result in important information to 

prevent DCS in human divers.  

 

4.9. Summary 



 21

 While management of O2 has been the central tenet in understanding what limits the 

duration of a dive, our current modelling effort suggests that deep diving whales permanently 

live with blood and tissue PN2
 levels that elicit a high incidence rate of DCS in terrestrial 

animals. Thus, it is possible that diving mammals may have to end foraging at times when the N2 

levels become too high. The dive behaviour of Ziphius was different from both Mesoplodon and 

Hyperoodon, and resulted in higher predicted tissue and blood N2 levels. While the prevalence of 

Cuvier’s beaked whales stranding after naval sonar exercises could be explained by a higher 

abundance of this species in the affected areas, our results suggest that species differences in 

behaviour and/or physiology may also play a role.  
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Table 1. Estimated body mass (kg), metabolic rate (
2OV , l O2 • min-1) and O2 store (l) for the 

central circulation (CC), muscle (M), brain (B), fat (F), lung (L), and blood (Bl) compartments 
for Blainville's beaked whale (Mesoplodon densirostris), Cuvier's beaked whale (Ziphius 
cavirostris) and northern bottlenose whale (Hyperoodon ampullatus). 
 

Genus Body 
mass 
(kg) 

Metabolic rate 
(l O2 • min-1) 

O2 store (l) 

  CC M B F Total CC M B F L Bl Total 
Mesoplodon 1000 0.6 0.7 0.04 0.08 1.4 0.05 41 0.02 1.7 3.1 61 106 

Ziphius 2050 1.0 1.2 0.06 0.14 2.4 0.1 84 0.04 3.6 6.4 124 218 
Hyperoodon 5000 2.0 2.4 0.12 0.27 4.8 0.2 204 0.10 8.7 16 303 532 
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Table 2. Animal code, logger attachment duration (Duration), number of dives (n), mean (Median values are presented within 
parentheses) dive duration (DD), surface interval duration (SI), maximum (Max) and mean depth (Mean) for dive data used for 
estimation of tissue and blood N2 tensions for two Blainville's beaked whales (Mesoplodon densirostris, Baird et al., 2006, 2008), two 
Cuvier's beaked whales (Ziphius cavirostris, Baird et al., 2006, 2008) and two northern bottlenose whales (Hyperoodon ampullatus, 
Hooker and Baird 1999).  A dive was defined as a submergence to a depth > 5 m for > 10 sec. Shallow dives were > 5 m and ≤ 50 m, 
intermediate dives were > 50 m and ≤ 200 m, and deep dives were > 200 m. Number of dives in parentheses follows removal of the 
initial PN2

 equilibrium period (see text for details). 

Animal 
code 

Duration 
(h) 

Shallow dives Intermediate dives Deep dives 

  n DD     
(min) 

SI 
(min) 

Max 
(m) 

Mean 
(m) 

n DD 
(min) 

SI 
(min) 

Max 
(m) 

Mean 
(m) 

n DD 
(min) 

SI    
(min) 

Max 
(m) 

Mean (m) 

 
Md22 

 
22 

 
108 

(105) 

 
4.5±3.6 

 
0.3±0.6 

 
16±9 

 
10±6 

 
18 

(12) 

 
10.1±2.6 

 
0.2±0.3 

 
119±48 

 
72±30 

 
11 
(7) 

 
38.9±17.4 

 
1.3±1.0 

 
886±424 

 
537±263 

 
Md78 

 
78 

 
186 

(186) 

 
6.9±5.5 

 
1.6±1.3 

 
25±15 

 
18±12 

 
62 

(58) 

 
12.4±2.6 

 
2.1±1.7 

 
101±51 

 
63±32 

 
46 

(39) 

 
40.1±16.8 

 
1.9±1.6 

 
818±407 

 
509±243 

                 
Zc34 34 70 

(64) 
5.0±7.1 0.5±0.8 19±11 12±8 6   

(5) 
12.2±6.3 0.7±0.9 64±15 48±12 32 

(24) 
45.2±24.2 1.4±1.0 716±459 468±278 

                 
Ha2 2 9 

(0) 
1.8±1.4 1.2±1.1 11±2 7±1 5 

(0) 
9.0±2.6 1.2±1.4 106±21 60±20 3 

(0) 
18.9±7.5 0.04±0.03 475±322 259±181 

 
Ha28 

 
28 

 
120 
(73) 

 
1.7±1.7 

 
1.6±1.6 

 
14±10 

 
6±6 

 
18 
(8) 

 
9.2±2.9 

 
1.6±0.9 

 
113±43 

 
73±32 

 
24 

(11) 

 
34.9±10.9 

 
1.3±0.6 

 
992±347 

 
585±179 
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Table 3. Sensitivity analysis of standard model (A: 50% bradycardia) and that with more extensive dive response (B: 12.5% 
bradycardia) on N2 levels in each of the four tissue compartments and mixed venous blood (V). Tissue compartments are central 
circulation (CC), muscle (M), brain (B), fat (F). See text for details on the variation of physiological variables for each model. Dive 
data sets used were a 78 hour (Md78) and a 22 hour (Md22) trace for Blainville's beaked whales, a 34 hour (Zc34) trace from a Cuvier's 
beaked whale and a 28 hour (Ha28) trace from a northern bottlenose whale.  
 

   Mean end-dive PN2
 (ATA) 

ID Model Body mass (kg) Dives < 50 m Dives > 50 m and Dives < 200m Dives > 200 
   CC M B F V CC M B F V CC M B F V 

Md22 A 1000 1.5 1.0 1.6 2.4 1.2 3.8 1.1 4.2 2.7 2.0 3.8 1.1 4.0 2.6 2.0 
Md78 A 1000 1.9 1.0 2.1 3.1 1.3 3.2 1.1 3.6 3.3 1.8 4.3 1.1 4.4 3.3 2.2 
Zc34 A 2050 1.8 1.3 1.8 3.3 1.5 4.1 1.5 4.2 3.6 2.4 4.9 1.5 5.0 3.7 2.6 
Ha28 A 5000 1.2 1.0 1.6 3.0 1.1 4.6 1.0 4.7 3.0 2.2 4.8 1.0 4.7 3.1 2.2 

  Mean 1.6 1.1 1.8 2.9 1.3 3.9 1.2 4.2 3.2 2.1 4.4 1.2 4.6 3.2 2.2
Md22 B 1000 1.6 1.1 1.6 1.9 1.3 4.4 1.2 4.1 1.9 2.2 5.5 1.1 4.6 2.0 2.6 
Md78 B 1000 2.1 1.1 2.3 2.6 1.5 4.2 1.2 4.0 2.6 2.2 5.5 1.1 5.1 2.6 2.5 
Zc34 B 2050 1.6 1.5 2.1 2.4 1.6 3.7 1.7 3.7 2.4 2.4 6.2 1.7 5.5 2.8 3.1 
Ha28 B 5000 1.0 1.0 1.6 1.9 1.0 3.8 1.0 3.0 1.9 1.9 4.8 0.9 3.9 1.9 2.1 

  Mean 1.6 1.2 1.9 2.2 1.3 4.0 1.3 3.7 2.2 2.2 5.5 1.2 4.8 2.3 2.6
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Table 4. Animal identification (ID), number of dives (n) during day (D) or night (N), mean maximum dive depth (Max, m), mean depth 
(Mean, m), mean dive duration (DD, min), mean surface interval duration (SI, min), estimated tissue and mixed venous (V) PN2

 (ATA) 

for central circulation (CC), muscle (M), brain (B), fat (F) using Model A (50% bradycardia) for a 78 hour (Md78) and a 22 hour (Md22) 
Blainville's beaked whale dive trace, a 34 hour (Zc34) Cuvier's beaked whale dive trace and a 28 hour (Ha28) northern bottlenose whale 
dive trace. †P < 0.05 between night and day, ‡ P < 0.1. Number of dives is that after removing dives before equilibrium.  

   Depth range 
Dives < 50 m    

ID n Day/Night Max Mean DD SI CC M B F V 
Md22 37 D 19±10 13±7 4.4 ± 3.2 0.3 ± 0.5 1.7±0.6 1.0±0.1 1.8±0.7 2.4±0.3 1.3±0.2 
Md22 68 N 14±9† 9±5† 4.5 ± 3.8 0.4 ± 0.6 1.4±0.4† 1.0±0.1 1.5±0.5† 2.3±0.3 1.1±0.2†
Md78 117 D 19±12 13±8 5.2 ± 5.0 1.2 ± 1.0 1.6±0.7 1.0±0.1 1.7±0.7 3.0±0.2 1.2±0.2 
Md78 69 N 35±14† 26±12† 9.8 ± 5.0† 2.1 ± 1.5† 2.5±0.8† 1.1±0.1† 2.7±0.8† 3.1±0.3† 1.5±0.3†
Zc34 13 D 22±9 14±6 1.5 ± 0.9 0.2 ± 0.2 1.7±0.7 1.4±0.2 1.7±0.5 3.7±0.5 1.5±0.3 
Zc34 51 N 18±11 12±9 5.9 ± 7.8  0.6 ± 0.9 1.7±0.8 1.3±0.1† 1.8±0.8 3.2±0.3† 1.4±0.3 

Ha28 44 D 14±9 7±6 1.8 ± 1.8 1.4 ± 1.2  1.2±0.5 1.0±0.1 1.6±0.6 2.9±0.6 1.1±0.2 
Ha28 29 N 13±10 6±7 1.4 ± 1.4‡ 2.0 ± 2.0 1.1±0.6 1.0±0.2‡ 1.7±0.7 2.6±0.5† 1.1±0.2 

   Dives > 50 m and < 200m 
 n  Max Mean DD SI CC M B F V 

Md22 7 D 138±38 80±26 10.4 ± 2.3 0.1 ± 0.1 3.4±0.7 1.1±0.1 3.9±0.7 2.4±0.4 1.8±0.3 
Md22 5 N 88±47† 59±34 9.8 ± 3.3 0.3 ± 0.4 3.8±0.9 1.2±0.1 4.1±0.9 2.7±0.4 2.0±0.4 

Md78 30 D 126±50 76±35 12.2 ± 2.5 1.8 ± 1.1 3.3±0.7 1.1±0.1 3.8±0.7 3.2±0.3 1.8±0.2 
Md78 28 N 72±33† 47±18† 12.8 ± 2.6 2.5 ± 2.0‡ 3.2±0.5 1.1±0.1 3.5±0.6† 3.3±0.2 1.8±0.2 

Zc34 2 D 74±18 58±10 18.7 ± 4.6 1.8 ± 0.1 4.7±0.6 1.6±0.2 4.9±0.5 4.0±0.8 2.6±0.2 
Zc34 3 N 60±14 43±10 8.9 ± 4.2 0.2 ± 0.2 3.9±0.6 1.5±0.2 3.9±0.8  3.4±0.2 2.2±0.3 
Ha28 4 D 81±14 51±8 8.8 ± 2.1 1.6 ± 0.5 4.4±0.4 1.0±0.1 4.5±0.4 3.0±0.6 2.1±0.1 
Ha28 4 N 146±36† 94±32† 9.6 ± 3.6 1.2 ± 0.3‡ 5.1±0.7† 1.1±0.1† 5.1±0.5† 3.3±0.4† 2.4±0.3†

   Dives > 200 m 
 n  Max Mean DD SI CC M B F V 

Md22 5 D 730±447 419±246 33.4 ± 19.3 1.2 ± 1.0 4.0±0.4 1.0±0.1 4.2±0.4 2.2±0.7 2.0±0.2 
Md22 2 N 1159±205‡ 745±139† 48.6 ± 7.8‡ 1.6 ± 1.0 3.4±0.2† 1.1±0.1 3.7±0.1† 2.4±0.4 1.8±0.1 

Md78 22 D 730±491 437±281 34.4 ± 19.0 1.5 ± 1.4 4.2±0.4 1.1±0.1 4.4±0.4 3.0±0.6 2.1±0.2 
Md78 17 N 944±193† 612±120† 48.2 ± 1.7† 2.6 ± 1.7† 4.3±0.2 1.2±0.1‡ 4.4±0.2 3.4±0.2† 2.2±0.1 

Zc34 17 D 666±509 419±293 43.5 ± 25.5 1.5 ± 1.0 4.6±0.7 1.5±0.3 4.7±0.7 3.5±0.9 2.5±0.4 
Zc34 7 N 844±275 594±196‡ 49.7 ± 21.2 1.1 ± 1.0 4.8±0.4 1.3±0.1 5.0±0.3 3.2±0.3 2.5±0.1 

Ha28 4 D 1230±190 704±97 39.4 ± 11.2 1.3 ± 0.6 4.7±0.6 1.0±0.1 4.5±0.4 2.7±0.8 2.2±0.2 
Ha28 7 N 753±301† 467±165† 30.4 ± 8.9† 1.2 ± 0.6 4.8±0.4 1.1±0.1† 4.8±0.3‡ 2.8±0.4 2.3±0.2 
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Figure legends.  
Fig. 1. Dive trace for: (A) Blainville’s beaked whale (Md78); (B) Cuvier's beaked whale (Zc34); 
(C) northern bottlenose whale (Ha28); and (D) estimated fat PN2

 against time of dive trace 

showing the time to equilibrium (broken vertical lines) for each of these.    
 
Fig. 2. Estimated end-dive mixed venous PN2

 against (A) mean dive depth or (B) dive duration 

for each of the dive traces.  
 
Fig. 3. Average predicted end-dive mixed venous PN2

 (ATA) against proportion of diving lung 

volume (% of maximum) for the entire dive trace for (A) shallow (B) intermediate and (C) deep 
dives for two Blainville's beaked whales (Md22 and Md78), one Cuvier's beaked whale (Zc34) and 
one northern bottlenose whale (Ha28).    
 
Fig. 4. Average predicted end-dive mixed venous PN2

 (ATA) against varying body mass (kg) for 

the entire dive trace for (A) shallow (B) intermediate and (C) deep dives for two Blainville's 
beaked whales (Md22 and Md78), Cuvier's beaked whale (Zc34) and northern bottlenose whale 
(Ha28).    
 
Fig. 5. One 15 min dive to 160 m from a 78 hour dive record from Blainville’s beaked whale 
showing (A) pressure against time and (B) pressure during the ascent (solid black line). The 
black dotted line is for a hypothetical dive in which the ascent rate is maintained rather than 
decreased as the whale approaches the surface. The solid and dotted lines are predicted mixed 
venous PN2

 for the actual and hypothetical dive trace, respectively, while the blue solid and 

dotted line is the instantaneous risk. The instantaneous risk was described based on the pressure 
history of the dive and the estimated mixed venous N2 tension (PvN2

) and defined as; r = (PvN2
 – 

Pamb) • Pamb
 -1, where r is the instantaneous risk. By this definition, r is 0 at any time when PvN2

 < 

Pamb (Fahlman et al., 2001). 
 
Fig. 6. Estimated N2 saturation pressure (ATA) that would result in 50% decompression sickness 
(DCS) in a range of terrestrial animals after a rapid decompression (Flynn et al., 1971; Berghage 
et al., 1979). Black circles are tissue saturation PN2

 for terrestrial animals. The solid line indicates 

the best fit regression logED50 = 0.730 – 0.205 • logMb. Open and grey symbols are average 
mixed venous inert gas tension (PvN2

) for Blainville's beaked whale (Md78), Cuvier's beaked 

whale (Zc34) and northern bottlenose whale (Ha28) using Model A. 
 
 
 
 
 
 
 
 
 
 
 



 30

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Appendix 
A typographical error was discovered in Eq. 5 in Fahlman et al. (2009). The equation used in this 
and the previous study (Fahlman et al., 1990) to estimate totQs  was  









  25.0

-0.25

tottot 34

M
QsQs b

HS


          

 

where HStotQs  is totQs  from the harbour seal (8.0 ml kg−1 s−1, Ponganis et al., 1990), 34 the 

assumed Mb of the harbour seal and Mb the mass of the species of beaked whale. 
 
 
 
 


