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ABSTRACT 

Marine dissolved organic matter (DOM) is one of the most heterogeneous and largest pools of 

reactive carbon on earth, rivaling in mass the carbon in atmospheric carbon dioxide. 

Nevertheless, the molecular-level composition of marine DOM has eluded detailed description, 

impeding inquiry into the specific mechanisms that add or remove compounds from the DOM 

pool. Here we describe the molecular-level composition of C18-extracted DOM along an east-

west transect of the North Atlantic Ocean. We examine the changes in DOM composition along 

this transect with ultrahigh resolution mass spectrometry and multivariate statistics. We use 

indicator species analysis (ISA) to identify possible source markers for photochemical 
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degradation and heterotrophic bacterial metabolism. The inclusion of ISA in statistical evaluation 

of DOM mass spectral data allows investigators to determine the m/z values associated with 

significant changes in DOM composition. With this technique, we observe indicator m/z values 

in estuarine water that may represent components of terrestrially-derived chromophoric DOM 

subject to photo-chemical degradation. We also observe a unique set of m/z values in surface 

seawater and show that many of these are present in pure cultures of the marine -

proteobacterium Candidatus Pelagibacter ubique when grown in natural seawater.   These 

findings indicate that a complex balance of abiotic and biotic processes controls the molecular 

composition of marine DOM to produce signatures that are characteristic of different 

environments.   
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1  INTRODUCTION 

Dissolved organic material (DOM) is the most heterogeneous and dynamic pool of 

carbon in the oceans. DOM plays a fundamental role in the global carbon cycle as one of the 

largest reservoirs of reduced carbon on the earth’s surface. At ~700 Tg it is comparable in 

magnitude to atmospheric carbon dioxide (~750 Tg - HEDGES, 2002). Bulk measurements and 

compound-specific assays have shown that the concentration and composition of DOM are 

affected by numerous biotic and abiotic processes such as photosynthesis (MARANON et al., 

2004), heterotrophic microbial metabolism (AZAM and CHO, 1987) and photochemistry (MOPPER 

et al., 1991). These processes are inextricably linked, each affecting individual components of 

DOM to a different extent, culminating in the observed heterogeneity of DOM (NAGATA, 2000; 

OBERNOSTERER and BENNER, 2004; MCCALLISTER et al., 2005).  

Elucidation of the molecular structure of DOM components is critical for a mechanistic 

understanding of the global carbon cycle and thus has been the subject of scientific inquiry for 

decades (HEDGES, 2002). Spectroscopic techniques have been effectively employed to examine 

bulk (or aggregate) changes within DOM and its fractions. For example, nuclear magnetic 

resonance (NMR) spectroscopy was used to characterize the composition of functional groups in 

bulk DOM (HATCHER et al., 1980). Later, absorption and fluorescence spectroscopy provided 

key information on the wide-scale distribution of chromophoric DOM (CDOM), its effect on the 

aquatic light field and its photochemical fate (BLOUGH and DEL VECCHIO, 2002; NELSON and 

SIEGEL, 2002). These techniques, however, are limited in their ability to probe the contributions 

and dynamics of individual molecules.  

Examination of intact individual molecules in DOM has proved challenging, leading 

researchers to focus on analyses of biopolymer sub-units such as lignin phenols (MEYERS-
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SCHULTE and HEDGES, 1986), amino acids (AMON et al., 2001) and neutral sugars (ALUWIHARE 

et al., 2002) to gauge the overall quantity and reactivity of the structurally-diverse lignins, 

proteins and polysaccharides.  However, the dynamics of biopolymer subunits does not fully 

represent the chemistry of the parent macromolecules.  Non-polar molecules such as lipids and 

n-alkanes have been analyzed directly, without fragmentation, by gas chromatography (GC). 

Concentrations and transformation rates of these compounds have provided tantalizing insights 

into the DOM cycle (e.g., MANNINO and HARVEY, 1999), but these compounds are a minor 

component of the overall DOM pool. Until recently, comparable analytical tools for polar and 

semi-polar molecules within DOM have been missing. 

The advent of electrospray ionization coupled to mass spectrometry has provided the 

opportunity to characterize intact polar molecules within DOM and to explore their reactivity 

within biogeochemical processes. Electrospray ionization (ESI) is a “soft” ionization technique 

with low incidence of fragmentation for natural organic matter (NOM) molecules (ROSTAD and 

LEENHEER, 2004). ESI coupled to ultrahigh resolution instruments such as Fourier-transform ion 

cyclotron resonance (FT-ICR) mass spectrometers has been used to characterize NOM collected 

from freshwater systems (e.g., KIM et al., 2006a; SLEIGHTER and HATCHER, 2008; SLEIGHTER et 

al., 2008), the coastal ocean (e.g., TREMBLAY et al., 2007), the open ocean (e.g., DITTMAR and 

KOCH, 2006; KOCH et al., 2008), and laboratory-based biogeochemical studies (e.g., KUJAWINSKI 

et al., 2004). Altogether, these investigations have provided unprecedented detail regarding the 

composition of thousands of individual compounds within the polar fraction of DOM 

(KUJAWINSKI et al., 2002; STENSON et al., 2003; KOCH et al., 2005). Like the others listed above, 

this technique has limitations as a tool for DOM characterization. Compounds that are not ions in 

aqueous solution are not detected, and ancillary analyses such as MS/MS fragmentation are 
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required to identify structural isomers.  Nonetheless, the ultrahigh resolution and mass accuracy 

of ESI FT-ICR MS provides molecular masses that are accurate to within 1ppm, which often 

enables the determination of elemental formulae from the mass measurement alone (KIM et al., 

2006b). Thus, ESI FT-ICR MS can be used effectively to detect mass changes within a suite of 

DOM molecules and subsequently to resolve the molecular-level impact of different 

biogeochemical processes on DOM composition. Here we examine two such processes, 

photochemistry and microbial metabolism, in marine DOM. 

Heterotrophic bacterial metabolism and photochemistry are arguably two of the most 

important biogeochemical pathways for transforming organic matter in the surface oceans 

(HANSELL and CARLSON, 2002) and are often inter-dependent (MORAN and ZEPP, 1997; MOPPER 

and KIEBER, 2002). Photochemical degradation of terrestrial chromophoric DOM is an important 

removal process within coastal environments, but has been difficult to study on a molecular 

level. CDOM substantially affects the aquatic light field, but lack of structural information has 

limited understanding of the reactions and rates that govern CDOM distribution. Previous work 

has shown that CDOM along the North Atlantic margin is derived primarily from terrestrial 

sources and its primary sink is photodegradation (VODACEK et al., 1997; DEL VECCHIO and 

BLOUGH, 2004b; VAILLANCOURT et al., 2005). Terrestrially-derived CDOM is largely resistant to 

microbial degradation (MORAN et al., 2000). However, during photochemical degradation, low-

molecular-weight compounds (KIEBER, 2000) and nutrients (BUSHAW et al., 1996; MOPPER and 

KIEBER, 2002) are commonly produced with a concomitant decrease in the molecular size of 

CDOM. Many photochemical products are readily consumed by bacteria (KIEBER et al., 1989) 

and thus stimulate bacterial growth (MOPPER and KIEBER, 2002). Photochemistry can also inhibit 
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the microbial consumption of algal-derived DOM (BENNER and BIDDANDA, 1998; TRANVIK and 

KOKALJ, 1998), presumably through structural modifications of existing biomolecules.  

Ecological theory presupposes that diversification of microbial taxa can be a consequence 

of resource specialization, but very little is known about interactions between specific 

microorganisms and the field of compounds that comprise DOM. Some studies have examined 

the production of DOM by microbes with bulk measurements or compound-specific assays (see 

review in NAGATA, 2000). Detailed analyses of biologically-produced DOM have been 

constrained by analytical challenges and thus have focused on compounds such as amino acids, 

sugars and other biopolymer subunits. The study of bacterial utilization of DOM has been 

limited similarly. Some studies examined decreases in bulk DOM concentrations or the loss of 

particular substrates. Although these studies yielded insights into DOM cycling, they lacked the 

power to broadly resolve new and unforeseen interactions between marine microorganisms and 

specific compounds.  

Ultrahigh resolution mass spectrometry such as ESI FT-ICR MS is the first tool that has 

the power to broadly resolve biogeochemical alteration of DOM at a molecular level. Numerous 

investigators have now used ESI FT-ICR MS to compare DOM from different sources in 

freshwater systems (e.g., TREMBLAY et al., 2007; SLEIGHTER and HATCHER, 2008; SLEIGHTER et 

al., 2008) and open ocean environments (e.g., DITTMAR and KOCH, 2006; KOCH et al., 2008). 

Here, we focus on those studies that examined photochemical or microbial degradation of DOM. 

For example, Kujawinski et al. (2004) showed that elemental formulae with relatively high 

aromatic character and low oxygen number were preferentially removed during photochemical 

degradation of riverine DOM. Likewise, aromatic compounds such as condensed hydrocarbons 

and lignin-derived humic materials were lost from mangrove DOM (TREMBLAY et al., 2007) and 
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riverine DOM (GONSIOR et al., 2009) during outwelling to coastal estuaries. Both sets of authors 

ascribe their observations to photochemical degradation during estuarine mixing.  

In contrast to photochemistry, few studies on microbial utilization or production of DOM 

have utilized ESI FT-ICR MS. One such study showed that bacteria produce different DOM 

mass spectral signatures in the presence and absence of protozoan grazing (KUJAWINSKI et al., 

2004). However, this work was conducted in laboratory culture and its results may not be 

representative of field conditions. Tantalizing evidence of the microbial impact on DOM 

composition was acquired with lower resolution ESI mass spectrometry (SEITZINGER et al., 

2005), but this technology lacked the mass resolution to assign empirical formulae to the 

compounds involved in microbial-DOM interaction. In short, direct structural identification of 

the compounds within DOM that are utilized by bacteria, that absorb solar radiation, and that are 

produced as a result of microbial or photochemical processing has yet to be achieved, but is 

critical for a comprehensive understanding of DOM cycling within the oceans.  

 Here we combine ultrahigh resolution mass spectrometry with spectroscopy and 

microbiology to explore changes in C18-extracted DOM composition along a transect of the 

North Atlantic Ocean. We isolated ~2200 unique m/z features with ultrahigh resolution mass 

spectrometry and used multivariate statistics to compare DOM composition across a gradient of 

terrestrial input. We adapted Indicator Species Analysis (ISA) to identify tentative markers for 

terrestrially-derived CDOM and microbial DOM. Elemental formulae were assigned to most of 

the marker m/z values and the resulting elemental compositions were consistent with previous 

models of photo-active molecules and microbial exudates. Many marker m/z values from the 

surface ocean samples were also present in DOM extracted from pure cultures of Candidatus 

Pelagibacter ubique grown in sterilized seawater.  
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2 METHODS 

2.1 Cruise sample collection  

Samples were collected on a cruise in September 2005 along an east-west transect from the 

head of the Delaware River to the Sargasso Sea (station locations in Table 1). Water was 

collected by Niskin bottles on a Conductivity-Temperature-Depth (CTD) rosette at selected 

depths (Table 1). Water was acidified to pH 2-3 with HCl and DOM was extracted with C18 

cartridges (Mega Bond Elut, by UTC). The cartridges were pretreated with 100 mL of high 

purity MeOH followed by 50 mL of acidified (pH 2) Milli-Q water prior to extraction. Each 

sample (20 L) was pre-filtered through a 0.2 m bell-filter, acidified to pH 2, and pumped 

through the C18 cartridge at 50 mL min-1. Each cartridge was then rinsed with 1 L of acidified 

(pH 2) Milli-Q water to remove salts and stored in the refrigerator (4°C) until further processing. 

DOM was extracted with 50 mL of high purity MeOH: the first fraction (DOM eluted with the 

first 5 mL) was not employed for this analysis; the second fraction (DOM eluted with 45 mL of 

MeOH) was collected and evaporated to dryness under vacuum at 30-35°C. The dried material 

was redissolved in Milli-Q water, neutralized with diluted NaOH and stored frozen until further 

analysis. Other investigators have shown that 30-60% of DOM is extracted by this technique in 

riverine and open ocean environments (KIM et al., 2003b; TREMBLAY et al., 2007; DITTMAR et 

al., 2008). Higher extraction efficiencies have been reported for riverine samples compared to 

marine samples. We estimate a range of 30-50% extraction efficiency in our samples based on 

absorbance measurements (at 250-350 nm) of DOM pre- and post-extraction. 
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2.2 P. ubique sample collection  

Candidatus Pelagibacter ubique (HTCC1062), a member of the SAR11 clade of -

proteobacteria (RAPPÉ et al., 2002), was grown in sterilized seawater (collected from the Oregon 

coast – LNHM medium) in 20-L polycarbonate carboys under light (12:12 light:dark cycle) and 

dark conditions (CONNON and GIOVANNONI, 2002). Cell growth was monitored until the culture 

reached maximum density at which time the cells were removed by filtration. DOM from 2 L 

subsamples of 0.2-µm filtrate from each culture and a non-inoculated light control were 

extracted according to previously published methods (KIM et al., 2003b). The light control 

sample was collected at the same time as the growth culture samples. In brief, filtrate was 

acidified with concentrated HCl until pH values ranged between 2 and 3. The filtrate was then 

passed through two stacked 47-mm extraction disks; first a C18-based disk and then a SDB-based 

disk. Extraction disks were conditioned according to manufacturer’s instructions. Once the entire 

filtrate was passed through the disks, the disks were washed with 10-20 mL pH 2 nanopure 

water. DOM was collected from the C18/SDB disks using 70% methanol:water. Extracts were 

concentrated by vacuum centrifugation, re-dissolved in a known volume of 70% methanol/water 

and stored frozen until analysis. Twenty liters of Milli-Q water was acidified and extracted with 

the combined C18/SDB-disks for an extraction blank. 

 

2.3 Optical characterization methods  

A Hewlett Packard 8452A and a Shimadzu 2401-PC spectrophotometers were employed to 

acquire UV-visible absorption spectra. Absorption spectra were recorded against Milli-Q water 

over the range 200-800 nm. The absorption values at wavelengths greater than 650 nm were 

averaged to determine the baseline and this average was subtracted from spectra to correct for 
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small offsets of the baseline (GREEN and BLOUGH, 1994). Absorption coefficients at various 

wavelengths, a(), were calculated as in Del Vecchio and Blough (2004b) and the absorption 

spectra were then fit to an exponential function, using a non-linear least squares fitting routine 

over the range 290-700 nm. DOC concentrations were determined with high-temperature 

combustion, following a method previously described (DEL VECCHIO and BLOUGH, 2004b).  

Concentrations of lignin-derived phenols were measured on C18-extracted DOM following 

a slightly modified protocol (HEDGES and ERTEL, 1982; GONI and MONTGOMERY, 2000; 

LOUCHOUARN et al., 2000). Briefly, samples were digested by CuO oxidation in a microwave 

oven (CEM MARS-5) at 150°C. Following digestion, a known amount of recovery standard 

(ethylvanillin) was added to each sample. High purity ethyl acetate (Burdick& Jackson) was used 

to extract lignin phenols to minimize any contamination from solvent. The ethyl acetate was 

carefully evaporated by rotary evaporation at 35°C. The dried material was redissolved in 100μL 

pyridine, amended with an internal standard (p-hydroxyphenyl acetic acid) and a silylating agent 

(100μL of Regisila (BSTFA) 1%TCMS (Regis Tech. Inc.)) and reacted in a water bath at 60°C 

for 10 min. Samples were then analyzed by gas chromatography employing a Shimadzu GC17A 

with a flame ionization detector and a 60m × 0.23mm (I.D.) × 0.25μm film thickness J&W DB-1 

column. The flow rate of carrier gas (He) was set at 1.5 mL min-1 and the split ratio was 1:13. 

The injector port and detector were maintained at 300°C and 280°C, respectively. The 

temperature program consisted of an initial temperature of 100°C, a ramp at 4°C min-1 to 250°C, 

a ramp at 13°C min-1 to 270°C, and a final hold at 270°C for 10 min. 
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2.4 FT-MS data acquisition  

All samples and the extraction blank were analyzed on a 9.4 T electrospray ionization 

(ESI) Fourier-transform ion cyclotron (FT-ICR) mass spectrometer (SENKO et al., 1996b) at the 

National ICR Users’ Facility at the National High Magnetic Field Laboratory (NHMFL) at 

Florida State University in Tallahassee FL. Samples were reconstituted in 75:25 MeOH/water 

with 1% NH4OH and analyzed in negative ion mode. Base was added prior to analysis to 

promote negative ion formation and to avoid co-occurring complexes of Na+ and H+ with 

individual DOM molecules that are common in positive ion mode. Samples were infused into the 

ESI interface at 400-500 nL min-1. Instrument parameters were optimized for each sample. The 

capillary needle voltages ranged from -1350 V to -2000 V. Ions were accumulated in the external 

octopole for 12-20 sec before transfer to the ion cyclotron cell. The two transfer octopole 

frequencies were set at 1.6 and 1.8 MHz. Data were collected (4 MWord) by a MIDAS data 

station (SENKO et al., 1996a). Numerous scans (200) were co-added prior to Hanning 

apodization, zero-fill and Fourier-transformation. The data was truncated once (to 2 MWord) due 

to insufficient signal at longer transient times. The instrument was calibrated daily with an 

external standard (ESI TOF Mix, Agilent Technologies). Relative peak height was calculated by 

normalization with the most abundant ion in the mass spectrum. The average resolving power 

was 300,000 at m/z 400 (calculated as M/M, where M is the peak width at half-peak height 

and M is the m/z value - Marshall et al. (1998)). 
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2.5 FT-MS data analysis 

2.5.1 Peak detection and blank correction 

Peaks were considered “detected” if the peak height was greater than three times the 

noise level. Thresholds and noise levels were determined for each mass spectrum (Table 1). For 

the purposes of this study, peaks were considered “not detected” if their peak height was below 

the threshold. Very few peaks overlapped between the extraction blank and the DOM mass 

spectra. Nonetheless, all peaks found in the blank were removed from the DOM peak lists.  

   

2.5.2 Calibration and multivariate comparisons  

Daily external calibration spanned the full range of observed m/z values (322 < m/z < 

922) and resulted in <1.0 ppm mass accuracy for all spectra collected that day. To further 

constrain our mass errors, spectra were internally re-calibrated with a –CH2 series of m/z values 

present in all spectra (393 < m/z < 519). Elemental formulae for the calibrants were determined 

by best-fit with all possible elemental combinations containing 12C, 1H, 16O, and 14N (Appendix 

Table 1). After internal calibration, RMS errors for the calibrants ranged from 0.05 to 0.16 ppm. 

Ideally, the internal calibrants would cover the full range of observed m/z values (MUDDIMAN 

and OBERG, 2005) but we were not able to find a series of –CH2-related m/z values that (a) would 

span our full range and (b) was present in all spectra.  We assume that the error on mass 

measurement of peaks outside our calibrated range fall between the errors of the calibrated range 

and the 1 ppm errors set by the external calibrants. We have found that this range of mass 

accuracies is sufficient for assigning correct elemental formulae to the majority of peaks in DOM 

spectra (KUJAWINSKI and BEHN, 2006).  
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Differences in peak lists among the samples were assessed with cluster analysis (e.g., 

KOCH et al., 2005). Spectra were aligned with an in-house algorithm to generate a 

comprehensive list of m/z values from all spectra. For this and all subsequent analyses, we 

treated the resulting data matrix in two ways. In the first, all relative peak heights were 

transformed to presence (peak height = 1) or absence (peak height = 0) and then normalized to 

the total number of m/z values within each spectrum. This transformation ignores differences in 

relative peak height between m/z values within and among spectra. In the second transformation, 

the relative peak heights were retained without alteration. A distance matrix was calculated 

between all samples with the Bray-Curtis distance measure (code written by David Jones, 

University of Miami, as part of the Fathom toolbox, 

http://www.rsmas.miami.edu/personal/djones/matlab/matlab.html). Cluster analysis was 

performed on the presence-absence distance matrix using Ward’s linkage method (Fig. 2B). 

We also compared the m/z peak lists with non-metric multi-dimensional scaling (NMS - 

KRUSKAL, 1964; MATHER, 1976). NMS reduces the comparisons between samples from a 

multidimensional space to fewer dimensions, preferably two or three. These differences are then 

presented graphically; samples which are close together in this plot (or ordination) are more 

similar than samples located farther apart. We chose NMS for two reasons. First, an estimate of 

the ordination robustness can be calculated through comparisons between randomized datasets 

and the original distance matrix. Second, NMS does not assume an underlying linear relationship 

between variables. The statistics toolbox in Matlab was used to run the NMS analyses, and our 

starting configuration was the solution to classic non-dimensional scaling. Additional axes were 

considered if the addition of the axis resulted in a significant improvement over the randomized 

data (at p  0.05) and the reduction in stress was greater than 0.05. The p-values were calculated 
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as the proportion of randomized runs with stress less than or equal to the observed stress 

calculated using Kruskal’s stress formula 1; stress is a measure of goodness of fit used in NMS. 

In this study, we chose two dimensions based on Monte Carlo simulations that compared 20 

ordinations with our distance matrix to 50 ordinations with a randomized distance matrix (p = 

0.0196 in the presence/absence matrix). The best solution had a stress value (SR) of 0.0947 (in 

the presence/absence matrix (Fig. 2A); SR = 100*sqrt(S); where S is the scaled stress (MCCUNE 

and GRACE, 2002)). The proportion of variation represented by each axis was assessed with a 

Mantel test to calculate the coefficient of determination (r2) between distances in the ordination 

space and distance in the original space.  

 

2.5.3 Elemental formula assignments  

The bulk of the peaks in our mass spectra correspond to singly-charged compounds 

because the mass difference between major peaks and their isotope peaks were always integers, 

rather than non-integers associated with multiply-charged compounds. We thus considered all 

m/z values to be equivalent to mono-isotopic masses. Elemental formulae were assigned to the 

aligned m/z values using a modified version of our Compound Identification Algorithm (CIA - 

KUJAWINSKI and BEHN, 2006). The error window on formula assignments was set at 0.5 ppm. 

Elemental formulae were assigned in the form, CcHhOoNnSs. CIA assigns elemental formulae in 

a 3-step process. First, elemental formulae are determined for each m/z value below 500 Da by 

calculating all (mathematically) possible combinations of elements within a pre-assigned error 

window. Chemically unreasonable formulae are removed and a small list (usually <5) of 

chemically and mathematically legitimate elemental formulae remain. In previous work, this list 

was then sorted according to lowest deviation from the observed m/z value. We have modified 
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this step to sort the formulae according to the lowest number of non-oxygen heteroatoms (N+S). 

We validated this change with synthetic data sets (as in KUJAWINSKI and BEHN, 2006) and 

observed that this step significantly increases the accuracy of CIA, particularly for high-

molecular weight compounds with inherently lower mass accuracies. The second step of CIA 

finds functional group differences between m/z values. The mass difference associated with each 

change in functional group is then used to assign elemental formulae for the higher m/z value as 

the sum of the lower formula and the appropriate functional group difference. The last step in 

CIA incorporates one 13C atom for compounds with an isotopic isomer by finding pairs of m/z 

values that differ by exactly 1.0034 Da. An elemental formula containing one 13C atom is then 

assigned to the higher m/z value. This step was validated with synthetic datasets and we 

concluded that this approach was superior to one in which 13C was included in the brute-force 

assignments (Step 1) for m/z values < 500 Da. 

Samples that are rich in carboxylic acid moieties are prone to esterification when 

extracted and stored in methanol (MCINTYRE and MCRAE, 2005). McIntyre and McRae (2005) 

showed that approximately 1-10% of carboxylic acids were converted to methyl esters in the 

presence of acid and methanol. We have not constrained the degree of methylation in our 

samples and we assume that up to 10% of the carboxylic acid sites may have been transformed; 

however this was not formally incorporated into our data analysis or interpretation. Although the 

effect of methylation on spectrum quality and compound diversity is minimized in negative-ion 

mode (ROSTAD and LEENHEER, 2004; MCINTYRE and MCRAE, 2005), methylation would explain 

the observation that some of the terrestrial marker m/z values have lower O:C and higher H:C 

ratios than unmodified lignin.   
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2.5.4 Indicator species analysis  

Indicator species analysis (ISA) was adapted from Dufrene and Legendre (1997) to 

determine indicator m/z values in our samples. In ISA, indicator values (IVs) are calculated for 

all m/z values within our mass spectra from the North Atlantic Ocean samples. These indicator 

values are the multiplication product of the relative abundance and the relative frequency of a 

m/z value within a pre-defined group. In order to have a high IV, an m/z value must have high 

abundance and occur in most (if not all) samples within the group. Statistical significance of IVs 

is calculated by comparison with Monte-Carlo simulations of randomized data.  

This analysis requires the a priori assignment of samples to groups. We identified the 

ideal number of groups in our sample set by conducting ISA with all possible group 

combinations of our individual samples (protocol outlined in MCCUNE and GRACE, 2002). For 

each case, we calculated the average p-value of all IVs and recorded the number of indicator m/z 

values. The (statistically) best number of groups is the case in which the average p-value is 

minimized and the number of indicator m/z values is maximized. For our dataset, this occurred 

when we had three groups of samples (Fig. 2): Group 1 = (surface / near-surface) marine 

samples, Group 2 = riverine / estuarine samples, and Group 3 = deep marine sample, i.e., the 

same groups that are visually evident within our cluster and NMS analyses. We used this group 

assignment to find indicator compounds in Groups 1 and 2 with both data transformations 

described above. In the presence/absence data transformation, all m/z values have equal weight 

and so the variability among the samples is driven by m/z diversity only. In contrast, the 

variability in the second data transformation will be determined by a combination of m/z value 

and (relative) peak height.  
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We culled our list of indicator compounds in both data transformations according to the 

following criteria: 

(1) Indicator value (IV) must be greater than or equal to 50. 

(2) The p-value associated with the indicator m/z value must be less than 0.07 when 

compared to randomized data from Monte Carlo simulations. 

(3) The average peak height for an indicator m/z value must be 1.5X greater in the 

assigned group than in the other group(s). 

(4) If the indicator m/z value is assigned an elemental formula that contains 13C, the m/z 

value associated with the full 12C-isotopomer must meet criterion 3. 

 

3 RESULTS AND DISCUSSION 

3.1 Elemental formula assignments  

We assigned elemental formulae to the majority of m/z values in our spectra (1837 of 

2201; 83%) within 0.5 ppm error. The general elemental composition was consistent with 

previous assessments of aquatic DOM by ESI FT-ICR MS (Fig. 3 - KOCH et al., 2005; KIM et al., 

2006a; SLEIGHTER and HATCHER, 2008). For comparison with recent studies, we calculated the 

magnitude-averaged H:C, O:C, N:C, S:C and double-bond equivalence (DBE) values for our 

spectra (Table 2), using the equations in Sleighter et al. (2008). These parameters combine the 

relative peak height and assigned elemental formula for each m/z value in individual samples to 

derive a bulk chemistry assessment of the observed compounds in each spectrum. Thus, they 

represent the “chemical character” of the observed DOM. Differences in sample preparation 

among numerous investigators, in ionization efficiencies among various FT-MS instruments, and 

in ion number among disparate sample matrices preclude strict comparison of these parameters 
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among studies. Nonetheless, the comparison provides confirmation that DOM of similar 

characteristics has been observed in different investigations.  

Here, values for each parameter were comparable to other studies and fit within the range 

of values observed for both freshwater (SLEIGHTER and HATCHER, 2008) and marine DOM 

(KOCH et al., 2008). In general, the freshwater samples (Group 2) appear to have slightly higher 

H:C values and lower O:C values than the surface marine DOM samples (Group 1), consistent 

with the observations of Sleighter and Hatcher (2008). Similar to previous studies, elemental 

formulae containing only C, H and O dominate the assigned elemental formulae (Table 3). The 

relative contribution of CHO formulae is higher in the riverine / estuarine samples (Group 2) 

than in the marine samples, although this contribution is lower when the magnitude-averaged 

value is considered. All marine DOM samples have higher contributions of N- and S-containing 

elemental formulae than the riverine / estuarine DOM samples.  

We were intrigued to find a substantial contribution of sulfur relative to nitrogen in the 

deep marine sample. Although this observation must be confirmed with additional deep ocean 

samples, it is not surprising that sulfur would be preferentially observed in negative ion mode 

spectra. Oxygen and sulfur have acidic character and readily lose protons to form negative ions 

in aqueous solution. Thus, S-containing moieties such as –SO2 and –SH have good ionization 

efficiencies under negative ion mode (HUGHEY et al., 2004). In contrast, nitrogen is a basic 

element and prefers to gain a proton to form positive ions in aqueous solution. Therefore, N-

containing moieties such as amines (-NH2) have better ionization efficiencies under positive ion 

mode. Further, N functional groups are not extracted with high efficiency during C18 extraction 

because they are ionized (-NH3
+) during acidification (SLEIGHTER and HATCHER, 2008). The 

relatively high contribution of S-containing formulae is an interesting observation and further 
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work with MS/MS fragmentation is needed to characterize their structure. Many structural 

isomers are likely within each peak and additional work with chromatographic pre-separation 

and MS/MS fragmentation is needed to define the dominant isomer(s) present. 

 

3.2 Linkage / NMS analysis  

We examined the similarity among our six samples with cluster analysis and non-metric 

multidimensional scaling (NMS - MCCUNE and GRACE, 2002; Fig. 2). This combination of 

cluster analysis and NMS has also been used successfully by Dittmar et al. (2007) for lower-

resolution mass spectral data. Both cluster analysis and NMS showed similarity among the three 

surface or near-surface marine DOM samples (Station 2 surface, Station 5 surface and 43m – 

Figs. 2A and 2B) and among the estuarine / riverine DOM samples (Station 7 and Station 9). The 

deep marine DOM sample (Station 2 1000m) was quite different from the samples in the other 

groups. We are confident in this similarity assessment due to a low stress value (SR = 0.095) and 

a high r2 value of 0.98 between the presence / absence NMS ordination and the original Bray-

Curtis distance matrix. The NMS ordinations from both data transformations are the same, 

suggesting that the underlying variability in the samples is due to m/z diversity within our 

samples, rather than to changes in relative peak height. We hypothesized that the environmental 

parameter underlying Dimension 1 was terrestrial input. We calculated the linear regression 

between salinity and Dimension 1 values, which yielded an inverse relationship with an r2 value 

of 0.97. Thus Dimension 1 may represent increasing terrestrial contribution to DOM. We could 

not assign an environmental factor to Dimension 2 with parameters measured in this study.  
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3.3 Indicator species analysis  

Indicator species analysis has been used in the ecological community to determine the 

species of organisms that can be considered characteristic or “indicators” for particular groups of 

samples (PETT-RIDGE and FIRESTONE, 2005). This analysis has two components – (1) an 

indicator value (IV) is calculated for each component within a dataset and (2) a p-value is 

calculated by comparison with randomized data. No linearity among the sample components or 

their underlying variables is assumed during ISA. Due to these three qualities, this analysis can 

be a powerful tool for resolving characteristic (or “indicator”) components within a complex 

dataset and can be used to focus further investigations on those components which drive sample 

variability. To our knowledge, this tool has not yet been applied to ultrahigh resolution mass 

spectral data for DOM, but it may highlight those components of DOM which are involved in 

key biogeochemical processes. With this approach, we must assume that reproducibility of peak 

presence within ESI FT-MS spectra is high. We are not aware of any studies that have 

systematically examined peak reproducibility within repeat sample analyses (for DOM) and this 

work is clearly needed to constrain our (and others’) conclusions about DOM composition. To 

mitigate this assumption until reproducibility studies have been completed, we developed a 

series of conservative criteria to cull our indicator m/z values and considered two data 

transformations.   

 In the first data transformation, we removed all peak heights and examine only the 

presence or absence of m/z values in different spectra. This transformation minimizes the effects 

of matrix ions and of relative ionization efficiencies inherent within electrospray ionization mass 

spectrometry. In the second transformation, we retained the relative peak height for each m/z 

value. Electrospray ionization mass spectrometry is not fully quantitative and small changes in 
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ion abundance in FT-ICR mass spectra cannot be used to infer similar changes in the parent 

solution. Our criteria for indicator m/z values help avoid concerns associated with small changes 

in ion abundance. For Group 1 (surface marine) samples, the indicator values (IV – Appendix 

Table 2) for both data transformations are identical, suggesting that the similarity between these 

samples is based on ion diversity, rather than on peak height. In contrast, the indicator m/z values 

identified in Group 2 (terrestrial) are present in most of the samples but had higher peak heights 

in Group 2 mass spectra than in all other mass spectra (Appendix Table 3). We conclude that the 

similarity in Group 2 samples is thus based on a combination of ion diversity and peak height.  

Indicator species analysis yielded 32 marker m/z values for Group 1 in both data 

transformations. Elemental formulae were assigned to all (Appendix Table 2). Peaks associated 

with these elemental formulae were not detected in the riverine / estuarine DOM (Group 2) or in 

the deep marine DOM (Group 3). The elemental compositions of most Group 1 indicator m/z 

values (27/32: 84%) occur within a relatively H-rich, O-rich region that overlaps substantially 

with the region of proteins and carbohydrates (Figs. 3 and 4). These compound classes do not 

ionize as well in negative ion mode as lignin-derived products, our proposed source for the 

Group 2 indicator values. Thus, it is possible that Group 1 indicators were present in Group 2 

spectra but were suppressed during ionization. Nonetheless, this result indicates that the 

concentration of lignin-derived products must be sufficiently decreased in the marine samples to 

allow detection of ions with lower ionization efficiencies. Significant peak suppression of Group 

1 indicator values is unlikely in the deep marine DOM sample since the number of peaks in this 

sample was approximately the same as in the samples of Group 1 (Table 1). It seems more likely 

that these peaks are less abundant or not present in the deep marine sample and are produced in 

the surface ocean.  
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Twenty markers for Group 2 were identified by ISA when presence/ absence data were 

used and an additional 57 markers were identified when the relative peak heights were included 

(Appendix Table 3). Elemental formulae were assigned to all but two of the 77 m/z values. In 

contrast to Group 1 markers, most Group 2 markers were detected in all samples, suggesting a 

common origin such as terrestrial organic matter. However, a number of markers (20 / 57) were 

not detected in some marine samples, implying a removal process such as photo-degradation or 

microbial degradation. It seems unlikely that peak suppression would explain the absence of 

these m/z values in marine samples, due to the similarity of elemental composition between all 

Group 2 indicator values. The elemental compositions of Group 1 and Group 2 markers do not 

overlap extensively on the van Krevelen diagram (Fig. 4), suggesting that these elemental 

formulae represent different sources of DOM in surface marine (Group 1) and riverine / estuarine 

(Group 2) organic matter.  

 

3.4 Group 2 indicator m/z values (riverine / estuarine DOM) 

The riverine / estuarine samples in Group 2 were characterized by relatively low salinity 

and high DOC concentrations compared to the marine samples in Groups 1 and 3. Absorption (at 

355 nm) by CDOM and lignin phenol concentrations decreased dramatically outside Delaware 

Bay (Table 1) to a low constant value in the marine samples, consistent with previous 

observations (VODACEK et al., 1997; DEL VECCHIO and BLOUGH, 2004b). Marker m/z values had 

higher peak heights in the riverine /estuarine samples (Group 2) and were either present at 

uniformly lower lower peak heights in the marine samples (Groups 1 and 3) or not detected, 

consistent with the hypothesis of a DOM source that is removed during transit from its terrestrial 

source to offshore waters. This removal process could be (1) a physical one, such as dilution by 
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mixing with the marine end-member water, (2) a chemical one, such as photochemical 

degradation, or (3) a biological one, such as microbial metabolism.  

Group 2 marker m/z values occur within the region of the van Krevelen diagram that is 

representative of lignin and its methylated derivatives (region shown in Fig. 3; approximated 

from Figure 5 of KIM et al., 2003a). Lignin and its degradation products are common proxies for 

terrestrial organic matter in marine systems (OPSAHL and BENNER, 1997) and are responsible in 

part for the optical properties of terrestrial CDOM (HERNES and BENNER, 2003; DEL VECCHIO 

and BLOUGH, 2004a). Lignin-derived phenols were abundant in Group 2 samples (Table 1) and 

decreased in the open ocean (Groups 1 and 3) samples. The Group 2 marker m/z values have low 

occurrence of S or N in their elemental formulae (Appendix Table 3), as would be expected for 

lignin-derived materials. Further, Group 2 marker compounds are characterized by low O content 

and high double-bond equivalency (DBE – a proxy for aromatic character; Fig. 5). Previous 

work has shown that this compound class is selectively degraded by photochemistry, relative to 

compounds with high O content and low DBE (SCHMITT-KOPPLIN et al., 1998; KUJAWINSKI et 

al., 2004; GONSIOR et al., 2009). Therefore, it seems possible that Group 2 indicator m/z values 

are susceptible to photo-degradation and thus could represent lower-molecular-weight 

components of terrestrially-derived chromophoric DOM. The presence of Group 2 marker m/z 

values in the deep ocean suggests a terrestrial component within deep ocean DOM which is 

consistent with our and previous observations of lignin phenols in these environments (MEYERS-

SCHULTE and HEDGES, 1986; OPSAHL and BENNER, 1997). More work is needed to ascertain 

whether these m/z values are indeed components of terrestrially-derived CDOM and are 

degraded by photochemical activity. Nonetheless, ISA has allowed us to narrow our ongoing 

work to 77 target m/z values for additional structural characterization and laboratory study.  
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3.5 Group 1 indicator m/z values (surface marine DOM) 

Group 1 markers are detected only in the mass spectra of Group 1 samples, in contrast to 

the majority of Group 2 markers, suggesting that Group 1 markers are produced in the surface 

ocean and are degraded before or during export to the deep ocean. The elemental formulae of 

most Group 1 marker m/z values occur in a relatively H-rich and O-rich region of the van 

Krevelen diagram, similar to that of proteins and carbohydrates (KIM et al., 2003a; KUJAWINSKI 

and BEHN, 2006). Modifications of biomolecules are likely in aquatic environments that would 

shift the elemental formulae outside the strict protein and carbohydrate van Krevelen regions. 

Thus, we hypothesize that the marker m/z values for Group 1 are biologically-derived. 

Interestingly, Loh et al. (2004) showed that the carbohydrate-like and protein-like fractions of 

DOM were the youngest components of surface DOM in the North Atlantic and were recycled 

on 60-90 yr time-scales. Furthermore, carbohydrate and protein subunits have been shown to be 

good markers for DOM lability (AMON et al., 2001; CAMMACK et al., 2004). Group 1 markers, 

therefore, may represent recent biologically-produced DOM in the surface ocean. The absence of 

these m/z values in the deep ocean sample (section 3.2) is consistent with a possible biological 

source of Group 1 markers since enhanced DOM concentrations are repeatedly observed in the 

surface ocean (<200 m), most likely the labile products of intense photosynthetic and 

heterotrophic microbial metabolism (CARLSON, 2002). 

 

3.6 Comparison of North Atlantic markers with DOM produced by P. ubique  

Experimental work with pure cultures of a marine heterotrophic bacterium belonging to 

the SAR11 clade indicates that these abundant organisms may be sources of some Group 1 
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markers. The SAR11 clade is ubiquitous in gene-based surveys of seawater (GIOVANNONI et al., 

1990; RUSCH et al., 2007) and is the most abundant group of bacteria measured in surface 

seawater by in situ hybridization (MORRIS et al., 2002; ALONSO-SAEZ et al., 2007). As a 

dominant heterotrophic member of bacterioplankton communities in marine environments, the 

SAR11 clade is likely to have a significant effect on DOM composition (GIOVANNONI et al., 

2005). To our knowledge, no exudate DOM from mono-culture isolates has been examined by 

ultrahigh resolution mass spectrometry. However, many studies have examined small 

biopolymer sub-units such as amino acids and sugars that are exuded by single species and 

mixed assemblages, in both field and laboratory settings. Some of these studies highlighted the 

uptake of several monomeric compounds (e.g., glucose, amino acids and dimethyl 

sulfoniopriopionate (DMSP)) by SAR11 (MALMSTROM et al., 2005; ALONSO and PERNTHALER, 

2006; MOU et al., 2007). 

We examined the DOM in P. ubique cultures grown in coastal Oregon seawater in either 

light or constant darkness. We used the extraordinary resolving power of FT-ICR MS to compare 

this DOM with DOM from the cruise samples. Most of the marker m/z values from both groups 

of North Atlantic Ocean samples were also detected in the P. ubique cultures (Appendix Tables 2 

and 3). The peak heights of Group 2 (riverine) markers that were observed in the cultures (61 of 

77: 79%) were generally unaffected by the presence of SAR11, indicating that these peaks were 

not degraded by light or by the growing cells. This observation is consistent with our hypothesis 

that the Group 2 markers represent refractory terrestrially-derived organic matter that is highly 

resistant to further degradation. 

In contrast, the Group 1 (surface marine) markers that were detected in the P. ubique 

cultures (22 of 32: 69%) were always observed in one of the P. ubique cultures but not always in 
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the control treatment. Furthermore, the relative peak heights of 50% of the Group 1 markers 

were often enhanced (>2X increase over the control) in the presence of P. ubique under at least 

one of the two growth conditions. Conversely, only 10% of the Group 2 markers were enhanced 

during P. ubique growth. It is highly probable that markers with identical m/z values have the 

same elemental formulae due to the precision of m/z measurement by FT-ICR MS. However, we 

cannot be certain that the m/z values detected in the P. ubique cultures represent the same 

compounds as the corresponding m/z values detected in the North Atlantic Ocean samples. 

Nonetheless, the detection of Group 1 marker m/z values in the P. ubique cultures, together with 

the compositional similarity to labile microbial intermediates (KIM et al., 2003a; ROSSELLO-

MORA et al., 2008), provides initial evidence that these peaks may be produced by biological 

activity. The SAR11 ecotype used in these experiments is common and highly abundant in the 

surface ocean, the same ocean region associated with the Group 1 markers. Our analysis does not 

enable us to determine whether the Group 1 markers that were produced in P. ubique cultures are 

unique to this organism or are general products of marine microbial activity. However, our study 

does not rule out the possibility that Group 1 markers represent compounds that are produced by 

a variety of microorganisms, including SAR11, in the surface ocean. Structural characterization 

of these peaks and studies with other cultured marine bacteria should further constrain their 

origins.  

 

4 OVERVIEW 

Marine DOM has so far eluded comprehensive chemical description, veiling the complex 

interactions between abiotic and biotic processes that control this vast pool of reactive carbon.  

Ultrahigh resolution mass spectrometry is the first technology that has the ability to detect and to 
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identify thousands of compounds, potentially revealing complex temporal and spatial patterns in 

DOM composition (HERTKORN et al., 2008).  Adaptation and development of multi-variate 

statistics is an important step in the analysis of these vast datasets. Of critical importance will be 

statistical tools that help determine the critical compounds (or m/z features) within different 

DOM sources or biogeochemical processes.  

The present project focused on the subset of DOM compounds that are extracted by 

C18/SDB resin and are detected by negative ion mode ultrahigh resolution mass spectrometry 

(ESI FT-ICR MS). We resolved thousands of DOM compounds by their m/z values and used 

multivariate statistics to identify markers that are characteristic of terrestrial input and surface 

ocean sources. With statistical tools adapted from community ecology, we observed that the 

inferred elemental compositions for terrestrially-derived peaks are consistent with previous 

predictions for photochemical lability of DOM. We further showed that markers characteristic of 

ocean surface samples were also present in an axenic culture of a marine bacterial SAR11 

isolate. Ongoing work in our laboratories is now focused on the structural characterization and 

dynamics of these 109 peaks to assess their geochemical significance. 

Taken together, the marker compounds illustrate the complex interactions between 

abiotic and biotic processes that control the spatial and temporal variability of DOM. Here we 

have identified distinct m/z features within marine and estuarine DOM that participate in the 

biogeochemical processes of photochemical degradation and heterotrophic microbial 

metabolism.  Ultrahigh resolution mass spectrometry, coupled to multivariate statistical tools, 

was critical to the identification of these features, highlighting the power of these techniques for 

elucidating the important components of biogeochemical cycles. Additional work with 

laboratory and field DOM is needed to confirm these results and to assess their applicability to 
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other marine and terrestrial regimes. Nonetheless, this approach offers not only the possibility of 

tracking the molecular-level distribution and dynamics of aquatic DOM, but also of obtaining 

detailed structural information by other advanced mass spectrometric techniques (MS/MS) on 

compounds linked to a specific environment or process. New markers for biogeochemical 

processes will be identified by this combined approach and new quantitative methods can be 

developed to examine the dynamics of these markers in aquatic systems, leading ultimately to 

novel insights into the aquatic carbon cycle. 
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TABLES 
 
Table 1. Data for samples used for ESI FT-ICR MS analysis in this study. Lignin phenol concentrations are the average of replicate 
analyses with one standard deviation. The number of unique m/z values in each spectrum indicates the number of m/z values with a 
signal-to-noise ratio of 3 or greater. Threshold values for peak heights are defined as three times the noise level and were individually 
calculated for each spectrum. Assignment of samples to group numbers (column 11) is described in the text. 
 
Sample 

set 
Station Location Depth 

(m) 
Salinity Temp 

(oC) 
[DOC] 

(µmol L-1) 
a(355) 
(m-1) 

[Lignin 
phenol] 
(g L-1) 

# m/z 
values 

Threshold 
peak 

height 

Group 

C
ru

is
e,

 S
ep

te
m

be
r 

20
05

 

2 
Sargasso Sea 

 

36.74oN 
71.02oW 

0 36.1 26.9 112 0.059 0.36 + 
0.04 

1392 4.5 1 

-- 1000 35.0 4.9 92 0.079 0.83 + 
0.10 

1264 6.0 3 

5 
shelf-break 

38.18oN 
74.25oW 

0 32.5 24.7 124 0.235 0.70 + 
0.16 

1190 6.0 1 

-- 43 32.5 9.8 129 0.402 0.82 + 
0.03 

1115 6.0 1 

7 
mouth of 
Delaware 

River 

39.31oN 
75.38oW 

0 14.4 26.1 275 3.39 7.11 + 
0.91 

923 9.0 2 

9 
head of 

Delaware 
River 

40.18oN 
74.75oW 

0 0.12 27.1 184 1.99 3.17 + 
1.30 

785 9.0 2 

P
. u

bi
qu

e 
 

da
ta

 s
et

 

Non-
inoculated 

control 

-- -- -- -- 106 -- -- 1425 0.45 n/a 

P. ubique 
(dark) 

-- -- -- -- 109 -- -- 2097 0.75 n/a 

P. ubique  
(light) 

-- -- -- -- 99 -- -- 1918 0.6 n/a 
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Table 2. Elemental ratios for bulk samples, calculated as magnitude-averaged values (SLEIGHTER et al., 2008) for m/z values with 
assigned elemental formulae. All samples from this study and from Sleighter and Hatcher (2008) are bulk C18 extracts, analyzed by 
direct infusion negative ion mode ESI FT-MS. Samples from Koch et al. (2008) are HPLC-separated fractions 1-4 that were 
subsequently analyzed by negative ion mode ESI FT-MS. “n.r.” = not reported. 
 

Group / Ref Sample H:Cw O:Cw N:Cw S:Cw DBEw 
1: Surface ocean Station 2 0m 1.30 0.36 0.004 0.003 9.1 

Station 5 0m 1.32 0.34 0.003 0.003 9.1 
Station 5 43m 1.30 0.35 0.003 0.003 9.4 

Koch et al. (2008) Antarctic Surface Sea Water 1.31 
1.31 
1.37 
1.39 

0.43 
0.43 
0.37 
0.33 

 
 

n.r. 

 
 

n.r. 

8.2 
8.3 
8.1 
7.7 

       
2: Fresh water Station 7 0m 1.34 0.33 0.002 0.001 9.2 

Station 9 0m 1.31 0.30 0.002 0.002 8.6 
Sleighter & Hatcher (2008) Dismal Swamp 1.25 0.39 n.r. n.r. 9.6 

Great Bridge 1.29 0.35 n.r. n.r. 8.5 
Town Point 1.37 0.35 n.r. n.r. 7.6 
Chesapeake Bay Bridge 1.40 0.35 n.r. n.r. 7.4 

       
3: Deep ocean Station 2 1000m 1.12 0.33 0.007 0.013 8.9 

Koch et al. (2008) Weddell Sea Deep Water 1.19 
1.29 
1.41 
1.57 

0.55 
0.45 
0.37 
0.32 

 
 

n.r. 

 
 

n.r. 

8.7 
8.5 
7.7 
5.6 
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Table 3. Formula classes for each mass spectrum and comparison with previous studies. All samples represent C18-extracts of DOM 
analyzed by direct infusion negative ion mode ESI FT-MS. Number- and magnitude-averaged values determined by equations from 
Sleighter et al. (2008). (*) Values from Sleighter & Hatcher (2008). Values from Great Bridge, Town Point, and Chesapeake Bay 
Bridge were not reported as individual formula classes and are shown here are the sum of non-CHO formulae (as in reference).  
(#) Values from Sleighter et al. (2008). 
 
Group / type Sample # m/z values # Formulae CHO CHON CHOS CHONS
    Number-averaged 
1: Surface ocean Station 2 0m 1392 1330 (96%) 81.1 6.1 10.8 1.7 

Station 5 0m 1190 1154 (97%) 86.2 2.0 10.1 1.5 
Station 5 43m 1115 1084 (97%) 84.5 3.6 10.6 1.1 

        

2: Rivers Station 7 0m 923 905 (98%) 93.7 0.4 4.8 0.8 
Station 9 0m 785 741 (94%) 93.5 0.4 5.1 0.7 

        

3: Deep ocean Station 2 1000m 1264 1052 (83%) 72.2 2.4 19.1 5.4 
    Magnitude-averaged 
1: Surface ocean Station 2 0m   89.5 2.3 5.1 0.6 

Station 5 0m   91.0 0.8 5.5 0.6 
Station 5 43m   89.6 1.4 6.4 0.5 

        

2: Rivers Station 7 0m   95.2 0.2 2.2 0.4 
Station 9 0m   91.0 0.2 3.1 0.7 
Dismal Swamp*   97.4 0.3 0.6 0.5 
Great Bridge*   95.7 Sum: 4.3% 
Town Point*   91.9 Sum: 8.1% 
Chesapeake Bay Bridge*   90.5 Sum: 9.5% 
Pamunkey River#   86.4 1.1 7.3 2.4 
Dothan Run#   89.9 3.5 4.2 1.0 
Conodoguinet Creek#   85.3 2.4 4.4 4.3 

        

3: Deep ocean Station 2 1000m   74.3 0.9 10.7 2.8 
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Figure Captions 

 

Figure 1. Representative mass spectra from the three groups identified in NMS and cluster 

analysis: Group 1: surface ocean (Station 2, 0m – A); Group 2: riverine / estuarine (Station 7, 0m 

– B); and Group 3: deep ocean (Station 2, 1000m – C). (*) = contaminants observed in all spectra 

and removed from all peak lists. For each spectrum, the inset shows the region 499.0 < m/z < 

499.4 and the indicator m/z values for each group. Group 1 markers are shown with solid 

triangles and Group 2 markers are shown with open circles. The peak detection threshold for 

each spectrum is shown with a dotted line in the inset. Peak heights below this threshold are 

considered “not detected”. 

 

Figure 2. (A) Ordination plot for non-metric multi-dimensional scaling of 6 samples in this 

study. The ordination was calculated with the presence/absence data transformation. Samples 

that are close together are more similar than those which occur farther apart. (B) Linkage 

diagram of 6 samples in this study calculated from original Bray-Curtis distance matrix and 

Ward’s method.  

 

Figure 3. Van Krevelen diagrams of all formulae assigned to peaks within all spectra in this 

study. The dots represent 1837 elemental formula assignments out of 2201 total peaks. Elemental 

formula assignments were constrained to 12C, 13C, 1H, 16O, 14N and 32S. Compound class regions 

are provided, as approximated from Kim et al. (2003a) and Hedges (1990).  
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Figure 4. Van Krevelen diagrams with indicator peaks determined by Indicator Species 

Analysis. Top: Indicator peaks (as defined and described in text) were identified based on mass 

spectral data after removal of relative abundance (data transformation #1: presence/ absence). 

Bottom: Indicator peaks were identified by inclusion of relative abundance in each mass 

spectrum (data transformation #2). In both diagrams, Group 1 represents the surface ocean 

samples in solid triangles and Group 2 represents the riverine samples in open circles. 

 

Figure 5. Oxygen number vs. Double bond equivalence (DBE) for all formulae assigned in this 

study. Marker compounds for each group are shown as either solid triangles (Group 1 – A) or 

open circles (Group 2 – B). Ellipses indicate the region that is characteristic of the two groups of 

marker compounds (Group 1 – black; Group 2 – grey). 
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