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To offset declines in commercial landings of the softshell clam, Mya arenaria, resource 

managers are engaged in extensive stocking of seed clams throughout its range in the 

northwest Atlantic.  Because a mixture of native and introduced stocks can disrupt locally 

adapted genotypes, we investigated genetic structure in M. arenaria populations across 

its current distribution to test for patterns of regional differentiation.  We sequenced 

mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in 

the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast 

Pacific (NE Pacific) and the North Sea and Europe (NS Europe).  Populations exhibited 

extremely low genetic variation, with one haplotype dominating (65-100%) at all sites 

sampled.  Despite being introduced in the last 150-400 years, both NE Pacific and NS 

Europe populations had higher diversity measures than those in the NW Atlantic and both 

contained private haplotypes at frequencies of 10% to 27% consistent with their 

geographic isolation.  While significant genetic structure (FST = 0.159, p<0.001) was 

observed between NW Atlantic and NS Europe, there was no evidence for genetic 

structure across the pronounced environmental clines of the NW Atlantic.  Reduced 

genetic diversity in mtDNA combined with previous studies reporting reduced genetic 

diversity in nuclear markers strongly suggests a recent population expansion in the NW 

Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial 

periods.  Lack of genetic diversity and regional genetic differentiation suggests that 

present management strategies for the commercially important softshell clam are unlikely 

to have a significant impact on the regional distribution of genetic variation, although the 

possibility of disrupting locally adapted stocks cannot be excluded.  
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 Benthic marine habitats of the Northwest Atlantic Ocean (NW Atlantic) are 

structured into distinct biogeographic provinces (Engle and Summers 1999).  These 

biogeographic divisions are a function of environmental gradients resulting from the 

synergy of the coastal geography of Eastern North America with the Gulf Stream and 

Labrador Currents, combined with latitudinal gradients in temperature and salinity 

(Hutchins 1947).  The most commonly recognized biogeographic divisions are the Nova 

Scotian and Virginian Provinces, with Cape Cod serving as the boundary between the 

two (Hall 1964; Hutchins 1947).  Superimposed on these divisions is a history of 

Pleistocene glaciations that extirpated many benthic marine species from northern 

latitudes and formed Cape Cod (Upham 1879a; Upham 1879b), reshaping regional 

patterns of biological and genetic diversity (Hewitt 1996; reviewed in Wares 2002; Wares 

and Cunningham 2001). 

The presence of distinct biogeographic provinces in the NW Atlantic has 

significant implications for management of fish and invertebrates in this region because 

species spanning multiple provinces of the NW Atlantic can have populations adapted to 

local environmental conditions.  For example, the Atlantic Silverside Menidia menidia 

exhibits heritable local variation in growth rate and vertebral number, resulting in a 

latitudinal phenotypic cline across the NW Atlantic (Billerbeck et al. 1997; Present and 

Conover 1992; Yamahira et al. 2006).  On a smaller scale, the mussel Mytilus edulis 

exhibits a sharp cline in the leucine aminopeptidase (LAP) allele across salinity gradients 

in Long Island Sound (Gardner and Kathiravetpillai 1997; Gardner and Palmer 1998).  

The presence of regional genetic structure, particularly if it is locally adaptive, needs to 
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be accounted for in fisheries management so that genetic diversity is conserved and 

locally adaptive gene complexes are not disrupted through indiscriminate stocking 

(Hansen 2002). 

 Mya arenaria is a commercially important bivalve with a contemporary 

distribution that includes 1) the northwest Atlantic ranging from Nova Scotia to Virginia, 

2) the North Sea and European waters, including the Black, Baltic, Wadden, White, and 

Mediterranean Seas, and 3) northeast Pacific from San Francisco to Alaska (Strasser 

1999).  M. arenaria has a complex history of extensive global distributions, with several 

extinctions and re-colonization events (reviewed in Strasser 1999).  The species 

originated in the Pacific Ocean during the Miocene, and then extended its range to the 

Atlantic and European waters in the early Pliocene.  Extinction of Pacific and European 

populations in the early Pleistocene left the only surviving populations in the NW 

Atlantic until recent history (MacNeal 1965).  M. arenaria re-invaded European waters in 

the 17th century after being brought from the NW Atlantic by Vikings (Petersen et al. 

1992).  In the late 19th century  M. arenaria was reintroduced into the Pacific, first 

accidentally and then as a potential commercial fishery (Carlton 1979; Powers et al. 

2006).  The natural and introduced distribution of M. arenaria results partly from the 

species’ ability to withstand wide salinity and temperature ranges, and its capability of 

inhabiting different sediment types from fine mud to coarse sand (Abraham and Dillon 

1986; Hidu and Newell 1989; Newell and Hidu 1982). 

 The last two decades have seen appreciable declines in softshell clam landings in 

New England (Anonymous 2007; Brousseau 2005).  This decline has been attributed to 

habitat degradation or loss, overfishing, contamination, and predation by invasive species 
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(Brousseau 2005).  Managers and state agencies have enacted various management 

strategies to combat these declines, including using protective nets to reduce predation on 

newly recruited clams, and seeding flats using hatchery-reared juveniles (H. Lind pers. 

comm. 2006, Marcotti and Leavitt 1997). 

While stocking of fish and shellfish is a long-standing practice, research is 

increasingly showing that the genetic impacts of stocking cannot be ignored.  Stocking 

should seek to maintain levels of genetic diversity (Waples and Do 1994); although 

multiple individuals are spawned to produce seed clams, it is unknown whether the 

genetic diversity represented among these individuals is reduced in comparison to 

naturally occurring cohorts, where entire adult populations spawn simultaneously 

(Brousseau 1978).  In addition, given that brood stock is not always taken from the flat 

into which seed clams are stocked, locally appropriate genotypes could be introduced into 

inappropriate areas.  For example, Mya arenaria exhibit local variation in resistance to 

paralytic shellfish toxins (Connell et al. 2007).  Seeding flats using brood stock from 

other clam populations may result in either reduction of the locally dominant alleles due 

to success of the introduced seed clams, or significant loss of seed clams due to a lack of 

a genetic background appropriate to the local environment.  Similar declines in local 

fitness have been documented in salmonids (Hansen 2002).  He examined the relative 

genetic contributions of domesticated and wild trout in several populations and found that 

for at least one population, the observed contribution of domesticated fish (6%) was well 

below what was expected assuming equal survival and reproductive performance of wild 

and domesticated fish. 
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 Previous genetic studies on softshell clams have found limited genetic diversity 

despite the wide geographic ranges represented among studies.  Morgan et al. (1978) 

used allozymes to study Mya arenaria genetic variation in the NW Atlantic, and found 

low polymorphism and low heterozygosity per individual for both populations examined.  

Caporale et al. (1997) found similar low variability in three regions of the NW Atlantic 

(12 locations total) using the internal transcribed spacer ribosomal DNA region (nDNA), 

and concluded that although the three regions were not genetically distinct, the data from 

the study were insufficient to indicate a panmictic population.  More recently, Lasota et 

al. (2004) used allozymes to study seven locations in the northeast Atlantic and two in the 

North Sea.  They also found low genetic variability and a lack of genetic differentiation, 

and concluded that M. arenaria is a successful invader despite a high degree of genetic 

homogeneity.  They suggested the patterns observed were evidence of rapid population 

expansion, allele neutrality, and high gene flow.  Nuclear DNA (nDNA), however, is 

known to evolve slower than mitochondrial DNA (mtDNA), and allozyme studies may 

mask underlying sequence variation.  The results seen in these studies therefore might be 

because of the markers chosen by the investigators.       

 In this study, we examine population genetic variability of Mya arenaria across 

its natural range in the NW Atlantic and portions of its introduced range in the northeast 

Pacific and European waters using the highly variable mitochondrial cytochrome oxidase 

I (COI) gene that commonly resolves phylogeographic structure in marine invertebrates 

(Barber et al. 2006; Wares 2002) including bivalves (King et al. 1999; May et al. 2006).    

First, we examine how populations may be geographically structured across the NW 

Atlantic to determine whether the distinct environments and biogeographic provinces 
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partition softshell clams into genetically distinct regional stocks.  Second, we compare 

NW Atlantic to populations in the NE Pacific and NS Europe.  M. arenaria was 

introduced recently to both of these locations; we can examine the geographic origins of 

these populations and the effects of recent introduction on genetic diversity.  The results 

of this study have implications for management of softshell clams in New England, in 

addition to insights gained about historical extinction and colonization events of M. 

arenaria with reference to biogeographic boundaries and glaciation. 

 

METHODS 

Sampling and sequencing 

 Juvenile and adult Mya arenaria (N = 212) were collected between 2001 and 

2006 from 12 locations: one northeast Pacific (NE Pacific) site (n = 20), ten NW Atlantic 

sites (n = 177), and one North Sea, Europe (NS Europe) site (n = 15) (Table 1).  Most M. 

arenaria were frozen after collection to prevent DNA degradation, and then transferred to 

70-95% ethanol for at least 24 hours prior to DNA extraction to improve the success of 

DNA extractions.  Some individuals were preserved directly in ethanol without freezing.  

For clams <1cm total length, we used the entire clam for DNA extraction.  For larger 

clams we extracted DNA from small fibers of adductor muscle tissue.  All DNA 

extractions were performed with a 10% Chelex® (BioRad) solution following Walsh et 

al. (1991).  A 661 bp fragment of the mitochondrial cytochrome oxidase subunit-I gene 

(COI) was amplified via polymerase chain reaction (PCR) using the primers HCO-2198 

and LCO-1490 (Folmer et al. 1994).  PCR occurred in 25 μl reactions with 2.5 μl of 10x 

buffer, 2 μl MgCl2 (25 mM), 2.5 μl DNTPs (8 mM), 1.25 μl of each 10 mM primer, 1 μl 
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 PCR products were visualized on 1% agarose PAC 1% sodium hydroxide and 

boric acid gels.  They were then prepared for sequencing by digestion in 0.5 units of 

Shrimp Alkaline Phosphotase and 5 units of exonuclease per 5 μl of PCR product, 

incubated at 37°C for 30 min followed by 80°C for 15 min.  Sequencing reactions were 

performed for both forward and reverse strands using BigDye (Applied Biosystems Inc., 

Foster City, CA) terminator chemistry, and visualized on an ABI 377 (Applied 

Biosystems, Inc., Foster City, CA) following isopropanol precipitation according to 

manufacturer instructions.  Complementary strands for each sample were proofread and 

aligned in SEQUENCHER v4.0 (GeneCode, Ann Arbor, MI), and translations confirmed 

using MACCLADE v4.05 (Maddison and Maddison 2002). 

Genetic analyses for all sites 

To explore regional distribution of genetic diversity in Mya arenaria, we 

calculated haplotype diversity (h), nucleotide diversity (π), and the population parameter 

theta (θs, where θ = 2Nμ, estimated from the number of segregating sites, Watterson 

1975)  for all populations using ARLEQUIN v3.1 (Excoffier et al. 2005).  To explore 

patterns of phylogeographic structure we constructed a minimum-spanning tree using the 

MINSPNET algorithm as employed in ARLEQUIN.  Frequency of haplotypes was then 

plotted against geography for NW Atlantic populations.   
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To further explore geographic genetic structure, we investigated genetic partitions 

in AMOVA as implemented in ARLEQUIN.  Values of ΦST were calculated with statistical 

significance determined by 20,000 random permutations.  Analyses were run both 

unstructured (one region), and partitioned into two regions, (scenario A = NW Atlantic + 

NE Pacific and NS Europe; scenario B = NW Atlantic + NS Europe and NE Pacific) or 

three regions (NW Atlantic, NE Pacific, NS Europe).  Patterns of genetic structure were 

similarly estimated within the NW Atlantic by excluding NE Pacific and NS Europe 

populations.  NW Atlantic analyses were assuming one region or three regions (north of 

Cape Cod, Cape Cod, and South of Cape Cod). Pairwise FST values were also calculated 

among all populations with 20,000 permutations used to establish significance.  To adjust 

significance levels for multiple comparisons, the Benjamini and Yekutieli (2001) 

modification of the Bonferroni correction was employed as standard Bonferroni 

corrections have been shown to be excessively conservative (Narum 2006). 

Genetic analyses of NW Atlantic only 

 To determine whether our sampling in the NW Atlantic was sufficient to collect 

most of the haplotypes present, we constructed a rarefaction curve.  We used data only 

from populations in the NW Atlantic and used equations appropriate for population 

sample sizes much smaller than the total sample size (Heck et al. 1975).  In addition, we 

estimated the expected number of haplotypes in the NW Atlantic using two indices, the 

Chao1 index (Chao 1984) and the abundance-based coverage estimator (ACE) (Chao and 

Lee 1992).  

 We tested for neutrality by calculating Fu’s FS statistics (Fu 1997), which 

establishes whether non-neutrality might be due to population growth and range 
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expansion.  To further explore the possibility of recent demographic or spatial population 

expansion, we used mismatch distributions, which compares the expected and observed 

number of differences between pairs of haplotypes under a null model of population 

expansion (Ray et al. 2003; Rogers and Harpending 1992).  Finally, we used Bayesian 

Markov Chain Monte Carlo analysis of molecular sequences to produce a Bayesian 

skyline plot using BEAST v1.4 and TRACER v1.4 (Drummond and Rambaut 2006), which 

plots population size over time and estimates the approximate time since population 

expansion (Drummond et al. 2002; Drummond et al. 2005).  We used MODELTEST 

(Posada and Crandall 1998) implemented in PAUP* ver.4.0b10 (Swofford 1998) to find 

the most appropriate model for BEAST (Hasegawa, Kishino, and Yano Model).  We 

produced the skyline plot based on five groups using a strict molecular clock, which 

assumes a global clock rate with no variation among lineages within a tree.  We ran the 

program using default priors for Bayesian skyline analysis for 50 million generations, and 

repeated the program run four times to increase effective sample size and assure that 

results were converging.  Results reported in mutational units were converted to years for 

the skyline plot by assuming a molluscan-specific COI divergence rate of either 1 % per 

million years (% Myr-1) for all COI sites or 5 % Myr-1 for third positions alone (Marko 

2002).  As all variation was located third position sites (see Results), using these values 

provides a five-fold range to account for error associated with molecular clock 

estimations.   

 

RESULTS 

Analyses for all sites  
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 A total of 661 bp of COI was collected from 212 individuals, yielding only 27 

unique haplotypes that differed by one or two nucleotide substitutions, all in the third 

codon position and silent with one exception, haplotype I (Table 2), where serine was 

substituted for proline.  There was one dominant haplotype (A) found at all of the 

locations sampled, ranging in frequency from 0.53 to 1.00 for individual populations, 

with an overall frequency of 0.79.  Of the remaining 26 haplotypes, only five were found 

more than once in a single population, ranging in frequency from 0.10 to 0.27 

(haplotypes B-F).  Two private haplotypes, defined as haplotypes that occur more than 

one time in only one site (Slatkin 1985), were found in the NS Europe (Haplotype E) and 

the NE Pacific (Haplotype G). 

Haplotype diversity (h) in the NW Atlantic ranged from 0.178 to 0.583 (Table 1).  

Comparable levels of haplotype diversity occurred in NS Europe (h = 0.648) and NE 

Pacific (h = 0.574) populations.  Nucleotide diversity (π) was low for all NW Atlantic 

populations, ranging from 0.0003 to 0.0014 (Table 1), while π = 0.0010 in NS Europe 

and π = 0.0012 in NE Pacific.  Theta ranged from 1.85 to 0.549 in the NW Atlantic and 

was 0.615 and 1.13 in NS Europe and NE Pacific, respectively (Table 1).  There were no 

clear geographic patterns in genetic diversity measures.  

 Consistent with the low nucleotide diversity, the minimum spanning tree of Mya 

arenaria COI haplotypes revealed a star-shaped phylogeny (Figure 1).  The dominant 

haplotype (A) was located at the center of the star with 21 of 26 remaining haplotypes 

differing from haplotype A by a single nucleotide substitution.  Five haplotypes differed 

by 2 mutational steps (haplotypes J, O, T, U, AA).  No geographic structure is evident in 

the minimum spanning tree topology and NE Pacific and NS Europe haplotypes are 
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scattered throughout the tree.  Plotting the frequency of the 6 non-singleton haplotypes 

revealed no clear phylogeographic patterns in the NW Atlantic except for the lack of 

genetic diversity in Nova Scotia (Figure 2). 

Results from AMOVA found that the majority of variability was within 

populations, regardless of any regional partitions imposed on the locations sampled 

(Table 3).  Examining all data, assuming no a priori regional structure, AMOVA 

analyses indicate the presence of subtle genetic structure (ΦST = 0.027, p <0.005) with 

3% of the variation between populations and 97% of the variation within populations.  

Imposing regional partitions comparing North American (NW Atlantic + NE Pacific) and 

European (NS Europe) populations produced ΦST = 0.16 (p <0.005) with 16% of 

variation among regions, 0.010% among populations within regions, and 84.1% of the 

variation within populations.  Comparing North Atlantic (NW Atlantic + NS Europe) and 

Pacific (NE Pacific) populations, ΦST = 0.34 (p <0.005) with 1.4% of variation among 

regions, 2.4% among populations within regions, and 96% of the variation within 

populations.  Imposing three regional partitions (NW Atlantic, NE Pacific, and NS 

Europe), ΦST = 0.090 (p <0.005) with 91% of the variation within populations, 9.6% 

among regions, and no variation among populations within regions.  Results are 

summarized in Table 3. 

Within the NW Atlantic, AMOVA analyses revealed no significant genetic 

structure with 99.9% of all genetic variation contained within populations (Table 3). 

Similarly, when locations were grouped into regions north of Cape Cod, Cape Cod, and 

south of Cape Cod (Table 1), ΦST = 0.0010 (n.s., p = 0.43) with 99.9% of all genetic 

variation contained within populations  and no significant variation among regions or 
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among populations within regions.  After correction for multiple comparisons, significant 

pairwise FST values were observed between NS Europe and 4 populations from the NW 

Atlantic (FST = 0.12 to 0.22; p <0.05) (Table 4).  Within the NW Atlantic there were no 

significant pairwise FST values. 

 Both NS Europe and NE Pacific had one haplotype each that was not shared with 

the NW Atlantic.  A rarefaction curve of NW Atlantic haplotypes constructed using an 

equation appropriate for our system (Heck et al. 1975) did not asymptote, suggesting this 

may result from inadequate sampling.  Chao1 and ACE indices both predicted that more 

than 100 haplotypes were present in the NW Atlantic (125 and 102, respectively); this 

further suggests that our sampling was not sufficient to characterize all of the diversity 

present. 

Fu’s FS statistic was significantly large and negative for 9 of the 12 populations 

(Table 1) suggesting non-equilibrium dynamics.  Mismatch analysis revealed no 

significant deviation from the null model of population expansion, and the raggedness 

index confirmed a left-shifted unimodal distribution characteristic of population 

expansion (Table 1, Figure 5).  Further support for a range expansion comes from the 

Bayesian skyline plot, indicating that Mya arenaria populations in the NW Atlantic were 

much smaller in recent history (Figure 4).  The plot indicates that a pronounced 100-fold 

demographic expansion event took place in NW Atlantic populations of M. arenaria 

approximately 75,000 or 15,000 years ago.  These values correspond to 0.00035 

mutational units and a mutation rate of 0.005 to 0.025 mutations Myr-1, based on the 

clock calibrations of Marko (2002).  
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Patterns in the Northwest Atlantic  

Genetic analysis of Mya arenaria populations across the Northwest Atlantic 

revealed an absence of genetic structure.  This result stands in contrast to previous studies 

of other marine species that show pronounced phylogeographic structure in the NW 

Atlantic (see Wares 2002 for a review), particularly among populations along the 

northern and southern coastline of the NW Atlantic (e.g. Brown et al. 2001; Dahlgren et 

al. 2000; Smith et al. 1998; Waldman et al. 1996).  The lack of genetic diversity and 

limited genetic structure reported here echoes previous genetic studies on softshell clams 

(Caporale et al. 1997; Lasota et al. 2004; Morgan et al. 1978).  The concordant results 

among these multiple studies provide strong evidence for lack of genetic boundaries in 

M. arenaria. 

 One potential explanation for the observed pattern is that Mya arenaria is 

characterized by high levels dispersal and gene flow, as suggested by Lasota et al. 

(2004).  This species has a planktonic larval phase that can last up to three weeks in the 

water column, during which time the larva feeds on algae and is transported by currents 

(Abraham and Dillon 1986).  Transport via strong currents along the NW Atlantic could 

promote high dispersal and gene flow among NW Atlantic populations, with further 

mixing augmented by human-mediated transport (although this view must be tempered 

by the observation of low levels of genetic diversity).  Given that  

ST
e F1

N
=N  21 

22 

23 

where Ne is effective population size and N is actual population size (Wright 1943), as 

gene flow increases and FST approaches zero, then Ne should approach N.  Commercial 
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landings of this species totaled 7.9 million pounds in 1984 (Abraham and Dillon 1986), 

suggesting N exceeds 10 million individuals (assuming an average of 4 clams lb-1).  

However, if gene flow is high, Ne ≈ N, and N is extremely large, then genetic drift should 

be extremely low, preserving high levels of genetic diversity.  This expectation is 

contradicted by the minimum spanning tree and the minimal genetic diversity measures.  

Thus, while high dispersal may contribute to genetic homogeneity in M. arenaria, other 

processes must also be acting to reduce diversity within this species. 

 A second process suggested by Lasota et al. (2004) that could contribute both to 

limited genetic structure and low genetic diversity across the NW Atlantic is a recent 

population expansion event.  Evidence for a demographic expansion comes from the star-

like phylogeny, low genetic diversity measures, the significantly large and negative 

values of Fu’s FS, and the mismatch distribution and raggedness index values that do not 

differ from a model of population expansion.  Further evidence of demographic 

expansion comes from the Bayesian skyline plot produced using NW Atlantic data 

(Figure 4), suggesting a rapid 100 fold increase in population size.  Although the lack of a 

species-specific clock and associated error requires cautious interpretation of age 

estimates, even increasing or decreasing the assumed rates by an order of magnitude puts 

this expansion squarely in the Pleistocene. 

Based on the geology of the NW Atlantic, a recent range expansion is required to 

achieve contemporary distributions of Mya arenaria.  During Plio-Pleistocene glacial 

cycles, glaciers covered most of the NW Atlantic coastline with the southern limit of 

glaciation near Cape Cod, Massachusetts (Cronin 1988; Shackleton et al. 1984).  Glacial 

build-up would displace M. arenaria populations from much of its contemporary range, 
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and the lowering of sea levels by as much as 130 m (Porter 1989) would likely reduce 

available estuarine habitat as the shallow continental shelf of the NW Atlantic became 

exposed.  After glaciers subsided, individuals from southern and potentially northern 

refugia would spread into previously unavailable glaciated habitats (Wares 2002; Wares 

and Cunningham 2001).  Reduced genetic variation, such as that observed in M. 

arenaria, is common in reinvaded habitats following Pleistocene glacial periods (see 

Hewitt 2000 for review), as is reduced genetic variation in formerly glaciated regions of 

the NW Atlantic compared to glacier-free regions of Europe (Wares 2002).   

An alternative explanation for the signal of demographic expansion is recovery 

following a selective sweep, where selectively advantageous haplotypes go to fixation 

(e.g. Berry et al. 1991).  Recovery from a recent selective sweep could also yield a star-

like phylogeny and lower genetic diversity that would inflate genetic similarity and gene 

flow estimates among populations, resulting in genetic patterns very similar to those 

observed during a population expansion or recovery from a bottleneck (Tajima 1989). 

However, lowered genetic diversity in NW Atlantic populations, characteristic of 

departures from neutral expectations in stable populations, are reported in this study as 

well as studies focusing on allozymes (Lasota et al. 2004; Morgan et al. 1978)  and 

nuclear sequence data (Caporale et al. 1997).  For selective sweeps to occur in multiple 

unlinked mtDNA and nuclear markers seems unlikely, particularly given that the signal 

of demographic expansion occurs during the Pleistocene.  Furthermore, similarly reduced 

patterns of genetic diversity are also seen in co-distributed NW Atlantic populations of 

the ocean quahog, Arctica islandica (Dahlgren et al. 2000), Mercenaria mercenaria 

(Baker et al. 2008), suggesting that a common physical process is at work (Avise 2000). 
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Thus, while a selective sweep or purifying selection cannot be totally excluded, 

postglacial expansion is likely a more parsimonious explanation for the observed 

patterns, especially given the timing of demographic expansion suggested by the skyline 

plot (Figure 4).  

Patterns across the Northwest Atlantic, European waters and the northeast Pacific 

While populations in the NW Atlantic had minimal genetic structure, the strongest 

signal of regional genetic structure comes from comparing NW Atlantic populations to 

NS Europe.  AMOVA results with NS Europe, NE Pacific, and NW Atlantic defined as 

separate regions resulted in a significant ΦST of 0.0903 (Table 3).  Furthermore, of 11 

pair-wise comparisons, a total of 4 pair-wise FST values among NS Europe and the NW 

Atlantic were significant (Table 2).  This result indicates that despite being introduced 

from NW Atlantic populations, there are significant genetic differences among these 

regions.  

Pacific and European populations also contained private haplotypes (Figure 1).  

The presence of unique haplotypes found multiple times in a single population suggests 

genetic isolation (Hartl and Clark 1997).  Given the geographic separation of the NW 

Atlantic, Pacific and European waters, observation of genetic isolation should be 

expected.  This result is surprising, however, given that both NE Pacific and NS Europe 

populations are thought to have been introduced from the NW Atlantic within the last 150 

and 400 years, respectively.  This seems a particularly short amount of time for local 

variation to evolve in situ and increase in frequency sufficiently to be detected by 

sampling 15-20 individuals.  In contrast, no private haplotypes were detected in sampling 

of 177 individuals from the entire range of Mya arenaria in the NW Atlantic.  
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 We constructed a rarefaction curve plotting number of haplotypes versus number 

of samples.  Although the slope shallows, it did not asymptote over the range of number 

of individuals sampled (Figure 3) indicating that sampling 177 NW Atlantic individuals 

was insufficient to detect the rare haplotypes that founded NE Pacific and NS Europe 

populations.  Paradoxically, if they are in very low frequencies in the NW Atlantic, it 

seems unlikely that they would be introduced to the Pacific and European waters.  One 

interpretation of this result is that these private haplotypes may represent ancestral 

polymorphism from relic populations that survived the Pliocene extinction events in the 

Pacific and European waters.  If, however, these were relic haplotypes, genetic 

divergence in excess of one mutational step would be expected, as a single 3rd position 

substitution in 661 bases over a minimum period of 2 million years would yield a 

substitution rate of 0.076% per million years, nearly two orders of magnitude lower than 

the 5% per million years reported by Marko (2002) for another bivalve.  Thus, the 

minimal divergence of these haplotypes suggests that these are indeed introductions of 

rare NW Atlantic haplotypes.  

Management implications  

One of the current management strategies for NW Atlantic softshell clam 

populations is to increase local abundances by seeding flats with hatchery-reared juvenile 

clams.  As has been demonstrated in fish, this approach has the potential to decrease or 

alter genetic variability by introducing non-native genotypes that may affect the fitness of 

both introduced and native stocks (Hansen 2002).   

The low genetic diversity and minimal genetic structure observed in COI 

combined with previous results showing limited genetic diversity in Mya arenaria using 
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nuclear sequences (Caporale et al. 1997) and allozymes (Lasota et al. 2004; Morgan et al. 

1978) suggests that brood stock origins may not be critical to maintaining current levels 

of genetic diversity and patterns of genetic structure across the NW Atlantic.  Results of 

this study suggest that brood stocks should be quite similar regardless of their locality, 

and their resulting juvenile seed clams are likely interchangeable across geography.   
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Although we did not detect genetic structure using the mitochondrial COI gene, 

there may yet be other genes that might show variability within the NW Atlantic.  Given 

that multiple previous genetic studies of Mya arenaria showed low genetic variability, 

however, the odds of distinguishing locally adapted stocks using neutral genetic variation 

is remote.  Local adaptation has been noted in M. arenaria for toxin resistance (Connell 

et al. 2007), and there may very well be important regional genetic differences among 

clam stocks in non-neutral genes, even though such differences may be difficult or 

impossible to detect using genetic methods.   

Although genetic methods can be extremely informative when significant 

geographic subdivisions are detected, issues surrounding ancestral polymorphism and 

non-neutral processes make it nearly impossible to make strong inferences when no 

genetic differentiation is observed (Hedgecock et al. 2007).  As such, the results of this 

study cannot be interpreted as the genetic equivalence of all Mya arenaria.  Instead, our 

results indicate that because of the demographic history of this species, neutral genetic 

markers are likely to be uninformative in distinguishing regional stocks.  Given that 

ecological methods have succeeded in demonstrating local adaptation (Connell et al. 

2007) where genetics has failed, managing using precautionary principles suggests that  

seeding from local stocks should be preferred, if possible, particularly when 
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physiological or immunological differences have been demonstrated with non-genetic 

methods. 
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Figure 1. Unrooted minimum-spanning tree depicting the relationship of the 27 

mitochondrial COI haplotypes from 212 individuals, collected from 12 sites in the NW 

Atlantic (white; n = 177), one site in the North Sea, Europe (black; n = 15), and one site 

in the northeast Pacific (gray; n = 20).  Line distance between circles corresponds to the 

number of nucleotide differences (1 or 2). Each circle represents a unique haplotype, and 

the area of each circle corresponds to the number of individuals with that haplotype (the 

smallest circles are singletons).  Letters correspond to Table 2. 

Figure 2. Distribution of mitochondrial COI haplotypes for Mya arenaria in the NW 

Atlantic.  Gray shades are unique haplotypes found in only one location; patterns are 

haplotypes shared among two or more locations.  See Table 1 for site abbreviations and 

sample sizes. 

Figure 3.  Rarefaction curve constructed using data from Mya arenaria populations in 

the NW Atlantic.  Number of haplotypes = 25; number of individuals sampled = 177.   

Figure 4.  Bayesian skyline plot derived from Mya arenaria NW Atlantic sequences.  

The solid line is the median estimate of population size, and the shaded region shows 

95% highest posterior density limits (see Drummond et al. 2005).  The dashed line 

indicates where in time the population expanded.  Axis A is the years before present 

when a 1% per million years divergence rate is used; Axis B is the years before present 

when a 5% per million years divergence rate is used (see text for details).  The gray 

arrows on each axis represent the approximate timing of the last glacial maximum. The y-

axis is population size, with N = historical population size.  ybp = years before present. 
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Figure 5.  Frequency distributions of pairwise number of mutational differences between 

individuals for all NW Atlantic samples combined.   

1 
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Table 1.  Sampling and genetic information

Group Population Abrv Latitude/Longitude n h  π θS FS P(SSD ) P(Rag ) Collected by

North of 
Cape

Antigonish, NS NS 45° 37' N / 61° 59' W 20 0.000 0.000 - - D. Garbary

St. John, NB NB 45° 17' N / 66° 04' W 11 0.491 + 0.175 0.0008 + 0.0008 1.024 + 0.676 -2.04  (0.008) 0.10 0.05 M.J. Maltais & H. Hunt

Pembroke, ME ME 44° 57' N / 67° 10' W 21 0.271 + 0.124 0.0006 + 0.0006 1.112 + 0.641 -2.14  (0.006) 0.35 0.60 Gulf of Maine, Inc.

Quincy , MA QMA 42° 17' N / 71° 02' W 22 0.178 + 0.106 0.0003 + 0.0004 0.549 + 0.408 -1.97  (0.008) 0.40 0.55 C. Strasser

Cape
Barnstable, MA BMA 41° 42' N / 70° 20' W 19 0.205 + 0.119 0.0003 + 0.0005 0.572 + 0.427 -1.80  (0.008) 0.35 0.80 C. Strasser

Mashpee, MA MMA 41° 36' N / 70° 27' W 20 0.447 + 0.137 0.0009 + 0.0008 1.691 + 0.863 -3.95  (< 0.001) 0.50 0.60 C. Strasser

Wareham, MA WMA 41° 47' N / 70° 00' W 25 0.430 + 0.124 0.0009 + 0.0009 1.854 + 0.888 -4.90  (< 0.001) 0.35 0.60 C. Strasser

South of 
Cape

Stony Brook, NY NY 40° 54' N / 73° 07' W 15 0.476 + 0.155 0.0008 + 0.0008 1.230 + 0.725 -3.23  (< 0.001) 0.50 0.80 L. Davies

Miles River, MD MMD 38° 47' N / 76° 08' W 15 0.371 + 0.153 0.0006 + 0.0007 0.923 + 0.598 -2.37  (0.003) 0.70 0.65 M. Kramer & T. Hines

Eastern Bay, MD EMD 38° 51' N / 76° 15' W 9 0.583 + 0.183 0.0014 + 0.0012 1.470 + 0.905 -1.28  (0.046) 0.90 0.99 M. Homer & C. Dungan

Outside 
NWA

Newport, OR NEP 44° 36' N / 124° 03' W 20 0.574 + 0.121 0.0010 + 0.0009 1.127 + 0.652 -4.28 (0.016) 0.95 0.90 J. Chapman & J. Chapman

Sylt, Germany NSE 54° 55' N / 8° 21' E 15 0.648 + 0.088 0.0012 + 0.0010 0.615 + 0.462 0.365  (0.549) 0.15 0.20 S. Jacobsen

Abrv = abbreviation for site used in text; n = sample size, h = haplotype diversity (+ SD);  π = nucleotide diversity (+ SD); θs, where θ = 2Nμ estimated from the number of segregating sites, FS = Fu's F statistic 
and its associated p value.  P(SSD) is probability of observing by chance a worse fit between the observed data and the mismatch distribution.  P(Rag) is the probability of observing by chance a higher 
raggedness index than the observed index; non-significant raggedness indices indicate that the data fit a population expansion model.



Table 2.  Haplotype distributions

Location
Haplotype NS NB ME QMA BMA MMA WMA NY MMD EMD NEP NSE ALL

A 1.00 (20) 0.73 (8) 0.86 (18) 0.91 (20) 0.91 (17) 0.75 (15) 0.76 (19) 0.73 (11) 0.80 (12) 0.67 (6) 0.65 (13) 0.53 (8) 0.79 (167)
B 0.091 (1) 0.040 (1) 0.067 (1) 0.067 (1) 0.050 (1) 0.20 (3) 0.038 (8)
C 0.048 (1) 0.11 (1) 0.10 (2) 0.019 (4)
D 0.091 (1) 0.050 (1) 0.10 (2) 0.019 (4)
E 0.27 (4) 0.019 (4)
F 0.050 (1) 0.040 (1) 0.067 (1) 0.014 (3)
G 0.10 (2) 0.0094 (2)
H 0.091 (1) 0.0047 (1)
I 0.048 (1) 0.0047 (1)
J 0.048 (1) 0.0047 (1)
K 0.045 (1) 0.0047 (1)
L 0.045 (1) 0.0047 (1)
M 0.053 (1) 0.0047 (1)
N 0.053 (1) 0.0047 (1)
O 0.050 (1) 0.0047 (1)
P 0.050 (1) 0.0047 (1)
Q 0.050 (1) 0.0047 (1)
R 0.040 (1) 0.0047 (1)
S 0.040 (1) 0.0047 (1)
T 0.040 (1) 0.0047 (1)
U 0.040 (1) 0.0047 (1)
V 0.067 (1) 0.0047 (1)
W 0.067 (1) 0.0047 (1)
X 0.067 (1) 0.0047 (1)
Y 0.067 (1) 0.0047 (1)
Z 0.11 (1) 0.0047 (1)

AA 0.11 (1) 0.0047 (1)
Total 

individuals
20 11 21 22 19 20 25 15 15 9 20 15 212

Haplotype frequencies are given for each locality sampled, with the number of individuals per haplotype in parentheses.  Site abbreviations are given in Table 1. ALL column is 
sum of all sites sampled.



Table 3.  Results of AMOVAs

Among regions Among populations within regions Within populations
df Var. % Var. ΦCT p value df Var. % Var. ΦSC p value df Var. % Var. ΦST p value

All Locations
1 region 11 0.0062 2.7 200 0.23 97 0.027 0.0013
2 regions A 1 0.043 16 0.16 0.084 10 0.00003 0.01 0.0001 0.27 200 0.23 84 0.16 0.0011
2 regions B 1 0.0032 1.4 0.14 0.17 10 0.0056 2.4 0.024 0.23 200 0.23 96 0.34 0.0014
3 regions 2 0.024 9.6 0.960 0.045 9 -0.0014 -0.54 -0.0060 0.43 200 0.23 91 0.090      0.0011

NWA Only
1 region 9 0.00008 0.04 167 0.20 100 0.00040 0.43
3 regions 2 0.00043 0.21 0.0021 0.19 7 -0.0002 -0.12 -0.0012 0.43 167 0.20 100 0.0010 0.43

Results of AMOVAs testing for geographic structure across all locations and in the NWA only.  Regions were as follows for All Locations analyses. 2 regions A 
= North American (NWA+NEP) and European (NSE) populations; 2 regions B = Atlantic (NWA+NSE) and Pacific (NEP); 3 regions = NWA, NEP, and NSE.  
For NWA only, 3 regions = North of Cape, Cape Cod, and South of Cape.   p-values are associated with Φ values.



Table 4.  Pairwise population comparisons, FST

NSE NS NB ME QMA BMA MMA WMA NY MMD EMD NEP

NSE - 0.00066 0.096 0.0 0.00030 0.0013 0.00030 0.0093 0.11 0.11 0.10 0.0079
NS   0.22* - 0.036 1.0 1.0 0.23 1.0 0.50 0.026 0.62 0.023 0.11
NB 0.065    0.058* - 0.45 0.22 0.41 0.86 0.67 0.85 0.77 0.69 0.74
ME   0.14* -0.0024 0.0084 - 0.34 0.83 0.37 0.93 0.45 0.60 0.37 0.20

QMA   0.18* -0.0045 0.028 0.00079 - 0.65 0.13 0.47 0.16 0.32 0.083 0.0063
BMA 0.170  0.003 0.0056 -0.0015 0.00054 - 0.99 0.47 0.23 0.40 0.12 0.22
MMA   0.12*  0.000 -0.018 0.00055 0.0026 -0.0078 - 0.56 0.88 0.81 0.39 0.42
WMA 0.099  0.000 -0.010 -0.010 0.0049 0.0013 -0.0014 - 0.83 0.75 0.80 0.48

NY 0.084   0.020* -0.023 0.0034 0.012 0.0066 -0.013 -0.015 - 1.0 0.69 0.31
MMD 0.092  0.020 -0.023 0.000 0.0088 0.0047 -0.0033 -0.010 -0.019 - 0.64 0.30
EMD 0.052    0.097* -0.024 0.012 0.060 0.047 0.013 -0.020 -0.010 -0.0060 - 0.60
NEP 0.100  0.045 -0.023 0.013 0.039 0.022 0.0091 -0.0011 0.013 0.012 -0.015 -

Below diagonal: population pairwise FST values. * indicates that the value is significant at the p = 0.05 level.  Above 
diagonal: p value for FST values.  Bold values remained significant after Bonferroni correction; italicized values became 
insignificant after correction.
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