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Abstract
Aim: Understanding the environmental drivers of movement and habitat use of 
highly migratory marine species is crucial to implement appropriate management 
and conservation measures. However, this requires quantitative information on their 
spatial and temporal presence, which is limited in the high seas. Here, we aimed to 
gain insights of the essential habitats of three baleen whale species around the mid-
North Atlantic (NA) region, linking their large-scale movements with information on 
oceanographic and biological processes.
Location: Mid-NA Ocean.
Methods: We present the first study combining data from 31 satellite tracks of baleen 
whales (15, 10 and 6 from fin, blue and sei whales, respectively) from March to July 
(2008–2016) with data on remotely sensed oceanography and mid- and lower trophic 
level biomass derived from the spatial ecosystem and population dynamics model 
(SEAPODYM). A Bayesian switching state-space model was applied to obtain regular 
tracks and correct for location errors, and pseudo-absences were created through 
simulated positions using a correlated random walk model. Based on the tracks and 
pseudo-absences, we applied generalized additive mixed models (GAMMs) to deter-
mine the probability of occurrence and predict monthly distributions.
Results: This study provides the most detailed research on the spatio-temporal distri-
bution of baleen whales in the mid-NA, showing how dynamic biophysical processes 
determine their habitat preference. Movement patterns were mainly influenced by 
the interaction of temperature and the lower trophic level biomass; however, this 
relationship differed substantially among species. Best-fit models suggest that move-
ments of whales migrating towards more productive areas in northern latitudes were 
constrained by depth and eddy kinetic energy.
Main conclusions: These novel insights highlight the importance of integrating te-
lemetry data with spatially explicit prey models to understand which factors shape 
the movement patterns of highly migratory species across large geographical scales. 
In addition, our outcomes could contribute to inform management of anthropogenic 
threats to baleen whales in sparsely surveyed region.

www.wileyonlinelibrary.com/journal/ddi
mailto:﻿
https://orcid.org/0000-0002-4843-0443
https://orcid.org/0000-0001-9976-7962
https://orcid.org/0000-0002-0354-2572
https://orcid.org/0000-0002-3947-6917
https://orcid.org/0000-0002-2683-309X
http://creativecommons.org/licenses/by/4.0/
mailto:sergiperezjorge@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fddi.13038&domain=pdf&date_stamp=2020-03-21


2  |     PÉREZ-JORGE et al.

1  | INTRODUC TION

Migratory marine animals are increasingly vulnerable to extinction 
and population declines due to the cumulative anthropogenic im-
pacts on their environment. Understanding the distribution pat-
terns of these wide-ranging taxa is critical for effective management 
(Halpern et al., 2015), but often challenging, due to the difficulty 
of studying their movements over vast ocean regions. Advances 
in satellite telemetry tags have improved the knowledge on the 
distribution and movements of highly mobile marine species and 
stimulated developments in species distribution modelling (SDM) 
to quantify and predict animal space use across time (Block et al., 
2011). However, making population-level inferences from telemetry 
data poses many challenges due to the presence-only observations, 
such as the lack of absence data and serially correlated positions. 
One solution is to incorporate pseudo-absences to the data (i.e. 
representatively selected locations where the animals could have 
been sampled but were not) and to use an error structure (i.e. cor-
relation terms, random effects) that more accurately reflects the 
variability within and between different levels of the natural hier-
archy of the sampling units (Aarts, MacKenzie, McConnell, Fedak, 
& Matthiopoulos, 2008; Vandeperre, Aires-da-Silva, Lennert-Cody, 
Serrão Santos, & Afonso, 2016).

Developing SDMs that can effectively forecast animals’ distri-
bution depend on the availability of ecologically meaningful envi-
ronmental data at the appropriate spatial and temporal resolutions. 
Marine top predators are supported by the productivity of primary 
and secondary consumers, and their distribution and movements are 
tied closely to those of their prey (Benoit-Bird et al., 2013; Boyd et 
al., 2015). Yet, due to the scarcity of prey data at scales relevant for 
marine top predators, most SDMs have relied on proxies for prey dis-
tribution such as physiographic variables and a handful of remotely 
sensed or in situ oceanographic measurements (Scales et al., 2017; 
Tobeña, Prieto, Machete, & Silva, 2016). However, the main issue 
with these proxies is the potential temporal and spatial lags that may 
occur between physical and oceanographic processes and biological 
responses (i.e. prey biomass), highlighting the importance of having a 
good understanding of the marine food web to predict the distribu-
tion of predators (Grémillet et al., 2008; Redfern et al., 2006). Recent 
advances in ecosystem models provide real-time and hindcast 
simulations of low and mid-trophic level biomass and production 
over large spatio-temporal scales (Lehodey et al., 2015; Lehodey, 
Murtugudde, & Senina, 2010), which allow the incorporation of pre-
dicted prey distributions into SDMs and a better understanding of 
the ecosystem components (Lambert, Mannocci, Lehodey, & Ridoux, 
2014; Mannocci, Roberts, Miller, & Halpin, 2016).

Large baleen whales are believed to make seasonal migrations 
from high-latitude productive waters used in summer to feed, and 

low-latitude oligotrophic waters used in winter for breeding and 
calving (Stern, 2009). During feeding periods, these whales concen-
trate mainly in areas where their preferred prey (euphausiids, small 
epipelagic and mesopelagic schooling fish) occurs in predictable ag-
gregations and at high densities (Croll et al., 2005; Laidre et al., 2010). 
In the NA Ocean, studies examining the drivers of baleen whale 
distribution are concentrated along the US and European coasts 
(Kaschner, Quick, Jewell, Williams, & Harris, 2012). In the north-
west Atlantic, the spatio-temporal distribution of baleen whales was 
strongly related to static variables and several formulations of bi-
ological productivity, such as mesoscale fronts, and eddies, which 
can aggregate micronekton and zooplankton biomass (Roberts et 
al., 2016). In the European Atlantic shelf waters, oceanographic and 
physiographic features, such as sea surface temperature, depth and 
distance to the 2,000 m contour, were important predictors of the 
summer distribution of baleen whales (Macleod et al., 2009).

The drivers shaping baleen whale migration in the mid-NA are 
poorly understood due to the difficulty of observing their move-
ments during migratory periods. Identifying the drivers of baleen 
whales’ distribution is necessary to understand the dynamics of 
their populations and to forecast how these whales might respond to 
ecosystem variability associated with climatic changes (Hazen et al., 
2013). Studies characterizing the migration patterns of these whales 
remain largely descriptive (Prieto, Silva, Waring, & Gonçalves, 2014; 
Silva, Prieto, Jonsen, Baumgartner, & Santos, 2013). Therefore, our 
aim was to develop habitat models based on telemetry data to in-
vestigate the distribution of three baleen whale species around the 
mid-NA: the blue whale (Balaenoptera musculus), fin whale (B. phys-
alus) and sei whale (B. borealis). Specifically, we implemented a com-
prehensive ecological modelling approach to determine the effect 
of oceanographic conditions and prey availability as drivers of their 
northward migration. Based on these models, we also predicted 
the spatio-temporal distribution along their northward migration in 
order to identify important habitats for each species in the mid-NA.

2  | METHODS

2.1 | Tracking data

We deployed 31 location-only satellite tags (SPOT5 Wildlife 
Computers, USA) on fin, blue and sei whales (15, 10 and 6, respec-
tively) off the Azores, between June 2008 and June 2016 (Figure 1; 
additional details in Table S1). Tagging procedures were conducted 
following the guidelines of the American Society of Mammalogists 
(Sikes, Gannon, & The Animal Care and Use Committee of the 
American Society of Mammalogists, 2011) and under research per-
mits approved by the relevant authorities (Regional Directorate 
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for Sea Affairs, Autonomous Region of the Azores). The transmit-
ters (model SPOT5-implantable, Wildlife Computers, USA) were 
deployed from a 6-m rigid-hulled inflatable or a 12-m fibreglass 
boat using a compressed air gun (ARTS/RN, Restech, Norway) set 
at 8–10  bar pressure (Prieto et al., 2014; Silva, Prieto, Jonsen, et 
al., 2013). All tags were programmed to transmit on a daily basis, 
providing hourly data up to a maximum of 500 daily messages. The 
raw and unfiltered locations provided by the tags were fitted in a 
Bayesian switching state-space model (SSSM) to obtain positions 
at regular time steps, and to improve position estimates by incor-
porating the measurement errors provided by Argos (Jonsen et al., 
2013). The SSSM was built in a hierarchical framework to estimate 
parameters jointly across multiple individual tracks. We tested mul-
tiple time steps (2, 5, 12 and 24  h) to find the most appropriate 
parameters to reduce the sample autocorrelation (see modelling ap-
proach workflow in Figure S1). For each model, we ran two Markov 
chain Monte Carlo (MCMC) chains for 50,000 iterations, dropping 
the first 45,000 samples as a burn-in and retaining every 5th sam-
ple from the remaining 5,000 assumed postconvergence samples. 
Model convergence and sample autocorrelation were visually 
checked in the diagnostic plots, and a time step of 12  h was se-
lected as the most suitable due to its lower sample autocorrelation. 
The analysis was performed using the R software (version 2.15.3; R 
Development Core Team, 2015) and the package “bsam” (Jonsen, 
Flemming, & Myers, 2005).

2.2 | Simulated correlated random walks

As the track locations obtained through the SSSM only provide 
information on the presence of whales, we created simulated 
tracks (i.e. “pseudo-absences”) for each original track (case points) 
to characterize environmental conditions potentially available to 

individuals (Aarts, Fieberg, & Matthiopoulos, 2012). The simu-
lated tracks (control points) were built using a correlated random 
walk (CRW) model (Kareiva & Shigesada, 1983), randomly taking 
the first or last transmitted position of each satellite track as the 
starting point to avoid bias towards areas more intensively sam-
pled (Phillips et al., 2009; see Figure S2). For each real track, we 
simulated 200 CRW tracks with the same duration and dates of the 
original tracks, and with turning angles and step lengths randomly 
sampled from the distribution of the original tracks (Willis-Norton 
et al., 2015). The CRW tracks from each species were simulated 
within a different restricted area, based on the combination of all 
original tracks and increased by a buffer zone accounting for the 
error of the satellite tags (100 km from the closest original track; 
Žydelis et al., 2011). Various studies highlighted the importance 
of choosing pseudo-absences on the same geographical extent as 
the tracking data (Barbet-Massin, Jiguet, Hélène Albert, & Thuiller, 
2012). Moreover, selection of pseudo-absences can influence vari-
able selection, model fit and predictions of SDMs (Wisz & Guisan, 
2009). To ensure selection of an appropriate pseudo-absence data-
set, we assessed the similarity between the original and the simu-
lated tracks based on the overall direction and distance, assigning 
a flag value between 0 and 4 (0 being the most similar tracks and 4 
the most dissimilar). This flag value was estimated as the normal-
ized difference between the original and the simulated track length 
distance, d, summed with the normalized difference in net angular 
displacement, θ, of the original and simulated track (Willis-Norton 
et al., 2015):

Simulated tracks within the upper quartile of dissimilar flag val-
ues and tracks crossing land were excluded from the analysis.

Flag value=2×
(

Distanceoriginal− Distancesim
)

∕Distanceoriginal

+
(

Angleoriginal− Anglesim
)

∕90.

F I G U R E  1   Map showing the original 
positions for blue, fin and sei whales
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2.3 | Environmental and prey-related variables

Candidate variables were selected based on species’ ecological 
preferences and regional oceanographic and physiographic char-
acteristics (Redfern et al., 2006). Potential prey biomass distribu-
tions were obtained from the mid-trophic level spatial ecosystem 
and population dynamics model (SEAPODYM-MTL, Lehodey et 
al., 2015; Lehodey et al., 2010; Table 1). The SEAPODYM-MTL 
model simulates spatial and temporal dynamics of production and 
biomass of micronekton between the surface and 1,000 m depth. 
The model is driven by physical and biological variables, using a 
system of advection–diffusion–reaction equations (Lehodey et 
al., 2010). Physical variables, current and temperature (T) data 
(Table 1), were obtained from the eddy resolving global ocean rea-
nalysis GLORYS-2v1 provided by Mercator Ocean (http://www.
merca​tor-ocean.fr/eng), based on the ocean general circulation 
model configuration ORCA025 NEMO, at a spatial resolution of 
0.25° for the 1992–2009 period (Bernard et al., 2006) and assimi-
lated satellite and in situ data. From 2010, GLORYS.2v1 was up-
dated with the equivalent Mercator Ocean operational real-time 
system (PSY3). Biological variables, net primary production (NPP) 
and euphotic depth (ZEU) data, were derived from ocean colour 
satellite data (http://www.scien​ce.orego​nstate.edu/ocean​), using 
the vertically generalized production model (VGPM) of Behrenfeld 
and Falkowski (1997). Both GLORYS-2v1 outputs and primary pro-
duction data were interpolated onto a regular 0.25°  ×  0.25° grid 
with a weekly time step to be used as forcing for the SEAPODYM. 
In the model, three vertical layers are defined in relation to the 
euphotic depth, as micronekton diel vertical migration (DVM) is 
mainly induced by daylight variations, validated with biomass es-
timates from micronekton sampling cruises and acoustic backscat-
ter data (Lehodey et al., 2015, 2010). The SEAPODYM-MTL model 
simulates six functional groups of micronekton according to the dy-
namics of their vertical distribution: epipelagic, migrant upper mes-
opelagic, upper mesopelagic, highly migrant lower mesopelagic, 
migrant lower mesopelagic and lower mesopelagic (Table 1). As 
baleen whales mainly forage on prey available within the epipelagic 
layer (Goldbogen et al., 2017), functional groups remaining during 
day and night within the lower mesopelagic layers (>400 m deep) 
were not included in the analysis.

We also incorporated the outputs of the lower trophic level 
SEAPODYM (SEAPODYM-LTL), which follow the same modelling 
framework of the mid-trophic level, and considered a single func-
tional group including all mesozooplankton organisms (i.e. both 
holo- and mero-zooplankton). This model also had two state vari-
ables, production (LTL-prod) and biomass (LTL-bio), integrated over 
the epipelagic layer defined by the euphotic depth (Conchon, 2016) 
(Table 1). In addition to these prey-related variables, we included 
the surface chlorophyll-a concentration (Chl-a) used to compute 
the primary production and eddy kinetic energy (EKE) calculated as 
EKE = ½ × (u2 + v2), with u and v, respectively, the meridian and zonal 
geostrophic current components that are used as forcing variables 
for the epipelagic layer of SEAPODYM.

Regarding static environmental variables, depth was obtained 
from ETOPO1 Global Relief Model at a spatial resolution of 1/60°, 
provided by NOAA's National Geophysical Data Center (NGDC, 
https​://www.ngdc.noaa.gov/mgg/globa​l/). Derived static variables 
were slope, calculated using the elevation values of the four immedi-
ately adjacent depths (Ritter, 1987), and distance to coast (See ST1). 
Following the identification of time-lagged Chl-a concentration as 
an important predictor of the spatio-temporal distribution of ba-
leen whales around the study area (Prieto, Tobeña, & Silva, 2016), 
we tested a time-lag of 1 month prior to the point location for the 
following variables (indicated by variable name_1m): LTL-bio, LTL-
prod, Chl-a and NPP. All environmental and prey-related variables 
were extracted for each original and simulated track point using the 
R software and the packages “raster” (Hijmans & van Ettern, 2012), 
“ncdf4” (Pierce, 2019) and “rgdal” (Bivand et al., 2019). Data points 
with incomplete information were removed from the final dataset, 
corresponding to 0.02%, 0.06% and 1.60% of the total dataset for 
fin, blue and sei whale, respectively. Prior to running the models, 
we examined collinearity between pairs of covariates (Zuur, Ieno, 
& Elphick, 2010) using the Pearson's correlation coefficient and se-
lected those variables less correlated (<0.7) and ecologically more 
relevant (Dormann et al., 2013).

2.4 | Habitat modelling

We applied generalized additive mixed models (GAMMs) to the 
original and simulated track points to predict the habitat preference 
of each whale species. GAMMs were fit with a binomial distribu-
tion and a logit link function, using the restricted maximum likeli-
hood (REML, mgcv 1.8.7; Wood, 2006) as an optimization method 
and individual IDs as a random effect. To model our data as a binary 
response variable, original points were assigned a value of 1 and 
simulated points a value of 0 (Aarts et al., 2012). In addition to sin-
gle covariates, we defined two biologically interpretable interactions 
between covariates using two-dimensional tensor product smooths: 
T  ×  LTL-bio and EKE  ×  LTL-bio (Wood, Scheipl, & Faraway, 2013). 
These interactions were chosen based on current knowledge of the 
oceanographic conditions, as well as the relationship between these 
variables to understand the habitat preference of marine top preda-
tors within our study area (Vandeperre et al., 2016).

The GAMMs were built using a backward selection of rele-
vant individual smooth terms and tensor product smooths. Nested 
models were compared using chi-square tests. To select the tensor 
product smooths, the original structure was tested to the equiva-
lent additive structure while controlling for the degrees of freedom 
using the k-parameter (i.e. the basis dimension) (Vandeperre et al., 
2016; Wood, 2006). Once the best model was chosen based on the 
lowest corrected AIC, the smoothing splines were limited to a max-
imum of 5 degrees of freedom to avoid overfitting and preserve the 
ecological interpretability of functional relationships. The effect of 
this limitation on the number of degrees of freedom was evaluated 
by comparing the final outputs and predictions from models with 

http://www.mercator-ocean.fr/eng
http://www.mercator-ocean.fr/eng
http://www.science.oregonstate.edu/ocean
https://www.ngdc.noaa.gov/mgg/global/
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constrained and unconstrained smooth terms. No differences were 
detected between constrained and unconstrained models on vari-
able selection and predictive performance (results not presented).

Following this habitat modelling approach, we evaluated the 
performance of models built with both environmental and prey-re-
lated variables, with that of models including only environmental 

TA B L E  1   Description of candidate variables for habitat modelling

Environmental variable (acronym, units)
Spatial 
resolution Source Biological/Ecological characteristics

Depth (Depth, m) 0.1° Etopo 1. 1 Arc-Minute Global 
Relief Model

Coastal versus pelagic domains

Sea water potential temperature (T, °C) 0.25° Mercator Ocean Water mass distribution

Euphotic depth (ZEU, m) 0.25° OSU (1998–2015) Zone of effective photosynthesis

Chlorophyll-a (Chl-a, mg/m3) 0.25° OSU (1998–2015) Ocean productivity domains

Net primary production of carbon (NPP, 
mmolC/m2/d)

0.25° CLS, VGPM algorithm 
(1998–2015)

Ocean productivity domains

Slope (Slope, degrees from the 
horizontal)

0.1° Etopo 1. 1 Arc-Minute Global 
Relief Model

Influence of topographic features

Distant to coast (Coast, Km) 0.1° Etopo 1. 1 Arc-Minute Global 
Relief Model

Onshore–offshore distribution patterns

Epipelagic micronekton biomass (epi_
pb, gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day and night 
within the epipelagic layer

Epipelagic micronekton production 
(epi_pp, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day and 
night within the epipelagic layer

Upper mesopelagic micronekton 
biomass (u-meso_pb, gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day and night 
within the upper mesopelagic layer

Upper mesopelagic micronekton 
production (u-meso_pp, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day and 
night within the upper mesopelagic layer

Migrant upper mesopelagic 
micronekton biomass (mu-meso_pb, 
gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day within the 
upper mesopelagic layer and migrating at night to the 
epipelagic layer

Migrant upper mesopelagic 
micronekton production (mu-meso_pp, 
gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day within 
the upper mesopelagic layer and migrating at night to 
the epipelagic layer

Lower mesopelagic micronekton 
biomass (l-meso_pb, gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day and night 
within the lower mesopelagic layer

Lower mesopelagic micronekton 
production (l-meso_pp, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day and 
night within the lower mesopelagic layer

Migrant lower mesopelagic micronekton 
biomass (ml-meso_pb, gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day within the 
lower mesopelagic layer and migrating at night to the 
upper mesopelagic layer

Migrant lower mesopelagic micronekton 
production (ml-meso_pp, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day within 
the lower mesopelagic layer and migrating at night to 
the upper mesopelagic layer

Highly migrant lower mesopelagic 
micronekton biomass (hml-meso_pb, 
gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of micronekton remaining during day within the 
lower mesopelagic layer and migrating at night to the 
epipelagic layer

Highly migrant lower mesopelagic 
micronekton production (hml-meso_
pp, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of micronekton remaining during day within 
the lower mesopelagic layer and migrating at night to 
the epipelagic layer

Lower trophic level plankton biomass 
(LTL-bio, gWW/m2)

0.25° SEAPODYM ecosystem model* Biomass of mesozooplankton within the epipelagic layer

Lower trophic level plankton production 
(LTL-prod, gWW/d/m2)

0.25° SEAPODYM ecosystem model* Production of mesozooplankton within the epipelagic 
layer

Note: The SEAPODYM defined three vertical layers in relation to the euphotic depth: Epipelagic layer as <1.5 of the euphotic depth (~150 m), upper 
mesopelagic layer as >1.5 and <4.5 of the euphotic depth (between 150 and 400 m) and lower mesopelagic layer as >4.5 of the euphotic depth 
(>400 m). Examples of species composition of functional groups are provided in Lehodey et al. (2010).
*is to describe the seapodym ecosystem model 
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variables, in order to assess the contribution of modelled mid- and 
lower trophic level biomass and production.

A sensitivity analysis was also carried out to determine whether 
the simulated CRW tracks produce outputs that were robust to pa-
rameter uncertainty. We randomly selected two of the 200 CRWs 
tracks per whale and assessed whether the predictors from the 
best-fitting model were also significant for the different simulated 
points, repeating this procedure 40 times (Hazen et al., 2016). For 
each of the 40 runs, we calculated the area under the receiver oper-
ating characteristic (AUC) curve and the variance explained (R2). The 
AUC index ranges from 0 to 1, with values below 0.6 indicating a dis-
crimination ability no better than random, values between 0.7 and 
0.9 considered as reasonable and values >0.9 as excellent (DeLong, 
DeLong, & Clarke-Pearson, 1988).

Successive observations along the track of the same individual 
can be serially correlated with respect to associated habitat char-
acteristics, which may underestimate parameter uncertainty and 
result in selection of inappropriate predictor variables during model 
selection (Fieberg, Matthiopoulos, Hebblewhite, Boyce, & Frair, 
2010). To check whether the serial correlation was an issue in our 
data, we subsampled the original dataset by selecting every fifth 
data point, representing a time interval of 60 hr, which was consid-
ered sufficient for the individuals to move anywhere with overall 
distinct environmental conditions (Žydelis et al., 2011). GAMMs fit 
to the subsampled dataset were compared with the standard models 
through variable importance and AUCs.

2.5 | Model predictions

Monthly predictions of habitat preferences (scale from 0 to 1) were 
produced for each species based on the best GAMMs, at the spa-
tial resolution of the fitted models (0.1°). Environmental and prey-
related variables were compiled at a monthly resolution during the 
tracking period to obtain mean predictions for the study area and 
calculate the standard deviation (SD), in order to measure the sta-
bility of the predicted distribution, with stable and unstable habitat 
represented by low and high SD.

3  | RESULTS

3.1 | Tracking data

Tracking data were collected for the three target species between 
March and July, from 2008 to 2016. Two fin whale tracks shorter 
than 3 days were excluded from the analysis (final dataset of n = 29; 
Table 2). Tracking duration and distance travelled were shortest for 
fin whales and longest for sei whales. Blue and fin whales gener-
ally moved north or north-east; one blue whale and one fin whale 
headed westwards and crossed the Mid-Atlantic Ridge. Most indi-
viduals of both species showed limited longitudinal displacement 
remaining within 1,000  km of the Azores. All tracked sei whales 

travelled north-west towards the Labrador Sea, which defined a 
clear migratory corridor. Once they reached these waters, individual 
whales exhibited different space use patterns, often associated with 
the shelf break off Canada and Greenland.

3.2 | Habitat preferences and predicted 
distributions

3.2.1 | Fin whale

The best-fitting GAMM included two additive covariates (Depth and 
log_EKE) and one tensor product smooth (LTL-bio × T) (Table 3; Table 
S2). Fin whales preferred water depths < 2,500 m with high EKE (> 
0.005 cm2/s2) (Figure 2). The surface of the tensor product smooth 
of T and LTL-bio was plotted on the scale of the response. The tensor 
product smooth indicated an association with cold (<10°C) productive 
habitats (LTL-bio > 100 gWW). Habitat preferences decreased sharply 
at T values between 10 and 15°C, but increased again for warmer wa-
ters with low LTL-bio. The environmental and prey-related variables of 
best model were significant in the large majority of the 40 models ran 
with different simulated points, showing the robustness of these vari-
ables to control point selection (Table 1). These models explained on 
average 31% of the total deviance (SD = 0.09) and had an average AUC 
of 0.83 (SD = 0.04), indicating good predictive performance. The best 
model using only environmental variables included five covariates 
(NPP_1m, temperature, EKE, Depth and Slope) and showed a lower 
variance explained and predictive performance (Table S3).

The monthly predictions captured the seasonal movement of fin 
whales along the mid-NA (Figure 3). In March, the highest predicted 
probability of presence occurred along the east coast of Greenland 
and south-west of the Irminger Sea, just over 50°N of latitude. This 
preferred habitat expanded towards the north-east over the fol-
lowing months, covering the whole Irminger Sea and reaching the 
west coast of Iceland, by June and July. The mid-Atlantic Ridge 
around the Azores was also a relevant area for the species, mainly 
between March and May. Model predictions showed a fair amount 

TA B L E  2   Summary of tracking data used to fit habitat models 
for each whale species

Data collection

Species

Fin whale Blue whale Sei whale

Total number of 
tracks

13 10 6

Year interval 2009–2015 2009–2016 2008–2009

Month interval March–July April–July May–July

Mean duration in 
days (SD)

20 (12) 27 (15) 39 (22)

Mean locations 
received (SD)

334 (508) 223 (162) 354 (384)

Mean distance 
travelled in km (SD)

2,167 (1862) 2,389 (1,366) 4,041 (2,890)
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of uncertainty across the study region from March to May, with this 
uncertainty remaining in the southern region of the study area in 
June and July (Figure S3).

3.2.2 | Blue whale

The best model predicting blue whales’ habitats included one tensor 
smooth product (LTL-bio × T) and two additive covariates (Depth and 

LTL-prod_1m) (Table 3; Table S2). The tensor smooth product of T and 
LTL-bio defined a complex interaction surface (Figure 4). The species 
showed a bimodal response for T values between 15 and 18°C, with 
either high or low LTL-bio, and for T ranging from 8 to 14°C with 
high LTL-bio (>65 gWW). Blue whales had a preference for areas with 
intermediate values of LTL-prod in the previous month and water 
depths < 2,500 m. All variables included in the best model were sig-
nificant in at least 85% of the 40 models ran with different control 
points, indicating that selection of pseudo-absences did not have a 

Variable edf Ref.df Chi-sq
n-significant 
(n/40)

Fin whale

te(LTL-bio, T) 13.160 14.913 159.65 40/40

s(log_EKE) 3.735 3.957 14.74 30/40

s(Depth) 3.785 3.970 64.95 40/40

  R2: 0.31 (0.09) AIC: 1261.66 (121.54) AUC: 0.83 (0.04)  

Blue whale

te( LTL-bio, T) 8.127 8.663 32.510 40/40

s(LTL-prod_1m) 2.858 3.617 9.521 34/40

s(Depth) 8.136 8.799 23.124 37/40

  R2: 0.25 (0.07) AIC: 1672.55 (116.29) AUC: 0.81 (0.03)  

Sei whale

te( LTL-bio, T) 20.854 21.757 227.37 40/40

s(LTL-prod_1m) 3.418 3.821 16.47 8/40

s(Depth) 3.873 3.990 48.72 33/40

  R2: 0.31 (0.09) AIC:1353.53 (149.92) AUC: 0.83 (0.04)  

Note: Models were run 40 times, and the significance of their variables was evaluated with p values 
of less than 0.01. Variances explained (R2), Akaike information criterion (AIC) and area under the 
curve (AUC) were obtained for each run, calculating a mean and SD. Variables included in the best 
models below: lower trophic level biomass (LTL-bio), lower trophic level production on the previous 
month (LTL-prod_1m), eddy kinetic energy (log_EKE) and depth (Depth).

TA B L E  3   Summary of the habitat 
modelling outputs for the three species: 
fin, blue and sei whale

F I G U R E  2   Generalized additive mixed 
model (GAMM) smoothers for fin whales. 
(a) Surfaces of the tensor product smooths 
(temperature, T, and lower trophic level 
biomass, LTL_bio) plotted at the scale 
of the response. (b) and (c) GAMMs 
smother for log_EKE (eddy kinetic energy) 
and Depth, respectively. Dashed lines 
represent the 95% confidence intervals 
for the fitted relationships
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strong influence on model results (Table 1). The models had a good 
predictive ability to discriminate between areas where blue whales 
were present versus those areas where they were absent, with an 
average AUC of 0.81 (SD = 0.03), and a total deviance explained of 
25% (SD = 0.07). The best model including only environmental vari-
ables (NPP_0m, NPP_1m, temperature, EKE and Depth) had a moder-
ate predictive performance, lower than the models with prey-related 

variables (Table S3). Probability of blue whale presence was highest 
between 35 and 50ºN in April and May, at north-eastern latitudes 
in June, and in the south-west coast of Iceland by July (Figure 5). 
The probability of occurrence of blue whales in the Azores decreased 
from April to July, reaching almost zero in July. Predictions showed a 
fair amount of uncertainty in the northern part of the study area in 
April, but decreased drastically in the following months (Figure S4).

F I G U R E  3   Predicted distribution of fin whales from March to July. Habitat preferences were scaled from 0 (low preference) to 1 (high 
preference). Spatial resolution was set to 0.1°

F I G U R E  4   Generalized additive 
mixed model (GAMM) smoothers for blue 
whales. (a) Surfaces of the tensor product 
smooths (temperature, T, and lower 
trophic level biomass, LTL_bio) plotted 
at the scale of the response. (b) and (c) 
GAMMs smother for log_LTL_prod_1m 
and Depth, respectively. Dashed lines 
represent the 95% confidence intervals 
for the fitted relationships
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3.2.3 | Sei whale

The final model for sei whales contained one tensor smooth product 
(LTL-bio × T) and two additive covariates (Depth and LTL-prod_1m) 
(Table 3; Table S2). Sei whales were associated with deep waters 
(>1,500 m) and intermediate values of LTL-prod from the previous 
month (25–65 gWW/day) (Figure 6). The tensor smooth product of 
T and LTL-bio indicates that sei whales used relatively cold waters 
(~10°C) with average productivity values (10–100  gWW), as well 
as colder areas (~5°C) with high productivity (LTL-bio > 100 gWW). 
Preference decreased sharply for warmer areas (>15°C), even when 
LTL-bio was high. The tensor smooth product was significant in 
100% of the 40 models ran with different control points, in 80% 
of the models with the covariate Depth and in only 20% of models 
with the LTL production from the previous month. The average AUC 
was 0.83 (SD = 0.04), and the average deviance explained was 31% 
(SD = 0.09). The best model with environmental variables included 
four covariates (temperature, EKE, Depth and Slope) and had a lower 
predictive performance and variance explained than models with 
prey-related variables (Table S3).

Latitudes above 45°N, mainly around the south-west of the 
Irminger Sea and in the Labrador Sea (except the shallow waters 
along the Greenland coast), were identified as important habitats for 
sei whales (Figure 7). In May, the main hotspot was near the Charlie-
Gibbs Fracture Zone (CGFZ) in the mid-NA. In June and August, the 
predicted distribution shifted northwards and was concentrated 
in the entire Labrador Sea and in a few areas along the Greenland 
coast. Low occurrences were predicted in the area around Azores. 
Predictions indicated a low uncertainty across the whole study re-
gion in all sampled months (Figure S5).

3.3 | Serial correlation evaluation

Models based on subsampled and full datasets yielded similar re-
sults for all three species in terms of importance of predictor vari-
ables and robustness to control point selection (Table S4). In the 
case of fin and blue whales, subsample models had slightly lower 
AUC values than full dataset models but AUC values were similar 
for sei whale models. Nonetheless, habitat preference predictions 
from these models were comparable to those from full datasets 
for all the species (Figures S6–S8). Taken together, these results 
indicate that our analyses and predictions were robust to serial 
correlation.

4  | DISCUSSION

This study offers novel insights into the distribution of highly mi-
gratory species across large geographical scales, and fills in a gap in 
knowledge of baleen whale distribution in the mid-NA. We provide 
spatially and temporally explicit information on the distribution of the 
three species of baleen whales through the combination of satellite 
tracking data, remotely sensed oceanography and ecosystem mod-
els, which could contribute to implement appropriate conservation 
and management measures. However, it should be noted that our 
analysis is based on a relatively small sample size, especially for sei 
whales, and that some of the tracks were short and did not cover the 
full extent of movements to the whales’ presumed northern feeding 
grounds. Thus, our habitat preferences may not adequately reflect 
the relationship of whales with conditions at their feeding grounds. 
Moreover, inter-monthly variations may not be fully representative 

F I G U R E  5   Predicted distribution of 
blue whales from April to July. Habitat 
preferences were scaled from 0 (low 
preference) to 1 (high preference). Spatial 
resolution was set to 0.1°



10  |     PÉREZ-JORGE et al.

of the seasonal movements of the species due to the limited number 
of tracks per month within each sampling year.

Regarding prey-related variables, SEAPODYM data also had 
some issues related to data estimation and validation. First, var-
ious sources of uncertainty are associated with the observations 
used to validate the model, due to the different techniques em-
ployed to collect zooplankton biomass data and its spatio-tempo-
ral distribution (Conchon, 2016). Second, the LTL data are based 
on mesozooplankton species, which constitutes only a portion 
of the diet of our targeted baleen whale species. While further 

developments are required to optimize final output parameters, 
this study shows promising results on the application of mod-
elled zooplankton biomass to study marine top predators at large 
scale.

4.1 | Habitat preferences

Our models show that the distribution of blue, fin and sei whales 
is strongly associated with prey availability and with static and 

F I G U R E  6   Generalized additive mixed 
model (GAMM) smoothers for sei whales. 
(a) Surfaces of the tensor product smooths 
(temperature, T, and lower trophic level 
biomass, LTL_bio) plotted at the scale 
of the response. (b) and (c) GAMMs 
smother for log_LTL_prod_1m and Depth, 
respectively. Dashed lines represent the 
95% confidence intervals for the fitted 
relationships

F I G U R E  7   Predicted distribution of 
sei whales from May to August. Habitat 
preferences were scaled from 0 (low 
preference) to 1 (high preference). Spatial 
resolution was set to 0.1°
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dynamic environmental variables closely linked to productivity. 
However, habitat preferences varied among species and across 
the distribution range of each species. Fin whales exhibited a 
bimodal response to environmental variables along the north-
ward migration route, with a marked preference for cold waters 
associated with high LTL-bio levels and for warmer waters, and 
avoidance of intermediate temperatures. Such bimodal response 
reflects differential exploitation of distinct water masses and pro-
ductivity regimes at the ends of their studied range, one char-
acteristic of high productivity in cold waters and the other of 
low productivity in temperate waters. Sei whales also showed a 
clear preference for productive subpolar waters in favour of tem-
perate ones, displaying a two-phase distribution pattern during 
the study period, consistent with limited available observations 
(Sigurjónsson, Gunnlaugsson, & Payne, 1989; Waring, Nottestad, 
Olsen, Skov, & Vikingsson, 2008). In comparison, blue whales 
had a more homogenous response across the study area, target-
ing areas with intermediate LTL-bio values that were productive 
on previous months. The retention of T and LTL-bio, and the dif-
ferent response obtained by the three species suggest that in-
teractions between environmental and prey-related covariates 
may help to predict species distribution. Past studies showed the 
utility of proxies such as SST and productivity to predict the oc-
currence, abundance and species richness of marine top preda-
tors. Although these predictors might indicate important foraging 
areas for these species, they were probably decoupled in time and 
space, and from prey availability at higher trophic levels (Grémillet 
et al., 2008). Incorporating the novel LTL data allowed us to 
shorten the temporal lags between the predictors and the preda-
tors, helping to reduce the possible spatial mismatch between 
predictor and response variables and representing a more direct 
biological relationship.

The habitat preference for the three species was signifi-
cantly constrained by depth, which has been shown to be a good 
predictor of baleen whale distribution in multiple regions (Scales 
et al., 2017), including in the NA (Víkingsson et al., 2015). Blue 
and sei whales preferred oceanic areas and avoided coastal re-
gions, whereas fin whales used both coastal and oceanic areas. 
In addition, fin whale distribution was strongly influenced by 
EKE, a measure of mesoscale activity. Upwelling/downwelling 
processes are common in areas with intense mesoscale activity, 
such as eddies and fronts, enhancing marine productivity and 
leading to the formation of predictable prey patches (Worm, 
Sandow, Oschlies, Lotze, & Myers, 2005). Numerous studies 
have linked these features to the presence of marine top pred-
ators, including fin whales (Reisinger et al., 2018; Scales et al., 
2017). While fronts and eddies are very dynamic in the mid-NA 
and can have significant interannual variations, their persistence 
around the south-west Irminger Sea and CGFZ has been well 
documented (Volkov & Oceanic, 2005). Due to persistent ther-
mal fronts, these latest regions are well known for being exten-
sively exploited by a wide range of marine top predators (Skov 
et al., 2008).

Differences in habitat preferences among whale species should 
partly reflect differences in the distribution of their main prey. In 
the NA, sei whales primarily feed on calanoid species, especially 
on Calanus finmarchicus, and to a lesser extent on euphausiids 
(Sigurjónsson & Vikingsson, 1997). Blue whales feed almost exclu-
sively on krill (e.g. Meganyctiphanes norvegica and Thysanoessa spp)
(Gavrilchuk et al., 2014; Víkingsson, 1990), and fin whales feed on 
zooplankton and a variety of small schooling fish (Sigurjónsson 
& Vikingsson, 1997). Therefore, the wider dietary breadth of fin 
whales likely contributes to higher plasticity in foraging behaviour 
and enables this species to exploit a broader set of environmental 
conditions across their migration route.

4.2 | Predicting spatio-temporal distribution 
across the NA

Unsurprisingly, our models showed that high latitudes were the 
preferred habitats for all three baleen whale species during sum-
mer months, in accordance with known seasonality and abun-
dance patterns. However, our results also highlight that their 
predicted summer habitats are not totally overlapping due to dis-
tinct habitat preferences. The prediction maps for fin whales dis-
played the highest presence probabilities above 50°N, expanding 
from the south-west of the Irminger Sea to Iceland from March 
to July. This agrees with reports of a recent range expansion of 
fin whales in this region, from over the continental shelf to the 
deep waters of the Irminger Sea, possibly linked to the warming 
of the area (Víkingsson et al., 2015). During this period, fin whale 
abundance in the area between Iceland and eastern Greenland in-
creased, making this the densest fin whale summer habitat in the 
NA (NAMMCO, 2017). These findings match our fin whale pre-
dictions, showing the importance of the Irminger Sea during the 
month of June and July. Lack of survey data in the region during 
spring months prevents us from validating our predictions for the 
period March–April. Our prediction also identified the mid-Atlan-
tic Ridge as an important region for the species, with a higher 
probability of occurrence around 40°N between March and May 
and around 45°N in June and July. This agrees with Visser et al. 
(2011), who found an increase in fin whale sightings during spring 
months.

The predicted preferential habitat for blue whales consists of 
a narrow latitudinal band at mid-latitudes (36° to 50°N) in April 
that expands towards north-eastern latitudes during subsequent 
months. A systematic survey covering the mid-Atlantic Ridge, 
from Reykjanes Ridge to the north of Azores, in June 2004, only 
encountered blue whales south of the Faraday Fracture Zone 
(below 45°N) (MARECO survey, Waring et al., 2008). These 
findings agree with our predictions for the species during this 
month. In July, the preferred habitat for blue whales expanded 
north, showing a higher preference for the eastern NA. Passive 
acoustic monitoring off north-western Britain and Ireland (55°N 
20°W) showed few blue whale detections in April and June, with 
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a gradual increase in mid-July until reaching a peak in November–
December (Charif & Clark, 2009). In recent years, visual sur-
veys revealed the presence of large baleen whales during these 
months in the area, including blue whales, mainly around the 
highly productive waters of the Porcupine Seabight and Rockall 
Trough (Baines & Reichelt, 2017; Wall et al., 2013; Wall, O'Kelly, 
Whooley, & Tyndall, 2009). Our predictions in northern latitudes, 
close to west Iceland, largely coincide with the known distribution 
of this species in summer, where a population of around 1,000 
blue whales was estimated. In the Azores, the predicted shift to-
wards northern latitudes closely matches the seasonality in the 
sighting data, which shows a decrease from April to July (Prieto et 
al., 2016). During these months, blue and fin whales have a similar 
environmental niche with a high degree of spatial coincidence in 
this region, strongly influenced by the higher productivity in the 
region (Prieto et al., 2016).

The highest habitat predictions for sei whales occurred in 
areas above 45°N, from May to August. These findings agree with 
previous reports of the known occurrence of feeding sei whales 
in these waters (Anonymous, 2009; Mitchell, 1975; Sigurjónsson 
et al., 1989). In the eastern NA, the deep waters of the Irminger 
Sea, between east Greenland and west of Iceland, appear to be 
an important habitat for the species, while the Faroe–Shetland 
Channel and Norwegian Sea are used less intensively (Cattanach, 
Sigurjónsson, Buckland, & Gunnlaugsson, 1993). In the western 
NA, sei whales seem to concentrate in the northern banks at 66°N 
and off the southern tip of Greenland, as well as along the con-
tinental shelf waters of the Labrador and Newfoundland coasts. 
Recently, Roberts et al., (2016) identified the continental slope 
of the east coast of United States, between 35° and 45°N, as an 
important summer habitat for the species. Sei whales were pres-
ent from April to November, with the highest densities predicted 
in July around the Gulf of Maine and Nova Scotia shelf (latitude 
45°N). Based on the models from Roberts et al. (2016), Mannocci 
et al., (2016) extrapolated the sei whale distribution to the whole 
western NA, highlighting the Labrador Sea, mainly the offshore 
waters of the Labrador Current, and the previously identified 
US waters as potential high-density areas. The summer habitat 
preference in that study closely matched our predictions, with a 
hotspot around the Labrador Sea and the deep waters north of the 
NA current (latitude 45°N).

Our monthly predictions for sei whales displayed a northward 
expansion of their habitat preference from May to August. In May, 
the preferred habitat for the species occurred around the CGFZ. 
In this region, the interaction of the NA current with the mid-At-
lantic Ridge generates intense persistent fronts leading to predict-
able foraging grounds for marine top predators (Doksæter, Olsen, 
Nøttestad, & Ferno, 2008). A high concentration of sei whales re-
ported just north of the CGFZ was associated with the fine-scale 
processes interacting in the upper 100 m of the water column (Skov 
et al., 2008; Waring et al., 2008). Higher zooplankton biomass, par-
ticularly of Calanus finmarchicus, was found in the northern region 
of the CGFZ compared to the southern region, which is believed to 

be related with retention/advection processes concentrating large 
zooplankton over steep topography (Gaard et al., 2008). From June 
to August, sei whales were predicted over the same habitats in the 
deep waters of the Irminger Sea and Labrador Sea, including a few 
hotspots along the west Greenland. Laidre et al., (2010) found that 
krill biomass, mainly Meganyctiphanes norvegica and Thysanoessa sp, 
was the most important variable explaining the presence of baleen 
whales in west Greenland. Although the number of sei whale sight-
ings (n = 17) was limited, sighting aggregations matched well the 
areas with the highest densities of krill. In Azores, sei whales are 
seen every year, with most sightings from spring to early summer 
(Silva, Prieto, Cascão, et al., 2013). However, sei whale presence 
has not been linked to local productivity. This matches well with 
the lack of association with LTL biomass and the low preference for 
habitats in these latitudes. Although the species feeds occasionally 
around Azores, our results indicate that the archipelago is not an 
important feeding ground for sei whales, at least during spring and 
summer.

4.3 | Management and conservation implications

Highly migratory species are exposed to increasing impacts from 
anthropogenic activities, which can lead to the alteration of their 
habitats, disruption of natural behaviours or increased mortality 
(e.g. from ship strikes) (Maxwell et al., 2013). In the mid-NA, a 
major international shipping route located mainly between 35° 
and 45°N overlaps with the predicted preferred habitat of the 
three baleen whale species. Specifically, blue whales have the 
highest proportion of the predicted habitat overlapping with this 
main route, potentially increasing the risk of ship collisions, as 
well as exposing them to increased noise levels. Alongside these 
chronic forms of noise pollution, the NA has also experienced an 
intense warming over the last decades, which is projected to con-
tinue over this century (IPCC, 2007). These physical changes are 
anticipated to lead to a poleward shift of several species of co-
pepods (Villarino et al., 2015). As a consequence, baleen whales 
might move northwards to track the movements of their prey, 
similar to predicted habitat shifts in the North Pacific (Hazen et 
al., 2013). These shifts may decrease usage of middle latitude 
habitats by baleen whales. Moreover, species with a specialized 
diet, such as the blue whale, may have less capacity to adapt to 
these climate-induced changes compared to generalist predators, 
such as fin whales, which may be able to switch to other prey 
species (Pauly, Trites, Capuli, & Christensen, 1998). To effec-
tively mitigate increasing pressures on baleen whales in the mid-
NA, there is a need for accurate knowledge on the drivers that 
influence their distribution. Thus, findings from this study are 
relevant for national and international conservation policies (e.g. 
Marine Strategy Framework Directive; European Commission, 
2018), designation of transatlantic marine protected areas and 
management initiatives (e.g. modify vessel operations; Silber et 
al., 2012).
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5  | CONCLUSIONS

Our study provides the most detailed investigation into the spatio-
temporal distribution of large baleen whales in the mid-NA. Our 
results demonstrate that the movements of all three baleen whale 
species towards and at high latitudes were closely linked to prey 
availability, although species exhibited distinct ecological niches. 
These results support previous work for these species, suggesting 
that baleen whales adjust their distribution during their migrations to 
ocean resources (Hazen et al., 2016). In our study, the habitat prefer-
ences of baleen whales were strongly related to the LTL biomass and 
production within the epipelagic layer, consistent with the diet of the 
species, and highlighting the strength of combining spatially explicit 
and vertically resolved prey information with oceanographic and 
telemetry data. Previous studies suggested the importance of in-
cluding LTL biomass to develop climatological habitat models in the 
north-west NA using visual observations (Roberts et al., 2016). Our 
study confirms the relevance of this explanatory variable for mod-
elling the distribution of cetaceans at the scale of the NA. Future 
research should focus on overcoming some of the limitations of this 
study to develop cetacean distribution maps in near real-time to pro-
vide a more accurate and efficient conservation tool.

ACKNOWLEDG EMENTS
We are very grateful to Cláudia Oliveira, Irma Cascão, Maria João 
Cruz, Miriam Romagosa and many volunteers, skilled skippers, 
crew and spotters that participated in the tagging fieldwork. This 
work was supported by Fundação para a Ciência e Tecnologia 
(FCT), Azores 2020 Operational Programme and Fundo Regional 
da Ciência e Tecnologia (FRCT) through research projects FCT-
Exploratory project (IF/00943/2013/CP1199/CT0001), TRACE 
(PTDC/MAR/74071/2006) and MAPCET (M2.1.2/F/012/2011) co-
funded by FEDER, COMPETE, QREN, POPH, ESF, ERDF, Portuguese 
Ministry for Science and Education, and Proconvergencia Açores/
EU Program. We also acknowledge funds provided by FCT to MARE, 
through the strategic project UID/MAR/04292/2013. SPJ was 
supported by a postdoctoral grant (REF.GREENUP/001-2016), MT 
by a DRCT doctoral grant (M3.1.a/F/028/2015), MAS by an FCT-
Investigator contract (IF/00943/2013), FV by an FCT Investigator 
contract (CEECIND/03469/2017) and RP by an FCT postdoctoral 
grant (SFRH/BPD/108007/2015). LMTL modelling work has been 
supported by the CMEMS Service Evolution GREENUP project, 
funded by Mercator Ocean. We are grateful to Elliott Hazen for of-
fering guidance and advice, and to two anonymous referees whose 
comments greatly improved this work.

DATA AVAIL ABILIT Y S TATEMENT
Tracking data are available through Movebank (http://
whales.scien​ceont​heweb.net/index.php/resou​rces/portf​olio/
whale-tracks-on-movebank).

ORCID
Sergi Pérez-Jorge   https://orcid.org/0000-0002-4843-0443 

Marta Tobeña   https://orcid.org/0000-0001-9976-7962 
Rui Prieto   https://orcid.org/0000-0002-0354-2572 
Frederic Vandeperre   https://orcid.org/0000-0002-3947-6917 
Mónica A. Silva   https://orcid.org/0000-0002-2683-309X 

R E FE R E N C E S
Aarts, G., Fieberg, J., & Matthiopoulos, J. (2012). Comparative interpre-

tation of count, presence-absence and point methods for species 
distribution models. Methods in Ecology and Evolution, 3(1), 177–187. 
https​://doi.org/10.1111/j.2041-210X.2011.00141.x

Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, 
J. (2008). Estimating space-use and habitat preference from 
wildlife telemetry data. Ecography, 31(1), 140–160. https​://doi.
org/10.1111/j.2007.0906-7590.05236.x

Anonymous. (2009). NAMMCO Annual Report 2007–2008. Tromso, 
Norway.

Baines, M., & Reichelt, M. (2017). An autumn aggregation of fin 
(Balaenoptera physalus) and blue whales (B. musculus) in the Porcupine 
Seabight, southwest of Ireland. Deep Sea Research Part II: Topical 
Studies in Oceanography, 141, 168–177. https​://doi.org/10.1016/j.
dsr2.2017.03.007

Barbet-Massin, M., Jiguet, F., Hélène Albert, C., & Thuiller, W. (2012). 
Selecting pseudo-absences for species distribution models: How, 
where and how many? Methods in Ecology and Evolution, 3, 327–338. 
https​://doi.org/10.1111/j.2041-210X.2011.00172.x

Behrenfeld, M., & Falkowski, P. (1997). Photosynthetic rates derived from 
satellite based chlorophyll concentration. Limnology and Oceanography, 
42(1), 1–20. https​://doi.org/10.4319/lo.1997.42.1.0001

Benoit-Bird, K. J., Battaile, B. C., Heppell, S. A., Hoover, B., Irons, D., 
Jones, N., … Trites, A. W. (2013). Prey patch patterns predict hab-
itat use by top marine predators with diverse foraging strategies. 
PLoS ONE, 8(1), https​://doi.org/10.1371/journ​al.pone.0053348

Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le 
Sommer, J., … De Cuevas, B. (2006). Impact of partial steps and mo-
mentum advection schemes in a global ocean circulation model at 
eddy-permitting resolution. Ocean Dynamics, 56(5–6), 543–567. 
https​://doi.org/10.1007/s10236-006-0082-1

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Summer, M., Hijmans, 
R. J., … Rundel, C. (2019). rgdal: Bindings for the geospatial data ab-
straction library. R Package Version 1.4-7. Retrieved from http://
CRAN.R-proje​ct.org/packa​ge=rgdal​

Block, B. A., Jonsen, I. D., Jorgensen, S. J., Winship, A. J., Shaffer, S. A., 
Bograd, S. J., … Costa, D. P. (2011). Tracking apex marine predator 
movements in a dynamic ocean. Nature, 475(7354), 86–90. https​://
doi.org/10.1038/natur​e10082

Boyd, C., Castillo, R., Hunt, G. L., Punt, A. E., Vanblaricom, G. R., 
Weimerskirch, H., & Bertrand, S. (2015). Predictive modelling of hab-
itat selection by marine predators with respect to the abundance and 
depth distribution of pelagic prey. Journal of Animal Ecology, 84(6), 
1575–1588. https​://doi.org/10.1111/1365-2656.12409​

Cattanach, K., Sigurjónsson, J., Buckland, S. T., & Gunnlaugsson, T. (1993). 
Sei whale abundance in the North Atlantic, estimated from NASS-87 
and NASS-89 data. Report of the International Whaling Commission, 
43, 315–321.

Charif, R. A., & Clark, C. W. (2009). Acoustic monitoring of large whales in 
deep waters north and west of the British Isles: 1996-2005 (Preliminary 
Report). Ithaca, NY: Cornell University.

Conchon, A. (2016). Modélisation du zooplancton et du micronecton 
marins. La Rochelle, France: Sciences Agricoles, Université de La 
Rochelle.

Croll, D., Marinovic, B., Benson, S., Chavez, F., Black, N., Ternullo, R., & 
Tershy, B. (2005). From wind to whales: Trophic links in a coastal 

http://whales.scienceontheweb.net/index.php/resources/portfolio/whale-tracks-on-movebank
http://whales.scienceontheweb.net/index.php/resources/portfolio/whale-tracks-on-movebank
http://whales.scienceontheweb.net/index.php/resources/portfolio/whale-tracks-on-movebank
https://orcid.org/0000-0002-4843-0443
https://orcid.org/0000-0002-4843-0443
https://orcid.org/0000-0001-9976-7962
https://orcid.org/0000-0001-9976-7962
https://orcid.org/0000-0002-0354-2572
https://orcid.org/0000-0002-0354-2572
https://orcid.org/0000-0002-3947-6917
https://orcid.org/0000-0002-3947-6917
https://orcid.org/0000-0002-2683-309X
https://orcid.org/0000-0002-2683-309X
https://doi.org/10.1111/j.2041-210X.2011.00141.x
https://doi.org/10.1111/j.2007.0906-7590.05236.x
https://doi.org/10.1111/j.2007.0906-7590.05236.x
https://doi.org/10.1016/j.dsr2.2017.03.007
https://doi.org/10.1016/j.dsr2.2017.03.007
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.4319/lo.1997.42.1.0001
https://doi.org/10.1371/journal.pone.0053348
https://doi.org/10.1007/s10236-006-0082-1
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=rgdal
https://doi.org/10.1038/nature10082
https://doi.org/10.1038/nature10082
https://doi.org/10.1111/1365-2656.12409


14  |     PÉREZ-JORGE et al.

upwelling system. Marine Ecology Progress Series, 289, 117–130. https​
://doi.org/10.3354/meps2​89117​

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing 
the areas under two or more correlated receiver operating character-
istic curves: A nonparametric approach. Biometrics, 44, 73–96. https​
://doi.org/10.2307/2531595

Doksæter, L., Olsen, E., Nøttestad, L., & Ferno, A. (2008). Distribution 
and feeding ecology of dolphins along the Mid-Atlantic Ridge be-
tween Iceland and the Azores. Deep Sea Research Part II: Topical 
Studies in Oceanography, 55, 243–253. https​://doi.org/10.1016/j.
dsr2.2007.09.009

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carr, 
G., … Lautenbach, S. (2013). Collinearity: A review of meth-
ods to deal with it and a simulation study evaluating their 
performance. Ecography, 36(2013), 27–46. https​://doi.
org/10.1111/j.1600-0587.2012.07348.x

European Commission. (2018). Reporting on the 2018 update of articles 8, 
9 & 10 for the Marine Strategy Framework Directive (MSFD Guidance 
Document 14). Brussels, Belgium: DG Environment.

Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S., & Frair, 
J. L. (2010). Correlation and studies of habitat selection: Problem, 
red herring or opportunity? Philosophical Transactions of the Royal 
Society B: Biological Sciences, 365(1550), 2233–2244. https​://doi.
org/10.1098/rstb.2010.0079

Gaard, E., Gislason, A., Falkenhaug, T., Søiland, H., Musaeva, E., 
Vereshchaka, A., & Vinogradov, G. (2008). Horizontal and ver-
tical copepod distribution and abundance on the Mid-Atlantic 
Ridge in June 2004. Deep Sea Research Part II: Topical Studies 
in Oceanography, 55(1-2), 59–71. https​://doi.org/10.1016/j.
dsr2.2007.09.012.

Gavrilchuk, K., Lesage, V., Ramp, C., Sears, R., Bérubé, M., Bearhop, S., 
& Beauplet, G. (2014). Trophic niche partitioning among sympatric 
baleen whale species following the collapse of groundfish stocks in 
the Northwest Atlantic. Marine Ecology Progress Series, 497, 285–301. 
https​://doi.org/10.3354/meps1​0578

Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., Kenna, M. F. M., 
Simon, M., & Douglas, P. (2017). Integrative approaches to the study 
of baleen whale diving behavior, feeding performance, and forag-
ing ecology. BioScience, 63(2), 90–100. https​://doi.org/10.1525/
bio.2013.63.2.5

Grémillet, D., Lewis, S., Drapeau, L., Van Der Lingen, C. D., Huggett, 
J. A., Coetzee, J. C., … Ryan, P. G. (2008). Spatial match – mis-
match in the Benguela upwelling zone: Should we expect chlo-
rophyll and sea-surface temperature to predict marine predator 
distributions? Journal of Applied Ecology, 45, 610–621. https​://doi.
org/10.1111/j.1365-2664.2007.01447.x

Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo, 
C., … Walbridge, S. (2015). Spatial and temporal changes in cumula-
tive human impacts on the world's ocean. Nature Communications, 
6(May), 1–7. https​://doi.org/10.1038/ncomm​s8615​

Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. 
G., Jonsen, I. D., … Block, B. A. (2013). Predicted habitat shifts of 
Pacific top predators in a changing climate. Nature Climate Change, 
3(3), 234–238. https​://doi.org/10.1038/nclim​ate1686

Hazen, E. L., Palacios, D. M., Forney, K. A., Howell, E. A., Becker, E., 
Hoover, A. L., … Bailey, H. (2016). WhaleWatch: A dynamic man-
agement tool for predicting blue whale density in the California 
Current. Journal of Applied Ecology, 54(5), 1415–1428. https​://doi.
org/10.1111/1365-2664.12820​

Hijmans, R. J., & van Ettern, J. (2012). raster: Geographic analysis and 
modeling with raster data. R Package Version 2.0-12. Retrieved from 
http://CRAN.R-proje​ct.org/packa​ge=raster

IPCC. (2007). Intergovernmental panel on climate change. Fourth assess-
ment report. Climate change 2007: The physical science basis. Geneva, 
Switzerland: Author.

Jonsen, I. D., Basson, M., Bestley, S., Bravington, M. V., Patterson, T. A., 
Pedersen, M. W., … Wotherspoon, S. J. (2013). State-space mod-
els for bio-loggers: A methodological road map. Deep-Sea Research 
Part II: Topical Studies in Oceanography, 88–89, 34–46. https​://doi.
org/10.1016/j.dsr2.2012.07.008

Jonsen, I. D., Flemming, J. M., & Myers, R. A. (2005). Robust state-space 
modeling of animal movement data. Ecology, 86(11), 2874–2880. 
https​://doi.org/10.1890/04-1852

Kareiva, P. M., & Shigesada, N. (1983). Analyzing insect movement as a 
correlated random walk. Oecologia, 56(2–3), 234–238. https​://doi.
org/10.1007/BF003​79695​

Kaschner, K., Quick, N. J., Jewell, R., Williams, R., & Harris, C. M. (2012). 
Global coverage of cetacean line-transect surveys: Status quo, data 
gaps and future. Challenges, 7(9), e44075. https​://doi.org/10.1371/
journ​al.pone.0044075

Laidre, K. L., Heide-Jørgensen, M. P., Heagerty, P., Cossio, A., Bergström, 
B., & Simon, M. (2010). Spatial associations between large baleen 
whales and their prey in West Greenland. Marine Ecology Progress 
Series, 402, 269–284. https​://doi.org/10.3354/meps0​8423

Lambert, C., Mannocci, L., Lehodey, P., & Ridoux, V. (2014). Predicting 
cetacean habitats from their energetic needs and the distribution 
of their prey in two contrasted tropical regions. PLoS ONE, 9(8), 
e105958. https​://doi.org/10.1371/journ​al.pone.0105958

Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., 
Jouanno, J., … Kloser, R. (2015). Optimization of a micronekton 
model with acoustic data. ICES Journal of Marine Science, https​://doi.
org/10.1093/icesj​ms/fsu233

Lehodey, P., Murtugudde, R., & Senina, I. (2010). Bridging the gap from 
ocean models to population dynamics of large marine predators: A 
model of mid-trophic functional groups. Progress in Oceanography, 
84(1–2), 69–84. https​://doi.org/10.1016/j.pocean.2009.09.008

Macleod, K., Louise, B., Cañadas, A., Lens, S., Rogan, E., Santos, B., … 
Rogan, E. (2009). Distribution and Abundance of Fin whales and 
other baleen whales in the Distribution and Abundance of Fin 
whales and other baleen whales in the European. Atlantic., IWC, 
SC/61/RMP10.

Mannocci, L., Roberts, J. J., Miller, D. L., & Halpin, P. N. (2016). 
Extrapolating cetacean densities to quantitatively assess human 
impacts on populations in the high seas. Conservation Biology, 31(3), 
601–614. https​://doi.org/10.1111/cobi.12856​

Maxwell, S. M., Hazen, E. L., Bograd, S. J., Halpern, B. S., Breed, G. A., 
Nickel, B., … Costa, D. P. (2013). Cumulative human impacts on marine 
predators. Nature Communications, 4(1). https​://doi.org/10.1038/
ncomm​s3688​.

Mitchell, E. D. (1975). Preliminary report on Nova Scotia fishery for sei 
whales (Balaenoptera borealis). Reports of the International Whaling 
Commission.

NAMMCO. (2017). Report of the Scientific Committee. Tromso, Norway.
Pauly, D., Trites, A. W., Capuli, E., & Christensen, V. (1998). Diet compo-

sition and trophic levels of marine mammals. ICES Journal of Marine 
Science, 55, 467–481. https​://doi.org/10.1006/jmsc.1997.0280

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, 
J., & Ferrier, S. (2009). Sample selection bias and presence-only 
distribution models: Implications for background and pseudo-ab-
sence data. Ecological Applications, 19(1), 181–197. https​://doi.
org/10.1890/07-2153.1

Pierce, D. (2019). ncdf4: Interface to unidata netCDF (version 4 or earlier) 
format data files. R Package Version 1.17. Retrieved from http://
CRAN.R-proje​ct.org/packa​ge=ncdf4​

Prieto, R., Silva, M. A., Waring, G. T., & Gonçalves, J. M. A. (2014). Sei 
whale movements and behaviour in the North Atlantic inferred from 
satellite telemetry. Endangered Species Research, 26(2), 103–113. 
https​://doi.org/10.3354/esr00630

Prieto, R., Tobeña, M., & Silva, M. A. (2016). Habitat preferences of ba-
leen whales in a mid-latitude habitat. Deep Sea Research Part II: Topical 

https://doi.org/10.3354/meps289117
https://doi.org/10.3354/meps289117
https://doi.org/10.2307/2531595
https://doi.org/10.2307/2531595
https://doi.org/10.1016/j.dsr2.2007.09.009
https://doi.org/10.1016/j.dsr2.2007.09.009
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1098/rstb.2010.0079
https://doi.org/10.1098/rstb.2010.0079
https://doi.org/10.1016/j.dsr2.2007.09.012
https://doi.org/10.1016/j.dsr2.2007.09.012
https://doi.org/10.3354/meps10578
https://doi.org/10.1525/bio.2013.63.2.5
https://doi.org/10.1525/bio.2013.63.2.5
https://doi.org/10.1111/j.1365-2664.2007.01447.x
https://doi.org/10.1111/j.1365-2664.2007.01447.x
https://doi.org/10.1038/ncomms8615
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1111/1365-2664.12820
https://doi.org/10.1111/1365-2664.12820
http://CRAN.R-project.org/package=raster
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1890/04-1852
https://doi.org/10.1007/BF00379695
https://doi.org/10.1007/BF00379695
https://doi.org/10.1371/journal.pone.0044075
https://doi.org/10.1371/journal.pone.0044075
https://doi.org/10.3354/meps08423
https://doi.org/10.1371/journal.pone.0105958
https://doi.org/10.1093/icesjms/fsu233
https://doi.org/10.1093/icesjms/fsu233
https://doi.org/10.1016/j.pocean.2009.09.008
https://doi.org/10.1111/cobi.12856
https://doi.org/10.1038/ncomms3688
https://doi.org/10.1038/ncomms3688
https://doi.org/10.1006/jmsc.1997.0280
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1890/07-2153.1
http://CRAN.R-project.org/package=ncdf4
http://CRAN.R-project.org/package=ncdf4
https://doi.org/10.3354/esr00630


     |  15PÉREZ-JORGE et al.

Studies in Oceanography, 141, 155–167. https​://doi.org/10.1016/j.
dsr2.2016.07.015

R Development Core Team. (2015). R: A language and environment for 
statistical computing. Viena, Austria: R Foundation for Statistical 
Computing.

Redfern, J. V., Ferguson, M. C., Becker, E. A., Hyrenbach, K. D., Good, 
C., Barlow, J., … Werne, F. (2006). Techniques for cetacean–habitat 
modeling. Marine Ecology Progress Series, 310, 271–295. https​://doi.
org/10.3354/meps3​10271​

Reisinger, R. R., Raymond, B., Hindell, M. A., Bester, M. N., Crawford, R. 
J. M., Davies, D., … Pistorius, P. A. (2018). Habitat modelling of track-
ing data from multiple marine predators identifies important areas in 
the Southern Indian Ocean. Diversity and Distributions, 24, 535–550. 
https​://doi.org/10.1111/ddi.12702​

Ritter, P. (1987). A vector-based slope and aspect generation algo-
rithm. Photogrammetric Engineering and Remote Sensing, 53(8), 
1109–1111.

Roberts, J. J., Best, B. D., Mannocci, L., Fujioka, E. I., Halpin, P. N., Palka, 
D. L., … Lockhart, G. G. (2016). Habitat-based cetacean density mod-
els for the U. S. Atlantic and Gulf of Mexico. Scientific Reports, 6, 
1–12. https​://doi.org/10.1038/srep2​2615

Scales, K. L., Schorr, G. S., Hazen, E. L., Bograd, S. J., Miller, P. I., Andrews, 
R. D., … Falcone, E. A. (2017). Should I stay or should I go? Modelling 
year-round habitat suitability and drivers of residency for fin whales 
in the California Current. Diversity and Distributions, 23(10), 1204–
1215. https​://doi.org/10.1111/ddi.12611​

Sigurjónsson, J., Gunnlaugsson, T., & Payne, P. M. (1989). NASS-87: 
Shipboard sighting surveys in Icelandic and adjacent waters Jun-July 
1987. Report of the International Whaling Commission.

Sigurjónsson, J., & Vikingsson, G. (1997). Seasonal abundance of and 
estimated food consumption by cetaceans in icelandic and adjacent 
waters. Journal of Northwest Atlantic Fishery Science, 22, 271–287. 
https​://doi.org/10.2960/J.v22.a20

Sikes, R. S., Gannon, W. L. & The Animal Care and Use Committee of 
the American Society of Mammalogists. (2011). Guidelines of the 
American Society of Mammalogists for the use of wild mammals in 
research. Journal of Mammalogy, 92(August), 235–253. https​://doi.
org/10.1644/10-MAMM-F-355.1

Silber, G. K., Vanderlaan, A. S. M., Tejedor Arceredillo, A., Johnson, 
L., Taggart, C. T., Brown, M. W., … Sagarminaga, R. (2012). The 
role of the International Maritime Organization in reducing 
vessel threat to whales: Process, options, action and effective-
ness. Marine Policy, 36(6), 1221–1233. https​://doi.org/10.1016/j.
marpol.2012.03.008

Silva, M. A., Prieto, R., Cascão, I., Seabra, M. I., Machete, M., Baumgartner, 
M. F., & Santos, R. S. (2013). Spatial and temporal distribution of 
cetaceans in the mid-Atlantic waters around the Azores. Marine 
Biology Research, 10(2), 123–137. https​://doi.org/10.1080/17451​
000.2013.793814

Silva, M. A., Prieto, R., Jonsen, I., Baumgartner, M. F., & Santos, R. S. 
(2013). North atlantic blue and fin whales suspend their spring mi-
gration to forage in middle latitudes: Building up energy reserves 
for the journey? PLoS ONE, 8(10), https​://doi.org/10.1371/journ​
al.pone.0076507

Skov, H., Gunnlaugsson, T., Budgell, W. P., Horne, J., Nøttestad, L., Olsen, 
E., … Waring, G. (2008). Small-scale spatial variability of sperm and 
sei whales in relation to oceanographic and topographic features 
along the Mid-Atlantic Ridge. Deep Sea Research Part II: Topical 
Studies in Oceanography, 55, 254–268. https​://doi.org/10.1016/j.
dsr2.2007.09.020

Stern, S. (2009). Migration and movement patterns. In: W. F. Perrin, B. 
Würsig, & J. G. M. Thewissen (Eds.), Encyclopedia of marine mammals 
(2nd ed., pp. 726–730). London, UK: Academic Press.

Tobeña, M., Prieto, R., Machete, M., & Silva, M. A. (2016). Modeling 
the potential distribution and richness of cetaceans in the azores 

from fisheries observer program data. Frontiers in Marine Science, 
3(October). https​://doi.org/10.3389/fmars.2016.00202​.

Vandeperre, F., Aires-da-Silva, A., Lennert-Cody, C., Serrão Santos, 
R., & Afonso, P. (2016). Essential pelagic habitat of juvenile blue 
shark (Prionace glauca) inferred from telemetry data. Limnology and 
Oceanography, 61(5), 1605–1625. https​://doi.org/10.1002/lno.10321​

Víkingsson, G. A. (1990). Feeding of fin whales (Balaenoptera physalus) off 
Iceland – Diurnal and seasonal variation and possible rates. Journal of 
Northwest Atlantic Fishery Science, 22, 77–89.

Víkingsson, G. A., Pike, D. G., Valdimarsson, H., Schleimer, A., 
Gunnlaugsson, T., Silva, T., … Øien, N. (2015). Distribution, abun-
dance, and feeding ecology of baleen whales in Icelandic waters: 
Have recent environmental changes had an effect? Frontiers in 
Ecology and Evolution, 3(February), 1–18. https​://doi.org/10.3389/
fevo.2015.00006​

Villarino, E., Chust, G., Licandro, P., Butenschön, M., Ibaibarriaga, L., 
Larrañaga, A., & Irigoien, X. (2015). Modelling the future biogeog-
raphy of North Atlantic zooplankton communities in response to cli-
mate change. Marine Ecology Progress Series, 531, 121–142. https​://
doi.org/10.3354/meps1​1299.

Visser, F., Hartman, K. L., Visser, F., Hartman, K. L., Pierce, G. J., & 
Valavanis, V. D. (2011). Timing of migratory baleen whales at the 
Azores in relation to the North Atlantic spring bloom. Marine 
Ecology Progress Series, 440, 267–279. https​://doi.org/10.3354/
meps0​9349

Volkov, D. L., & Oceanic, N. (2005). Interannual variability of the altim-
etry-derived eddy field and surface circulation in the extratropical 
North Atlantic Ocean in 1993–2001. Journal of Physical Oceanography, 
35(4), 405–426. https​://doi.org/10.1175/JPO26​83.1

Wall, D., Murray, C., Brien, J. O., Kavanagh, L., Ryan, C., Glanville, B., … 
Enlander, I. (2013). Atlas of the distribution and relative abundance of 
marine mammals in Irish offshore waters: 2005–2011. Kilrush, Ireland: 
Irish Whale and Dolphin Group.

Wall, D., O'Kelly, I., Whooley, P., & Tyndall, P. (2009). New records of blue 
whales (Balaenoptera musculus) with evidence of possible feeding 
behaviour from the continental shelf slopes to the west of Ireland. 
Marine Biodiversity Records, 2(September 2008), 15–18. https​://doi.
org/10.1017/S1755​26720​9990443

Waring, G. T., Nottestad, L., Olsen, E., Skov, H., & Vikingsson, G. (2008). 
Distribution and density estimates of cetaceans along the mid- 
Atlantic Ridge during summer 2004. Journal of Cetacean Research and 
Management, 10(2), 137–146.

Willis-Norton, E., Hazen, E. L., Fossette, S., Shillinger, G., Rykaczewski, 
R. R., Foley, D. G., … Bograd, S. J. (2015). Climate change impacts on 
leatherback turtle pelagic habitat in the southeast pacific. Deep-Sea 
Research Part II: Topical Studies in Oceanography, 113, 260–267. https​
://doi.org/10.1016/j.dsr2.2013.12.019

Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strategies 
influence species distribution models and their predictions? An in-
formation-theoretic approach based on simulated data. BMC Ecology, 
9(1), 8. https​://doi.org/10.1186/1472-6785-9-8

Wood, S. (2006). Generalized additive models: An introduction with R. Boca 
Raton, FL: CRC Press.

Wood, S. N., Scheipl, F., & Faraway, J. J. (2013). Straightforward in-
termediate rank tensor product smoothing in mixed models. 
Statistics and Computing, 23(3), 341–360. https​://doi.org/10.1007/
s11222-012-9314-z

Worm, B., Sandow, M., Oschlies, A., Lotze, H., & Myers, R. (2005). Global 
patterns of predator diversity in the open oceans. Science, 309(5739), 
1365–1369. https​://doi.org/10.1126/scien​ce.1113399

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration 
to avoid common statistical problems. Methods in Ecology and Evolution, 
1(1), 3–14. https​://doi.org/10.1111/j.2041-210X.2009.00001.x

Žydelis, R., Lewison, R. L., Shaffer, S. A., Moore, J. E., Boustany, A. M., 
Roberts, J. J., … Crowder, L. B. (2011). Dynamic habitat models: Using 

https://doi.org/10.1016/j.dsr2.2016.07.015
https://doi.org/10.1016/j.dsr2.2016.07.015
https://doi.org/10.3354/meps310271
https://doi.org/10.3354/meps310271
https://doi.org/10.1111/ddi.12702
https://doi.org/10.1038/srep22615
https://doi.org/10.1111/ddi.12611
https://doi.org/10.2960/J.v22.a20
https://doi.org/10.1644/10-MAMM-F-355.1
https://doi.org/10.1644/10-MAMM-F-355.1
https://doi.org/10.1016/j.marpol.2012.03.008
https://doi.org/10.1016/j.marpol.2012.03.008
https://doi.org/10.1080/17451000.2013.793814
https://doi.org/10.1080/17451000.2013.793814
https://doi.org/10.1371/journal.pone.0076507
https://doi.org/10.1371/journal.pone.0076507
https://doi.org/10.1016/j.dsr2.2007.09.020
https://doi.org/10.1016/j.dsr2.2007.09.020
https://doi.org/10.3389/fmars.2016.00202
https://doi.org/10.1002/lno.10321
https://doi.org/10.3389/fevo.2015.00006
https://doi.org/10.3389/fevo.2015.00006
https://doi.org/10.3354/meps11299
https://doi.org/10.3354/meps11299
https://doi.org/10.3354/meps09349
https://doi.org/10.3354/meps09349
https://doi.org/10.1175/JPO2683.1
https://doi.org/10.1017/S1755267209990443
https://doi.org/10.1017/S1755267209990443
https://doi.org/10.1016/j.dsr2.2013.12.019
https://doi.org/10.1016/j.dsr2.2013.12.019
https://doi.org/10.1186/1472-6785-9-8
https://doi.org/10.1007/s11222-012-9314-z
https://doi.org/10.1007/s11222-012-9314-z
https://doi.org/10.1126/science.1113399
https://doi.org/10.1111/j.2041-210X.2009.00001.x


16  |     PÉREZ-JORGE et al.

telemetry data to project fisheries bycatch. Proceedings of the Royal 
Society B: Biological Sciences, 278(1722), 3191–3200. https​://doi.
org/10.1098/rspb.2011.0330

BIOSKE TCH
Sergi Pérez-Jorge is a postdoctoral research fellow focused on 
understanding how marine predators are affected by environ-
mental and prey-related variables at multiple spatial and tempo-
ral scales, as well as assessing their population dynamics. He is 
part of the Azores Whale Lab (http://whales.scien​ceont​heweb.
net), which has carried out cetacean research off the most re-
mote archipelago in the North Atlantic for the last 20 years and 
applies that knowledge to aid in their conservation.

Author contributions: S.P.J., P.L. and M.A.S. conceived the ideas; 
R.P., M.T. and M.A.S collected the data; S.P.J., M.T., R.P., F.V., B.C., 
P.L. and M.A.S. analysed the data; and S.P.J. led the writing with 
contributions from all the authors.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section. 

How to cite this article: Pérez-Jorge S, Tobeña M, Prieto R, et 
al. Environmental drivers of large-scale movements of baleen 
whales in the mid-North Atlantic Ocean. Divers Distrib. 
2020;00:1–16. https​://doi.org/10.1111/ddi.13038​

https://doi.org/10.1098/rspb.2011.0330
https://doi.org/10.1098/rspb.2011.0330
http://whales.scienceontheweb.net
http://whales.scienceontheweb.net
https://doi.org/10.1111/ddi.13038

