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Abstract National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2)
satellite provides observations of total column‐averaged CO2 mole fractions (XCO2 ) at high spatial
resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse
modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes
from inversion frameworks depends on key inputs, including spatially and temporally dense CO2

observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to
both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport
imparts substantial variations in these data and must be either resolved explicitly by the atmospheric
transport model or accounted for within the error covariance budget provided to inverse frameworks. Here,
we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2
soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or
finer‐scale variations) along‐track spatial variability in XCO2 and XH2O from OCO‐2 tracks to temporal
synoptic and mesoscale variability from ground‐based XCO2 and XH2O observed by nearby Total Carbon
Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of
along‐track, high‐frequency variability for OCO‐2 XH2O. For XCO2 , both mesoscale transport variability and
spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important
drivers of the along‐track variance budget.

Plain Language Summary Numerous efforts have been made to quantify sources and sinks of
atmospheric CO2 at regional spatial scales. A common approach to infer these sources and sinks requires
accurate representation of variability of CO2 observations attributed to transport by weather systems.
While numerical weather prediction models have a fairly reasonable representation of larger‐scale
weather systems, such as frontal systems, representation of smaller‐scale features (<250 km), is less
reliable. In this study, we find that the variability of total column‐averaged CO2 observations attributed to
these fine‐scale weather systems accounts for up to half of the variability attributed to local sources
and sinks. Here, we provide a framework for quantifying the drivers of spatial variability of atmospheric
trace gases rather than simply relying on numerical weather prediction models. We use this framework to
quantify potential sources of errors in measurements of total column‐averaged CO2 and water vapor
from National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 satellite.

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2018JD029933

Key Points:
• We developed a framework to relate

high‐frequency spatial variations to
transport‐induced temporal
fluctuations in atmospheric tracers

• We use geostatistical analysis to
quantify the variance budget for
XCO2 and XH2O retrieved from
NASA's OCO‐2 satellite

• Accounting for random errors,
systematic errors, and real
geophysical coherence in remotely
sensed trace gas observations may
yield improved flux constraints

Supporting Information:
• Supporting Information S1

Correspondence to:
A. D. Torres,
adtorres@umich.edu

Received 2 NOV 2018
Accepted 19 JUL 2019
Accepted article online 29 JUL 2019

TORRES ET AL. 9773

Published online 2 SEP 2019

Citation:
Torres, A. D., Keppel‐Aleks, G., Doney,
S. C., Fendrock, M., Luis, K., De
Mazière, M., et al (2019). A
geostatistical framework for
quantifying the imprint of mesoscale
atmospheric transport on satellite trace
gas retrievals. Journal of Geophysical
Research: Atmospheres, 124, 9773–9795.
https://doi.org/10.1029/2018JD029933

https://orcid.org/0000-0002-0531-5883
https://orcid.org/0000-0003-2213-0044
https://orcid.org/0000-0002-3683-2437
https://orcid.org/0000-0001-9975-3480
https://orcid.org/0000-0002-7010-5532
https://orcid.org/0000-0001-9923-2984
https://orcid.org/0000-0002-1376-438X
https://orcid.org/0000-0001-5185-3415
https://orcid.org/0000-0002-4924-0377
http://dx.doi.org/10.1029/2018JD029933
http://dx.doi.org/10.1029/2018JD029933
http://dx.doi.org/10.1029/2018JD029933
http://dx.doi.org/10.1029/2018JD029933
http://dx.doi.org/10.1029/2018JD029933
mailto:adtorres@umich.edu
https://doi.org/10.1029/2018JD029933
https://doi.org/10.1029/2018JD029933
http://publications.agu.org/journals/


1. Introduction

Knowledge of regional surface‐atmosphere carbon dioxide (CO2) fluxes is required to understand anthropo-
genic and climatic influences on the global carbon cycle. Despite longstanding research efforts to develop a
robust budget for surface fluxes of CO2 (Basu et al., 2018; Bolin & Keeling, 1963; Chevallier et al., 2010;
Enting &Mansbridge, 1989; Keeling et al., 1996; Peters et al., 2005; Peylin et al., 2013; Tans et al., 1990), these
studies diverge in their estimates of the geographic distribution of sources and sinks of CO2 (Baker et al.,
2006; Gurney et al., 2002; Stephens et al., 2007). For example, Gurney et al. (2002) found uncertainties in
regional‐scale carbon fluxes were greater than 0.5 Gt C/year across various inversion frameworks. In these
studies, carbon fluxes are inferred from spatial and temporal variations in atmospheric CO2 observations via
atmospheric inverse methods. Atmospheric inversions typically apply Bayesian optimal estimation methods
to optimize assumed (a priori) fluxes that have been used as boundary conditions to simulate spatiotemporal
CO2 variations in an atmospheric transport model. Mismatches between the simulated and observed atmo-
spheric CO2 provide the basis for scaling the assumed fluxes. The optimization requires rigorous attention to
errors associated with the assumed flux structure, the observations, and the fidelity of atmospheric transport
modeled by the framework (Rodgers, 2000).

One limitation to inverse modeling studies has been the density and geographic distribution of atmospheric
observations available to constrain surface fluxes (Gurney et al., 2002). Traditionally, observations of atmo-
spheric CO2 have been measured in situ or via flask sampling within the atmospheric boundary layer. These
observatories are concentrated within Northern Hemisphere temperate latitudes, and there is a scarcity of
observations in key regions for the global carbon cycle, including the tropics (Stephens et al., 2007) and
the Southern Ocean (Landschützer et al., 2015). The sparse in situ network for atmospheric CO2 observa-
tions was the impetus for the launch of several satellites, including Japan Aerospace Exploration Agency's
Greenhouse gases Observing SATellite (Ross et al., 2013; Yokota et al., 2009), National Aeronautics and
Space Administration (NASA)'s Orbiting Carbon Observatory‐2 (OCO‐2) satellite (Crisp et al., 2004;
Eldering et al., 2017), and Chinese National Space Administration's TanSat (Yang et al., 2018). These low
Earth, polar‐orbiting satellites measure the total column‐averaged dry air mole fraction of atmospheric
CO2 (denoted as XCO2) at high spatial density. For example, OCO‐2 acquires approximately 1 million sound-
ings every day, each with a footprint on the order of 1 km2 (Crisp et al., 2004; Eldering et al., 2017).
Theoretical studies have hypothesized that the high spatiotemporal density of XCO2 observations may allow
for a reduction of errors in flux inferences from inversion models (Baker et al., 2006; Miller et al., 2007;
Rayner & O'Brien, 2001).

A second limitation to the fidelity of inverse modeling studies is the inverse modeling framework itself, via
either incorrect parameterization of atmospheric transport (Basu et al., 2018; Chevallier et al., 2010;
Houweling et al., 2015; Masarie et al., 2011; Williams et al., 2014) or inappropriate representation of error
covariance structures (Chevallier & O'Dell, 2013). The goal of this paper is to discuss the unique require-
ments for atmospheric transport fidelity and the description of variance budgets for XCO2 from the OCO‐2
satellite. One advantage of measuring the column‐averaged mole fraction is that its variations can be used
more effectively to constrain surface fluxes via mass balance. Measurements made within the planetary
boundary layer are sensitive not only to fluxes at the surface but also to the rate at which the surface flux
signal is entrained into the free troposphere. The column, however, is unaffected by the vertical entrainment
rate, so in theory it is more directly related to surface fluxes via mass balance (Olsen & Randerson, 2004;
Rayner & O'Brien, 2001). For example, Basu et al. (2018) concluded that fluxes inferred from perfect, or
error‐free, satellite observations of XCO2 are less sensitive to uncertainty in atmospheric transport than per-
fect in situ observations of CO2 in the planetary boundary layer by applying flux inversion techniques to the
output from different atmospheric transport models forced with the same CO2 initial and boundary
conditions.

A potential complication of using XCO2 , however, is that it is sensitive to CO2 within the free troposphere,
where most weather occurs. The variance budget is therefore strongly affected by horizontal advection
(Geels et al., 2004; Keppel‐Aleks et al., 2011), not just surface fluxes, which are the real target of obtaining
and inverting atmospheric observations. In fact, at subseasonal timescales, horizontal advection dominates
the variance budget in XCO2 (Keppel‐Aleks et al., 2011). Keppel‐Aleks et al. (2012) used ground‐based obser-
vations of XCO2 at several midlatitude sites in the Total Carbon Column Observing Network (TCCON) to
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show that synoptic‐scale variations, which occur on spatial scales on the order of 1,000 km and temporal
scales of about 1 to 2 weeks, could be up to half the peak‐to‐trough seasonal cycle inXCO2. Likewise, horizon-
tal advection drives up to 60% to 70% of diurnal variations of boundary layer CO2 in the midlatitudes
(Parazoo et al., 2008), and these horizontal eddy‐induced variations are roughly half the size of the seasonal
CO2 variations driven by regional net ecosystem exchange ofXCO2(Parazoo et al., 2011). At finer spatial scales
on the order of 100 km, mesoscale variability in XCO2, which occurs on timescales of around one day, can be
larger than diurnal variations in XCO2 resulting from CO2 exchange with the local terrestrial ecosystem
(Keppel‐Aleks et al., 2012). Mesoscale transport imposes especially large errors on flux inversions over cities
at timescales smaller than a month (Lauvaux et al., 2016). However, even with global‐scale inversions,
the variations on XCO2 imparted by fine‐scale transport may ultimately degrade the inverted fluxes. This is
largely due to the fact that signal imposed by fine‐ and large‐scale atmospheric transport is spatially corre-
lated, thus these variations cannot simply be addressed simply by averaging multiple observations (Miller
et al., 2015).

Thus, efforts to use XCO2 from OCO‐2 for flux inference must reliably account for transport‐induced
time/space variations, either through explicit simulation within the atmospheric transport model or by
representation of transport‐induced errors within the error covariance matrix. We note that larger‐scale
synoptic weather systems are more likely to be simulated explicitly by atmospheric inverse modeling frame-
works, which generally have horizontal resolutions between 0.5° and 5° (Corbin et al., 2008), whereas
mesoscale systems occur at spatial scales smaller than the grid cell resolution for all but the highest‐
resolution atmospheric transport models. These smaller mesoscale systems, therefore, may not be repre-
sented explicitly by atmospheric transport models despite affecting the distribution of XCO2. Because mesos-
cale or frontal systems may also have clouds, which obscure space‐basedXCO2 measurements, it is important
to quantify the variance and spatial coherence of XCO2 that will be averaged from satellite measurements
before for comparison with a single model grid cell value (Corbin et al., 2008).

In this study, we use complementary information from space‐based (OCO‐2) and ground‐based (TCCON)
remote sensing ofXCO2 to quantify the imprint of mesoscale atmospheric transport and to refine the variance
budget of OCO‐2 XCO2. While the current suite of carbon observing satellites provides spatially dense obser-
vations, the time in between satellite overpasses at a specific location is too long (16 days for OCO‐2) to sam-
ple temporal variations of XCO2 driven by mesoscale (i.e., the duration of a thunderstorm) or synoptic‐scale
systems (i.e., the time in between frontal systems, which is typically on the order of a week in midlatitude
regions). In contrast, ground‐based networks, such as TCCON, provide temporally dense, but spatially
sparse observations. To use these observations together, we must develop a framework that relates the spa-
tial variations in OCO‐2 data to the temporal variations in TCCON data.

Throughout our analysis, we are cognizant of the fact that observing system error may also introduce
variance to satellite data (Baker et al., 2010; Chevallier et al., 2014). For example, Worden et al. (2017)
showed that natural variability (i.e., variations due to natural surface fluxes, anthropogenic emissions,
and atmospheric transport) of XCO2 along simulated representative OCO‐2 tracks was negligibly small
(approximately 0.08 ppm over 100‐km neighborhoods) in comparison to variations of 1.28 ppm per 100
km attributed to instrument noise and slow varying biases, such as those caused by surface pressure or
albedo variations, observed in OCO‐2 data. Therefore, while the primary purpose of this study is to under-
stand synoptic and mesoscale variations of XCO2 , we also leverage retrievals of total column‐averaged mole
fractions of water vapor (XH2O ) from OCO‐2 (Nelson et al., 2016) and TCCON observations to validate
our approach to estimating terms in equation (5). Retrievals of water vapor from OCO‐2 have a high
signal‐to‐noise ratio (from several hundred to greater than 1,000; Nelson et al., 2016). Therefore, we expect
that synoptic and mesoscale variations of atmospheric transport XH2O are more readily quantifiable from
space‐based observations.

This manuscript is organized around answering the following science questions.

1. What is the imprint of synoptic and mesoscale systems on XCO2 (and XH2O)?
2. How predictive are large‐scale spatial gradients inXCO2 (orXH2O) of the imprint of synoptic andmesoscale

atmospheric transport on OCO‐2 observations?
3. How large are other sources of fine‐scale variation in XCO2 (and XH2O) in the OCO‐2 variance budget?
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In section 2, we describe the methods and framework we used to quantify variability attributed to synoptic
and mesoscale atmospheric transport from both TCCON and along‐track OCO‐2 observations of XCO2 and
XH2O. In section 3, we describe the variance budgets for OCO‐2 XCO2 and XH2O in the context of validation
data from TCCON. In section 4, we provide discussion and recommendations for future work toward robust
flux influence from the satellite data.

2. Methods
2.1. Framework to Compare Temporal and Spatial Variability of Trace Gases

This framework provides the basis to which we compare temporal mesoscale variability of along‐track XCO2

andXH2O observed at TCCON ground sites to along‐track spatial mesoscale variability from OCO‐2 data. We
define along‐track mesoscale spatial variability ofXCO2 andXH2O for tracks that occur within a 10° by 10° box
of TCCON sites (Figure 1). The domains of analysis chosen were large enough to encompass several repre-
sentative atmospheric transport model grid cells, such as the 3° by 2° grid cells used by Basu et al. (2018) to
infer carbon fluxes.

We start from the tracer conservation equation in one dimension:

∂c
∂t

¼ −u
∂c
∂x

þ Sc (1)

where c represents the tracer concentration, in this case XCO2, u represents the column‐weighted wind velo-
city in one direction (assumed along the OCO‐2 track), and Sc represents the column‐averaged surface
sources and sinks of CO2 (with appropriate scaling to convert from flux to XCO2 column‐averaged variation).
In this equation, we have neglected molecular diffusion of XCO2 , which is small relative to the other terms,
and any variations in u and CO2 in the vertical profile by simply using the total column averages. We decom-
pose c into its mean and variable components (equation (2)):

c ¼ cþ c′ (2)

and Reynolds average equation (1) to yield an equation for the time rate of change of c (equation (3)). For our
analysis, we assume that the filter used to determine the average concentration, c, results in a c' that reflects
mesoscale variations in the tracer concentration while synoptic and slower‐ and larger‐scale variations
remain in c.

∂c
∂t

¼ −u
∂c
∂x

−
∂u′c′

∂x
þ Sc (3)

The first term on the right‐hand side (RHS) represents the advection of the mean gradient in c by the mean
wind, while the second term represents turbulent flux divergence. Equation (3) underscores that spatial gra-
dients in the mean tracer concentration give rise to temporal variations through the action of atmospheric
transport. We can subtract equation (3) from equation (1), expanded by replacing u and c with the corre-
sponding mean and anomaly terms from equation (2) (and equivalent equation for u), to yield an equation
for the time rate of change for the fluctuating component, c':

∂c0

∂t
¼ −u

∂c0

∂x
−u

0 ∂c
∂x

−u
0 ∂c

0

∂x
þ ∂u0c0

∂x
þ S

0
c (4)

In equation (4), the first term on the RHS represents the advection of mesoscale gradients by the mean wind,
and the second term and third terms represent the production of mesoscale anomalies in c by eddies acting
on the mean gradient and mesoscale gradient, respectively. The fourth term represents the turbulent flux
convergence. We can simplify equation (4) by assuming that the production term from eddies acting on
mesoscale gradients and the turbulent flux convergence are both small. We also neglect variations in

sources, S′c , since our framework accounts for only climatological mean surface fluxes (described in detail
in 3.2.1 below). We can then use scaling arguments to approximate these terms:
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c
0� �

time

τtime
¼ u

c
0� �

space

aspace
þ u0h i ∂c

∂x

� �
(5)

In equation (5), ⟨c′⟩time represents the characteristic magnitude of temporal variations at a TCCON site over
a relevant mesoscale timescale τtime. The variable ⟨c′⟩space represents the characteristic magnitude of along‐
track spatial variations from OCO‐2 over a relevant mesoscale length scale, aspace. The last term on the RHS

represents the advection of the mean gradient
∂c
∂x

� �
by mesoscale transport ⟨u′⟩.

The crux of our analysis is to compare ⟨c′⟩time and τtime inferred from empirical analysis of TCCON observa-
tions with ⟨c′⟩space and aspace inferred from geostatistical analysis of high‐pass‐filtered OCO‐2 tracks. This
analysis is conducted with an eye toward using the OCO‐2 derived estimates of ⟨c′⟩space and aspace to improve
the representation of fine‐scale transport errors within the error covariance budget provided to inverse mod-
els used for flux inference.

2.2. TCCON

We quantified temporal synoptic and mesoscale variations inXCO2 andXH2O using ground‐based remote sen-
sing data from sites in the TCCON network (Table 1). TCCON sites are instrumented with ground‐based
Fourier transform spectrometers that acquire direct solar absorption spectra approximately every 2 min dur-
ing sunny conditions (Wunch et al., 2015). TCCON instruments obtain near‐infrared spectra in the same
spectral region as OCO‐2 (0.65–2.63 μm), and total column CO2 is retrieved in the 1.58‐ and 1.60‐μm absorp-
tion bands and total column H2O is retrieved in the 1.54‐ to 1.65‐μm absorption bands using the GFIT algo-
rithm (Wunch et al., 2011). Because TCCON measures direct solar absorption spectra, the signal‐to‐noise
ratio is higher compared to that of OCO‐2, and the uncertainties on TCCONXCO2 have a calibration accuracy
of 0.4 ppm (Wunch et al., 2010). TCCON data are calibrated to the World Meteorological Organization stan-
dard ensuring absolute accuracy of measurements better than 0.25% (Washenfelder et al., 2006; Wunch
et al., 2011). We analyzed data from TCCON sites that have data records longer than 5 years and that observe
across a full annual cycle to minimize biases introduced by seasonal and interannual variations.
2.2.1. Removing Diurnal Cycle Climatology of XH2O and XCO2 to Quantify Temporal Synoptic and
Mesoscale Variability
We separated the imprint of synoptic and mesoscale systems on variations in TCCON XCO2 and XH2O by
assuming that the only sources of variations were surface fluxes or atmospheric transport. For both XCO2

and XH2O;we assumed that flux‐driven diurnal variations could be accounted for by calculating a monthly
climatological daily cycle of XCO2 variations for each site, since atmospheric transport patterns may be

Figure 1. XCO2tracks over a 10 ° × 10° domain centered on Lamont, Oklahoma, for one 16‐day repeat cycle in early July
2016. (a) Raw XCO2 soundings and (b) high‐pass‐filtered XCO2 . The radius of the red and black circle represents the
monthly mean range (denoted as aspace) of explained variability of XCO2and XH2O, respectively, in July. The blue box
represents a typical 3 ° × 2° grid cell used in atmospheric inversion models, such as those used in Basu et al. (2018).
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random but surface fluxes are phase locked to the diurnal cycle. We note there are changes in surface fluxes
in response to physical climate changes, such as thunderstorms/rain, cloud coverage, or boundary layer
temperature, induced by mesoscale and synoptic‐scale systems (Baldocchi et al., 2001). There is, however,
no easy way to attribute the changes in XCO2 and XH2O to either changing fluxes or synoptic/mesoscale
transport without running a coupled atmosphere/land model. We choose instead to use an empirical,
data‐driven approach that necessitates neglecting weather‐driven changes in surface fluxes.

For each calendar month, we binned all available observations (after removing the long‐term trend) from
the multiyear time series into half‐hour increments to reveal the characteristic diurnal cycle (Figures S1
and S2 in the supporting information). For any givenmonth, we limited our analysis to daytime observations
obtained at solar zenith angle less than 75° to reduce the influence of spectroscopic errors at high air masses.
We then removed the climatological daily cycle from each calendar day with observations, and assumed that
the residual was the component of variability driven by transport. We note that this approach is a simplifica-
tion and expect that at least some of the residual were due to synoptic, intraseasonal, and interannual varia-
bility of surface fluxes. Our approach does, however, allow us to approximate the influence of local fluxes
on the observations without relying on an ecosystem model or sparse flux tower data with limited
spatial footprints.

Given our assumption that temporal variability of XCO2 and XH2O is derived from either local fluxes or atmo-
spheric transport, we can then estimate the influence of atmospheric transport‐driven variations from the
time series of residuals. We calculated the standard deviation from the half‐hourly bin‐averaged residuals
at biweekly time intervals to approximate variability at synoptic and smaller timescales. We likewise calcu-
lated the standard deviation of the residuals within each day to approximate mesoscale variability. These
time periods were sufficient to sample variability attributed to multiple synoptic‐scale weather systems,
such as high‐ and low‐pressure systems and frontal passages, or mesoscale systems, such as individual
thunderstorms.

We evaluate our approach for calculating the influence of climatological fluxes on the diurnal cycle ofXCO2 at
the Park Falls TCCON site since it is colocated with an Ameriflux eddy covariance (EC) tower that provides
observations of diurnally varying NEE (Desai 2016). We estimate the influence that the observed EC fluxes
have on the daily cycle of XCO2 (and denote this quantity as XCO2 ;EC using equations (6) and (7):

dXCO2 ;EC

dt

� �
¼ NEEEC·g·MWdry air

Ps
(6)

XCO2;EC ¼ ∫
τPM
τAM

dXCO2 ;EC

dt

� �
dτ (7)

where NEEEC represents the observed net ecosystem exchange, g represents the gravitational constant of
9.81 m/s2, MWdry air represents the molecular weight of dry air, Ps represents the surface pressure, and τ
represents time. We calculated XCO2 ;EC at hourly time steps over a period τ from when the local solar zenith
angle crosses 70° in the morning and afternoon. The seasonal cycle of the within‐day variation in XCO2

Table 1
Locations of TCCON Sites and Observational Periods Analyzed in This Study With Associated References

TCCON site Location Observational periods Citation

Bialystok, Poland 53.33°N, 23.03°E 13 March 2009 to 14 April 2017 Deutscher et al., 2014
Karlsruhe, Germany 49.10°N, 8.44°E 19 April 2010 to 24 January 2018 Hase et al. (2014)
Orleans, France 47.97°N, 2.11°E 29 August 2009 to 29 April 2017 Warneke et al. (2014)
Garmisch, Germany 47.48°N, 11.06°E 16 July 2007 to 16 March 2018 Sussmann and Rettinger (2014)
Park Falls, Wisconsin 45.95°N, 90.27°E 2 June 2004 to 31 December 2017 Wennberg, Roehl, et al. (2014) and

Washenfelder et al. (2006)
Lamont, Oklahoma 36.60°N, 97.49°W 6 July 2008 to 31 December 2017 Wennberg, Wunch, et al. (2014)
Darwin, Australia 12.42°S, 130.89°E 28 August 2005 to 28 March 2017 Griffith et al. (2014) and Deutscher et al. (2010)
Reunion Island, France 20.90°S, 55.49°E 16 September 2011 to 30 January 2018 De Mazière et al. (2014)
Lauder, New Zealand 45.04°S, 169.69°E 2 February 2010 to 1 November 2017 Sherlock et al. (2014)

Note. TCCON = Total Carbon Column Observing Network.
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observed by the TCCON instrument agrees well with the seasonal cycle of the expected within‐day variation
in XCO2 from NEE observations (R2 of 0.8; Figure 2a). The magnitude of the error bars derived from NEE,
which represent the standard deviation among individual days, is substantially smaller than the
magnitude of the error bars derived from the TCCON XCO2 drawdown (Figure 2b). During winter, the
average standard deviation for XCO2 ;EC is less than 0.1 ppm, while the average standard deviation from
XCO2;FTS is about 0.4 ppm. In contrast, the average summer standard deviation is about 0.3 ppm for
XCO2;EC and 1.2 ppm for XCO2;FTS. Across seasons, the uncertainty from assuming a climatological within‐
day drawdown therefore reflects at most 30% of the total variability across the days on which observations
are obtained. This suggests that most of the within‐in day variation for XCO2 results from processes other
than local fluxes, confirming the motivation of the present study.

2.3. OCO‐2

We analyzed spatial variations inXCO2 andXH2O retrieved fromOCO‐2 satellite observations. OCO‐2 is a Sun‐
synchronous, polar‐orbiting satellite with a spatial footprint for individual soundings of 2.4 km along‐track
and 1.25 km cross track; the instrument measures eight cross‐track bins at each time step resulting in a nar-
row (~10 km wide) sampling swath (Eldering et al., 2017). The satellite acquires a repeat cycle of approxi-
mately every 16 days using three scanning modes, described below. The instrument comprises three
grating spectrometers that measure radiances from reflected near‐infrared sunlight in two CO2 bands, the
1.61 weak absorption band (WCO2) and the 2.06‐μm strong CO2 (SCO2) absorption band, and in the
0.72‐μm oxygen (O2A) absorption band. These radiances are used in a full physics retrieval algorithm
(version 8r, O'Dell et al., 2012, 2018), which uses optimal estimation to infer the vertical column of both
CO2 and O2 while simultaneously adjusting other elements of the retrieval state vector, including the surface
albedo for each band, aerosol optical depth (AOD), and other parameters that affect measured radiances
(O'Dell et al., 2012, 2018). The reported error for each XCO2 sounding is estimated using instrument noise,
and then postprocessed to account for errors associated with the forward model used in the retrieval algo-
rithm (O'Dell et al., 2012; Wunch et al., 2017). The measurements are bias corrected by accounting for biases
in individual cross‐track observations using multivariate linear regression to identify physically unrealistic
correlations betweenXCO2 and other elements of the retrieval state vector (such as surface pressure, aerosols,
or unphysical variations of the retrieved vertical profile of CO2) and systematic offsets of OCO‐2 XCO2 target
mode retrievals in comparison to TCCON observations (O'Dell et al., 2018). The (lower bound) bias‐
corrected single sounding errors for retrievedXCO2 are generally less than 1 ppm (compared to a mean global
value of approximately 410 ppm; Tans & Keeling, 2017), with the largest errors over land and higher lati-
tudes (generally above 45°N or 45°S) and smallest errors over the ocean (Eldering et al., 2017). Similarly,
XH2O was retrieved from OCO‐2 using the 1.61‐ and 2.06‐μm weak and strongly absorbing H2O spectral

Figure 2. (a) A comparison of the climatological monthly mean diurnal mean amplitude of XCO2 observed at the Total
Carbon Column Observing Network site (XCO2 ;FTS) compared to the estimated imprint of drawdown based on the
observed net ecosystem exchange at the adjacent FluxNet eddy covariance tower in Park Falls, Wisconsin (XCO2 ;EC).
(b) The standard deviation of monthly mean XCO2 ;FTSS compared to the standard deviation of XCO2 ;EC plotted in panel
(a). Note that the axes in panel (b) are different. EC = eddy covariance; FTS = Fourier transform spectrometers.
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bands with mean biases of approximately 70 ppm, compared to typical XH2O concentrations that varies from
roughly 700 to 9,000 ppm globally (Nelson et al., 2016).

OCO‐2 uses three scanning modes to optimize retrievals over land and ocean surfaces, including nadir (land
only), glint (over ocean and land), where the instrument is pointed at the glint angle to maximize reflected
light over water surfaces, and target where the instrument angle is adjusted to point toward a targeted loca-
tion (typically a ground‐based validation site). In this analysis, we investigate nadir and glint observations
separately and only used soundings without a quality warning flag. In the figures, we report averages of
nadir and glint observations since the only systematic differences were at coastal locations where there were
not sufficient nadir observations. Note that many tracks exhibit significant missing data because of
cloud cover.
2.3.1. Geostatistical Analysis
We used geostatistical analysis to quantify the variance budget for OCO‐2 data. We removed low‐frequency
variations using a 250‐kmHamming high‐pass filter. To apply the filter, the data were preprocessed by aver-
aging up to eight cross‐track soundings into 1.1‐km bins in nadir mode or 1.3‐km bins in glint mode to create
a one‐dimensional track. We gap‐filled empty bins with a distance‐weighted mean of the nearest filled bin.
For each 10° by 10° box, we filtered tracks containing valid observations in at least 96 bins in glint mode or
113 bins in nadir mode (i.e., one half of the rolling window filter size). To minimize edge effects on the high‐
pass filter, we attached a 250‐point buffer made up of the average of the first 250 bins (i.e., the length of varia-
bility passed through the high‐pass filter) to the beginning and end of each satellite track. After running the
filter, we repopulated each sounding with the filtered bin‐averaged and gap‐filled values and began our
semivariogram analysis described below.

We separated variance of XCO2 and XH2O along OCO‐2 tracks into random errors (“unexplained variance”)
and the component that is spatially coherent, or systematic, (“explained variance”) by calculating semivar-
iograms for the high‐frequency component ofXH2O andXCO2. We calculated the semivariance (γ*) for lag d at
position xk for sounding values Z using equation (6):

γ* dð Þ ¼ 1
2N dð Þ∑

N
k¼1 Z x!k

� �
−Z x!k þ d
� �� 	2

(8)

where N is the number of soundings separated by lag d (Cressie & Hawkins, 1980). We fit a spherical model
(equation (7)) to estimate the total variance, c∞, and the spatial range of total variance, denoted as aspace (as
in equation (5)), for each semivariogram (Figure S3). For the spherical model fits, we fixed the unexplained
variance, c0, to the semivariance calculated from the observations at the smallest observed lag (1.1 km in
nadir or 1.3 km in glint mode).

γ dð Þ ¼ c0 þ c∞−c0ð Þ 3d
2aspace

−
1d3

2a3space

" #
for d≤aspace

c∞ for d>aspace

8><
>: (9)

We calculated the explained variance, denoted as ⟨c′⟩space, by subtracting the unexplained variance from the
total variance, c∞‐c0. In this framework, the explained variance relates to spatially coherent patterns, which
could be due to real atmospheric gradients owing to fine‐scale transport or errors arising from spatially
coherent correlations betweenXH2O andXCO2 and other elements of the state vector. We compared the square
root of unexplained and explained variances, denoted as unexplained and explained variability, to temporal
variations observed at adjacent TCCON sites, described in more detail in section 2.2.
2.3.2. North‐South Gradient Calculation
To investigate the mesoscale tracer transport term on the RHS of equation (5), we quantified the relationship
between fine‐scale spatial variations and the large‐scale gradient in XH2O and XCO2. We calculated the north‐
south (N‐S) gradient from three different data sets. For OCO‐2, we aggregated data within a 10° by 10° box
centered at the TCCON sites listed in Table 1. We calculated the gradient for each track within the targeted
domain by fitting OCO‐2 soundings to a simple least squares linear regression model weighted by self‐
reported errors from the Version 8 Level 2 retrieval algorithm. Because OCO‐2 tracks may have data gaps
associated with seasonal variations or cloud cover, we filtered the north‐south gradients by quantifying
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the uncertainty (σ2NS) of the estimated N‐S gradient using equation (8) (Glover et al., 2011), where xi repre-
sents the latitude and σi is the OCO‐2 reported retrieval error at point i for N total soundings. We then dis-
carded regression fits that had an uncertainty larger than 0.01 ppm/degree.

σ2NS ¼
∑N

i¼1
1
σ2i

∑N
i¼1

1
σ2i
·∑N

i¼1
x2i
σ2i
− ∑N

i¼1
xi
σ2i


 �2 (10)

We compared monthly mean observed N‐S gradients from OCO‐2 to two additional data sets: the monthly
mean N‐S gradients derived from assimilated 2017 CarbonTracker (CT2017) output from the OCO‐2 period
(from 2014 to 2017, with observations ongoing) and the N‐S gradients inferred from the High‐Performance
Instrumented Airborne Platform for Environmental Research Pole‐to‐Pole Observations (HIPPO) flight
transects over the Pacific Ocean that took place between 2009 and 2011. CarbonTracker is a data assimilation
system that provides three‐dimensional atmospheric CO2 fields based on assimilating surface CO2 observa-
tions from National Oceanic and Atmospheric Administration's cooperative sampling network (Peters et al.,
2007; with updates documented at http://carbontracker.noaa.gov). XCO2 was computed in their 2017
(CT2017) data set with simple pressure‐weighted vertical integration of CO2. During the HIPPO campaign,
partial columns of CO2 were measured from roughly 300‐ to 8,500‐m altitude from aircraft transects span-
ning from 67°S to 85°N across the Pacific Ocean during all seasons between 2009 and 2011 (Wofsy, 2011).
XCO2 was then inferred by integrating a pressure‐weighted mean concentration using reference static pres-
sure from the GV Paroscientific Model 1000 sensor (Wofsy et al., 2017). We did not apply averaging kernels
to either the CT2017 or HIPPO data since we were not attempting to directly compare individual columns to
their OCO‐2 or TCCON counterparts, but rather to approximate the large‐scale features in XCO2 .

With sufficient data density, the N‐S gradients derived from OCO‐2 overpasses were broadly consistent with
CT2017 output and HIPPO transects. However, when satellite data were characterized by gaps or low cover-
age during the winter season, the satellite estimate of the N‐S gradient was inconsistent with HIPPO and
CarbonTracker. Given this pattern of agreement and the need for year‐round N‐S gradient information,
we used the CarbonTracker gradient to quantify monthly mean N‐S gradients and to evaluate the impact
of the gradient on temporal synoptic‐scale and mesoscale variability and along‐track high‐frequency
explained variability.

3. Results
3.1. Temporal Variations at TCCON
3.1.1. Flux‐Driven Diurnal Variations
Local diurnal fluxes account for up to 1 to 2.0 ppm of within‐day temporal variability of XCO2 during the
growing season, with the largest diurnal signal observed during boreal summer (Figure 3a). For example,
in Lamont, Oklahoma, local ecosystem drawdown contributed a decrease of XCO2 of 1.1 ppm between 7:00
a.m. and 5:30 p.m. local standard time in July, whereas it showed almost no change throughout the day
(10 a.m. to 2 p.m.) during winter months (Figure S1), as expected given the relatively dormant winter bio-
sphere. At most midlatitude TCCON sites, local diurnal fluxes of XCO2 accounted for less than 0.3 ppm of
within‐day variability during the winter (Figure 3a). The seasonal cycle of XCO2 variability driven by diurnal
fluxes at tropical TCCON sites, such as Darwin, Australia, was tied to the onset of the wet and dry seasons
and varied from 0.1 and 1.1 ppm (Figure 3a). We note that these are typical within‐day variations of XCO2

attributed to diurnal fluxes and that the actual diurnal fluxes depend on weather, anthropogenic, and other
natural interactions.

The climatological diurnal cycle ofXH2O had a strong seasonal cycle across all TCCON sites, with defined wet
and dry seasons in the tropics, and lower winter and higher summer peak‐to‐trough diurnal cycle ampli-
tudes in the midlatitudes (Figure 3b). In the Northern Hemisphere midlatitudes, the within‐day local
imprint was maximum in the summer (around 200–600 ppm) and smallest during boreal winter (around
5–100 ppm). Within‐day, flux‐driven variations were largest at the two tropical TCCON sites, which are both
located in the Southern Hemisphere tropics. Within‐day variations in these regions could exceed 500 ppm
during austral summer but were generally 300–500 ppm during austral winter (Figure 3b). We note that
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while many atmospheric processes are analogous for XCO2 and XH2O, condensation and precipitation drive
additional spatial and temporal variability in XH2O (Dai et al., 2002). The values we report in Figure 3b are
the peak‐to‐trough difference in within‐day XH2O climatology. During summer, most TCCON sites
showed a maximum value of XH2O in middle‐to‐late afternoon (1400 to 1700 hr, Figure S2), consistent
with the diurnal phasing of precipitable water reported by Dai et al. (2002).
3.1.2. Synoptic‐Scale (Biweekly) Variability
Mean temporal synoptic‐scale (biweekly) variations in bothXH2O andXCO2 from TCCONwere larger in mag-
nitude to the typical daily cycle (Figures 3 and 4). For XH2O, synoptic‐scale variations were, on average, 4
times larger than variability attributed to diurnal fluxes (Figures 3 and 4). For some months, synoptic‐scale
variability of XH2O was over 10 times larger than the magnitude of the imprint of local diurnal fluxes. For
XCO2 mean synoptic‐scale variations were approximately twice as large local flux‐driven variability, although
for both gases, the differences varied seasonally. These variations in bothXH2O andXCO2 were also tied to the
seasonal cycle in the large‐scale N‐S gradient (Table 2). As described in section 2.2.1, we quantified temporal
synoptic‐scale variability by taking the standard deviation of the biweekly residual in XH2O and XCO2 after
accounting for the climatological peak‐to‐trough within‐day signal at each TCCON site.

Temporal synoptic‐scale variations of XH2O across all TCCON sites were of order 100 to 1,000 ppm with
strong regional and seasonal dependence (Figure 4a). For example, we observe synoptic‐scale variations
in XH2O of 200–400 ppm in Lamont and Park Falls during boreal winter and peak synoptic‐scale variability
of over 1,000 ppm during the Northern Hemisphere summer (Figure 4a). At similar latitudinal regions in
Europe, synoptic‐scale variability ofXH2O only varies from 150 to 800 ppm throughout the year. We acknowl-
edge that on multiweek timescales, many processes other than atmospheric transport can alter the atmo-
spheric water vapor mole fraction, including diabatic processes in the atmosphere. This complexity is
evident in the different seasonal patterns in and magnitudes of biweekly variability at TCCON sites, which
varies even within a given latitude band. We therefore present this analysis to parallel the XCO2 analysis
described below.

ForXCO2, typical synoptic‐scale variations ranged from 0.1 to 1.3 ppm across all TCCON sites, with the largest
variations (in excess of 1 ppm) observed over Northern Hemisphere TCCON sites during July and August
(Figure 4c). These locations also had the largest seasonal cycles of synoptic‐scale variability (Figure 4c).
There was less pronounced synoptic‐scale variability of XCO2 in the tropics and the Southern Hemisphere,

Figure 3. Climatological daytime diurnal range of (a)XCO2and (b)XH2O. We calculate the range betweenmorning and evening, with a limit of solar zenith angle less
than 75°.
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where synoptic‐scale variability ranged from 0.1 in the boreal summer to 0.7 ppm in boreal winter
(Figure 4c). The magnitude and seasonality of these variations are mostly tied to the meridional (N‐S)
gradient in XCO2 , as we discuss below.

Synoptic‐scale variations of XCO2 were correlated with the magnitude of the N‐S gradient at Northern
Hemisphere midlatitude TCCON sites (Table 2). As described in section 2.3.2, we fit a regression slope to
estimate the absolute value of N‐S gradients of XCO2 derived from OCO‐2 overpasses to those derived from
CT2017 output and HIPPO transects (Figure S4). In the Northern Hemisphere midlatitudes, the

Figure 4. Comparison of synoptic‐scale and variability in Total Carbon ColumnObserving Network observations. (a)XH2Omonthlymean synoptic‐scale (biweekly)
variability, (b)XH2Omesoscale (within‐day) variability, (c)XCO2 monthlymean synoptic‐scale variability, and (d)XCO2 monthlymeanmesoscale variability. Note that
the color scales for XH2O and XCO2 are different.
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correlation between monthly mean temporal synoptic‐scale variations observed from TCCON (Figure 4c)
and the monthly mean N‐S gradient (Figures S4–S6) was generally around 0.6 to 0.9 (Table 2). This
relationship is consistent with the argument that synoptic variations arise from transient eddies acting on
the large‐scale gradient, as indicated by the second RHS term in equation (5). The weaker correlation
(R = 0.41) observed at Garmisch, Germany, was an outlier among Northern Hemisphere midlatitude
TCCON sites, which may be due to limited observations. In the tropics and Southern Hemisphere, the rela-
tive absence of N‐S gradients of XCO2 resulted in weak relationship with synoptic‐scale variations. We note
that the length scales estimated from many of the slopes of our best fit linear regressions between synoptic‐
scale variability and the N‐S gradient of XCO2 (2.1° to 6.5°, or roughly 200 to 600 km at Northern Hemisphere
midlatitude TCCON sites) are on the smaller end of those of typical synoptic‐scale systems.

The temporal synoptic variability of XH2O correlates with the N‐S gradient of XH2O across most TCCON sites
(Table 2). The correlation coefficients were between 0.4 and 0.9 across TCCON sites. The highest correlation
coefficients were observed at mid‐latitude TCCON sites (Bialystok, Orleans, Park Falls, and Lamont), and at
these sites, the slope of the relationship was consistently between 7 and 9 ppm/(ppm/degree; which can be
written as a length scale, degree). This is approximately consistent with typical length scales of synoptic‐scale
variability of the order of magnitude of 1,000 km and larger than that estimated for XCO2 .
3.1.3. Mesoscale (Within‐Day) Variability
Mesoscale variations (Figures 4b and 5c) of XH2O are, on average, a factor of 1.4 times larger in magnitude to
variability attributed to local diurnal fluxes (Figure 3b). For XH2O, mesoscale variations were generally a fac-
tor of 5 smaller than synoptic‐scale variability across all TCCON sites (Figure 4b). As expected based on
synoptic‐scale variations in XH2O , patterns of mesoscale variation showed strong regional variations. For
example, TCCON sites in North America (Park Falls and Lamont), mesoscale variations ofXH2O were almost
300 ppm during the boreal summer but less than 100 ppm during the boreal winter (Figures 4b and 5c). In
contrast, at TCCON sites at similar latitudes in Europe, mesoscale variations ofXH2O were generally less than
200 ppm all year. At tropical TCCON sites, such as Darwin and Reunion Island, mesoscale variations were
between 160 and 320 ppm all year‐round, with lower (<200 ppm) mesoscale variations occurring during the
dry season (Figure 4b).

Mesoscale variations of XH2O , like synoptic variations, were generally correlated with the N‐S gradient of
XH2O across all midlatitude TCCON sites (R values of 0.4 to 0.9 at TCCON sites with statistically significant
slopes; Table 2). The slopes, however, were much lower, typically around 2°. We expect that these correla-
tions do not necessarily suggest that the large‐scale N‐S gradient drives mesoscale variations, but rather to
the fact that both quantities change seasonally and have strong temperature dependence via the Clausius‐
Clapeyron relationship.

Table 2
Regression Statistics for Magnitude of Variability in Trace Gases Versus Their N‐S Gradient

Location

XH2O XCO2

Synoptic (TCCON) Mesoscale (TCCON) Explained (OCO‐2) Synoptic (TCCON) Mesoscale (TCCON) Explained (OCO‐2)

Slope (deg) R Slope (deg) R Slope (deg) R Slope (deg) R Slope (deg) R Slope (deg) R

Bialystok, Poland 7.4 ± 3.1 0.75 2.2 ± 0.5 0.92 1.3 ± 0.6 0.80 6.5 ± 5.2 0.44 0.6 ± 1.6 0.06 −0.7 ± 4.0 0.01
Karlsruhe, Germany 1.5 ± 3.7 0.12 1.8 ± 0.9 0.58 1.9 ± 1.3 0.64 2.9 ± 2.6 0.51 0.4 ± 0.5 0.08 −0.0 ± 0.7 0.00
Orleans, France 7.6 ± 3.4 0.69 1.9 ± 1.2 0.50 0.7 ± 1.6 0.11 3.1 ± 1.2 0.76 0.7 ± 0.4 0.52 −0.4 ± 0.9 0.13
Garmisch, Germany 3.5 ± 3.7 0.28 1.4 ± 1.0 0.42 2.1 ± 1.0 0.72 0.8 ± 1.2 0.17 0.4 ± 0.3 0.29 −0.3 ± 1.4 0.02
Park Falls, WI 7.5 ± 2.2 0.79 2.7 ± 0.6 0.87 1.5 ± 1.2 0.41 3.6 ± 1.6 0.62 0.9 ± 0.8 0.30 0.3 ± 1.2 0.04
Lamont, OK 8.7 ± 6.9 0.35 1.5 ± 2.4 0.12 1.1 ± 2.2 0.08 2.1 ± 0.9 0.67 0.5 ± 0.5 0.32 0.8 ± 0.4 0.49
Darwin, Australia 0.8 ± 0.5 0.46 0.3 ± 0.2 0.39 −0.4 ± 0.3 0.36 1.1 ± 0.7 0.41 0.4 ± 0.4 0.27 0.3 ± 1.0 0.04
Reunion Island 4.6 ± 6.2 0.15 0.8 ± 1.2 0.12 1.1 ± 1.2 0.23 −1.0 ± 3.7 0.02 −0.7 ± 3.0 0.02 0.4 ± 1.1 0.04
Lauder, New Zealand 4.5 ± 3.7 0.33 2.8 ± 1.1 0.69 0.7 ± 0.6 0.58 4.1 ± 9.5 0.06 2.5 ± 3.6 0.14 0.2 ± 9.9 0.00

Note. We report the slope (±95% confidence interval) in units of degrees and the correlation coefficient, R, of a best fit linear regression line for the N‐S gradient
of XH2O and XCO2 output from CT2017 compared to biweekly (synoptic‐scale) and within‐day (mesoscale) temporal variability of XH2O observed by
TCCON and explained along‐track high‐frequency spatial variability observed by OCO‐2. Bolded slopes and regressions indicate statistically significant fits at the
95% confidence interval. OCO‐2 = Orbiting Carbon Observatory‐2; TCCON = Total Carbon Column Observing Network.
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Temporal mesoscale variability in XCO2, which we assume is primarily driven by advection from small‐scale
weather features, was less than 0.5 ppm across all TCCON sites and all months (Figures 4 and 5). This repre-
sents about half the magnitude of variability attributed to local diurnal fluxes during the growing season at
Northern Hemisphere TCCON sites (Figure 4). In the winter, mesoscale variations of XCO2 become larger
than the imprint of variability attributed to local diurnal fluxes. In Park Falls, Wisconsin, the combined
imprint of mesoscale and synoptic‐scale transport was 1 to 2 ppm during summer (Figure 4), substantially
larger than the potential bias from assuming climatological fluxes of about 0.3 ppm (Figure 2). These mesos-
cale variations were approximately 30% to 50% magnitude of synoptic‐scale variability (Figures 4c and 4d).
Mesoscale variations in XCO2were only moderately correlated with N‐S gradients (R values less than 0.52) in
the middle‐to‐high latitudes in both the Northern and Southern Hemispheres (Table 2), consistent with our
expectation that the length scale of mesoscale systems is small in comparison to the length scale of the N‐S
gradient. In the tropics, there was likewise no correlation betweenmesoscale variability and the N‐S gradient
of XCO2 (Table 2).

We calculated a typical timescale for mesoscale (within‐day) variations based on the autocorrelation of
within‐day residuals with climatological local fluxes removed (Figure S7). We found that the autocorrelation
of the residuals typically decayed to values between e−1 and 0 over about 3 hr. This timescale was consistent
for both XH2O and XCO2 across all TCCON sites. We therefore used this mean lag time as τtime in equation (5)
to compare temporal variations to spatial variations of XH2O and XCO2 (section 3.2.1)

Figure 5. A comparison of monthly mean TCCON temporal mesoscale 〈c′〉time (within‐day) variability (red), OCO‐2
observed along‐track high‐frequency unexplained (teal) and explained (〈c′〉space) (dark blue) spatial variability, and
explained variability (〈c′〉space) estimated from equation (12) (light blue) using ranges (aspace) observed by OCO‐2 forXH2O

(dashed line) andXCO2 (solid line). (a, b) Variability forXCO2and (c, d)XH2O in Lamont, Oklahoma. (e) The range (aspace) of
along‐track high‐frequency explained spatial variability of XH2O (dark purple) and XCO2 (light purple). The error bars
for observed parameters represent the standard error. For estimated 〈c′〉space, the error bars represent the error propa-
gation using climatological monthly mean standard error of each observed parameter. TCCON = Total Carbon Column
Observing Network; OCO‐2 = Orbiting Carbon Observatory‐2.
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3.2. OCO‐2 Along‐Track Spatial Variability

This section compares the relationship between the high‐frequency along‐track spatial variability observed
by OCO‐2 to mesoscale temporal variability of XH2O and XCO2 from TCCON using the theoretical framework
outlined in section 2.1. Variations in bothXH2O andXCO2 evolve in response to local surface fluxes and atmo-
spheric transport and for XH2O, condensation, evaporation, and precipitation within the atmosphere. While
the details of the surface fluxes and in situ atmospheric processes differ for the two tracers, they experience
the same atmospheric advection andmixing fields. The advantage of a joint analysis of these two gases is that
both XH2O and XCO2 are observed simultaneously by TCCON and OCO‐2, and the precision of XH2O is sub-
stantially larger, providing a framework for assessing the XCO2 results. Specifically, if the calculated and
observed explained variability of either species, ⟨c′⟩space, are in agreement, then we can assume that mesos-
cale atmospheric transport is the dominant source of high‐frequency variability of that gas.
3.2.1. Explained Variability (⟨c′⟩space)
Along‐track, high‐frequency (<250 km) explained spatial variations of XH2O from OCO‐2 spanned between
20 and 300 ppm across all TCCON sites (Figure 6b). The smallest explained variations (20 to 60 ppm) were
observed at Northern Hemisphere midlatitude sites during the boreal winter. The largest explained varia-
tions (>200 ppm) occurred over most Northern Hemisphere midlatitude sites during the boreal summer
and over the tropical sites (Darwin and Reunion Island) during the local wet season. Across all months
and TCCON sites, the spatial range (aspace) of explained variability generally spanned between 40 and 140
km (Figure 7b).

The explained high‐frequency spatial variability of XCO2 was generally between 0.2 and 1.0 ppm across all
TCCON sites (Figure 6e). The highest explained variations (>0.5 ppm) were observed over Northern
Hemisphere TCCON sites. Smaller explained variations (0.2 to 0.5 ppm) were observed at Southern
Hemisphere TCCON sites. In contrast to XH2O, the aspace for XCO2 occurred at much smaller spatial scales
from 10 to 40 km, with mean aspace values for explained variability around 20 km (Figure 7a).

We can put the explained spatial variability of both XH2O andXCO2 along OCO‐2 tracks (⟨c′⟩space) by compar-
ing variations in each gas with the corresponding mesoscale variations at TCCON sites (section 2.3.1) using
equation (5) to relate temporal variations at a given location to tracer anomaly advection and turbulent pro-
duction. We expect the time tendency (Term A in equation (5)) to be balanced by the advection of tracer var-
iations by the mean wind (Term B) or by small‐scale production of variation by eddies acting on the mean
gradient (Term C). Take, for example, a typical temporal mesoscale variation of XH2O , ⟨c′⟩time, of about
280 ppm (as is approximately the case in Lamont, Oklahoma in June; Figures 4–6). We computed the follow-
ing scales:

Að Þ c
0
time

τtime
¼ 280 ppm

3 hr
¼ 90

ppm
hour
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0
space
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s
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70 km

¼ 90
ppm
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m
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 �
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degree

� 

¼ 5
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(11)

We used a within‐day period (τtime) of 3 hr (section 3.1.3 and Figure S7). For Lamont in June, we computed
total column pressure and H2O vertical profile weighted mean horizontal wind speed (u) of 8 m/s and
mesoscale variability of horizontal winds (u′) of 1 m/s by vertically integrating wind output from CT2017
(Figure S8). Since CarbonTracker is run at relatively coarse resolution, we compare these values against cal-
culations derived from the North American Regional Reanalysis (Mesinger et al., 2006), which provides
wind fields at 0.3° resolution. At the two North American TCCON sites, u was the same as that estimated
from CarbonTracker fields, while u′ was larger by a factor of two (about 2 m/s), an expected result given
the higher horizontal resolution of North American Regional Reanalysis. Nevertheless, when we apply this
larger u′ estimate into equation (11), our scale analysis remains unchanged. We also used CT2017 output to
calculate a typical summertime Northern Hemisphere midlatitude N‐S gradient of around 140 ppm/degree
(Figure S5). The scaling exercise suggests that the time tendency is mostly balanced by the mesoscale anom-
aly advection term (Term B) rather than the turbulent production term (Term C), at least for these
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timescales. The small contribution of the production term is consistent with the fact that mesoscale
variations at TCCON sites were not highly correlated with the mean N‐S gradient. This analysis can also
be applied to relate spatial and temporal mesoscale variations in XCO2or another atmospheric tracer.

Based on the scaling arguments above, we rearrange equation (5) to solve for the expected ⟨c′⟩space along
OCO‐2 tracks and neglect the turbulent production term (equation (12)):

c′
� �

space ¼
aspace
u

c′
� �

time

τtime
− u′h i ∂c

∂x

� � !
≈
aspace
u

c′
� �

time

τtime

 !
(12)

We then use equation (12) to estimate the expected magnitude of ⟨c′⟩space for XH2O in Lamont in June as
approximately 226 ppm, which agrees within 10% with the observed explained variability of 214 ppm from
OCO‐2 (Figures 6b and 8b). We found that if we applied equation (12) to compute ⟨c′⟩space at each TCCON
site and each month, our estimated ⟨c′⟩space values match observed explained variations from OCO‐2 to
within 30% (Figures 8a and 8b). The agreement between the observed and estimated ⟨c′⟩space ofXH2O suggests
that the observed explained variations of XH2O from OCO‐2 are primarily driven by mesoscale atmospheric
transport (Figures 5, 8a, and 8b). These results also validate our choice of a 250‐km high‐pass filter to isola-
te mesoscale transport and exclude larger‐scale synoptic systems.

Figure 6. Variability metrics for remotely sensed XH2O and XCO2 . Monthly mean (a) unexplained variability for XH2O and (b) explained variability for XH2O derived
from high‐pass‐filtered OCO‐2 observations. (c)Monthly mean temporal mesoscale (within‐day) variability in XH2O derived from Total Carbon Column Observing
Network observations. (d–f) Similar with (a)–(c) except we show values for XCO2 from OCO‐2 (d and e) and TCCON (f) observations. OCO‐2 = Orbiting Carbon
Observatory‐2.
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We likewise calculated the ⟨c′⟩space ofXCO2 in Lamont in June using the estimated total column pressure and
CO2 vertical profile weighted mean horizontal wind speed (u) m/s and a spatial range, aspace, of 20 km fit
from semivariogram analysis (Figure 7a). Using this framework, the calculated spatial mesoscale variability
of 0.1 ppm was much smaller than the observed ⟨c′⟩space (0.6 ppm). The empirical aspace of 20 km for XCO2 is
suspect, since mesoscale variations in XH2O from OCO‐2 showed an aspace of 70 km in the same month and
are consistent with the expected length scale for mesoscale systems. When we instead used aspace of 70 km
based on the analysis of XH2O, estimated mesoscale variability increases to 0.3 ppm (equation (14)).

c′
� �

space;XCO2
¼ 70 km

10 m=s
0:4 ppm
3 hr

� 

≅0:3 ppm (14)

We note that an estimate of 0.3 ppm, while more reasonable in magnitude, is still about 40% smaller than the
observed value of 0.5 ppm for the OCO‐2 explained XCO2 variability.

Together, these relationships suggest first that the temporal and spatial scaling within our framework is con-
sistent with mesoscale variations of XH2O quantified using TCCON and OCO‐2 data. Second, the spatial
range (aspace) forXCO2 variability derived from the geostatistical analysis of OCO‐2 data is too small to be dri-
ven by mesoscale systems. Third, the results suggest that the XCO2 ⟨c′⟩space value is larger than what is calcu-
lated assuming mesoscale systems are the only driver of high‐frequency spatial variability along OCO‐2
tracks. As shown for Lamont, Oklahoma, there is no overlap between the estimated and observed ⟨c′⟩space
evenwhen accounting for uncertainty in both terms (Figure 5b).We estimated the uncertainty ⟨c′⟩space using
error propagation of the standard error of each of the measured terms in equation (12). Although we only
plot the uncertainty on the ⟨c′⟩space calculation for Lamont (Figure 5), we quantified uncertainty across all
TCCON sites presented in the paper and this result is robust, meaning that the differences between the cal-
culated ⟨c′⟩space (Figures 8c and 8d) and the observed ⟨c′⟩space (Figure 8e) represent real and significant dis-
agreement. Thus, we conclude that some other factor imparts spatially coherent variability on OCO‐2 XCO2

that depresses the aspace and augments the ⟨c′⟩space. One possibility is coherent biases or errors in the OCO‐2
XCO2 retrieval, as discussed more in section 3.3. These relationships are true across all TCCON sites
(Figures 8c and 8e), where the observed XCO2 ⟨c′⟩space was generally larger than what would be expected
based on ⟨c′⟩time and the observed XCO2 aspace was small relative to the value calculated from XH2O observa-
tions (Figures 8a and 8b).We found thatXCO2 ⟨c′⟩space wasmore comparable to observed explained variations
from OCO‐2 when we used observed aspace values for XH2O (Figures 8d and 8e).

Figure 7. Monthlymean spatial range (aspace) of (a)XH2O and (b)XCO2derived fromOrbiting CarbonObservatory‐2 data near each Total Carbon ColumnObserving
Network site. Note both panels use the same color scale.
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We do not expect that the inflated XCO2 ⟨c′⟩space values result from aliasing of synoptic‐scale variability.
First, the water vapor analysis confirmed that our 250‐km filter properly isolates mesoscale atmospheric
transport. Second, the explained variability from OCO‐2 was not correlated with the N‐S gradients
(Table 2). If our ⟨c′⟩space values reflected synoptic‐scale variability, these quantities should be correlated.
3.2.2. Unexplained Variability
The unexplained high‐frequency spatial variability of XH2O was up to 50 ppm (Figures 5 and 6), about 50%
larger than the random errors reported by the v8 OCO‐2 retrieval algorithm data product. These results were
consistent with arguments from Connor et al. (2008) that reported random errors from the OCO‐2 retrieval
algorithm represent a lower bound on actual error. However, our estimate for unexplained variability along
OCO‐2 tracks was still less than 20% of the temporal and spatial mesoscaleXH2O variability (Figures 5 and 6),
suggesting that the signal‐to‐noise ratio of XH2O retrievals are large enough to observe mesoscale variations.

The unexplained spatial variability in XCO2 was 0.3 to 0.8 ppm, which is the same order of magnitude as the
spatial and temporal variations that may reflect mesoscale variations and is also generally consistent with
random errors reported by the v8 OCO‐2 retrieval algorithm data product (Figure 6d). These unexplained
variations were consistent with the mean standard deviation of the cross‐track soundings we averaged into
each along‐track bin (section 2.3.2 and Figure S9). OCO‐2 tracks adjacent to Southern Hemisphere TCCON

Figure 8. Comparison of calculated and observed 〈c′〉space. The top row shows (a) calculated annual cycle in 〈c′〉space forXH2O using equation (12), assuming aspace
values derived from XH2O (Figure 7b) and 〈c′〉time values from Total Carbon Column Observing Network mesoscale variations (Figure 4b). (b) Observed annual
cycle in 〈c′〉space for XH2O. Note that this quantity is identical to the explained variability of XH2O (Figure 6b). The bottom row shows the same quantities, except for
XCO2. (c) Calculated annual cycle in 〈c′〉space forXCO2 using equation (12), assuming aspace values forXCO2 (Figure 7a) and 〈c′〉time values from Total Carbon Column
Observing Network (Figure 4d). (d) Calculated annual cycle in 〈c′〉space, except we use aspace values from XH2O. (e) Observed annual cycle in 〈c′〉space for XCO2

(identical to Figure 6e).
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sites typically had smaller unexplained variations (0.3–0.4 ppm), while tracks adjacent to Northern
Hemisphere TCCON sites had slightly larger unexplained variations (0.5–0.7 ppm). This difference appears
to arise due to the fact that the Southern Hemisphere and tropical OCO‐2 tracks we analyzed contained
ocean observations, whereas the Northern Hemisphere tracks contained only land observations. When we
conducted semivariogram analysis around the latitude band between 40°N and 50°N, the unexplained var-
iations over the ocean were approximately half the magnitude observed over land (Figure 9). Errors asso-
ciated with retrieving XCO2 over land, where topography and albedo can influence the XCO2 retrieval,
likely increase the unexplained variability. The unexplained variations over land did not show dependence
on nadir versus glint observing mode. We note that the estimates for unexplained variability were not sen-
sitive to the cutoff for the high‐pass filter and were also robust when we explicitly fitted, rather than fixed,
the unexplained variance in the spherical semivariogram model.

3.3. Spatially Correlated Variance From the State Vector

Correlations between high‐frequency along‐track spatial variations inXCO2 and other elements of the OCO‐2
retrieval state vector likely contributed to the larger than expected spatially coherent (explained) variability
in OCO‐2 XCO2 , compared to mesoscale variations at corresponding TCCON sites (Table 4) and the smaller
geostatistical spatial range (aspace) for XCO2 than XH2O . We therefore tested whether the total and high‐
frequency along‐track spatial variability of XCO2 were correlated with other elements of the OCO‐2 retrieval
state vector. We selected AOD and albedo in the O2 and weak and strong CO2 absorption bands as variables
that were likely to have spatial structures that, if correlated withXCO2, could obscure spatially coherent trans-
port patterns. The correlations between elements of the state vector and both the total variations and the
high‐frequency along‐track spatial variations of XCO2 were small (R ≤ 0.2; Table 3) but statistically signifi-
cant. This analysis suggests that correlations between XCO2 and these state vector elements may have
depressed the apparent aspace and increased the explained variability along OCO‐2 tracks. We note that
the analysis of albedo and AOD presented here was in no way exhaustive, but rather, our results show that
these correlations were important contributors to the overall variance budget.

In contrast, high‐frequency variations in XH2O were generally independent of other state vector elements.
There were some weak to moderate, statistically significant correlations between the unfiltered XH2O data
and albedo or AOD (Table 3). These correlations could represent real geophysical relationships among
XH2O, albedo, and AOD but could also be attributed large‐scale, coherent systematic biases in the retrieval
ofXH2O that can be attributed to errors in AOD and albedo. When we high‐pass‐filtered these variables, how-
ever, the correlations between the high‐frequency variations of XH2O and albedo were not statistically signif-
icant, with the exception of AOD. This result suggests that at smaller spatial scales (less than 250 km), the
variations in XH2O were independent of the state vector elements we tested here and therefore the explained
variability did not contain the imprint of spatially coherent biases.

4. Discussion and Conclusions

We developed a framework that allows us to leverage spatially dense soundings from the OCO‐2 satellite and
temporally dense soundings from TCCON to quantify the variance budget forXH2O andXCO2, with a focus on
estimating the imprint of mesoscale transport on OCO‐2 observations. We first developed a method to sepa-
rate variations from local diurnal surface‐atmosphere fluxes, synoptic‐scale atmospheric transport, and
mesoscale atmospheric transport from the overall variability in TCCON observations. We found that varia-
bility from synoptic‐scale transport was, on average, 3 times larger than that attributed to diurnal fluxes for
XH2O and of 2 times larger magnitude for XCO2. On average, and mesoscale variations in XH2O and XCO2 were
similar in magnitude to the variability from local diurnal fluxes. The large contributions of mesoscale and
synoptic‐scale transport in driving tracer variability underscores the importance of accounting for uncertain-
ties in atmospheric transport and its subgrid‐scale impact when usingXCO2 in a carbon flux inference system.

Second, we used geostatistical analysis to quantify explained (spatially coherent) and unexplained (random)
variations inXCO2 andXH2O along OCO‐2 tracks. We applied a 250‐km high‐pass filter that, for XH2O, isolated
mesoscale variations that were the primary driver of along‐track high‐frequency variability of XH2O from
OCO‐2. We confirmed that the explained variations in XH2O were primarily related to mesoscale transport
using the tracer transport framework to compare temporal variability to spatial variations. For XH2O ,
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observed explained spatial variations ofXH2O were consistent with estimated explained variations within this
framework (Figures 8a and 8b).

In contrast, we were not able to fully characterize the variance budget for XCO2. Within our physical frame-
work, the explained variations of XCO2 observed by OCO‐2 (Figures 8c and 8e) were too large to be explained

Figure 9. Global analysis of along‐track high‐frequency spatial (a) unexplained variability, (b) explained variability, and (c) range of explained variability (aspace) of
XCO2within 10 ° × 10° grid cells across a latitudinal band centered at 45°N. In general, grid cells over ocean show lower values of explained and unexplained error
than those over land.
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solely by mesoscale atmospheric transport. We note that this mismatch was particularly acute when using
the geostatistically estimated aspace from OCO‐2 (around 20 km) for XCO2 but was also true when we
substituted the observed aspace for XH2O (Figure 8d). Together, these suggest another source of spatially
coherent variance in OCO‐2 XCO2 that both shortens the length scale of coherence and contributes
additional spatially coherent variability. Based on correlation analysis with other elements of the state
vector, we conclude that high‐pass‐filtered XCO2 fields from v8 of the OCO‐2 Level 2 XCO2 retrieval impart
such structure and may explain part, though perhaps not all, of the mismatch in mesoscale time‐space
XCO2 variability from TCCON and OCO‐2. Correlations among elements of the retrieval state vector have
also manifested in biases in XCO2 retrieval output from Greenhouse gases Observing SATellite data,
resulting in uncertainty of the magnitude and sign of posterior regional‐scale flux estimates (Chevallier
et al., 2014).

Our estimates of explained and unexplained variability can be compared against other studies that leverage
the OCO‐2 data set. For instance, Worden et al. (2017) analyzed the contribution of natural variations simu-
lated by NASA's high‐resolution GEOS‐5 simulation to the OCO‐2 error budget. They found that the natural
variability of XCO2 within 100‐km neighborhoods was only about 0.08 ppm and that the observed variability
from OCO‐2 exceeded this value due to bias from other elements of the OCO‐2 v7 retrieval vector. We used
our framework to estimate the natural (or mesoscale) contribution to variations in XCO2 with our space‐for‐
time framework. Based on mesoscale variations at Northern Hemisphere TCCON stations, we expect that
the imprint of mesoscale systems along the satellite track should be about 0.4 ppm (over 250 km). That
our value is larger than the natural variability in model output reported by Worden et al. (2017) underscores
the utility of our geostatistical approach for quantification of the variance budget based on observations
themselves, rather than model output that may contain its own set of biases. Further, our methodology
enables us to quantify the random error in the observations (unexplained variability) as well as the spatially
coherent error (the portion of the explained variability caused by systematic bias in the retrieval).

Our results suggest that our analysis framework yields robust quantification of the influence of mesoscale
transport for XH2O, despite the fact that local surface processes are likely also to impart local variations on
this quantity. We acknowledge that our method to subtract local influence based on a climatological diurnal
signal may result in biases of up to 30% of the fraction of variability in TCCON data being attributed to trans-
port (Figure 2). Ultimately, the methodology to account for local signals at TCCON sites would benefit from
additional information on local fluxes across all sites, either from observations, such as EC fluxes, or from
mechanistic coupled atmosphere‐land models. Despite this caveat, the agreement between TCCON and
XH2O variations suggests that the 250‐km filter used and the assumptions made in this manuscript are suffi-
cient to account for the structure imparted by fine spatial scale transport.

Although there were complications withXCO2, our results are promising for the use of geostatistical methods
for parameterizing errors in inverse modeling frameworks. While we had hypothesized that our approach

Table 3
Mean Correlation Coefficients Between OCO‐2 Trace Gases and Other Elements of the State Vector, Including Aerosol Optical Depth (AOD), and Surface Albedo in the
Oxygen‐Absorbing Band (O2A), Weakly Absorbing CO2 Band (WCO2), and Strongly Absorbing CO2 Band (SCO2) Retrieved From OCO‐2 Observations

Location

XH2O XCO2

Total variability High‐frequency variability Total variability High‐frequency variability

AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2

Bialystok, Poland 0.24 0.11 0.14 0.13 0.12 0.02 0.05 0.05 0.09 0.15 0.12 0.06 0.08 0.13 0.12 0.05
Karlsruhe, Germany 0.18 0.07 0.09 0.08 0.12 −0.01 0.01 0.02 0.16 0.12 0.07 0.04 0.11 0.12 0.08 0.03
Orleans, France 0.13 0.09 0.14 0.16 0.07 0.01 0.06 0.09 0.20 0.17 0.13 0.11 0.17 0.16 0.14 0.09
Garmisch, Germany 0.17 −0.01 0.10 0.10 0.11 0.01 0.07 0.08 0.13 0.09 0.05 0.02 0.10 0.09 0.06 0.02
Park Falls, WI 0.14 0.09 0.16 0.13 0.07 0.04 0.10 0.09 0.10 0.11 0.10 0.07 0.08 0.12 0.14 0.09
Lamont, OK 0.06 0.00 −0.14 −0.14 0.04 0.03 −0.01 0.00 0.14 0.07 0.06 0.04 0.06 0.13 0.16 0.12
Darwin, Australia 0.03 −0.32 −0.40 −0.41 0.01 −0.01 0.00 −0.01 0.07 0.01 −0.02 −0.03 0.03 0.06 0.04 0.01
Reunion Island 0.18 −0.03 −0.13 0.12 0.08 0.03 0.00 0.05 −0.07 0.07 0.04 0.14 −0.09 0.09 0.07 0.18
Lauder, New Zealand 0.14 −0.05 −0.13 0.03 0.08 0.02 −0.03 0.02 0.16 0.02 0.06 0.12 0.02 −0.03 −0.08 −0.04

Note. Bolded values denote statistically significant nonzero mean correlation coefficients at a 95% confidence interval. OCO‐2 = Orbiting Carbon Observatory‐2.
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would allow us to separate the influence of mesoscale transport on XCO2 , we note that for robust flux infer-
ence, proper accounting for spatially coherent non‐transport structures within the data is also necessary. The
approach presented in this study can be applied to each subsequent data release, and we anticipate that as
the retrieval algorithm becomes more mature, the importance of correlated errors will decrease and the role
of mesoscale transport will be revealed more clearly. Our results highlight the importance of continued
development of the OCO‐2 retrieval algorithm, since correlations between XCO2 and other elements of the
state vector may induce bias and spurious spatial correlation in XCO2 that mask the influence of atmospheric
transport.

Our results also highlight the importance of constraining variations of XCO2 attributed to atmospheric trans-
port for improved inferences of carbon fluxes from inversion models. While the influence of random errors
can be minimized by averaging multiple soundings, transport‐driven processes introduce variability onXCO2

observations that are both spatially and temporally correlated. For example, taking a 10‐s average of XCO2

observations along the OCO‐2 track (about 70 km), similar to the method presented in Crowell et al.
(2019) will reduce the unexplained error (Figure 6d) by 1ffiffiffi

N
p where N is the number of soundings in the aver-

aging bin, because the unexplained errors for each sounding are assumed to be independent. In contrast the
mean error for a bin decreases only by 1ffiffiffiffiffiffiffiffiffiffiffiffi

Neffective
p for the spatially correlated transport variability (Figure 6e),

where Neffective can be approximated as the bin length divided by the geostatistical range (or autocorrelation
length), which for XCO2 is roughly 2–3 and may actually be closer to 1 if the XH2O ranges are used as more
appropriate. Since the length scales at which the resolved variability is correlated are comparable to the spa-
tial distance encompassed by a 10‐s along‐track average (Figure 7), the mesoscale variance is a key element
of the signal that will be used in the inversions even when observations are aggregated. Given that the
imprint of mesoscale and synoptic‐scale variance is not spatially or temporally uniform, ignoring it in an
inverse modeling framework will lead to over confidence in some observational aggregates and underconfi-
dence in others, ultimately shifting the distribution of fluxes. This is analogous to conducting a simple linear
regression in which uniform error bars are assumed instead of assigning realistic errors to individual points;
the resulting slope and intercept will differ depending on the method of assigning errors. Inversion techni-
ques typically require uncertainty estimates and their correlations on the inversion grid scale, which spans
from roughly mesoscale (~100 km) to several times mesoscale depending on the transport model resolution.
The appropriate uncertainty estimate will incorporate both instrument and algorithm error and
spatially/temporally coherent subgrid‐scale variability induced by transport and surface flux processes.
Based on our analysis of both TCCON and OCO‐2, the coherent mesoscale variability signal for XCO2 is sub-
stantial relative to sounding errors alone and may be larger than transport variability estimates produced by
most carbon cycle models, which may inadequately resolve mesoscale dynamics. Since mesoscale systems
may have also been associated with frontal cloud coverage, lack of ability to constrain mesoscale variations
may have resulted in large representation errors in inverse modeling (Corbin et al., 2008). Our results sug-
gested that as a first step, we could use the explained variability derived from geostatistical analysis of
OCO‐2 data to inflate error estimates within inverse modeling systems. As a next step, we recommend the
development of coupled high‐resolution CO2‐weather models that fully capture fine‐to‐large‐scale spatial
and temporal variations in carbon fluxes, as an alternative to constrain the imprint of atmospheric transport
from XCO2observations provided by OCO‐2, OCO‐3, and other emerging CO2 monitoring satellites.
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