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ABSTRACT

The weakly unstable, two-layer model of baroclinic instability is studied in a configuration in which the flow

is perturbed at the inflow section of a channel by a slow and periodic perturbation. In a parameter regime

where the governing equation would be the Lorenz equations for chaos if the development occurs only in

time, the solution behavior becomes considerably more complex as a function of time and downstream co-

ordinate. In the absence of the beta effect it has earlier been shown that the chaotic behavior along char-

acteristics renders the solution nearly discontinuous in the slow downstream coordinate of the asymptotic

model. The additional presence of the beta effect, although expunging the chaos for large enough values of the

beta parameter, also provides an additional mechanism for abrupt spatial change.

1. Introduction

Starting with the work of Lorenz (1963) the manifes-

tation of chaotic behavior in unstable baroclinic systems

has usually been examined in the context of the devel-

opment of the instability in time. Although the Lorenz

equations were introduced as a truncated model of

thermal convection they can be derived in a straight-

forward way in weakly nonlinear baroclinic flows with-

out arbitrary truncation of a Fourier representation of

the complete solution thus allowing more confident use

in similar problems (Pedlosky and Frenzen 1980). More

recently Pedlosky (2011, hereafter P11) examined the

development of baroclinic unstable waves in space and

time, as the disturbance moves downstream from an

upstream source of perturbation energy such as might

occur in currents like the separated Gulf Stream. That

work showed how the Lorenz dynamics along charac-

teristics could lead to abrupt spatial change in the am-

plitude of the developing disturbance. In the parameter

regime that would be chaotic, if examined in the time

domain alone, chaotic development along neighboring

characteristics of the dynamics developing in time and

downstream coordinate introduces this new and im-

portant feature to the dynamics. Neighboring charac-

teristics with only slightly different initial data evolving

according to the Lorenz model on each characteristic

will eventually have solutions that diverge by order one

because of the exquisite sensitivity to initial conditions

that is the nature of chaos. Solutions that diverge by order

one on closely neighboring characteristics imply rapid

change of amplitude in the downstream coordinate. This

rapid change in behavior in the downstream coordinate

has been called chaotic shocks (P11) and it is distin-

guishable from the more common shocks in fluid dy-

namics because the rapid change is not due to intersection

of the systems characteristics but rather due to the chaotic

development along parallel characteristics.

One of the simplifications in the analysis in P11 was the

neglect of the beta effect. For narrow currents with large

vertical shear the nondimensional parameter measuring

the importance of beta in the quasigeostrophic potential

vorticity equation is bL2/Usp
2, where L is the width of

the current,Us is the characteristic velocity of the vertical

shear, and b is the planetary vorticity gradient. For widths

on the order of 100km and velocities on the order of

1ms21 this parameter is on the order of 1022. Although

small, the nonlinear dynamics of the unstable wave is very

sensitive to the beta effect as has been shown in an earlier

work (Pedlosky 1981, hereafter P81). The beta effect

introduces a term in the amplitude equations that tends to

shield the unstable point at the origin of the solution

phase plane from the solution trajectories and, as a con-

sequence, for even small values of beta the solution as-

ymptotes to a periodic solution whose amplitude is

determined by one of the two points in the phase planeCorresponding author: Joseph Pedlosky, jpedlosky@whoi.edu
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representing fixed amplitude solutions (aside from a lin-

ear frequency depending on beta). The phase of the os-

cillation amplitude is not determined by this quasi-steady

solution. This implies that the possibility exists for the

solution, developing in space and time, allows neighbor-

ing characteristics to carry amplitudes differing in sign so

that rapid variations in the solution amplitude occur. That

is, there is the possibility that solutions on neighboring

characteristic may differ in sign even when the solution is

no longer behaving chaotically and thus can introduce

rapid, shock-like behavior in the downstream coordinate.

The purpose of this paper is to investigate this possibility

and, in fact, demonstrate the existence of such solutions

so that ‘‘chaotic shocks’’ can occur evenwhen the solution

along characteristics is only briefly chaotic.

Section 2 of the paper derives the governing equa-

tions. Section 3 presents numerical examples of the hy-

pothesized behavior and in the concluding section,

section 4, the implication of the results is discussed.

2. Formulation

We start with the two-layer model in a channel of

width L governed by the quasigeostrophic potential

vorticity equations, namely, for n 5 1, 2:
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The equations are nondimensional. Lengths have been

scaled by L, velocities by a characteristic velocity U

of the initial basic flow, and time by L/U. The layers are

of equal depth D so the rotational Froude number

F5 f 2L2/g0D, where g0 is the reduced gravity. The non-

dimensional parameterb5bdimL
2/U while the dissipation

parameter r 5 (nf /2)1/2L/(UD), where f is the Coriolis

parameter and n is the kinematic viscosity. The symbol

J(a, b) is defined as axby 2 aybx, where subscripts denote

differentiation. The coordinate x is in the downstream di-

rection while y measures distance across the stream.

It is convenient to write the equations in terms

of the barotropic and baroclinic streamfunctions, cB 5
(1/2)(c1 1c2), cT 5c1 2c2, respectively. In the prob-

lem to be considered, the basic state consists of a uniform

flow in each layer with a barotropic and baroclinic com-

ponent so that the associated streamfunctions are
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where the functions uB, uT are the barotropic and

baroclinic perturbation streamfunctions. They satisfy

the nonlinear equations
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The beta parameter will be considered a small (but

important) perturbation to the dynamics. The critical

curve for instability is therefore given at lowest order

as a relation between Fc, the critical value of F, and the

wavenumber with components k and l in the x and y di-

rections, (K2 5 k2 1 l2), and is independent of b, that is,

F
c
5K2/21

rK2/k

2U
T

. (2.4)

For small values of r the minimum occurs at very long

wavelengths and this informs our choice of scaling

for the problem’s variables. We make the following

assumptions:

(i) The basic flow is only slightly supercritical with

respect to F so that

F5F
c
1D, D � 1,

(ii) The beta parameter and dissipation are also small,

b5O(D1/2), r5O(D).
(iii) The solution will be a function of ‘‘fast’’ and ‘‘slow’’

space and time variables. The fast variables corre-

spond to the advection of the marginally stable

wave by the barotropic mean flow as suggested by

the linear problem. The slow variables describe

the slow evolution of the slightly unstable wave.

With these presumptions in mind we introduce a

new fast space coordinate j, a new slow space

coordinate X, a new fast time coordinate t, and a

slow time coordinate T, each defined by

j5D1/2x, X5Dx , (2.5a)

t5D1/2t, T5Dt , (2.5b)

and we will consider the perturbation streamfunction to

be functions of j, X, t, and T such that, for example,

›u
›x

0D1/2›u
›j
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›u
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, (2.6a)
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for u5u
B

or u
T
.

So, for example. the baroclinic perturbation potential

vorticity becomes
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with similar representations throughout (2.3a) and (2.3b).

The perturbations streamfunctions will be expanded in

an asymptotic series in the small amplitude, «5O(D1/2),

of the perturbation

u
B
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B 1 «u(1)
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B 1 � � �) , (2.8a)

u
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Inserting these transformations into (2.3a) and (2.3b)

leads in a straightforward way to a set of lengthy equa-

tions, and only the pertinent results, easily checked, will

be presented in this paper.

At the lowest order in « we obtain the results consis-

tent with linear theory,

u(0)
B 5Aeik(j2ct) sinpy1 *

u(0)
T 5 0, c5U

B
, F

c
5 l2/2, l5p , (2.9a–e)

where * denotes the complex conjugate of the preceding

expression.

At the next order in « we obtain an expression for the

baroclinic perturbation,
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where the final term in (2.10) is the baroclinic correction

to themean flow and is a function of only the slow x and slow

time variables as well as y. Note that the beta term enters as a

term proportional to the frequency of the long Rossby wave.

With the above expressions it is now possible to calcu-

late the nonlinear interaction terms, that is, the Jacobians

at next order and obtain as the governing equation for FT�
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As long as « � D, which is a basic presumption since

the dynamics is quasigeostrophic, the geostrophic

velocity in the y direction produced by the mean

flow correction must vanish at y 5 0,1 which in turn

implies that a solution to (2.11) proportional to

sin2ly, l5p, is appropriate. Hence a solution of the

form FT 5P(X, T) sin2ly leads to the governing

equation for P,
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Now that the equation for the baroclinic mean flow

correction is determined, the governing equation for

the evolution of the wave amplitude A is determined

as a solvability condition at O(D3/2). After consider-

able but straightforward algebra we obtain
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A rescaling of the variables,

T 0 5sT , X 0 5
sX

U
T

, A5A
o
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o
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where

P
o
5

s2D1/2

«k2lU
t

, A2
o 5

5

4
P
o
, g5

r

Ds
, (2.14)

allows the governing equations to be rewritten (after

dropping primes from the new dependent variables) as
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As a final change of variables we let P52jAj2 1R,

yielding,
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as our final evolution equations. The amplitude A is

complex, with real and imaginary parts, so the system of

first-order partial differential equations given by (2.16)

is fifth order. The characteristics of each of the five

equations are the straight lines in the X, T plane,

T2X5T
o
, (2.17)

FIG. 1. (a) The solution as a function of X for A at T 5 20, g 5 0.5, and b 5 0. With real

boundary conditions atX5 0 the imaginary part ofA remains zero. (b) The solution along two

closely spaced characteristics. The chaotic nature of the solution leads to diverging values of

A rendering the solution rapidly varying in X.
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where To is the intersection of the characteristic with

the T axis at X 5 0. The variable s, representing dis-

tance in X, T space along the characteristics renders

(2.16a) and (2.16b) as a set of ordinary differential

equations along the characteristics with the operator

›/›T1 ›/›X0 d/ds.

In the absence of the beta term, that is, for b 5 0, the

resulting third-order system is equivalent to the Lorenz

equations as shown in P81 and has chaotic solutions in s

for a certain range of g.

3. Results

The system (2.16) is forced by the boundary condition

at X 5 0 which we choose as

A(0,T5T
o
)5 a sin2pT/T

period
, (2.18)

where both Tperiod and a are given along with the pa-

rameters g, b.

When b 5 0 we recover the results of P11, that is

for sufficiently small g the Lorenz dynamics along the

FIG. 2. As in Fig. 1, but now b is 0.1 and sufficiently small so that the chaotic behavior is not

suppressed along characteristics. The real and imaginary parts ofA are shown in (a), which both

suffer rapid change in the slow variable X. The divergence of solutions on neighboring char-

acteristics is shown again in (b).
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characteristics of the partial differential equations

of (2.16) yield chaotic solutions that diverge from

slightly different initial conditions. For the problem

of development in space and time this implies that

neighboring characteristics with slightly different ini-

tial conditions from (2.18) will eventually diverge by

O(1) yielding values of A at a given time that abruptly

change withX. An example is shown in Fig. 1. In Fig. 1b

the evolution along the characteristic curves is shown

for slightly different initial data corresponding to two

closely spaced characteristics. The divergence of the

solutions, a standard feature of the Lorenz model im-

plies extremely rapid change in X for fixed T.

Figure 2 shows a similar behavior when b is small (0.1)

but nonzero. There is still sufficient divergence of the

solutions along neighboring characteristics to lead to

rapid change in X.

When b is increased further (Fig. 3) to b 5 0.5, per-

haps the most interesting behavior takes place. Panel a

shows the evolution along two closely spaced char-

acteristics. After a relatively brief period of chaotic

behavior along the characteristics, the solution along

each is captured by one of the two fixed points of

the solution space. The fixed points both have the same

value of jAj2 but differ in phase:A differs by a sign, that is,

A is positive on one characteristic and negative on the

FIG. 3. (a) The solution along two closely spaced characteristics for b 5 0.5 for the same

value of g as Fig. 1. (b) The sequence of shock-like changes in X even though the chaos on

characteristics is largely quenched.
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other. This implies that the amplitude itself will abruptly

change in value in X. That wild behavior is exhibited in

Fig. 3b. It means that even a brief period of chaotic be-

havior that puts the solution on a trajectory to be cap-

tured by a different fixed point has a violentmanifestation

in space that is rather unexpected.

Further increase in b quenches the chaotic behavior

completely as shown in Fig. 4. For b 5 4, the solution is

smooth in X.

4. Discussion

The presence of the planetary beta effect has been

earlier shown (P81) to have a strong effect on the

chaotic behavior of weakly nonlinear, slightly unstable

baroclinic instability. From a mathematical point of

view the beta effect acts in the governing differential

equations as a repulsive mechanism that keeps the so-

lution trajectory from closely approaching the unstable

point at the origin of the solution space that is the

generator of the chaos. This has importance conse-

quences for the model of the development of the in-

stability as it grows and propagates in the downstream

direction. With the presence of chaotic behavior along

characteristics in the downstream and time slow co-

ordinates, neighboring characteristics have solutions

that diverge by order one in spite of their closeness

and this leads to abrupt changes in the space variable

of the system of equations. The introduction of a

value of beta large enough expunges the chaos and

smooths the solution in space. However, the presence

of beta also can yield abrupt changes in the solu-

tions dependence on space even when the solutions

along the characteristics are chaotic for only a brief

period of time and subsequently captured by one of

the two fixed points differing only by a sign as shown

in Fig. 3.

Of course, the abruptness of the solution behavior in

space for the solutions of (2.16a) and (2.16b), while of

interest for all systems governed by the Lorenz system

of equations, really implies for the weakly nonlinear

system in our problem the collapse of the separation

between the slow behavior in time and the expected

slow behavior in space. It is important to remember

that for the parameters chosen the evolution in time is

still slow and weak. The implication that the accom-

panying behavior in space may be qualitatively differ-

ent requires further study of the original system

without the asymptotic assumptions which are nor-

mally made, and usually so illuminating, but must be

extended in future work.
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