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ABSTRACT

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion

statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity,

are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at

submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observa-

tions. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local

dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by

inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive

processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to

the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s

law and observe local dispersion in both pair dispersion statistics and second-order velocity structure

functions.

1. Introduction

Abetter understanding of the Lagrangian transport of

tracers, energy, and enstrophy in the ocean is relevant

to a wide range of problems. It helps describe, for

example, how pollutants (e.g., Rypina et al. 2013; Poje

et al. 2014), freshwater (e.g., Mahadevan et al. 2016),

or biological organisms (e.g., Rypina et al. 2014) dis-

perse and how energy and enstrophy cascade across

scales. The two-dimensional Lagrangian statistics of

the near-surface oceanic flow and its associated

transport can be explored using pairs of drifters, which

float at the surface while being advected by the flow a

few meters below.

In a turbulent ocean, the separation of pairs of drifters

can theoretically be predicted when the kinetic energy

spectrum is known (LaCasce 2008, 2016) and, further-

more, depends on the separation distance r. On scales

above about 100m, the vertical velocity makes a negli-

gible contribution to the kinetic energy, which is

dominated by the horizontal velocity. The horizontal

pair dispersion, defined as the mean square separation

of pairs of drifters, describes how a group of drifters

disperses around its center of mass. If energy spectra

are steep, like the E; k23 observed in the enstrophy-

cascading range of two-dimensional turbulence (Charney

1971; Nastrom et al. 1986), where the horizontal wave-

number is defined as k5 (k2
x 1 k2

y)
1/2
, the pair disper-

sion is dominated by the largest eddy in that range

and termed nonlocal (Bennett 1984). If energy spectra

are flatter, like the E; k25/3 observed in the energy-

cascading ranges of two-dimensional and three-

dimensional turbulence (Charney 1971; Kraichnan

1967), the pair dispersion is dominated by eddies with

length scales similar to the pair separation distance

and termed local (Bennett 1984; Richardson 1926).

In the presence of two inertial spectral ranges, pairs of

drifters transition from one dispersion regime to another

as their separation distances grow (LaCasce 2008). As

an illustration, consider a two-dimensional, quasi-

geostrophic model often used to represent mesoscale

dynamics in the ocean. At small separations, initially,Corresponding author: Sebastian Essink, sessink@mit.edu
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in the enstrophy-cascading range, drifters disperse

nonlocally until they reach the scale at which energy

is injected (often through baroclinic instability at

the first baroclinic deformation radius LD, which we

estimate as 60 km for our observations; Chelton et al.

1998). Subsequently, in the energy-cascading range,

they disperse locally. Unlike in the atmosphere

(Nastrom et al. 1986; Er-El and Peskin 1981), the ki-

netic energy spectrum in the ocean and its inertial

ranges are not well documented. Subdeformation scale

dynamics are not thoroughly understood, are often

dominated by ageostrophic, divergent motions (Bühler
et al. 2014; Callies and Ferrari 2013; D’Asaro et al.

2018), and vary significantly in time and space (Callies

et al. 2015).

At submesoscales, considered as length scales of

0.1–20 km in our observations, a transition from

nonlocal to local dispersion is likely to occur: The

two-dimensional, quasigeostrophic flow, with energy

spectra of E; k23 intensifies at surface fronts and

breaks down into smaller eddies and filaments, with

energy spectra of E; k22 or E; k25/3. In this range,

energetic eddies and filaments are reported in obser-

vations (Shcherbina et al. 2013; Gon et al. 2018), as

well as in numerical simulations (Thomas et al. 2008),

which are likely energized by surface frontogenesis

(Lapeyre and Klein 2006; Hoskins 1982; Stone 1966)

and mixed layer baroclinic instabilities (Boccaletti

et al. 2007; Fox-Kemper et al. 2008). Conceptually, in

regions where submesoscale flows and fronts are en-

ergetic, pair dispersion is expected to be local and

then transitions to a nonlocal regime at larger scales in

the enstrophy-cascading range of two-dimensional

turbulence. Studying the dispersion at submesoscales

is complicated, however, by the multitude of processes

that reign the same spatiotemporal band. A careful

characterization is thus needed to discern them among

inertial oscillations, tides, Langmuir turbulence, and

the mesoscale circulation.

The Bay of Bengal, the location of this study (Fig. 1),

hosts energetic submesoscale dynamics, which are evi-

dent in observations (e.g., Ramachandran et al. 2018)

and in numerical simulations (e.g., Sarkar et al. 2016).

These likely occur at freshwater-dominated density

fronts, which are generated by massive seasonal fresh-

water fluxes, mainly from major rivers in the north, and

intense precipitation during the southwest monsoon.

The shallow freshwater cap affects the evolution of the

sea surface temperature (SST; Jaeger and Mahadevan

2018) and the upper-ocean’s heat content (Shroyer et al.

2016;Mahadevan et al. 2016), both of which can alter the

air–sea fluxes and, hence, affect the monsoon dy-

namics. The Air–Sea Interaction Regional Initiative

(ASIRI; Lucas et al. 2014;Wijesekera et al. 2016) aims

to understand the upper-ocean dynamics in the Bay of

Bengal by extensive high-resolution measurements

and modeling to eventually improve the monsoon

forecasts.

The primary objectives of this study are to charac-

terize the near-surface dispersion in the Bay of Bengal

(specifically the dispersion of pairs of drifters) and to

identify the dominant dispersion regime at submesoscales.

We use high-resolution data from a large cluster of

drifters deployed as part of ASIRI in the Bay of Bengal

(Hormann et al. 2016) to characterize the near-surface

dispersion. Close pairs of drifters that report their po-

sition with high temporal resolution allow studying the

submesoscale range of motions, which is challenging to

observe synoptically with shipboard measurements be-

cause of the fast evolution of kilometer-scale features

within time scales of hours to days. We compare the

statistics of separations and velocities of drifter pairs to

the theoretical predictions of local and nonlocal dis-

persion. Trajectories are low-pass filtered to determine

the impact of inertial oscillations and small-scale pro-

cesses on the dispersion statistics. For comparison, we

simulate drifter trajectories using the satellite-derived,

geostrophic flow field in the same region and contrast

statistics from simulated, ‘‘AVISO-advected’’ drifters

to the observed drifters. To identify the dispersion by

spatially uncorrelated motions, we add a stochastic

closure to the AVISO-advected drifters at small scales

which is correlated in time.

In what follows, section 2 introduces the drifter

dataset collected in the Bay of Bengal, the simulated

drifter experiment based on satellite-derived flow

fields, and the metrics used to characterize the near-

surface dispersion. Section 3 presents the results for

complementary dispersion statistics and compares

drifter statistics to theoretical expectations. Section 4

offers a discussion of the results followed by a con-

clusion in section 5.

2. Data and approach

a. Drifter deployments

We launched 46 surface drifters (one of which failed

after deployment) during an extensive measurement

campaign in the Bay of Bengal in September 2015 as

part of ASIRI (Wijesekera et al. 2016; Hormann et al.

2016). The drifters were Surface Velocity Program

(SVP) drifters (Niiler 2001; Maximenko et al. 2013)

that consist of a buoy and a holey-sock drogue at

15-m depth. SVP drifters are part of the Global

Drifter Program (Niiler 2001; Maximenko et al. 2013;

Centurioni 2018) that aims to map the near-surface
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circulation of the global ocean and to provide SST and sea

level pressure data. These data are important for calibra-

tion and validation of satellite-derived SST datasets (e.g.,

Zhang et al. 2009) and for numerical weather prediction

(Centurioni et al. 2017; Horányi et al. 2017).
Drifters were released at the edge of a mesoscale

cyclonic eddy and across a strong salinity and density

front (Figs. 1a,b). With the goal of resolving motions

over a wide range of length scales, we deployed drifters

such that pair separations ranged from 0.5 to 30 km.We

achieved this by deploying 10 clusters of four drifters

(Hormann et al. 2016) as shown in the inset in Fig. 1.

Each cluster of four drifters was deployed at almost the

same time and provides six drifter pairs with a mini-

mum separation of less than 1 km. The entire array of

10 clusters, with an intercluster separation of 5 km,

was deployed over a period of 48 h.

During the first month after deployment, drifters re-

ported their positions every 5min (Hormann et al. 2016)

giving a particularly high temporal resolution. After

that, drifters reported every 30min.

A conservative estimate of the position error is 50m,

which is likely a function of the region, sea state, and

GPS coverage. The position data were quality con-

trolled to remove erroneous GPS fixes and median fil-

tered with a 1-h window to remove spurious events of

acceleration. The velocity data of each drifter were then

calculated by centered differencing.We bin the data to a

30-min grid for the first month and a 1-h grid after that

by taking the median value of all points in this period.

For the 90days considered in this study, all drogues

stayed attached, thus ensuring that they followed 15-m

depth currents with an accuracy of ;0.1m s21 in winds

up to 10ms21 (Niiler et al. 1995).

Since the drifters have a high temporal resolution,

they resolve processes such as near-inertial oscillations

and tides, and Langmuir turbulence.We assume that the

effect of wind and surface waves on the drifter positions

FIG. 1. (a) AVISO-derived sea level anomaly in the northern Bay of Bengal on the day of the drifter release

(2 Sep 2015), with the drifter-release location indicated in red and the initial drifter positions overlaid. Trajectories of

the (b) observed drifters, (c)AVISO-advected, and (d) stochastic drifters (AVISO-advected with stochastic closure at

small scales). Color denotes time after deployment with darker colors indicating early times after deployment.
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is small since their drogues are at 15-m depth and the

Stokes’ drift is a second-order effect on the drifter dis-

placement (Niiler et al. 1995). The Lagrangian fre-

quency spectra of the observed drifters show high

energy density at the inertial frequency and theM2 tidal

frequency (Fig. 2; cf. Hormann et al. 2016), however,

substantially less than at subinertial frequencies. For

part of the subsequent analysis, we low-pass filter the

position data using a fifth-order Butterworth filter with a

cutoff of 1.5 times the inertial periodTinertial (Fig. 2). The

velocity is then recomputed by finite differencing. Fil-

tering removes both inertial oscillations and motions at

the tidal frequencies (Fig. 2). By applying the filter in

forward and backward direction, edge effects are mini-

mized. The low-pass-filtered dataset allows us to sepa-

rate the effect of near-inertial motions on the dispersion

statistics.

b. AVISO-advected drifters

As a reference dataset for the large-scale, geostrophic

circulation, we simulate drifters that are advected by

satellite-derived, geostrophic currents Ugeo computed

from the daily, delayed-time AVISO sea level anomaly

(Fig. 1c; Le Traon et al. 1998; Ducet et al. 2000). The sea

level anomaly product is gridded to 1/48, which is about

half the local deformation radius LD.

We trace the trajectories of the AVISO-advected

drifters by time-integrating the currents using a fourth-

order Runge–Kutta scheme and an hourly time step

(Fig. 1c). This time step is well below the tempo-

ral resolution of AVISO; the geostrophic velocities

Ugeo are therefore interpolated linearly in time. Cubic

spatial interpolation is used to find the velocity at each

drifter position.

To compare with the observed trajectories, we release

the AVISO-advected drifters in the same region in the

Bay of Bengal and at the same time as the real drifters.

Since we are interested in pairs of drifters, we initialize

pairs of drifters with fixed initial separation creating a

grid of N drifters and adding a second grid offset by a

distance r0, where separation r0 is the minimum distance

that a pair of drifters is separated. We simulate 200

AVISO-advected drifters, which provide a combination

of 19 900 drifter pairs at every time step, at least 100 of

which have the minimum initial separation.

c. Stochastic drifters

Lagrangian trajectories of fluid parcels are signifi-

cantly altered by small-scale processes that influence

the dispersion properties, for example, how fast they

spread from their source region or for how long they

are trapped in a flow feature.

First-order stochastic models give reasonably realistic

results when modeling drifter trajectories in the ocean

(Griffa et al. 1995; LaCasce 2010; Koszalka et al. 2009;

Haza et al. 2012). As opposed to zeroth-order models,

which are stochastic in the drifter positions, first-order

models are stochastic in the velocity. The first-order

stochastic model velocities ui include an exponentially

fading memory of the past velocity [first term on the

right-hand side in Eq. (1)] and a noise increment dv

of a continuous Wiener process W(t) [second term on

the right-hand side in Eq. (1)]. The new drifter position

xi along a trajectory is then found by integrating the

FIG. 2. (a) Example trajectory for one drifter experiencing inertial oscillations. Unfiltered and low-pass-filtered

trajectories are indicated in blue and orange, respectively. (b) Ensemble mean velocity power spectral density,

before (blue) and after (orange) low-pass filtering with a cutoff of 1.5 times the inertial period. Dotted lines indicate

the inertial andM2 tidal frequencies. The inertial and tidal spectral peaks seen in the original data (blue) are

removed from the processed data by filtering (orange).
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following stochastic differential equation for the x

component (and analogously for the y component) of

the position:

du
i
52

1

T
L

u
i
dt1

ffiffiffiffiffiffi
2

T
L

s
ndv , (1)

dx
i
5 (u

i
1 u

geo
)dt , (2)

where Ugeo is the background, AVISO-derived cur-

rent, n5 hu2
i i1/2 the mean square single particle ve-

locity, which can be interpreted as the turbulent

velocity fluctuations, and TL the e-folding time of the

memory loss.

We take TL to be the Lagrangian time scale estimated

at 1 day from the velocity autocorrelation of the high-

pass-filtered drifter trajectories [with cutoff frequency

(2/3)Tinertial]. As Koszalka et al. (2009) suggest, we then

tune the amplitude of the noise such that the relative

dispersion matches the observed relative dispersion. We

arrive at a value of n5 0:02ms21 for the turbulent ve-

locity fluctuation, which is similar to the value found by

Haza et al. (2012).

We use the first-order stochastic model to account

for the subgrid processes and superpose it onto the

AVISO-derived background currents Ugeo (Fig. 1d).

The resulting stochastic trajectories deviate signifi-

cantly from deterministic AVISO-advected trajecto-

ries due to small-scale perturbations that displace

drifters enough to leave geostrophic streamlines. The

AVISO-advected drifters lack this small-scale vari-

ability. Furthermore, the added stochastic component

ui to the mean flow is uncorrelated in space.

In the following sections, we will refer to three differ-

ent datasets as 1) the observed drifters, 2) the AVISO-

advected drifters, and 3) the stochastic drifters, which are

the AVISO-advected drifters with stochastic noise.

d. Dispersion metrics and structure functions

1) RELATIVE DISPERSION

A commonmetric for the dispersion of two particles is

the mean square separation, known as relative disper-

sion D2 (e.g., Richardson and Stommel 1948; LaCasce

2008; Lumpkin and Elipot 2010), where the separation is

the magnitude of the separation vector r5 jrj. Relative

dispersion is the ensemble average of r2 over all pairs

that are closer than a small distance d at some time

during the drift.

Here we use original (r, d initially) and chance pairs

(r, d at a later time during the drift; LaCasce 2008).

Thanks to the dense initial deployment of drifters, the

majority of drifter pairs are original pairs (about 92%).

Relative dispersion is then defined as the variance of

pair separation distances of the selected N pairs:

D2(t)5
1

N
�
N

i 6¼ j

kx
i
(t)2 x

j
(t)k2 . (3)

Trajectories are sorted such that they begin with the

time of minimum separation. The time is thus relative to

the time of minimum separation t5 t2 t0. The relative

diffusivity is defined as the rate of change of the relative

dispersion

k
rel
(t)5

1

2

d

dt
D2(t) (4)

and is often binned as a function of separation r.

Relative dispersion D2 strongly depends on the cor-

relation between velocities of pairs of drifters (LaCasce

and Ohlmann 2003; Koszalka et al. 2009). The early-

time and long-time limits are trivial. At early times,

when pair separations are small, pair velocities differ

approximately by a linear shear. The pair velocity

correlation is thus constant, and pairs spread like t2.

At large separations, when pair separations reach

the scale of the energy-containing eddies, pair veloc-

ities become uncorrelated, and the relative dispersion

resembles a random walk with constant particle dif-

fusivity. This diffusivity asymptotes to twice the dif-

fusivity with which a single particle spreads around its

initial location. The ensemble-average single particle

diffusivity is also called absolute diffusivity (LaCasce

and Bower 2000; Kirwan et al. 1978).

At intermediate scales, however, the relative disper-

sion can be predicted from turbulence scaling laws given

the energy spectrum,E; k2a, and is often referred to as

turbulent dispersion. It can then be shown that in a

nonlocal dispersion regime with a$ 3, here referred to

as the Lundgren regime, we expect the relative disper-

sion to grow exponentially in time (Lundgren 1981; Lin

1972). In a local regime with 1,a, 3, we expect rela-

tive dispersion to grow as a power law D2 ; t4/(32a)

(Foussard et al. 2017). If a5 5/3, relative dispersion

grows like D2 ; t3, subsequently termed Richardson dis-

persion (Richardson 1926; Morel and Larceveque 1974).

Similarly, we expect scaling laws to hold for the relative

diffusivity. For a self-similar energy spectrum of the form

E; k2a, it can be shown thatkrel ; r(a11)/2 (Bennett 1984;

LaCasce 2008). This scaling law reproduces krel ; r4/3,

Richardson 4/3 law (Richardson 1926), for a5 5/3, and

krel ; r2 for a5 3.

We estimate the 95% confidence interval of the rel-

ative dispersion and diffusivity by bootstrapping. For

each time, the population of available pairs is sampled

1000 times with replacement and the statistics are
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computed on each subsample. The confidence interval

is then determined from the distribution of values that

the subsamples generate.

2) FINITE-SIZE LYAPUNOV EXPONENT

Since pair dispersion is not only a function of the ve-

locity field, but also of the pair separation itself, it is

necessary to adopt metrics that invoke distance as their

independent variable. Distance-averaged statistics treat

the positions and velocities as Eulerian point measure-

ments on an unstructured grid. Although Eulerian and

Lagrangian statistics should be equivalent, sparse drifter

trajectories often yield different results between time-

averaged and distance-averaged metrics.

The Lyapunov exponent is a measure of the rate of

divergence of neighboring trajectories. It is widely used

to identify trajectories that separate exponentially fast

(Artale et al. 1997; Aurell et al. 1997) and is a technique

borrowed from the dynamical systems approaches to

study coherent structures in the flow (Haller 2015). To

compute the finite-size Lyapunov exponent (FSLE; e.g.,

LaCasce and Ohlmann 2003; LaCasce 2008), we create

an array of distance classes rn 5 r0«
n, n5 1, 2, 3, . . . ,

where «5
ffiffiffi
2

p
is an arbitrary constant, and record the

time Tn that each pair takes to separate by a finite dis-

tance rn. The FSLE ln are then determined by

l
n
5 log(«)

1

hT
n
i , (5)

where h�i is the ensemble average over all pairs. Con-

trary to the relative dispersion, all drifter pairs regard-

less of their initial separation are taken into account.

In theory, Lyapunov exponents are used to study ex-

ponential growth of pair separations. If the FSLE is

constant over a range of distance classes, the e-folding

time scale is constant, which is equivalent to an expo-

nential growth of pair separations. However, FSLEs are

also useful to study growth of separations that is not

exponential; we can use scaling arguments to relate the

FSLE power law exponent b to the mean square sepa-

ration D2 as D2 ; t22/b.

Previous studies have shown that FSLEs are sensitive

to the temporal evolution of the data (LaCasce and

Ohlmann 2003; Poje et al. 2010), as well as the im-

plementation of the method (Lumpkin and Elipot 2010;

Haza et al. 2008). If the temporal resolution is not high

enough, FSLEs underestimate the maximum Lyapunov

exponent and miss transitions between regimes. Simi-

larly, the quality of drifter data affects the estimate, as

small-scale noise in the position data contaminates the

FSLE at scales that are up to 6 times larger than the

noise scale (Haza et al. 2014).

Here, we use the method of fastest crossing (e.g.,

Lumpkin and Elipot 2010; Haza et al. 2008) to de-

termine Tn. While the method of first crossings (e.g.,

LaCasce 2008) only accounts for the first time a pair’s

separation grows from one distance class to the next, we

break up the time series of pair separation into mono-

tonically increasing segments and record every incident

that a pair crosses a distance class. By counting every

crossing, we increase the number of data points per

distance class and alleviate the problem of small num-

bers of pairs. Furthermore, our half-hourly pair sepa-

rations never exactly coincide with the edges of distance

bins. As suggested by Haza et al. (2008), we linearly

interpolate the time it would take to exactly reach the

bin edge, thus, increasing the accuracy of crossing times

and compensating for the limited temporal resolution of

the data.

We estimate the 95% confidence interval of the FSLE

by bootstrapping. For each separation bin, we generate

1000 subsets of the available crossing times by randomly

resampling the data with replacement. For each subset,

the FSLE is computed with the method described above.

The confidence interval is then determined from the

distribution of values that the subset generate.

3) PAIR SEPARATION PDF

Richardson (1926) was the first to distinguish dis-

persion regimes by studying pair separation probabil-

ity density functions (PDFs) p(r, t) in what he called

‘‘distance-neighbor functions.’’ These describe the prob-

ability that a pair released with initial separation r0 will

have separation r at time t. PDFs and their statistics are

powerful because they illuminate the pair dispersion

process (Sullivan 1971) and encapsulate conventional

pair dispersion statistics; the second moment of the pair

separation PDF, for instance, is the relative dispersion.

By comparing PDFs to the theoretically expected solu-

tions for a given flow field, we can distinguish between

different turbulent dispersion regimes (LaCasce 2010;

Beron-Vera and LaCasce 2016; Bennett 1984; Graff

et al. 2015).

In theory, if the energy spectrum E(k) is known, we

can derive a scaling prediction for the diffusion co-

efficient k2. Using the initial condition p(r, t5 0), we

can then describe the evolution of the pair separation

PDFs with a Fokker–Planck equation (e.g., Beron-

Vera and LaCasce 2016; Bennett 2006):

›p

›t
5
1

r

›

›r

�
rk

2

›p

›r

�
. (6)

For uncorrelated, normally distributed drifter velocities,

the diffusion parameter k2 is constant and equal to twice
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the single-particle diffusivity. In this case, the pair

separation PDF resembles a Rayleigh distribution

(Beron-Vera and LaCasce 2016). In turbulent flow,

however, drifter velocities are correlated and we can

find solutions for the Fokker–Planck equation as a

function of time and separation. For a given energy

spectrum, for example, the energy spectrum associ-

ated with the Richardson regime (Richardson 1926)

regime or the Lundgren regime (Lundgren 1981), the

diffusivity k2 can be determined. Good summaries

and derivations can be found in LaCasce (2010) and

Bennett (2006).

To compare our data to the theoretical PDFs of

the Lundgren, Richardson, and Rayleigh regimes,

we first estimate k2 for each of the regimes. In the

Richardson regime, the relative diffusivity is k2 5br4/3,

where b is related to the third root of the energy

dissipation rate (Graff et al. 2015; LaCasce 2010;

Beron-Vera and LaCasce 2016). We find b by fitting

the theoretical prediction for the relative dispersion

to the data. These fits are only computed over the

initial period until separations are 10 times as large as

the initial separation r0. Analogously, in the Lundg-

ren regime, the relative diffusivity is k2 5 r2/T, where

T is related to the third root of the enstrophy dis-

sipation rate (Graff et al. 2015; Beron-Vera and

LaCasce 2016; LaCasce 2010). Parameter T is found

similarly, by fitting the theoretical prediction of rel-

ative dispersion to our data for scales r, 10r0. For

the Rayleigh regime, the diffusion parameter is

k2 5 hr2i/2t, which is twice the single particle diffu-

sivity. We determine k2 from the mean of the relative

dispersion for t . 20 days.

Using k2, theoretical predictions can be made for

the pair separation PDFs and their moments. The

PDF for Richardson dispersion is self-similar with

a kurtosis that asymptotes to 5.6 in the long-time limit.

The PDF for nonlocal dispersion is lognormal and

becomes more peaked with time; its kurtosis grows

exponentially with time. The PDF for uncorrelated

velocities has a kurtosis of 2 for a Rayleigh distribu-

tion (Bennett 1987; Beron-Vera and LaCasce 2016).

4) STRUCTURE FUNCTIONS

The variance of the pair velocity differences

du5 hkui 2 ujki is defined as the second-order velocity

structure function S2 5 hdu2i. Separating the velocity

u into its longitudinal, ul 5 [(r � u)/jrj]̂l, and transverse,

ut 5 f[(r3 u) � k̂]/jrjĝt, components (where l̂ and t̂ are

unit vectors in the longitudinal and transverse direction,

respectively) (Bühler et al. 2014; Balwada et al. 2016;

Babiano et al. 1990), we define the longitudinal (Sl) and

transverse (St) structure functions as

S
l
(r)5hku

li
2 u

lj
k2i , (7)

S
t
(r)5hku

ti
2 u

tj
k2i , (8)

where h�i denotes the average over separation distances

of all distinct drifter combinations i, j, and r is the

magnitude of the separation vector. Here, we take the

average of the squared velocity difference for the com-

putation of the structure function.

In theory, the second-order velocity structure function

is related to the energy spectrum by a Hankel–Fourier

transform (Bennett 1984; LaCasce 2016),

S
2
(r)5 2

ð‘
0

E(k)[12 J
0
(kr) dk] , (9)

where J0 is the zeroth-order Bessel function.

Due to the difficulty of observing the energy spectrum

in the ocean, structure functions have been used to un-

derstand the distribution of energy across scales. As

LaCasce (2016) points out, however, the calculation of

energy spectra from drifter-derived structure functions

is not practicable. Particularly at large scales, where a

limited number of pairs is available and only a few re-

alizations of the flow are sampled, the transformation to

energy density produces large uncertainties. Nonethe-

less, structure functions give valuable information about

the distribution of energy as a function of scale

(Balwada et al. 2016). In particular, they are able to

reproduce the scale-dependent transitions from one

inertial subrange to another in the energy spectrum.

Examining the asymptotic limits of the integral in Eq.

(9) offers illuminating physical insights (Bennett 1984;

Balwada et al. 2016; Babiano et al. 1990):

S
2
(r)5

r2

2

ð2/r
0

k2E(k) dk1 2

ð‘
2/r

E(k) dk , (10)

where r is the pair separation distance,E(k) is the kinetic

energy spectrum, and k is the horizontal wavenumber.

In the limit of r/ 0, structure functions are dominated

by the enstrophy provided by velocity gradients of the

largest eddies in the flow. In the limit of r/‘, structure
functions are dominated by the energy of eddies of the

same scale as r.

We can predict the power law behavior of structure

functions from Eq. (10). Given a self-similar energy

spectrum E(k); k2a, the structure function scale like

S2 ; ra21 (Bennett 1984). In a nonlocal regime with a5 3,

the structure function will scale like r2. In a local regime

with a5 5/3, the structure function will scale like r2/3.

The longitudinal and transverse components of the

structure function are not independent. Assuming that
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the structure function has a power law dependence

S2 ; rm, a purely nondivergent flow will lead to a ratio of

St/Sl 5m1 1, and a purely irrotational flow will lead to

St/Sl 5 1/(m11) (Balwada et al. 2016).

5) HELMHOLTZ DECOMPOSITION

As for every vector field, we can decompose the

velocity vector into divergent and rotational compo-

nents u52=3 (kc)1=f. Performing a Helmholtz

decomposition of the velocity structure function

(Bühler et al. 2014; Lindborg 2015), we can separate

rotational Sr and divergent Sd components of the rel-

ative velocity and further characterize the flow field.

We compute the divergent and rotational structure

functions as

S
d
(r)5 S

l
(r)2

ðr
0

1

r
(S

t
2 S

l
) dr , (11)

S
r
(r)5 S

t
(r)1

ðr
0

1

r
(S

t
2S

l
) dr . (12)

In a two-dimensional, quasigeostrophic regime, we

expect the flow to be nearly nondivergent. In this case

the rotational component of the structure function will

be Sr . Sd. In an unbalanced wave continuum, for ex-

ample, with a Garrett–Munk spectrum, we expect the

divergent component to become important. For internal

waves the ratio of Sr/Sd depends on wave frequency

and inertial frequency (Bühler et al. 2014). Near-inertial

oscillations are expected to have Sr/Sd 5 1. Furthermore,

the divergent and rotational components help to identify

the scales at which dynamics transition from one regime

to another.

3. Results

In this section, we characterize the dispersion in the

upper ocean using the pair dispersion statistics and

structure functions described above. We focus on the

early-time and small-scale behavior that falls into the

spatiotemporal regime of submesoscale motions.

a. Relative dispersion

The observed relative dispersion D2 calculated from

the drifter array shows two distinct regimes (Fig. 3).

During the first 4 days when separations are small

(r, 10 km), relative dispersion grows exponentially

with an e-folding time scale of about 1.25 days. As

separations reach the deformation radius LD 5 60 km,

they transition approximately to a t3 power law. The

initial exponential growth is as expected for nonlocal

dispersion, as is the cubic power law growth for local

dispersion.

At long times, t . 100 days, relative dispersion does

not flatten to linear growth. Linear growth is expected

for constant relative dispersion if pair separations grow

larger than the dominant eddy size (’100 km) and be-

come uncorrelated (Fig. 4). A possible explanation is that

the Indian coast prevents drifters from spreading iso-

tropically and drifters become entrained into the boundary

current (Fig. 1). Furthermore, dispersion calculated for

FIG. 3. Relative dispersionD2 as a function of time, plotted (a) for the first 10 days on a semilog axis, and (b) the

full record on log–log axes. The blue, green, and red curves denote the observed, AVISO-advected, and stochastic

(AVISO-advected with stochastic closure) drifter trajectories, respectively. The shaded area is the bootstrapped

95% confidence interval of the relative dispersion. Theoretical power laws are indicated by black dotted lines.
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large separations above 100km has uncertainty, as only a

small number of drifter pairs is available at this scale.

The simulated, AVISO-advected drifters are ex-

plicitly advected with geostrophic currents that

lack variability at scales smaller than 1/48. AVISO-

advected drifters are able to reflect the overall drift

pattern of the observed drifters. Their trajectories,

however, are significantly smoother and their rates of

dispersion are slower than for the observed drifters.

After the same period of drift, AVISO-advected

drifters stay much more coherent and spread over a

much smaller area than the observed drifter trajec-

tories (Fig. 1).

Estimates of relative dispersion further illustrate the

difference between the AVISO drifters and the ob-

served drifters (Fig. 3). Since the AVISO energy spec-

trum is steep, likely a � 3, nonlocal dispersion and

exponential growth is expected. For the first 10 days, the

AVISO relative dispersion grows exponentially, how-

ever, with a small growth parameter. Since the AVISO-

derived currents lack variability below 1/48 (about

30 km), the dispersion at small scales is dominated by

mesoscale shear. After 10 days, however, the AVISO

drifters approximately follow a t3 power law. Interest-

ingly, the AVISO drifters show the same plateau in

relative dispersion as the observed drifters after about

5–10 days, possibly, a synoptic feature that traps

drifters the same way as in the observations (Fig. 3b).

The stochastic drifters that include superposed noise

in addition to the AVISO currents improve both the

qualitative trajectories (Fig. 1), as well as the relative

dispersion estimates. Generally, the stochastic noise

increases themagnitude of relative dispersion compared

to theAVISO drifters, such that the behavior is closer to

the observed drifters. During the first 4 days, however,

stochastic drifters show a different behavior than the

observed drifters. Their relative dispersion grows more

rapidly, possibly like t2 or t3. The late-time behavior is

within 95%of the observed drifters and shows a t2 power

law. An alternative explanation for this behavior is the

result of random motion in the mesoscale shear which

produces the same relative dispersion as Richardson

dispersion (Bennett 1987).

The relative diffusivity krel is noisier than the relative

dispersion because it is the time derivative of relative

dispersion. In our data, we locally encounter zero and

negative slope of D2, suggesting converging pairs of

drifters for which the krel is not well defined. Here, we

calculate the derivative of the mean square separation,

focusing on diffusivity that is larger than zero and only

using those values that consist of at least 20 data points.

In Fig. 5, the relative diffusivity is shown as a function

of pair separation. For the observed drifters, a r2 de-

pendence is evident at separations below the de-

formation radius LD. Although the variability is large, a

transition is expected at LD, where the relative diffu-

sivity starts to flatten to a r4/3 power law. As already

pointed out in the relative dispersion results, the diffu-

sivity does not saturate at the largest, observed scales

suggesting that a regime of constant relative diffusivity is

not reached. This would be expected if r.LD and the

combined effect of multiple eddies is sampled. The

theoretical expectations for nonlocal energy spectra

a$ 3 is that the diffusivity grows like r2. For a local

energy spectrum with 1,a# 3, the theoretical pre-

diction is r(a11)/2. For a5 5/3, specifically, the diffusivity

grows like r4/3, Richardson’s 4/3 law. The observations

lie in an envelope in between the local and nonlocal

regime, curve fitting suggests, however, that it more

closely follows a r2 power law.

The AVISO drifters and stochastic drifters show a

similar behavior but with lower overall diffusivity. The

stochastic noise increases the diffusivity compared to

the AVISO drifters which is particularly pronounced at

small scales below 5km. Curve fitting results suggests

that the AVISO drifters follow r2 more closely, whereas

the stochastic drifters follow r4/3. At the largest scales,

the stochastic and AVISO drifters have a diffusivity

that is an order of magnitude smaller than the observed,

despite the expectation that all three datasets should

converge to the same diffusivity. This might be a result

that is caused by a strong reduction of available pairs

at these scales and the fact that the simulated drifter

FIG. 4. Pair velocity correlation normalized by the single particle

velocity variance for three different initial separations:

0# r0 , 2 km (blue), 2# r0 , 4 km (orange), 4# r0 , 6 km (green).

The black line indicates an estimate for the decorrelation scale,

where the correlation has fallen off by 1/e from its maximum.
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experiment might not have reached saturation over the

duration of the observed drifter experiment.

b. Finite-size Lyapunov exponent

The observed FSLEs (Fig. 6) are largest for the

smallest separations. The associated e-folding time is

about one day which is close to the e-folding time esti-

mated from the initial phase of the relative dispersion.

Due to the limited number of pairs available, however,

uncertainties are large at the smallest scales. With the

number of data points available, it is difficult to validate,

whether the FSLE is constant over a range of scales as

predicted for exponential pair dispersion. At interme-

diate scales, below LD, the FSLEs scale like r22/5. The

equivalent slope of the relative dispersion is 5, in-

dicating a rapid time scale of separation. In agreement

with the relative dispersion and diffusivity, we find a

change of behavior at the deformation radius. For

separations larger than LD, FSLEs fall off like r22/3,

which is the prediction for a Richardson-like disper-

sion with D2 ; t3.

The AVISO drifters show constant FSLEs from

about 1 km to the deformation radius. If the FSLE is

constant across a range of scales, the e-folding time is

constant, and pairs separate exponentially fast. The

smallest scales below 1 km, however, suffer from large

uncertainty. Above LD, the FSLEs fall off more slowly

than for the observed drifters. The stochastic noise

generates FSLEs that are larger than the observed

FSLEs for scales from 0.1 to 10 km. The effect of the

noise decreases with increasing r, such that the sto-

chastic drifters behave like the AVISO drifters above

LD. The large initial FSLEs suggest faster separation

rates of the stochastic trajectories than the observed

trajectories, which is in agreement with the relative

dispersion results. Yet, this increase in separation rates

is a function of the magnitude of the stochastic noise

(section 2d).

Since time resolution is important in the computation

of FSLEs and the sea level anomaly data is updated

daily, it is expected that FSLE estimates from AVISO-

advected drifters cannot resolve the e-folding time scale

of 1–2days below 5km. Similarly, the 30-min resolution

of the observed drifters might not be able to resolve the

true maximum FSLE.

c. Pair separation PDFs

The pair separation PDFs (at t5 3 days) are shown for

three different initial separations in Fig. 7. We choose

separation classes that are centered at r0 5 1, 3, and

5km, each of which are 2 km wide (e.g., for the first class

0 , r0 , 2 km). These initial separations are selected

because they are in the range or scales for which FSLEs

are large and relative dispersion indicates exponential

growth. Consider first the observed drifters (Fig. 7a).

FIG. 6. FSLE as a function of separation r. The blue, green, and

red curves denote the observed, AVISO-advected, and, stochastic

(AVISO-advected with stochastic closure) drifters, respectively.

The shaded area is the bootstrapped 95%confidence interval of the

FSLE. Dotted lines denote power law dependencies.

FIG. 5. Relative diffusivity, the time derivative of the relative

dispersion (Fig. 3), as a function of separation r. The blue, green,

and red curves denote the observed, AVISO-advected, and sto-

chastic (AVISO-advected with stochastic closure) drifter trajec-

tories, respectively. The shaded area is the bootstrapped 95%

confidence interval of the relative diffusivity. The dotted lines

indicate r2 (expected in nonlocal regimes) and r4/3 (expected in a

local regime).
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Separations in the smallest separation class (r0 5 1 km)

are associated with the most peaked PDF. The two

larger initial separation classes (r0 5 3 km and r0 5 5 km)

are less peaked. The theoretical PDFs whose parame-

ters are estimated from the relative dispersion curves

(see section 2 and Table 1) are calculated corresponding

to the three initial separations r0 at t5 3 days. The

(nonlocal) Lundgren regime and the (local) Richardson

regime are both close to the observed data in the 1-km

class. The theoretical curve for the Richardson regime

and the estimated curve from kernel density estimation

of the observed data are not significantly different.

The larger the initial separation, the lower the pre-

dictive power of the theoretical PDFs.

The PDFs for the AVISO separations (Fig. 7b)

occupy a much smaller range of scales. It is evident that

the Lundgren distribution is the best fit for all three

initial separation classes. The stochastic drifters, how-

ever, behave differently from the two other datasets.

The stochastic noise causes a fast widening of the PDFs,

FIG. 7. Pair separation PDFs at t5 3 days for different initial separations r0 for each of the three datasets: (a) observed, (b) AVISO-

advected, and (c) stochastic (AVISO-advected with stochastic closure) drifters. The theoretical PDFs are shown in color, for the nonlocal

Lundgren (orange), local Richardson (green), and uncorrelated Rayleigh (brown) regimes. The histogram and kernel density estimation

of the measured distributions is in blue.
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such that both Lundgren and Richardson solutions

fail to predict the distribution. The widening of the PDF

is caused by uncorrelated motions and is comparable to

the Rayleigh dispersion. Since we estimate the diffusion

coefficient from the late-time behavior (t . 10days) of

the relative dispersion, this diffusivity is not captured.

The fast dispersion of the stochastic drifters at small

scales (r, 10km) has also been observed in the relative

diffusivity (Fig. 5) and the FSLE (Fig. 6). The character

of this dispersion is different from Lundgren and

Richardson as well as the late-time Rayleigh regime.

The theoretical solution for the Rayleigh regime,

that is, dispersion by uncorrelated pair velocities, does

not describe any of the datasets. This is expected for

these small initial separations and after 3 days, in par-

ticular, because the diffusivity for the Rayleigh regimes

is estimated from the late-time relative dispersion. As

we see in the velocity cross correlation (Fig. 4), the

velocities are correlated below the deformation radius

LD. Since all drifters are deployed in the same region,

we expect that pairs likely sample the same features in

all three datasets. Additionally, it is unclear if the dif-

fusion coefficient k2 can be determined accurately from

the relative dispersion curves for two reasons: 1) As the

late-time behavior is covered by fewer pairs, the un-

certainties are relatively large, and 2) the relative dis-

persion curve does not unambiguously reach the linear

growth regimes that are expected for uncorrelated

motions.

The kurtosis, the fourth moment of the PDFs, is a

metric to quantify the peakedness of a distribution. We

group the data into the three classes of initial separation

r0 and evaluate the kurtosis for each of those groups as a

function of time (Fig. 8).

In case of the observed drifters (Fig. 8a), pairs that are

initially close (r0 5 1 km) generate an exponentially

growing kurtosis that reaches a maximum value of

32 (not shown), clearly suggesting nonlocal behavior

of the dispersion. Pairs with larger initial separa-

tion grow more slowly and reach a smaller maximum

kurtosis (yet larger than the maximum value 5.6 ex-

pected for the Richardson regime). Interestingly, the

kurtosis quickly falls off to values between 1 and 5 after

about 15 days. It is somewhat surprising that values

decrease so quickly, given that the energy-containing

eddy size is clearly mesoscale and O (60) km. A possi-

ble explanation for this is the sensitivity of the kurtosis

to the tails of the pair separation PDFs. Pairs in the

tails of the distribution develop quickly and could de-

crease the kurtosis.

The AVISO drifters (Fig. 8b) produce less of an

exponential growth (at least at these initial separa-

tion scales) with maximum values that are larger than

5.6. The late-time asymptotic behavior of the AVISO

TABLE 1. Estimated parameters for the theoretical pair separation PDFs.

Observed AVISO Stochastic

Separation r0 (km) 1 3 5 1 3 5 1 3 5

k (Rayleigh) (km2 day21) 398 793 1300 20 40 55 148 161 165

T (Lundgren) (day21) 7.7 15.2 19.6 22.2 30 26.1 4.7 18.8 22.9

b (Richardson) (km2/3 day21) 0.51 0.41 0.52 0.2 0.28 0.40 0.74 0.45 0.51

FIG. 8. Kurtosis of the pair separation PDFs as a function of time for the (a) observed, (b) AVISO-advected, and (c) stochastic drifters

(AVISO-advected with stochastic closure). Colors indicate the three classes of initial pair separation r0. Dotted lines indicate the values

expected in the asymptotic limit of the Lundgren regime (;et), the Richardson regime (5.6), and the Rayleigh regime (2).
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drifters could be identified as Richardson-like, as

values oscillate around 5.6. Interestingly, and opposed

to the observed drifters, values are larger than 2,

suggesting that a Rayleigh regime is unlikely.

Contrary to the AVISO drifters, the stochastic

drifters generate an exponentially growing kurtosis

(Fig. 8c). Particularly the smallest separation class

grows to a maximum value of 25, which can clearly be

attributed to nonlocal behavior. The difference be-

tween AVISO drifters and stochastic drifters sug-

gests that the stochastic noise facilitates faster

separation. The exponential growth of the kurtosis

also occurs at a later time than for the observed

drifters which is an artifact of the resolution of the

AVISO currents.

d. Structure functions

The structure functions S2 for the observed drifters

are shown in Fig. 9a as a function of separation r.

At intermediate scales, 10–100 km, S2 approximately

follows a r2/3 power law. From scaling arguments, we

know that S2 ; r2/3 is the expectation for an energy

spectrum with E; k25/3. At small scales (r , 10 km)

and at large scales (r . 100 km), S2 flattens to r1/3 and

r1/2, respectively.

Low-pass filtering the trajectories affects S2 such

that it has less energy than the unfiltered dataset below

100 km. It can be argued that the filtered S2 steepens

relative to the unfiltered dataset between 10 and

100 km. In this range of scales, the power law is closer

to r1, which would be predicted for an energy spectrum

of E; k22. As expected, the structure functions for the

AVISO and stochastic drifters are smaller at scales

below the resolution of the AVISO-derived currents

(Fig. 9a). The S2 from the AVISO drifters clearly

follows a r2 power law from 1 to 100 km and flattens

above. This is expected since the energy spectrum for

the AVISO currents E; k2a is steep with a. 3. The

noise in the velocity of the stochastic drifters causes S2

to be flat at scales below 30 km. Above that, S2 from the

stochastic drifters behaves similarly to S2 from the

AVISO drifters.

It is evident in Fig. 9b that the rotational component

and the divergent component cross at approximately

75 km, which is close to the local deformation radius

LD 5 60km. The Sd is dominant below 75 km and ap-

proximately determines the slope of S2. Likewise, Sr is

dominant above 75 km and approximately determines

the slope of S2 at large scales. The longitudinal and

transverse components also cross but at slightly smaller

scales (about 50 km). The Sl is dominant below 50 km,

and St becomes dominant above. The Sl grows like r2/3

up to 50 km, consistent with a local energy spectrum,

and flattens above.

The ratio of transverse to longitudinal components

St/Sl (Fig. 10a) of the observed drifters is constant

at about 0.9 for r , 50 km and increases to about 1.5

for r . 75 km. The ratio St/Sl behaves the same way

for the filtered drifter, while generally being larger.

The AVISO drifters, however, generate a St/Sl that is

FIG. 9. (a) Second-order velocity structure functions as a function of separation r for the observed, AVISO-

advected, stochastic (AVISO-advected with stochastic closure), and low-pass-filtered trajectories. (b) Velocity

structure functions after decomposition into longitudinal and transverse, and rotational and divergent components.

The total observed structure function is the same in (a) and (b). The solid vertical line indicates the length scale at

which the rotational component becomes dominant. The dotted lines indicate the theoretical slopes of nonlocal

(S2 ; r2), local (S2 ; r2/3), and frontal energy spectra (S2 ; r1).
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larger than 3. The ratio St/Sl for the stochastic drifters

increases from 1 at the smallest scales to about 3.2

above 75 km.

The ratio of rotational to divergent component Sr/Sd

(Fig. 10b) confirms the general pattern evident in the

components of the structure function. The ratio Sr/Sd

for observed drifters is dominated by the rotational

component for r . 75km. Filtering removes energy

predominantly from the divergent component and shifts

Sr/Sd to higher values. It appears that Sr/Sd for the filtered

drifters is greater or equal to 1 at all times. In the cases of

the AVISO drifters and the stochastic drifters, the rota-

tional component is larger than the divergent component

by at least an order of magnitude. At small scales, how-

ever, the divergent, stochastic noise dominates the sto-

chastic Sr/Sd.

In the limit of divergence-dominated flow (r, 10km),

the ratios agreewith the theoretical expectations. The total

structure function of the observed drifters has a slope of

m5 1/3 or flatter (Fig. 9a) which would predict St/Sl to be

about 3/4. Similarly, in the limit of rotation-dominated

flow, the total structure function has a slope of m5 1/2

which would predict St/Sl to be 1.5. For the AVISO field,

for which Sr/Sd . 1 at all scales, the total structure function

has a slope of m5 2 which predicts St/Sl to be 3.

The finding that motions are divergent at small

scales suggests that two-dimensional, geostrophic

dynamics are no longer dominant. Candidates for

divergent motions could be the internal wave field,

inertial oscillations, and Langmuir turbulence as well

as the horizontally divergent submesoscale flow.

4. Discussion

a. Dispersion regimes

The results of the dispersion statistics (relative dis-

persion and diffusivity, FSLE, pair separation PDFs,

and kurtosis) describe the dispersion characteristics of

the flow in the Bay of Bengal. The combination of

distance-averaged and time-averaged metrics allows

for a more complete description of the flow. Addi-

tionally, the structure functions contribute to the un-

derstanding of the distribution of energy across scales.

In the absence of knowledge about the energy spectra,

this can be useful despite the fact that structure func-

tion can be affected by nondispersive modes, which are

part of the true, observed flow.

The drifter-derived relative dispersion and FSLE (for

pairs with r0 , 3km) agree qualitatively on small scales

and at the deformation radius LD (Table 2). These

suggests a nonlocal regime below 20 km and a local

regime above the deformation radiusLD. However, the

metrics disagree quantitatively: The e-folding time

scale predicted by the FSLE is half as large as for the

relative dispersion and the regime shift from expo-

nential to power-law growth is at 20 km (Fig. 6) as

opposed to 10 km shown in the relative dispersion

(Fig. 3). The relative diffusivity is consistent with this

result and grows like r2, however, the transition from

nonlocal to local is less pronounced. The general result

agrees with previous results (Koszalka et al. 2009;

LaCasce and Ohlmann 2003). The difference between

FSLE and relative dispersion can be attributed to the

FIG. 10. (a)Ratio of the transverse and longitudinal component of the velocity structure function (St/Sl) as a function of

separation r. (b) Ratio of the rotational and divergent component of the velocity structure function after Helmholtz

decomposition (Sr/Sd) as a function of separation r. Colors denote the observed, AVISO-advected, stochastic (AVISO-

advected with stochastic closure), and low-pass-filtered datasets. Horizontal dotted lines are for reference.
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quality of the data (particularly the position error)

(Haza et al. 2014; Poje et al. 2010) but can also be af-

fected by the fact that different subsets of pairs are used

in the calculation (LaCasce and Bower 2000).

The pair separation PDFs and their kurtoses suggest

that a Lundgren distribution is the best fit for initially

close pairs (r0 5 1 km) and for the first 10 days of the drift

(Table 2). The rate of strain field of themesoscale eddies

is a logical candidate for the nonlocal dispersion of small

drifters pairs. Furthermore, the kurtosis of the pair

separation PDFs grows exponentially in time for small

initial separations and for the first 10 days. The large

kurtoses are a clear indication for nonlocal pair disper-

sion. Larger initial separations (r0 . 5 km), however, are

well described by the Richardson solution to the PDF

and kurtosis. The kurtosis suggests that the pair sepa-

rations are uncorrelated for pairs that are larger than

5km. This is a much smaller length scale than the

dominant eddy size.

On the contrary, structure functions show a r2/3 power

law for separation distances below the deformation ra-

dius LD, suggesting a k25/3 energy spectrum and local

dispersion (Table 2). The local character of the energy

spectrum inferred from structure functions also includes

motions that do not affect pair dispersion like internal

waves (Babiano et al. 1990). Even after filtering inertial

oscillations with a low-pass filter, however, structure

functions indicate a local regime and do not steepen

significantly. This findings is different from results in the

Gulf of Mexico (Beron-Vera and LaCasce 2016), where

the removal of near-inertial energy caused structure

functions to steepen from an apparent r2/3 power law to

r2, which is in line with the pair dispersion statistics.

The decomposition of structure functions indicates

that motions are divergent at scales below 75km and the

ratio between rotational and divergentmotionsSr/Sd is less

than one. These divergentmotions can be attributed to the

internal wave field as well as to ageostrophic submesoscale

flows that would have an energy spectrum of k22 or shal-

lower. However, the hypothesized transition from local to

nonlocal dispersion at the submesoscale cannot be sup-

ported with the data available here. Neither the dispersion

statistics (relative dispersion, diffusivity, FSLE, PDFs), nor

the structure functions, seem to reflect a regime change at

the mixed layer deformation radius estimated at 5–10km.

Pair dispersion statistics as well as structure functions

consistently indicate a regime shift close to the de-

formation radius LD 5 60 km.

Energy at small scales that causes the structure func-

tion to indicate a local regime can likely not be explained

by inertial oscillations, which begs the question as

to which processes are responsible for the variabil-

ity at those scales. We find that motions become in-

creasingly divergent below the deformation radius

and clearly deviate from two-dimensional, quasigeo-

strophic dynamics below 20 km. The kurtosis supports

this at scales above 5 km, which quickly falls off to a

value of 2 (as the Rayleigh asymptotic limit). The ratios

between longitudinal and transverse structure func-

tions, and between rotational and divergent structure

functions, further suggest that those motions are weakly

rotational, a property that applies to the internal wave

continuum as well as to balanced dynamics that have a

considerable ageostrophic component.

b. Consequences of stochastic noise

While at global or basin scale, AVISO-advected

drifters can reproduce the observed relative dispersion,

they are not sufficient to model dispersion on the regional

scale, O (10) km. Our results suggest that the mesoscale

circulation dominates pair dispersion and is therefore

qualitatively captured by the AVISO-derived, geo-

strophic currents. However, small-scale perturbations,

even if they are in the form of a simple first order sto-

chastic model, drastically alter trajectories. The first-

order stochastic trajectories are a better representation of

the observed trajectories and can reproduce the long-time

dispersive behavior in the relative dispersion and FSLE.

The first-order model implemented on the AVISO-

advected trajectories has two primary effects, both of

which are illuminating when interpreting the disper-

sion of observed drifters. First, diffusive growth tends

to be faster than exponential spreading at early times.

The dominant drivers for pair separations are, thus,

the uncorrelated motions due to the stochasticity in

the velocity. This can most clearly be seen in the pair

separation PDFs that resemble dispersion due to un-

correlated velocities (Fig. 7), the diffusive growth of

the relative dispersion (Fig. 3) as well as the flatten-

ing of structure functions at the smallest scales. Sec-

ond, random motion in a constant shear flow leads to a

relative dispersion that grows like t3. The added noise

on the velocity of the stochastic drifters can cause them

to disperse in a shear dispersion manner. Since the

small-scale PDFs seem to indicate Rayleigh-type dis-

tributions but the relative dispersion and diffusivity

TABLE 2. Dispersion regimes in Lagrangian statistics at sub-

mesoscales, O (0.1–10) km.

Richardson (local) Lundgren (nonlocal) Observed

E(k) k25/3 k23 —

S2(r) r2/3 r2 r2/3

l(r) r22/3 const r22/3

D2(t) t3 et et

krel(r) r4/3 r2 r2

kur(t) 5.6 et et
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suggest t3 growth, shear dispersion is a likely candidate

for the quick dispersion of the stochastic drifters.

The subgrid-scale noise affects scales much larger than

the noise scale. In fact, FSLE and structure functions

suggest that the stochastic noise affects drifter motions at

scales up to 10km. This scale can be identified by com-

paring the stochastic drifters with the AVISO drifters.

Haza et al. (2014) found that uncertainty in the drifter

position can affect the dispersion statistics at scales up to 6

times the magnitude of the position error.

c. Limitations of the dataset

The results have to be interpreted taking into account

the shortcomings of each metric and the limitations of

the dataset itself. Since drifters were drogued at 15-m

depth, mixed layers were possibly shallower than that

during the first month (Hormann et al. 2016), and sub-

mesoscale turbulence decays away from the surface, we

expect that the drifters measure less small-scale vari-

ability and steeper spectra than they would at the very

surface. The fact that the drogue is deeper than themixed

layer, furthermore, reduces the bias due to surface wave

motions, and most likely reduces the effect of convergent

flow such as Langmuir circulation on the distribution of

drifters. These convergent flows otherwise tend to align

drifters and bias the regions they sample.

Additionally, a sampling bias occurs because of the

choice of deployment site. Certain features in the flow

are sampled more extensively, rather than a represen-

tative sampling of the velocity field. The release location

causes drifters to be entrained in a cyclonic eddy for the

first 10 days. During this period, drifters traveled as a

coherent cluster, reducing the degrees of freedom of our

statistics due to dependent pairs.

The energy at the mesoscale might also overshadow

any coherent small-scale motion and result in nonlocal

dispersion. This has severe consequences when inferring

the energy spectrum from dispersion statistics. Addi-

tionally, as our results suggest, there is a large uncertainty

associated with the largest scales. At large scales, a lim-

ited number of drifters samples the mesoscale eddies,

providing only a limited number of realizations.

5. Conclusions

The dispersion study presented here identifies a con-

tradiction between pair dispersion statistics (relative dis-

persion, FSLE, pair separation PDFs) and an analysis of

structure functions. Pair dispersion statistics consistently

identify a nonlocal dispersion regime at scales below

20km that is associated with an exponential rate of pair

separation, and predicted by energy spectra that follow

a k23 behavior. Structure functions, however, and their

decomposition, suggest a local regime at scales below

the deformation radius, associated with a power law

growth of pair separations and predicted by energy

spectra that are k25/3 or flatter. This discrepancy can

be explained by 1) processes that contribute to the

energy spectrum of a flow, but not significantly to the

dispersion, or 2) uncertainties at the smallest scales,

such as uncertainties in the position data.

To answer the question we posed in the title, sub-

mesoscale flows are possible to observe from pair dis-

persion statistics, however, the interpretation of the data

can be difficult due to the richness of processes occu-

pying the same spatiotemporal band. In particular, we

find that there are motions such as near-inertial oscil-

lations and tides that affect the energy spectrum, but are

inefficient at dispersion. Theoretical predictions for the

submesoscale range, therefore, do not hold for the ob-

served data. The limitations of our dataset further con-

strains our ability to resolve the submesoscale range.

Our findings are relevant when studying drifter dis-

persion at submesoscales, especially in the presence of

an energetic mesoscale circulation, as they question

the ability of pair dispersion statistics to capture sub-

mesoscale flows. Alternatively, in a region of thin mixed

layers, submesoscale flows could be inefficient at dis-

persing drifters as there is less available potential energy

to be extracted by mixed layer instabilities.

Since dispersion statistics are often not conclusive in

inferring an energy spectrum from pair statistics, par-

ticularly at small scales, more information about the flow

field is needed. Multiple drifter statistics and clusters can

help to map velocity gradients to further characterize the

kinematics of a flow field. Velocity gradients are espe-

cially important in submesoscale flows, where the local

Rossby number becomes O (1). Analyses of multiple

drifters have not been fully exploited in oceanography

despite their potential, often due to a lack of suitable

clustered experiments.
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