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abstract: Time series of vital rates are often used to construct
“environment-blind” stochastic population projections and calculate
the elasticity of population growth to increased temporal variance in vi-
tal rates. Here, we show that the utility of this widely used demographic
tool is greatly limited by shifts in vital rate correlations that occur as en-
vironmental drivers become increasingly variable. The direction and
magnitude of these shifts are unpredictable without environmentally
explicit models. Shifting vital rate correlations had the largest fitness ef-
fects on life histories with short tomedium generation times, potentially
hampering comparative analyses based on elasticities to vital rate vari-
ance for a wide range of species. Shifts in vital rate correlations are likely
ubiquitous in increasingly variable environments, and further research
should empirically evaluate the life histories for which detailed mecha-
nistic relationships between vital rates and environmental drivers are
required formaking reliable predictions versus those for which summa-
rized demographic data are sufficient.

Keywords: covariation, elasticity, demography, fitness, life history,
stochasticity.

Introduction

Climate change has altered the frequency of extreme weather
events, and further changes to environmental variability are
expected (IPCC 2012). Over the short term, a careful consid-
eration of the effect of environmental variability on demog-
raphy and population growth is necessary for guiding species
conservation actions (Doak et al. 2005; Boyce et al. 2006;
Morris et al. 2008). At longer timescales, a clear understand-
ing of the effects of environmental variability on population
growth can illuminate the drivers of life-history evolution
(Tuljapurkar 1990; Tuljapurkar et al. 2009).
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Elasticity analysis is a widely used tool for predicting the
effects of changes to demographic variation on population
performance (Doak et al. 2005; Morris et al. 2008; Dalgleish
et al. 2010; Jongejans et al. 2010; Miller et al. 2011). Elasticity
to vital rate variance, Ej, measures the change in stochastic
population growth rate caused by a proportional change in
the variance of a focal vital rate (Tuljapurkar et al. 2003;
Haridas and Tuljapurkar 2005). Accordingly,Ej is commonly
used to examine the consequences of vital rate variation
both within and across populations, providing insight into
evolutionary processes and comparative sensitivity to future
increases in environmental variance (Morris et al. 2008). Al-
though Ej is typically much smaller than elasticity to changes
in the mean of demographic parameters, some populations
do exhibit high sensitivity to demographic variance (e.g.,
Haridas and Tuljapurkar 2005; Dalgleish et al. 2010; Haridas
et al. 2015). For example, in a comparative analysis of 10 forb
species, the magnitude of Ej was 48% as large as Em on aver-
age for fertility (range: 16%–100%) and was 20% as large as
Em for survival (range: 0%–100%; Dalgleish et al. 2010). Fur-
thermore, even if Ej is small inmagnitude, it can nevertheless
be ecologically relevant if demographic variance ismore likely
to change than mean demographic rates (Tuljapurkar 2010).
This could occur, for example, in cases where environmental
variance is changing more rapidly than mean environmental
conditions (e.g., Mulder et al. 2016).
A major advantage of this tool is that it can make use of

relatively coarse and previously published demographic in-
formation (i.e., a time series of vital rate estimates). Addi-
tionally, stochastic vital rate elasticities can be calculated
without explicitly characterizing the underlying environ-
mental drivers of vital rates. Indeed, Crone et al. (2011)
found that explicit environmental drivers were included in
less than 50% of the studies that reported stochastic popula-
tion growth rates. This approach is therefore particularly ap-
pealing given the increasing accessibility of large vital rate
databases (e.g., Salguero-Gómez et al. 2014, 2016), for which
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this method could be readily applied to identify the popula-
tions or life histories that aremost sensitive to environmental
variation (e.g., Morris et al. 2008; Jongejans et al. 2010; Van
Allen et al. 2012; Coutts et al. 2016; Csergő et al. 2017).

Importantly, Ej describes the effect of increased vital rate
variation on lS assuming that all other properties of vital
rates remain unchanged. However, vital rate correlations will
often simultaneously shift as vital rates become more vari-
able (see mentions of this in Boyce et al. [2006], Gotelli
and Ellison [2006], and Jenouvrier [2013]). This follows from
the fact that vital rate variability is a function of multiple en-
vironmental drivers and life-history trade-offs, each contrib-
uting differently to correlation and variance in vital rates.
Any particular environmental driver is unlikely to explain
all of the variance in a vital rate and will thus strengthen,
erode, or even reverse existing correlations as it becomes
more variable. For example, if two vital rates are linearly af-
fected by a shared environmental driver (and their residual
variance is uncorrelated), increased variability in that driver
will strengthen the correlation between them (see the illus-
tration in app. S1; apps. S1–S4 are available online). Con-
versely, increased variability in an unshared variance com-
ponent in one or both drivers will weaken their overall
correlation (app. S1). These shifting vital rate correlations,
which are not accounted for by Ej, could potentially reduce
the utility of this common demographic tool and alter pre-
dicted responses to increasingly variable environments.

Here, we use a simulation approach to directly evaluate
the importance of shifting vital rate correlations in increas-
ingly variable environments. Our analysis quantifies the po-
tential fitness effects of these shifts as well as their resulting
implications for using Ej as a basis for prediction. We begin
by introducing a matrix projection model that links vital
rates to time-varying environmental drivers, and we discuss
the calculation of Ej. We then use this population model to
examine (1) the capacity of vital rate correlations to shift as
an environmental driver becomes more variable, (2) how
these shifts impact fitness (measured as lS), and (3) the abil-
ity of Ej to anticipate changes in lS. We additionally examine
how life-history tempo influences population responses to
shifting vital rate correlations and how these responses differ
when one or multiple vital rates are jointly affected by an en-
vironmental driver.
A Population Model for Studying the Effects
of Increasingly Variable Environments

In a variable environment, a structured population can be
modeled as follows:

n(t) p A(t)n(t 2 1), ð1Þ
where n(t) is the J#1 population vector at time t and A(t)
is the J#J population projection matrix that describes tran-
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sitions among J stage, age, or size classes in the population
(Caswell 2001). The elements of A(t) are often functions
of lower-level vital rates that also vary through time (Mor-
ris and Doak 2004).
In our investigation, we used a simple stage-structured

matrix model to characterize population dynamics (Neubert
and Caswell 2000):

A(t) p
SJ(12 p) F(t)

SJp SA(t)

� �
: ð2Þ

The model discriminates between nonreproductive juve-
niles and reproductive adults and allows vital rates to vary
through time. In this model, SA(t) represents time-specific
adult survival and F(t) represents time-specific fertility (i.e.,
the contribution of adults to the juvenile stage class). The
terms SJ and p denote juvenile survival and the maturation
probability of juveniles, respectively. For simplicity, SJ and
p are time invariant in our investigation, and we focus on
temporal covariation in SA(t) and F(t).
For structured populations (as in eq. [2]), the long-term

stochastic population growth rate, lS, can be calculated nu-
merically or can be approximated as follows (Tuljapurkar
1982a; Haridas and Tuljapurkar 2005):

loglS ≈ log lD 1
1
2

X
ij

Ej
ij: ð3Þ

The term lD describes deterministic population growth in
the absence of vital rate variation. Each Ej

ij describes the effect
on lS of a proportional increase in the variance of the matrix
element (or vital rate) in row i, column j, independent of other
vital rates; Haridas and Tuljapurkar (2005) provided an ex-
act equation (their eq. [2]) for this quantity. Notably, the Ej

ij

can be calculated using a time series of vital rates without
explicit reference to the underlying environmental drivers
that generate their variation. The sum of matrix element
elasticities to variance,

P
ijEj

ij, is strictly negative and mea-
sures the total amount that demographic variation reduces
population growth in a variable environment. Simultaneously,P

ijEj
ij measures the effect on lS if the variances of all matrix

elements increase by the same proportional amount and has
been used to compare the relative sensitivity of species to fu-
ture increases in demographic variability (e.g., Morris et al.
2008; Jongejans et al. 2010).
Scenario 1: Increased Environmental Variability
Affects a Single Vital Rate

We used a simulation approach to examine the ability of Ej to
predict the effect of future increases in demographic varia-
tion on population growth (although note that analytical ap-
proaches for understanding the fitness effects of both within-
and between-year correlations are also possible; Tuljapurkar
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1982b).Wefirst generated 1,000 life histories (using eq. [2]) by
randomly selecting values between 0 and 1 for �SA, �SJ, and �p.
We solved each matrix for �F such that lD p 1 for each pop-
ulation (i.e., stationary abundance in a constant environ-
ment). For each life history and for each vital rate F(t) and
SA(t), we chose a random coefficient of variation between 0
and 0.3. For simplicity, we did not include variation in SJ
and p. We then generated a time-varying, standard normal
environmental driver, ENV(t), that was linearly related to
SA(t) but not linked to F(t). We allowed ENV(t) to explain
a random proportion (between 0 and 1) of the variation in
SA(t). Finally, we generated a random correlation ranging
from 21 to 1 for the residual variance in SA(t) and F(t),
for example, causedbyother “unexplained” environmental co-
variates or life-history trade-offs. We generated 1 million val-
ues for ENV(t) and each vital rate in this “reference environ-
ment,” assuming that vital rates were normally distributed
(but see app. S2 for simulations and expanded results where
SA(t) is beta distributed and F(t) is lognormal). We calculated
lS and the corresponding elasticity of lS to variance in SA(t),
denoted Ej

SA , using eq. (2) in Haridas and Tuljapurkar (2005).
We then investigated whether Ej

SA could reliably predict
the response of lS to increased variance in SA(t). We did so
by increasing the variance of ENV(t) by a sufficient amount
to cause a 5% increase in the standard deviation of SA(t).
While ENV(t) affected only SA(t) and did not alter the mean
or variance of F(t), this nevertheless could affect the correla-
tion between SA(t) and F(t) (see app. S1). We calculated lS in
this second, more variable environment. Finally, to isolate
the effect of shifting correlations, we generated a third se-
quence of vital rates where SA(t) was 5% more variable than
the reference environment, but we manually fixed the corre-
lation at its initial value in the reference environment (see the
expanded description of simulation methods in app. S1). If
any SA(t) was greater than 1 or any vital rate less than 0 in
any simulation for a life history, we generated a new life his-
tory and reran the simulations (see also app. S2). We then
evaluated whether Ej

SA predicted the resulting change in lS

caused by a 5% increase in the standard deviation of SA(t),
either when correlations were free to naturally shift or when
they were artificially fixed. Finally, because the fitness effects
of vital rate correlations are known to depend on generation
time (Tuljapurkar et al. 2009), we examined whether the
generation times of life histories could explain differences
between the change in lS when correlations were free to shift
and when correlations were artificially fixed.

In this scenario, an increase in the standard deviation of an
environmental driver generated a 5% increase in the standard
deviation of adult survival and alteredCor(F, SA) formany life
histories (shading in fig. 1A). This shift in vital rate corre-
lations reduced the ability of Ej

SA to reliably predict changes
in lS (fig. 1A). Conversely, Ej

SA was almost perfectly predictive
of the proportional change in lS when we artificially fixed the
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correlation between vital rates (i.e., R2 p1:000; fig. 1B). Nota-
bly, several life histories had positive values of Ej

SA in the ref-
erence environment (fig. 1B), implying that increased variance
in SA(t) should increase lS. Yet none of these life histories ac-
tually experienced an increase in lS following an increase in
the variance of SA(t), owing to shifts towardmore positive vital
rate correlations, which reduces population growth in variable
environments (Doak et al. 2005). Shifts in vital rate correla-
tions occurred for life histories with any generation time,
but these shifts had the largest fitness effects for life histories
with short to medium generation times (fig. 1C).
Scenario 2: Increased Environmental Variability
Affects Multiple Vital Rates

We conducted a second series of simulations to examine the
effects of joint vital rate responses to an increasingly variable
environmental driver (see the expanded description of these
simulation methods in app. S1). We first generated a linear
relationship between ENV(t) and both SA(t) and F(t). In
these simulations, ENV(t) explained the same proportion
of variance in both SA(t) and F(t) within a life history, but this
proportion differed between life histories (see app. S3 for re-
sults when the proportion of variance explained differs among
vital rates). Thus, some life histories experienced strong joint
responses to ENV(t) while others experienced weak joint re-
sponses.We again chose a random correlation for the residual
variance in SA(t) and F(t) and generated a sequence of 1 mil-
lion vital rates in the reference environment.
Because ENV(t) explains the same proportion of varia-

tion in both vital rates (and is linearly related to both), an
increase in variance in ENV(t) causes the same proportional
increase in variance of both vital rates simultaneously. As in
scenario 1, for each life history we increased the variance of
ENV(t) by an amount resulting in a 5% increase in the stan-
dard deviation of both vital rates and generated a new series
of more variable vital rates. We then generated a third se-
quence of vital rates where SA(t) and F(t) were 5%more var-
iable than the reference environment, but their correlation
was fixed at its initial value in the reference environment.
We calculated Ej for each vital rate in the reference envi-

ronment and used
P

ijEj
ij as ameasure of total elasticity to de-

mographic variance. This metric is appropriate for quantify-
ing the response of a population to a proportional increase in
the variance of all vital rates simultaneously (Morris et al. 2008),
as occurred in this scenario. We then evaluated whether

P
ijEj

ij

predicted the resulting changes in lS caused by a 5% increase in
the variability of SA(t) and F(t).
In this scenario, the joint effect of ENV(t) on F(t) and SA(t)

more strongly altered vital rate correlations than if only a
single vital rate responded to the environmental driver (the
range of DCor(F, SA) is larger in fig. 2A than in fig. 1A). This
further reduced the ability of vital rate elasticities to reliably
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Figure 1: Relationship between the elasticity to variance in adult survival, Ej
SA (calculated in a reference environment), and the actual propor-

tional change in lS that occurs when the standard deviation of adult survival increases by 5%, calculated numerically using DlS=lS#
sd(SA)=Dsd(SA). A, Relationship when vital rate correlations are free to shift naturally (R2 p 0:805). The black line represents a perfect 1∶1
relationship. B, Relationship when vital rate correlations are artificially fixed (R2 p 1:000). C, Differences between responses inA and B, plotted
against each life history’s generation time. While increasing variability of an environmental driver caused vital correlations to shift for all life
histories (colored shading in A and C), these shifts had the largest fitness effects for life histories with short to medium generation times.
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Figure 2: Relationship between the sum of elasticity to variance across two vital rates, Ej
F 1 Ej

SA (calculated in an initial reference environ-
ment) and the actual proportional change in lS that occurs when the standard deviation of both SA(t) and F(t) increases by 5%, calculated
numerically using DlS=lS#(1=2)(sd(SA)=Dsd(SA)1 sd(F)=Dsd(F)). In this scenario the environmental driver explained the same proportion
of variation in both vital rates, but this proportion differed among life histories. A, Relationship when vital rate correlations are free to shift
naturally (R2 p 0:694). The black line represents a perfect 1∶1 relationship. B, Relationship when vital rate correlations are artificially fixed
(R2 p 1:000). C, Differences between responses in A and B, plotted against each life history’s generation time. Note that while shifts in vital
rate correlations occurred for all life histories (colored shading in A and C), these shifts had the largest fitness effects for life histories with
short to medium generation times.
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predict changes in lS as vital rates became more variable
(fig. 2A; R2 p 0:694). Vital rate elasticities predicted popu-
lation responses reliably only when we artificially fixed vital
rate correlations to their initial value (fig. 2B; R2 p 1:000).
Shifts in vital rate correlations again occurred for life histo-
ries across the entire range of generation times, but these
shifts had disproportionately large fitness effects for life his-
tories with short to medium generation times (fig. 2C). We
note that these simulations assumed normally distributed vi-
tal rate error, which limited the range of variation we could
impose without resulting in impossible values for vital rates
(e.g., survival rates less than 0 or greater than 1). However,
we found similar patterns in a second set of analyses where
we used copulas to generate correlated changes in the vari-
ance of vital rates, treating survival as a beta random variable
and fertility as lognormal, confirming that these results are
robust across a much wider range of vital rate variation
(app. S2; see examples and further descriptions of this ap-
proach in Koons et al. [2008] and de Valpine et al. [2014]).
Conclusions

We found, somewhat paradoxically, that analyses designed
to measure the sensitivity of populations to demographic var-
iance may often be unable to reliably characterize the true
effects that occur when vital rate variance responds to an in-
creasingly variable environmental driver. In our study, in-
creased variance in vital rates was driven by increased variance
of an underlying environmental driver. The disconnect be-
tween Ej and the true effect on lS occurs when the environ-
mental driver explains only a portion of the (co)variance in
one or more vital rates, which causes vital rate correlations
to shift as the driver (and thus vital rates) become more vari-
able—an important detail that has been mentioned but not
closely examined (Boyce et al. 2006; Gotelli and Ellison 2006;
Jenouvrier 2013). Vital rate correlations, in turn, affect pop-
ulation growth and sensitivity to further changes in demo-
graphic variance (Tuljapurkar 1990; Doak et al. 2005; Tulja-
purkar et al. 2009). Given that any particular environmental
driver will not explain all of the (co)variation in vital rates
(Møller and Jennions 2002), concurrent changes in vital rate
variance and correlations are likely ubiquitous. This repre-
sents an important and underappreciated limitation of this
widely used demographic tool, potentially hampering infer-
ential extensions of Ej to real-world applications. Further-
more, vital rates will also often have nonlinear relationships
with environmental drivers (Koons et al. 2009; Lawson et al.
2015), such that increased environmental variability affects
the mean, variance, and correlations of vital rate distribu-
tions simultaneously.

Our results reemphasize the potentially important role of
within-year vital rate correlations in variable environments,
which are well understood from demographic theory (Tul-
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japurkar 1982b, 1990; Doak et al. 2005). For example, we
found that shifts in vital rate correlations were capable of fully
offsetting (or even reversing) the fitness effects of increased
demographic variation. Simultaneously, these shifts in vital
rate correlations had the largest fitness effects—and thus po-
tentially impact the reliability of Ej most strongly—for life
histories with short to medium generation times (figs. 1C,
2C). Conversely, while shifts in vital correlations did occur
for life histories with long generation times, they did not
strongly impact fitness, suggesting that elasticity to vital rate
variance is quite reliable for these species. These results are
consistent with a theoretical analysis by Tuljapurkar et al.
(2009) that detected disproportionately strong effects of vital
rate correlations on life histories with shorter generation
times. The analysis of Tuljapurkar et al. (2009) did not make
explicit distributional assumptions about vital rates or the en-
vironmental drivers thereof, suggesting that our results are
likely robust across a wide array of vital rate distributions
(app. S2) and environmental responses.
The fitness effect of a change in the correlation between

two vital rates is proportional to the product of the sensitiv-
ities and standard deviations of both correlated vital rates:
�Svi�Svjjvijvj (see full eq. [6b] in Doak et al. 2005). While there
is amaximumupper bound on variance that occurs for “zero-
to-one” vital rates such as survival (Morris and Doak 2004),
the variance of fertility (j2

F) is not constrained in the same
way and tends to be positively related to mean fertility (�F),
both in our simulations and in real populations (e.g., see
fig. S1.1 in Jongejans et al. 2010). The quantity jSAjF is there-
fore largest for life histories with short tomedium generation
times that have high values of �F. Simultaneously, vital rate
sensitivities are not explicit functions of their mean (Morris
and Doak 2004), and the quantity �SSA

�SF is only weakly cor-
related with generation time (R2 p 0:20; fig. S7). As a result,
life histories with short generation times (and large values of
�F) are disproportionately sensitive to shifts in vital rate cor-
relations (app. S4). This also explains why the magnitude of
these effects was much larger when we simulated larger var-
iation in SA(t) and F(t) by treating each vital rate as beta and
lognormal random processes, respectively, rather than Gauss-
ian processes (see app. S2).
Also consistent with theory (Tuljapurkar 1982b; Doak

et al. 2005; Tuljapurkar et al. 2009), we found that shifts to-
wardmore negative correlations attenuated the reductions in
lS that occurred as environments became more variable.
Empirical studies have reported both strong (Coulson et al.
2005; Ezard et al. 2006) and weak (Davison et al. 2013;
Compagnoni et al. 2016) contributions of vital rate correla-
tions to time-varying population growth. Our study adds an
important layer of insight by showing that vital rate corre-
lations will almost certainly shift as environments become
more variable, which can either amplify or dampen the ef-
fects of environmental change across a wide range of life his-
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tories (although not for those with extremely long generation
times). This suggests that even if vital rate correlations or
their effects are currently negligible, they could become in-
creasingly relevant as environments become more variable.

Environmentally explicit population models will be needed
to predict the resulting effects on population growth when an
environmental factor affects vital rate variances, correlations,
and other statisticalmoments simultaneously. Thiswould ide-
ally entail three sequential steps (Morris et al. 2008; Jenouvrier
2013): (1) characterizing the relationships between vital rates
and important environmental drivers along with unexplained
(co)variation in vital rates, (2) projecting a series of future en-
vironmental conditions according to a particular model of en-
vironmental change, and (3) creating a sequence of future vital
rates by mapping each vital rate onto the projected environ-
mental conditions while accounting for unexplained vital rate
(co)variation. This “environmentally explicit” approach is ca-
pable of accounting for environmentally driven changes in
multiple statistical moments of vital rate distributions (e.g.,
if vital rate reaction norms are nonlinear) along with shifts
in vital rate correlation structures. Unfortunately, this is not
yet feasible for most populations because characterizing the
relationships between environmental drivers and all vital rates
simultaneously is statistically challenging and data inten-
sive (Schurr et al. 2012; Ehrlén and Morris 2015; Teller et al.
2016; Van de Pol et al. 2016; Lee 2017).

Alternatively, Lee (2017) developed a method to evaluate
the elasticity of population growth to changes in the intensity
of an environmental driver even when explicit demographic
responses to the environmental driver are not known. This
approach accounts for the multidimensional demographic
shifts (including vital rate correlations) that occur under dif-
ferent environmental regimes and may be particularly useful
in cases where the responses of individual vital rates to envi-
ronmental drivers cannot be reliably estimated. Additionally,
demographic responses of well-studied populations could po-
tentially be used to infer the responses of poorly studied pop-
ulations, although geographic and phylogenetic extrapolations
of demography have been met with mixed results (Buckley
et al. 2010; Coutts et al. 2016). Currently, comparative analyses
of demographic responses to environmental drivers are rare
(but see examples in Doak and Morris 2010; Treurnicht et al.
2016). Further research, especially empirical studies, that seek
to identify the cases in which summarized environment-blind
demographic analyses (including Ej) are sufficient for approx-
imating population responses to increasingly variable envi-
ronments will therefore be invaluable for guiding ongoing
demographic monitoring and species conservation.
Acknowledgments

D.T.I. received support from Ducks Unlimited Canada, the
S. J. and Jesse E. Quinney Foundation, Utah State University,
This content downloaded from 128.1
All use subject to University of Chicago Press Term
the Frank M. Chapman Memorial Fund, and California
Waterfowl. D.N.K. is supported by a James C. Kennedy
Endowed Chair of Wetland and Waterfowl Conservation.
We thank the editors and anonymous reviewers whose in-
sightful comments greatly improved our study.
Literature Cited

Boyce, M. S., C. V. Haridas, and C. T. Lee. 2006. Demography in an in-
creasingly variable world. Trends in Ecology and Evolution 21:141–
148.

Buckley, Y. M., S. Ramula, S. P. Blomberg, J. H. Burns, E. E. Crone,
J. Ehrlén, T. M. Knight, J.-B. Pichancourt, H. Quested, and G. M.
Wardle. 2010. Causes and consequences of variation in plant pop-
ulation growth rate: a synthesis of matrix population models in a
phylogenetic context. Ecology Letters 13:1182–1197.

Caswell, H. 2001. Matrix population models: construction, analysis
and interpretation. Sinauer, Sunderland, MA.

Compagnoni, A., A. J. Bibian, B. M. Ochocki, H. S. Rogers, E. L.
Schultz, M. E. Sneck, B. D. Elderd, et al. 2016. The effect of demo-
graphic correlations on the stochastic population dynamics of pe-
rennial plants. Ecological Monographs 84:480–494.

Coulson, T., J. M. Gaillard, and M. Festa-Bianchet. 2005. Decom-
posing the variation in population growth into contributions from
multiple demographic rates. Journal of Animal Ecology 74:789–
801.

Coutts, S. R., R. Salguero-Gómez, A. M. Csergő, and Y. M. Buckley.
2016. Extrapolating demography with climate, proximity and phy-
logeny: approach with caution. Ecology Letters 19:1429–1438.

Crone, E. E., E. S. Menges, M. M. Ellis, T. Bell, P. Bierzychudek,
J. Ehrlén, T. N. Kaye, et al. 2011. How do plant ecologists use ma-
trix population models? Ecology Letters 14:1–8.

Csergő, A. M., R. Salguero-Gómez, O. Broennimann, S. R. Coutts, A.
Guisan, A. L. Angert, E.Welk, et al. 2017. Less favourable climates con-
strain demographic strategies in plants. Ecology Letters 20:969–980.

Dalgleish, H. J., D. N. Koons, and P. B. Adler. 2010. Can life-history
traits predict the response of forb populations to changes in cli-
mate variability? Journal of Ecology 98:209–217.

Davison, R., F. Nicolè, H. Jacquemyn, and S. Tuljapurkar. 2013.
Contributions of covariance: decomposing the components of sto-
chastic population growth in Cypripedium calceolus. American
Naturalist 181:410–420.

de Valpine, P., K. Scranton, J. Knape, K. Ram, and N. J. Mills. 2014.
The importance of individual developmental variation in stage-
structured population models. Ecology Letters 17:1026–1038.

Doak, D. F., and W. F. Morris. 2010. Demographic compensation and
tipping points in climate-induced range shifts. Nature 467:959–962.

Doak, D. F.,W. F.Morris, C. Pfister, B. E. Kendall, and E.M. Bruna. 2005.
Correctly estimating how environmental stochasticity influences fit-
ness and population growth. American Naturalist 166:E14–E21.

Ehrlén, J., and W. F. Morris. 2015. Predicting changes in the distribu-
tion and abundance of species under environmental change. Ecology
Letters 18:303–314.

Ezard, T. H. G., P. H. Becker, and T. Coulson. 2006. The contribu-
tions of age and sex to variation in common tern population
growth rate. Journal of Animal Ecology 75:1379–1386.

Gotelli, N. J., and A. M. Ellison. 2006. Forecasting extinction risk with
nonstationary matrix models. Ecological Applications 16:51–61.
28.132.017 on March 18, 2019 09:08:25 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=27790817&crossref=10.1111%2Fele.12691&citationId=p_7
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F669155&citationId=p_11
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F669155&citationId=p_11
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=20561015&crossref=10.1111%2Fj.1461-0248.2010.01506.x&citationId=p_2
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=28609810&crossref=10.1111%2Fele.12794&citationId=p_9
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=20962844&crossref=10.1038%2Fnature09439&citationId=p_13
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1002%2Fecm.1228&citationId=p_4
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=25611188&crossref=10.1111%2Fele.12410&citationId=p_15
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=25611188&crossref=10.1111%2Fele.12410&citationId=p_15
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2Fj.1365-2745.2009.01585.x&citationId=p_10
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=16701490&crossref=10.1016%2Fj.tree.2005.11.018&citationId=p_1
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=16705960&crossref=10.1890%2F04-0479&citationId=p_17
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=21070554&crossref=10.1111%2Fj.1461-0248.2010.01540.x&citationId=p_8
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=24811267&crossref=10.1111%2Fele.12290&citationId=p_12
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F430642&citationId=p_14
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2Fj.1365-2656.2005.00975.x&citationId=p_5
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=17032370&crossref=10.1111%2Fj.1365-2656.2006.01162.x&citationId=p_16


E64 The American Naturalist
Haridas, C. V., K. H. Keeler, and B. Tenhumberg. 2015. Variation in the
local population dynamics of the short-lived Opuntia macrorhiza
(Cactaceae). Ecology 96:800–807.

Haridas, C., and S. Tuljapurkar. 2005. Elasticities in variable environ-
ments: properties and implications. American Naturalist 166:481–495.

IPCC (Intergovernmental Panel on Climate Change). 2012. Managing
the risks of extreme events and disasters to advance climate change
adaptation. Special report. Cambridge University Press, Cambridge.

Jenouvrier, S. 2013. Impacts of climate change on avian populations.
Global Change Biology 19:2036–2057.

Jongejans, E., H. De Kroon, S. Tuljapurkar, and K. Shea. 2010. Plant
populations track rather than buffer climate fluctuations. Ecology
Letters 13:736–743.

Koons, D. N., C. J. E. Metcalf, and S. Tuljapurkar. 2008. Evolution
of delayed reproduction in uncertain environments: a life-history
perspective. American Naturalist 172:797–805.

Koons, D. N., S. Pavard, A. Baudisch, and J. E. Metcalf. 2009. Is life-
history buffering or lability adaptive in stochastic environments?
Oikos 118:972–980.

Lawson, C. R., Y. Vindenes, L. Bailey, and M. Pol. 2015. Environ-
mental variation and population responses to global change. Ecol-
ogy Letters 18:724–736.

Lee, C. T. 2017. Elasticity of population growth with respect to the in-
tensity of biotic or abiotic driving factors. Ecology 98:1016–1025.

Miller, D. A., W. R. Clark, S. J. Arnold, and A. M. Bronikowski. 2011.
Stochastic population dynamics in populations of western terrestrial
garter snakes with divergent life histories. Ecology 92:1658–1671.

Møller, A., and M. D. Jennions. 2002. How much variance can be ex-
plained by ecologists and evolutionary biologists? Oecologia 132:492–
500.

Morris, W. F., and D. F. Doak. 2004. Buffering of life histories against
environmental stochasticity: accounting for a spurious correlation
between the variabilities of vital rates and their contributions to fit-
ness. American Naturalist 163:579–590.

Morris, W. F., C. A. Pfister, S. Tuljapurkar, C. V. Haridas, C. L.
Boggs, M. S. Boyce, E. M. Bruna, et al. 2008. Longevity can buffer
plant and animal populations against changing climatic variability.
Ecology 89:19–25.

Mulder, C. P., D. T. Iles, and R. F. Rockwell. 2016. Increased variance in
temperature and lag effects alter phenological responses to rapid
warming in a subarctic plant community. Global Change Biology
23:801–814.

Neubert, M. G., and H. Caswell. 2000. Demography and dispersal: cal-
culation and sensitivity analysis of invasion speed for structured
populations. Ecology 81:1613–1628.
This content downloaded from 128.1
All use subject to University of Chicago Press Term
Salguero-Gómez, R., O. R. Jones, C. R. Archer, C. Bein, H. Buhr, C.
Farack, F. Gottschalk, et al. 2016. COMADRE: a global data base
of animal demography. Journal of Animal Ecology 85:371–384.

Salguero-Gómez, R., O. R. Jones, C. R. Archer, Y. M. Buckley, J. Che-
Castaldo, H. Caswell, D. Hodgson, et al. 2014. The COMPADRE
Plant Matrix Database: an open online repository for plant demog-
raphy. Journal of Ecology 103:202–218.

Schurr, F. M., J. Pagel, J. S. Cabral, J. Groeneveld, O. Bykova, R. B.
O’Hara, F. Hartig, et al. 2012. How to understand species’ niches
and range dynamics: a demographic research agenda for biogeog-
raphy. Journal of Biogeography 39:2146–2162.

Teller, B. J., P. B. Adler, C. B. Edwards, G. Hooker, and S. P. Ellner.
2016. Linking demography with drivers: climate and competition.
Methods in Ecology and Evolution 7:171–183.

Treurnicht, M., J. Pagel, K. J. Esler, A. Schutte-Vlok, H. Nottebrock,
T. Kraaij, A. G. Rebelo, and F. M. Schurr. 2016. Environmental
drivers of demographic variation across the global geographical
range of 26 plant species. Journal of Ecology 104:331–342.

Tuljapurkar, S. 1982a. Population dynamics in variable environments. II.
Correlated environments, sensitivity analysis and dynamics. Theoret-
ical Population Biology 21:114–140.

———. 1982b. Population dynamics in variable environments. III.
Evolutionary dynamics of r-selection. Theoretical Population Bi-
ology 21:141–165.

———. 1990. Population dynamics in variable environments. New
York, Springer.

———. 2010. Environmental variance, population growth and evo-
lution. Journal of Animal Ecology 79:1–3.

Tuljapurkar, S., J.-M. Gaillard, and T. Coulson. 2009. From stochastic
environments to life histories and back. Philosophical Transactions
of the Royal Society B 364:1499–1509.

Tuljapurkar, S., C. C. Horvitz, and J. B. Pascarella. 2003. The many
growth rates and elasticities of populations in random environ-
ments. American Naturalist 162:489–502.

VanAllen, B. G., A. E. Dunham, C.M. Asquith, andV. H. Rudolf. 2012.
Life history predicts risk of species decline in a stochastic world.
Proceedings of the Royal Society B 279:2691–2697.

Van de Pol, M., L. D. Bailey, N. McLean, L. Rijsdijk, C. R. Lawson, and
L. Brouwer. 2016. Identifying the best climatic predictors in ecology
and evolution. Methods in Ecology and Evolution 7:1246–1257.
Associate Editor: Charlotte T. Lee
Editor: Yannis Michalakis
28.132.017 on March 18, 2019 09:08:25 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=23505016&crossref=10.1111%2Fgcb.12195&citationId=p_21
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2F1365-2745.12508&citationId=p_38
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=28547634&crossref=10.1007%2Fs00442-002-0952-2&citationId=p_28
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=26236875&crossref=10.1890%2F13-1984.1&citationId=p_18
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=19414465&crossref=10.1098%2Frstb.2009.0021&citationId=p_43
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=19414465&crossref=10.1098%2Frstb.2009.0021&citationId=p_43
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=26814420&crossref=10.1111%2F1365-2656.12482&citationId=p_33
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F592867&citationId=p_23
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=22398172&crossref=10.1098%2Frspb.2012.0185&citationId=p_45
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2Fj.1365-2699.2012.02737.x&citationId=p_35
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=25900148&crossref=10.1111%2Fele.12437&citationId=p_25
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=25900148&crossref=10.1111%2Fele.12437&citationId=p_25
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1016%2F0040-5809%2882%2990010-7&citationId=p_40
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1016%2F0040-5809%2882%2990010-7&citationId=p_40
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=18376542&crossref=10.1890%2F07-0774.1&citationId=p_30
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2F2041-210X.12486&citationId=p_37
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=21905432&crossref=10.1890%2F10-1438.1&citationId=p_27
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=20409157&crossref=10.1111%2Fj.1365-2656.2009.01619.x&citationId=p_42
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1890%2F0012-9658%282000%29081%5B1613%3ADADCAS%5D2.0.CO%3B2&citationId=p_32
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=20426793&crossref=10.1111%2Fj.1461-0248.2010.01470.x&citationId=p_22
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=20426793&crossref=10.1111%2Fj.1461-0248.2010.01470.x&citationId=p_22
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1016%2F0040-5809%2882%2990009-0&citationId=p_39
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1016%2F0040-5809%2882%2990009-0&citationId=p_39
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F382550&citationId=p_29
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F444444&citationId=p_19
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&system=10.1086%2F378648&citationId=p_44
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2F1365-2745.12334&citationId=p_34
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2Fj.1600-0706.2009.16399.x&citationId=p_24
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&crossref=10.1111%2F2041-210X.12590&citationId=p_46
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=27991664&crossref=10.1002%2Fecy.1687&citationId=p_26
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F701043&pmid=27273120&crossref=10.1111%2Fgcb.13386&citationId=p_31

