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Identifying the causes of historical trends in relative sea level—the height of the sea surface11

relative to Earth’s crust—is a prerequisite for predicting future changes. Rates of change12

along the U.S. East Coast during the last century were spatially variable, and relative sea13

level rose faster along the Mid-Atlantic Bight than the South Atlantic Bight and Gulf of14

Maine. Past studies suggest that Earth’s ongoing response to the last deglaciation1–5, surface15

redistribution of ice and water 5–9, and changes in ocean circulation9–13 contributed impor-16

tantly to this large-scale spatial pattern. Here we analyze instrumental data14, 15 and proxy17

reconstructions4, 12 using probabilistic methods16–18 to show that vertical motions of Earth’s18

crust exerted the dominant control on regional spatial differences in relative sea level trends19

along the U.S. East Coast during 1900–2017, explaining a majority of the large-scale spatial20

1



variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral fore-21

bulge associated with the last deglaciation are strongest near North Carolina, Maryland, and22

Virginia. Such structure indicates that Earth’s elastic lithosphere is thicker than has been23

assumed in other models19–22. We also find a significant coastal gradient in relative sea level24

trends over this period that is unrelated to deglaciation, and suggests contributions from25

twentieth-century redistribution of ice and water. Our results indicate that the majority of26

large-scale spatial variation in longterm rates of relative sea level rise on the U.S. East Coast27

was due to geological processes that will persist at similar rates for centuries into the future.28

Relative sea level (RSL) is the distance separating Earth’s crust from the sea surface. Changes29

in RSL can arise from any number of geological processes or climate dynamics that impact vertical30

land motion (VLM), sea surface height (SSH), or both. Identifying the processes responsible for31

RSL changes in historical coastal tide gauge records is important for anticipating future coastal32

hazards and constraining recent global-mean RSL rise6, 7, 22, 23.33

A longstanding puzzle has been the origin of large-scale spatial variation in centennial RSL34

trends as measured by tide gauges along the U.S. East Coast1–13, 24 (Extended Data Fig. 1), which35

are higher along the Mid-Atlantic Bight than the South Atlantic Bight and Gulf of Maine (Fig. 1a).36

Earlier studies argue that vertical crustal motions and gravity field changes tied to glacial isostatic37

adjustment (GIA)—Earth’s ongoing viscoelastic adjustment to the termination of the last ice age—38

are the dominant contributors to the spatial variation in RSL trends1, 2, such that higher trends on39

the Mid-Atlantic Bight reflect ongoing subsidence of the peripheral forebulge of the Laurentide Ice40
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Sheet. Noting discrepancies between patterns of coastal RSL trends inferred from GIA models and41

tide gauge data, however, other work has highlighted the importance of ocean dynamics10, tectonic42

motions24, or errors in GIA models3. More recently, investigations using updated GIA models,43

proxy reconstructions derived from saltmarsh sediment, and Global Positioning System (GPS)44

data hypothesize that, in addition to GIA, sediment compaction5, 6, dam retention7, 8, groundwater45

withdrawal7, 8, melting of the Greenland Ice Sheet9, ocean thermal expansion9, 13, or changes in46

ocean circulation10–12 contribute to the spatial variation in U.S. East Coast RSL trends.47

It is unclear whether these studies are contradictory. Formal error bars provided in these var-48

ious studies do not account for important uncertainties inherent to the models, data, and processes49

under consideration. Models of GIA suffer from uncertainties tied to ice history, mantle viscos-50

ity, and lithospheric thickness3. Point-referenced tide gauge records, GPS data, and saltmarsh-51

sediment proxy reconstructions can be short, sparse, and fragmented; contaminated by local noise;52

and are seldom co-located alongside one another17, 25 (e.g., Fig. 1a, 1b). Further complicating inter-53

pretation of differences among studies is the existence of dependencies between models and data,54

and between different datasets, which have been ignored16. Rigorously determining the relative55

roles of VLM and SSH changes, and the sufficiency of GIA in explaining the observed large-scale56

spatial structure in U.S. East Coast RSL trends, requires a mathematically coherent synthesis of57

available observations and models.58

We use Bayesian data analysis16–18 to jointly infer the large-scale (& 500 km) spatial struc-59

ture of centennial RSL trends on the U.S. East Coast during 1900–2017. The contributions of60
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VLM and SSH changes arising from GIA and other processes are determined at a common set of61

0.5◦ × 0.5◦ regularly spaced coastal grid points (see Methods). Inferences are based on 53 annual62

tide gauge RSL records14, VLM estimates from 42 GPS stations15, proxy RSL reconstructions63

derived from radiocarbon-dated sediment from 23 saltmarshes4, 9, 12, and 216 prior GIA model pre-64

dictions based on 3 ice history models19–21 and 72 combinations of viscoelastic Earth structure65

parameters23 (see Methods). RSL and other quantities of interest are modeled as processes with66

spatiotemporal dependencies that are described by uncertain parameters including autocorrelation67

timescales, spatial ranges, and error variances. Data are represented as noisy, biased, and gappy68

versions of the underlying processes. We invert the model using Bayes’ rule to obtain the posterior69

probability distribution of the processes and parameters conditional on the data and prior estimates.70

The fully probabilistic solution provides rigorous uncertainty estimates, and allows for estimation71

of subtle pathwise statistics16, such as the probability density function associated with a spatially72

averaged value, the spatial variance in one process that is explained by another process, or whether73

a particular location features an extreme value.74

Separating large-scale signals of interest from local processes and noise (see Methods; Figs. 1, 2),75

we find it very likely (probability P = 0.98) that the RSL trend averaged over the Mid-Atlantic76

Bight (3.4 ± 0.5 mm yr−1) is larger than over the South Atlantic Bight (2.7 ± 0.6 mm yr−1) and77

Gulf of Maine (2.2± 0.7 mm yr−1; Fig. 1c, 1f). All ± ranges are 95% posterior credible intervals.78

The maximum RSL rise rate (4.5 ± 0.7 mm yr−1) likely (P = 0.75) occurs in North Carolina or79

Virginia, while the minimum trend (1.3 ± 0.8 mm yr−1) likely (P = 0.86) occurs in Florida or80

Maine (Fig. 1e). Similarly, it is likely (P = 0.89) that the average VLM rate over the Mid-Atlantic81
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Bight (−1.4±0.4 mm yr−1) reflects stronger subsidence than along the Gulf of Maine (−0.1±0.682

mm yr−1) and South Atlantic Bight (−1.1 ± 0.5 mm yr−1; Fig. 1d, 1h). Note that negative VLM83

reflects subsidence and, hence, contributes to sea level rise. Correspondingly, the most negative84

VLM rate (−2.5±0.6 mm yr−1) likely (P = 0.75) occurs in the same states hosting maximum sea85

level rise, North Carolina or Virginia, whereas the most positive rate of VLM (0.7± 0.8 mm yr−1)86

very likely (P = 0.90) occurs in Maine (Fig. 1g). These regional spatial patterns are hinted at in87

the data (Fig. 1a, 1b), but the model solutions are considerably smoother, due to the suppression of88

noise associated with the spatiotemporal filtering and joint assimilation of data streams involved in89

the Bayesian algorithm.90

There is a striking visual correspondence between the latitudinal structures of the large-scale91

RSL and VLM trends (Fig. 2a, 2b). Adding posterior draws of regional RSL and VLM trends92

decreases the alongshore variance in the latter by a median of 73% (Fig. 3). Inferred regional93

SSH trends are comparatively more uniform (Fig. 2c). Nevertheless, there are hints of large-scale94

spatial structure, such that regional SSH trends are higher north of Cape Hatteras compared to95

south (Fig. 2c).96

More insight is gained by partitioning the regional trends (Fig. 2a–2c) into GIA and other97

contributions (Fig. 2d–2i; see Methods). We ascribe 69% of the large-scale variance in coastal98

VLM rates to GIA (median estimate). Estimated subsidence rates due to GIA are pronounced over99

the coastal Mid-Atlantic Bight, with the strongest trend (−1.4 ± 1.2 mm yr−1) likely (P = 0.81)100

found in North Carolina, Maryland, or Virginia, reflecting collapse of the peripheral forebulge101
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(Fig. 2e). Large-scale SSH trends due to GIA exhibit a statistically significant (P > 0.99) lat-102

itudinal gradient, with values increasing from south to north (Fig. 2f)—a consequence of geoid103

changes associated with mantle material flowing back to areas formerly overlain by the Laurentide104

Ice Sheet. The maximum RSL trend due to GIA (2.0± 0.4 mm yr−1) is likely (P = 0.69) found in105

North Carolina, Maryland, or Virginia, but unlikely (P = 0.23) found in the states of Delaware or106

New Jersey, which are further north. This contrasts with past analyses of saltmarsh-sediment proxy107

reconstructions reasoning that the maximum rate of late-Holocene and ongoing RSL rise on the108

U.S. East Coast due to relaxation of the peripheral forebulge is found in Delaware or New Jersey4.109

This apparent discrepancy arises from the uneven spatial distribution of the available saltmarsh110

reconstructions (see Supplementary Information).111

Posterior GIA estimates are narrower than their corresponding priors (Fig. 2e, 2f), indicating112

that the posterior solutions are informative for distinguishing between the uncertain Earth struc-113

tures and ice histories. Depending on ice and Earth-model choice, root-mean-square deviations114

between prior predictions and posterior solutions for RSL trends due to GIA are 0.4–1.9 mm yr−1115

(95% credible interval; e.g., Fig. 4a). Viscosity ranges of 0.3–0.5× 1021 Pa s and 2–3× 1021 Pa s116

for the upper and lower mantle are, respectively, very likely (P = 0.92; Fig. 4b), and these are con-117

sistent with a recent study26 comparing observed elevations of sea level high stand markers along118

the U.S. East Coast and the Caribbean to GIA model simulations during Marine Isotope Stages119

5a and 5c. Our posterior GIA solutions are mostly constrained by the saltmarsh reconstructions120

and GIA priors, while the instrumental records have less influence (see Supplementary Informa-121

tion). The ice models adopted here19–21 were constructed by assuming an underlying viscoelastic122
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Earth structure, and are not independent of the Earth models. Earth models assumed in earlier123

studies19–21 have viscosity structures similar to the prior Earth models favored by our posterior124

solutions (Fig. 4a, 4b), so the viscosity ranges quoted above may be a natural consequence of the125

adopted ice models. However, the elastic lithospheric thickness favored here (125 km; P = 0.86)126

is higher compared to previous works19–22. In keeping with physical intuition, the GIA solutions127

comprising our prior have a forebulge location that tends to be located more southward with thicker128

lithosphere.129

Given the long timescales characterizing GIA, the posterior solutions can be used to project130

RSL rise due to GIA into the future (Fig. 4c). RSL averaged over the South Atlantic Bight, Mid-131

Atlantic Bight, and Gulf of Maine is predicted to rise by 2.5 ± 3.7, 10.3 ± 2.2, and 4.3 ± 2.6 cm,132

respectively, during 2018–2100 due to GIA (Fig. 4d). New York City and Washington, D.C. are133

expected to experience respective increases of 9.6± 4.5 and 11.0± 4.8 cm (Table S5), consistent134

with other recent estimates5, 22, 27. Such changes related to inexorable geological processes will135

exacerbate predicted sea level rise due to ocean thermal expansion, melting land ice, and ocean136

circulation changes22, 27.137

While GIA is the first-order control on the regional spatial structure in centennial RSL trends,138

second-order contributions from other processes are evident in the posterior solution (Fig. 2g–2i).139

RSL trends unrelated to GIA very likely (P = 0.95) increase from northern Maine to south-140

ern Florida (Fig. 2g). This structure is consistent with recent work28 suggesting that ice melting,141

groundwater pumping, and dam building globally since 1900 have caused higher RSL trends along142
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the southern South Atlantic Bight compared to the northern Gulf of Maine. Regional subsidence143

due to groundwater pumping and sediment compaction in South Carolina, North Carolina, and144

New Jersey reported previously5–7 does not feature strongly in our large-scale estimation, in that145

95% credible intervals overlap zero (Fig. 2h), but residual analysis reveals significant local sub-146

sidence in these areas (see Supplementary Information). After removing the latitudinal trend, we147

find it very likely (P = 0.91) that Maine (at 43◦N) is experiencing regional uplift (positive VLM)148

unrelated to GIA (Table S6), corroborating a recent hypothesis8 that coastal Maine is uplifting149

isostatically in response to dam building over Québec, Canada. The coastal SSH expression of150

a poleward migration of the Gulf Stream during the twentieth century11—higher trends on the151

Mid-Atlantic Bight compared to the South Atlantic Bight and Gulf of Maine—does not appear in152

our posterior solution (Fig. 2i; Table S6). Furthermore, our solution is inconsistent with a domi-153

nant centennial contribution from ocean thermal expansion13 or declining Atlantic circulation and154

meridional heat transport29–31, which would lead to higher RSL and SSH trends to the north of155

Cape Hatteras compared to the south32.156

We identified the influences of VLM and SSH changes, arising from GIA and other pro-157

cesses, on the large-scale spatial variation in U.S. East Coast RSL trends during 1900–2017. These158

findings clarify and build upon previous studies1–13, 24. Additional experiments demonstrate that our159

model solutions are robust to reasonable alternative selections for the priors on the scalar model160

parameters, study period duration, and GPS dataset (see Supplementary Information). This work161

illustrates the value of jointly assimilating disparate data streams and modeling coupled physical162

processes within a coherent probabilistic framework for rigorous uncertainty quantification. In fu-163
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ture work it will be useful to consider a broader region and incorporate spatial patterns associated164

with different mass sources to disaggregate terrestrial water storage and land ice contributions from165

large-scale RSL rends (Fig. 2g).166
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1 Methods265

Observational data We use data from 47 tide gauges on the U.S. East Coast (Table S1). Data266

span the South Atlantic Bight (south of Cape Hatteras), Mid-Atlantic Bight (Cape Hatteras to267

Cape Cod), and Gulf of Maine (north of Cape Cod). We also use 6 additional tide gauges along268

the southeastern Gulf of Mexico (Naples, Fort Myers, St. Petersburg) and southwestern Atlantic269

Canada (Saint John, Yarmouth, Halifax) to better constrain the inference at the endpoints of the270

domain (southern South Atlantic Bight, northern Gulf of Maine). The annually averaged time271

series of mean RSL were downloaded from the Permanent Service for Mean Sea Level (PSMSL)272

Revised Local Reference (RLR) database14, 33 on 24 May 2018. Most records have at least 25273

years of valid annual values. Exceptions include shorter records along the Florida coast (e.g., Lake274

Worth Pier, Trident Pier, Daytona Beach), incorporated to fill a spatial gap in coverage. The dataset275

contains 3,248 gauge-years of data over 1900–2017 (∼ 52% completeness).276

We also use vertical velocities and standard errors from 42 GPS stations on the U.S. East277

Coast from the Université de La Rochelle (ULR) 6a dataset15 (Table S2). Stations feature between278

3–19 years of observations over 1995–2014 with ≥ 70% data completeness. Vertical velocities279

have been computed by researchers at ULR based on simultaneous fits of linear trends, position280

discontinuities, seasonal cycles, and draconitic signals to daily station position estimates, while281

errors have been calculated using a power law plus white noise model for the residuals15. Values282

are expressed in the 2008 realization of the International Terrestrial Reference Frame34. Standard283

errors provided with the dataset do not account for uncertainties associated with accurately realiz-284
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ing a stable International Terrestrial Reference Frame (e.g., related to the origin and scale factor25).285

Data were retrieved from Système d’Observation du Niveau des Eaux Littorales (SONEL) on 24286

October 2017.287

We also use proxy RSL reconstructions derived from radiocarbon-dated saltmarsh sediment,288

often called RSL index points, which are given as pairs of calibrated age and RSL (the difference289

between the altitude of a sample and the midpoint of its indicative range35). We use 164 RSL290

index points from 23 saltmarshes culled from the Holocene database of Engelhart and Horton4
291

and updated to include data from northeastern Florida12 (Table S3). The formal uncertainties292

account for indicative range, radiocarbon dating, surveying, and coring errors, but not sediment293

consolidation errors. The geographic distribution of the data is highly uneven along the U.S. East294

Coast. Because we desire to constrain contemporary trends related to GIA, we only consider RSL295

index points whose median calibrated age is between 2,000 and 150 years before present (where296

the “present” is the year 1950). For a given saltmarsh site to be considered in the analysis, it must297

have at least 3 RSL index points with median ages within this specified range. We select this298

age range to predate a dominant anthropogenic influence on RSL, and to consider a period during299

which the contribution of GIA to RSL trends can reasonably be approximated as linear through300

time.301

GIA model predictions We incorporate predictions for contemporary VLM and SSH rates from302

216 GIA models. Model predictions are distinguished by values used for lithospheric thickness303

(72, 100, 125 km), upper-mantle viscosity (0.3, 0.5, 0.8, 1.0 × 1021 Pa s), lower-mantle viscosity304
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(2, 3, 5, 8, 10, 20× 1021 Pa s), and ice history (ICE-5G19, ICE-6G20, and ANU21). Model solutions305

are generated as described by Hay et al.23 and brought into the Bayesian framework as priors, as306

described below and in the Supplementary Information.307

Bayesian framework We develop a Bayesian algorithm for analyzing tide gauge records, GPS308

data, RSL index points, and GIA model predictions. The algorithm is a hierarchical dynamical309

spatiotemporal model18. The basic design follows Piecuch et al.17, who describe an algorithm for310

analyzing tide gauge data on the North American Northeast Coast. Generalizations are made to311

analyze a larger region; to assimilate GPS data, RSL index points, and GIA model solutions; and312

to separate the regional signals from local noise. A residual analysis justifying the model’s form313

given the data follows in the Supplementary Information.314

Process level We desire to model RSL, VLM, and SSH due to GIA and other processes. Given315

the nature of the data, our approach is to distinguish two periods, during which the controls on RSL316

changes are expected to be different. The first period is the modern era (since 1900), during which317

anthropogenic forcing affects centennial RSL rise, and instrumental data are available. For this318

period, during which observations are precisely dated, we seek to infer RSL process at all times319

and locations. The second period is a pre-industrial period (between 2,000 and 150 years before320

present), during which geological effects are expected to have a dominant control on longterm RSL321

trends, and RSL index points are available. For this period, during which the RSL index points322

have uncertain ages, we seek to infer the RSL process only at a subset of times and locations.323
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First, consider the instrumental period. We model the spacetime evolution of the modern324

RSL process, yk = [y1,k, . . . , yN,k]T, for time steps k ∈ {1, . . . , K} and locations n ∈ {1, . . . , N}325

as a spatial field of linear temporal trends superimposed on a first-order autoregressive [AR(1)]326

process driven by spatially correlated temporal innovations,327

yk − btk = r
(
yk−1 − btk−1

)
+ ek. (1)

Here tk is the time at step k, r is the AR(1) coefficient, b is the spatial vector of temporal trends,328

and ek is the sequence of innovations. All model parameters are listed in Table S4. The decision to329

model the detrended RSL residuals as an AR(1) process was motivated by the work of Bos et al.36,330

who demonstrate that this assumption is justifiable for annual changes. Time steps are centered on331

zero, such that
∑K

k=1 tk = 0. We model ek as a zero-mean, temporally independent and identically332

distributed (IID), spatially correlated vector, ek ∼ N (0N ,Σ), where ∼ is read “is distributed as”,333

N (p, q) is the multivariate normal vector distribution with mean p and covariance q, 0X is the334

X × 1 column vector of zeros, and Σ is the N ×N spatial covariance matrix given by,335

Σij = (cij)σ
2 exp (−φ |si − sj|) . (2)

In equation (2), σ2 is the partial sill37, φ is the inverse range, and |si − sj| is distance between336

locations si and sj . Since RSL fluctuations north of Cape Hatteras are uncorrelated with RSL337

variations south of Cape Hatteras38–40, the matrix element cij equals 1 if si and sj are both either338

north or south of Cape Hatteras (∼ 35.25◦N), and equals 0 otherwise.339

We partition the field of RSL trends b into SSH (w) and VLM (u) components,340

b = w − u. (3)
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Rates of VLM and SSH are decomposed into contributions due to GIA (denoted by subscript g)341

and unrelated to GIA (denoted by primed superscript),342

u = ug + u′,

w = wg +w′. (4)

Trends in VLM and SSH unrelated to GIA, u′ and w′, are represented as Gaussian random fields343

with spatial structure, u′ ∼ N (α1N ,Ω) and w′ ∼ N (µ1N ,Π), where 1X is a X × 1 column344

vector of ones,345

Ωij = ω2 exp (−ρ |si − sj|) , (5)

and,346

Πij = π2 exp (−λ |si − sj|) . (6)

Here α and µ are spatial means, ω2 and π2 are partial sills, and ρ and λ are inverse ranges. Trends347

in VLM and SSH related to GIA, ug andwg, are assigned prior distributions based on the 216 GIA348

model predictions (see Supplementary Information). The set of vectors {b,u,w,ug,wg,u
′,w′}349

represent large-scale, long-period contributions to the trend fields.350

The full VLM process v is modeled as a Gaussian field, v ∼ N (u, ε2IN), with mean vector351

equal to the spatially correlated large-scale VLM field u, and a spatially uncorrelated covariance352

matrix. Here IX is theX×X identity matrix and ε2 is a nugget effect37 parameterizing the influence353

of local unresolved random processes. Thus, the local component of the VLM process is v − u.354

Second, consider the proxy era. We are interested in RSL at Nd spacetime points, corre-355

sponding to a subset Ns ≤ N of locations (Nd will be the number of RSL index points, Ns will356
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be the number of saltmarshes). We model the spatiotemporal evolution of the pre-industrial RSL357

process, Y = [Y1, . . . , YNd
]T, at times, T = [T1, . . . , TNd

]T, as a spatial field of linear temporal358

trends related to GIA superimposed on a random spacetime residual process,359

Y =

[
Nd∑
i=1

eie
T
i G (wg − ug) e

T
i

]
T + Dι+ f . (7)

Here ι is a vector of site-specific intercepts, represented as a spatially uncorrelated normal random360

field, ι ∼ N (β1Ns , κ
2INs), with mean β and variance κ2; f is a zero-mean, IID spacetime process,361

f ∼ N (0Nd
, ε2INd

), with variance ε2; and ei is the ith standard basis function of RNd . The matrices362

G and D are selection matrices of ones and zeros, which isolate the GIA-driven RSL trend (wg−ug)363

and the intercept (ι), respectively, at the relevant target location. For example, Gij equals one if364

element i ∈ {1, . . . , Nd} of Y corresponds to target location j ∈ {1, . . . , N}, and equals zero365

otherwise.366

Unlike modern RSL yk, pre-industrial RSL Y is modeled without residual autocorrelation367

in time. This choice is motivated by the nature of the RSL index points. Recall that we choose to368

infer Y only when and where RSL index points are available. This choice is made to speed up the369

algorithm. Index points at a particular saltmarsh are widely separated in time, typically by decades370

or centuries. Given these wide separation timescales, it is reasonable to assume that temporal au-371

tocorrelation between residual RSL values (deviations from the longterm trend) is negligible. The372

reasonableness of this assumption is corroborated by the residual analysis in the Supplementary373

Information. Were a longer time period considered, such that the dominant behavior is nonlinear,374

different choices would need to be made for modeling the pre-industrial RSL process.375
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Data level Given data from tide gauges at Mk ≤ N locations at time step k, we represent the376

data, zk = [z1,k, . . . , zMk,k]T, as gappy, noisy, and biased versions of the RSL process,377

zk = Hkyk + dk + Fk (atk + `) . (8)

Here dk is a random error sequence, cast as a temporally IID, spatially uncorrelated Gaussian378

field, dk ∼ N (0Mk
, δ2IMk

), where δ2 is a variance parameter. The site-specific data offsets `379

are modeled as a spatially uncorrelated normal random field, ` ∼ N (ν1M , τ
2IM), with mean ν380

and variance τ 2, where M is the total number of tide gauge sites (N ≥ M ≥ Mk ∀k). The381

data error trends a are also represented as a Gaussian random field without spatial correlation,382

a ∼ N (0M , γ
2IM), where γ2 is a variance parameter. Matrices Hk and Fk are selection matrices383

that isolate the process, data bias, and error trend vectors at the data sites at time step k.384

Given GPS data at L ≤ N locations, we model the data, x = [x1, . . . , xL]T, as gappy, noisy385

versions of the underlying VLM process, x ∼ N (Ev,∆). Here E is a selection matrix, which386

isolates the process at the observation sites, and ∆ is an uncorrelated error covariance matrix,387

populated along the diagonal with error variances provided with the ULR 6a vertical velocity388

dataset. While ∆ does not reflect uncertainties due to realization of an International Terrestrial389

Reference Frame, the impact of such systematic GPS data issues on the Bayesian inference can be390

gleaned from sensitivity experiments discussed in the Supplementary Information. It is because ∆391

is specified a priori that the nugget effect ε2 is identifiable. Note that the data nugget effect ε2 is392

distinct from the process variance parameter ε2.393

An important difference between tide gauge records and GPS data is that the former are394
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spatiotemporal data (indexed in both space and time), whereas the latter are spatial data (indexed395

only in space). Whereas tide gauge records cover the period 1900–2017 (with at least one gauge396

returning data for each year of the epoch), GPS data only span the period 1995–2014, with many397

records covering only a fraction of that period. This poses a challenge from the perspective of398

inferring centennial rates of change. It is common to assume that VLM operates at steady rates399

over decades to centuries, and thus that GPS data are representative of much longer periods25.400

While not strictly true, this assumption is a useful approximation; standard errors of ∼ 0.5 mm401

yr−1 are typical for 5-year GPS time series41. Our approach is to regard GPS data as a large-scale,402

long-period signal superimposed on small-scale, short-period noise. Our model is designed such403

that the signal is meant to be absorbed by the spatially structured field u, whereas the noise is404

supposed to be captured by the spatially unstructured residual v − u. The underlying assumption405

is that large-scale, short-period and small-scale, long-period behaviors are negligible.406

Given the RSL index points, we model the uncertain values of RSL,Z = [Z1, . . . , ZNd
]T, and407

age, S = [S1, . . . , SNd
]T, as noisy versions of the latent RSL values and their ages, Z ∼ N (Y , Γ)408

and S ∼ N (T ,Ξ). Here Γ and Ξ are diagonal error covariance matrices, whose values are the409

formal error variances for the RSL and age estimates, respectively, provided with the Holocene410

RSL databases4, 12.411

We select a set of N = 211 target locations, at which we make inference, to be the combined412

set of M = 53 tide gauge locations, L = 42 GPS stations, Ns = 23 saltmarshes, along with413

93 regularly spaced 0.5◦ × 0.5◦ grid points along the coast from southern Florida to northeastern414
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Maine where no observations are present (Fig. 1a–1d).415

Prior level To close the model, we place proper, mostly conjugate42 priors on the model param-416

eters. Generally, these priors are selected to be diffuse, such that they have little influence on the417

posterior (see Supplementary Information). However, there are some exceptions that are important418

for understanding the results in the main text.419

Given our interest in large-scale processes (variable ocean dynamics, melting of ice sheets,420

etc.), we condition the inference by constraining the inverse range parameters φ, ρ, and λ in equa-421

tions (2), (5), and (6) such that corresponding length scales characterizing the spatially correlated422

RSL innovations ek, and trends in VLM u′ and SSHw′ unrelated to GIA have 95% prior probabil-423

ity of falling between roughly 500 and 2,000 km. However, posterior solutions are robust to such424

details of prior selection; nearly identical posterior solutions for regional trend vectors are produced425

if wider or narrower priors are used on these parameters to condition the inference to focus on large426

scales of interest to geology and climate (see Supplementary Information). Moreover, past authors427

note that providing a prior sense of spatial scale on the inverse range is sometimes necessary to428

ensure convergence of the algorithm used to draw samples from the posterior distribution17, 43–47.429

Given our particular interest in GIA, we place informative priors on the VLM and SSH trend430

vectors ug andwg related to GIA. Specifically, we place multivariate normal priors on these fields,431

with mean vectors and covariance matrices defined based on the 216 GIA model predictions. See432

the Supplementary Information for more details.433
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Drawing samples from the posterior distribution Using Bayes’ rule, the process and data level434

equations (1–8), and the priors, we assume that the posterior probability distribution of the process435

and parameters given the available data breaks down as436

p (y,Y ,T ,Θ|x, z,Z,S) ∝ p (x, z,Z,S|y,Y ,T ,Θ) · p (y,Y ,T ,Θ) , (9)

= p (y0) · p (r) · p
(
σ2
)
· p (φ) · p (µ) · p

(
π2
)
· p (λ) · p (α)

· p
(
ω2
)
· p (ρ) · p

(
ε2
)
· p
(
δ2
)
· p (ν) · p

(
τ 2
)
· p
(
γ2
)
· p (β)

· p
(
κ2
)
· p
(
ε2
)
· p (wg) · p (ug) · p

(
b|u,wg, µ, π

2, λ
)

· p
(
u|ug, α, ω

2, ρ
)
· p
(
v|u, ε2

)
· p
(
`|ν, τ 2

)
· p
(
a|γ2

)
· p (x|v) · p

(
ι|β, κ2

)
· p
(
Y |ug,wg,T , ι, ε

2
)
· p (Z|Y ) · p (S|T )

·
K∏
k=1

[
p
(
zk|yk, δ

2, `,a
)
· p
(
yk|yk−1, b, r, σ

2, φ
)]
.

Here p is probability density, | is conditionality,∝ is proportionality, and Θ
.

= {b,u,w, . . . } is the437

set of all model parameters. Above, we assume that the data are conditionally independent given438

the process and the parameters.439

We draw samples from the posterior distribution using Markov chain Monte Carlo (MCMC)440

methods similar to Piecuch et al.17. We evaluate full conditional distributions for using a Gibbs441

sampler, with Metropolis steps use for the inverse range parameters. We perform 400,000 MCMC442

iterations, setting the initial process values to zero, and randomly drawing initial parameter values443

from the priors. We discard the first 200,000 draws to eliminate initialization transients, and keep444

only 1 out of every 200 samples to reduce the impacts of serial correlation between draws. Con-445

vergence is evaluated by comparing variance between and within chains. Results are based on 3446
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such 1,000-member chains concatenated together.447
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Figure 1 Rates of change. a–b, Trends in (a) tide gauge RSL and (b) GPS station VLM. c–491

d, Median modeled (c) RSL and (d) VLM trends. Diamonds indicate South Atlantic Bight492

(SAB), boxes Mid-Atlantic Bight (MAB), triangles Gulf of Maine (GOM). e, g, Modeled493

probability that maximum/most-positive or minimum/most-negative (e) RSL and (g) VLM494

trend occurred in a given state. f, h, Model medians (lines), interquartile ranges (shading),495

and 95% credible intervals (whiskers) on SAB-, MAB-, and GOM-averaged (f) RSL and496

(h) VLM trends.497

Figure 2 Latitudinal structure. a–i, Posterior median (thick line), 95% pointwise (light498

shade) and pathwise (thin dash) credible intervals, and two sample draws from the model499

solution (thin lines) for regional trends versus latitude for (a), RSL, (b), VLM, (c), SSH,500

(d), GIA-driven RSL, (e), GIA-driven VLM, (f), GIA-driven SSH, (g), non-GIA RSL, (h),501

non-GIA VLM, and (i), and non-GIA SSH. The 95% pathwise credible interval are deter-502

mined by broadening the 95% pointwise credible intervals until 95% of the solutions are503

encompassed. Black lines are prior 95% pointwise credible intervals.504

Figure 3 Contributions to spatial differences. Model median (black vertical lines), in-505

terquartile range (color shading), and 95% credible interval (black whiskers) for the along-506

shore spatial variance in regional RSL linear trends during 1900–2017 explained by VLM507

or SSH related to GIA or other processes. Percentage variance V in x explained by y is508

defined as 100%× [1− var(x− y)/var(x)], where var is variance. Given the differences in509

sign convention (e.g., a negative VLM rate corresponds to positive RSL trend), variances510
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explained in RSL by VLM terms are computed by adding, rather than subtracting, the511

respective VLM component.512

Figure 4 GIA-driven RSL trends. a, Median root-mean-square deviation between prior513

and posterior GIA-driven RSL trends as a function of rheological parameters used for514

the priors: lithospheric thickness (LT), upper-mantle viscosity (UMV), and lower-mantle515

viscosity (LMV). b, Marginal posterior probability distribution that best correspondence516

between prior and posterior solutions occurs for a given combination of rheological pa-517

rameters. c, Posterior medians of large-scale GIA-driven RSL change along the coast518

during 2018–2100. d, Posterior medians (lines), interquartile ranges (shading), and 95%519

credible intervals (whiskers) on the GIA-driven RSL rise during 2018-2100 averaged over520

the SAB, MAB, and GOM.521

Figure 5 Extended Data Figure 1 Study region. Map of the U.S. East Coast and individ-522

ual coastal states. Two white stars indicate Cape Cod (north) and Cape Hatteras (south),523

demarcating the three study regions: Gulf of Maine, Mid-Atlantic Bight, and South Atlantic524

Bight.525
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