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Abstract Improved constraints on the mechanical behavior of magma chambers is essential for
understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma
chambers has not yet been systematically studied. Existing magma chamber models typically consider
magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical
model to account for the presence and properties of crystal mush in magma chambers and investigate its
impact on the mechanical processes during and after injection of new magma. Our model assumes the
magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal
mush that behaves primarily as a poroelastic material. We investigate the characteristics of time-dependent
evolution in the magma chamber, both during and after the injection, and find that quantities such as
overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent
in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to
thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and
chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively
viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of
the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly
influence the mechanical behaviors of crustal magmatic reservoirs.

1. Introduction

Crustal magmatic reservoirs play a crucial role in the storage and transport of magma and gas that erupt
on Earth’s surface, and their properties can strongly influence the triggering, duration, and style of vol-
canic eruptions. Although the processes in magma chambers cannot be directly observed, advancements
in high-precision monitoring via satellite imaging, seismic measurements, gas composition and flux, and tilt
meters allow us to detect mechanical processes happening in the plumbing system, such as magma injection
or withdrawal, chamber pressurization and expansion, and magma transport. For example, measurements of
ground deformation caused by injection of magma into a chamber have frequently been used to infer magma
recharge and predict future unrest (Browning et al., 2015; Davis, 1986; Dzurisin, 2003; Le Mével et al., 2016;
Lu & Dzurisin, 2010; Masterlark, 2007; Srigutomo et al., 2015; Voight et al., 2006; Wicks et al., 2002). Ground
deformation data are conventionally analyzed and interpreted using mechanical models of magma chambers,
leading to an approximation of the amount of injected magma. The mechanical models invoked in analyzing
crustal deformation data typically center around the concept of a crustal magma chamber consisting of liq-
uid magma within the elastic crust. The principles of continuum physics are invoked to quantitatively link the
deformation of crust and magma chamber with events such as magma injection, surface pressure unload-
ing, and gas exsolution (Chouet et al., 2006; McTigue, 1987; Mogi, 1958; Nishimura, 2006; Rivalta, 2010). Based
on the same concept, more realistic considerations for sill-shaped magma chambers, as well as viscoelastic
rheology of the high-temperature crustal rocks, have also been implemented (Amoruso & Crescentini, 2009;
Dragoni & Magnanensi, 1989; Karlstrom et al., 2010; Segall, 2016).

Although most mechanical models for volcano/ground deformation assume fluid magma chambers residing
in solid rocks to be the center of the crustal igneous processes, petrological studies and observations from
fossil magma chambers have long pointed to the existence of crystal mush in the crustal plumbing system
(e.g., Gudmundsson, 1987; Hildreth & Lanphere, 1994; Marsh, 1989). The concept of a mushy crustal plumb-
ing system, wherein crystalline mush can occupy more than 70% of the magmatic reservoir and prevent
direct mechanical connection between the liquid magma and the crustal rock, has been increasingly explored
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Figure 1. Three-dimensional (left) and plane (right) view of the geometry of the model. The spherical magma chamber
has radius Ro , which consists of a liquid core with radius ro and a crystal mush shell with thickness Ro − ro and porosity
𝜙o . The chamber is surrounded by an infinite domain of elastic host rock. The mush, shown in circular insets, consists of
solid crystals and pore fluid magma. The boundary conditions, including force balances at the inner and outer
boundaries of the mush shell, are shown by black arrows.

and emphasized in recent studies (e.g., Bachmann & Huber, 2016; Barboni et al., 2016; Cashman et al., 2017;
Gelman et al., 2013; Karakas et al., 2017; Singer et al., 2018; Sparks & Cashman, 2017; Szymanowski et al.,
2017). These studies have suggested that abundant crystal mush strongly impacts the thermal and chemi-
cal evolution in magmatic systems through processes of melt infiltration and segregation and may limit or
enhance the eruptability of a magmatic system (Anderson et al., 1984; Bachmann & Bergantz, 2004, 2006;
Bergantz et al., 2006, 2015; Degruyter & Huber, 2006, 2014; Huber et al., 2010, 2011; Mourtada-Bonnefoi
et al., 1999, 2011; Parmigiani et al., 1999, 2014; Sisson & Bacon, 1999). These studies largely deal with inter-
nal dynamics of a mushy magma chamber, but fewer studies have examined chamber- to crustal-scale
mechanical processes. Some notable exceptions include studies on a completely mushy, poroelastic magma
chamber, which demonstrated that magma can be erupted despite the absence of a fully liquid region
(Gudmundsson, 2012, 2016).

The mechanical processes reflected in evolving chamber pressures and crustal deformation for magma
chambers containing both liquid and mush regions are less well defined, but are likely relevant for natural
magmatic systems in which the crystallization front propagates inward (Marsh, 1989). Abundant two-phase,
magma-crystal ensembles surrounding the liquid portion of magma chambers may modify the deformation
and stresses in the crust. To understand how the plumbing system behaves mechanically in the presence of
crystal mush, the conventional mushless models need to be reexamined and modified. Here we report on a
new analytical model that we use to interrogate the influence of crystal mush on the mechanical processes
during and after magma injection into an existing chamber. Specifically, we consider the effect of the poroelas-
ticity of the mush on the changes in mechanical states of the chamber and the crustal rocks, such as chamber
pressure and tensile stress. Our model provides a novel framework that incorporates three components, liquid
compressible magma, permeable poroelastic mush, and elastic crustal rocks and enables us to quantitatively
examine the effects of crystal mush during magma injection events.

2. Mushy Magma Chamber Models
2.1. Poroelasticity of the Crystal Mush
Crystal mush forms when the volume fraction of crystals in a crystal-magma suspension is large enough such
that the suspension becomes rheologically locked (e.g., Marsh, 1989). As the magma cools and the volume
fraction of crystals increases, two transitions occur that make the magma-crystal ensemble display features
of a solid: First, the effective viscosity of the suspension increases sharply at a crystallinity of ∼40% (the spe-
cific volume fraction varies with crystal shape and size distribution), reducing the ability of the suspension
to flow as a fluid (Caricchi & Blundy, 2015; Costa, 2005; Costa et al., 2009; Lejeune & Richet, 1995; Moitra &
Gonnermann, 2015; Picard et al., 2011; Pistone et al., 2012; Vigneresse et al., 1996). Second, as the volume frac-
tion increases to a critical value, the crystals form a touching network, which behaves as a solid, elastic frame
that resists deformation (Aharonov & Sparks, 1999; Jerram et al., 2003). Some studies have suggested a poroe-
lastic rheology for partially molten magma chambers (Gudmundsson, 1987, 2012; Nooner & Chadwick, 2009).
Specifically, Nooner and Chadwick (2009) suggested that poroelasticity, in addition to viscoelastic relaxation
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of the crust, could explain the field observation of posteruption repressurization of a mid-ocean ridge volcano.
In this study, we consider crystal mush to behave poroelastically. We compare this to another case where the
crystalline framework deforms viscoelastically.

2.2. Model Setup
We develop a conceptual model for a mushy magma chamber that is subjected to a magma injection event in
order to interrogate the mechanical effects of crystal mush in the chamber. Our model assumes a simplified,
radially symmetric (i.e., spherical) magma chamber for convenience of analysis and to facilitate comparisons
with existing models (e.g., Dragoni & Magnanensi, 1989; Karlstrom et al., 2010; McTigue, 1987). In the magma
chamber, a liquid core of compressible magma is surrounded by a spherical shell of poroelastic crystal mush
with porosity𝜙o. All pore spaces in the mush are filled with magma. The magma chamber sits within an infinite
domain of homogeneous, isotropic host rock, which is assumed to be a linear elastic material (Figure 1). Prior
to the injection of new magma, the magma chamber is in lithostatic equilibrium, where the stresses in the
mush shell and host rock, as well as the core fluid pressure, balance at both the fluid-mush interface and the
mush-rock interface. For simplicity, we consider the materials to be isotropic and homogenous; thus, material
failures (fracture formation, diking, etc.) are not considered.

A simplified magma injection event begins at time t = 0, after which a specific amount of magma is added into
the fluid core over a finite time interval. We assume that the volume of the injected magma is small compared
to that of the liquid core, thus leading to reversible deformation in the mush shell and host rocks. By invoking
principles of linear elasticity and poroelasticity, we examine the change in deformation and stresses in the
system from the initial steady state. For consistency with existing mushless mechanical models, we consider
the processes involved during and after the injection to be isothermal (Browning et al., 2015; Mogi, 1958;
Segall, 2016); thus, the rheologies of the material remain constant.

During and after the injection, the displacement increments are denoted by u⃗rock in the host rock and u⃗m

in the mush shell. Assuming spherical symmetry, the displacements only contain radial components; hence,
u⃗rock = urock(r, t)r̂ and u⃗m = um(r, t)r̂, where r̂ is the radial basis in the spherical coordinate, pointing outward; r
is the radial position, measured from the center of the chamber to the initial position of any given point in the
mush shell or host rock; and t is time, measured from the onset of the magma injection. The change in elastic
or poroelastic stresses from deformations is 𝝈rock(r, t) in the host rock and 𝝈m(r, t) in the mush shell. Due to
radial symmetry, the stress tensors only have nonzero values in the radial components 𝜎rr

rock(r, t), 𝜎rr
m(r, t), and

tensile components 𝜎𝜃𝜃rock = 𝜎
𝜙𝜙

rock, 𝜎
𝜃𝜃
m = 𝜎

𝜙𝜙
m . The injection event is modeled by an increase in the core fluid

mass, which starts at time t = 0. We assume that during the injection, magma is added to the chamber at a
constant rate. That is, for the same injected mass, a longer injection period corresponds to the smaller injection
rate; when the injection rate is infinitely high, we refer to the case as a sudden injection. For convenience, we
refer to the case of spherical magma chamber with no mush as the elastic model.

2.3. Governing Equations and Quantitative Solutions
2.3.1. Deformation and Fluid Transport in the Mush Shell
We consider the crystal mush to be an ideal (i.e., homogeneous and isotropic) poroelastic material and apply
the classical theories for linear poroelasticity developed by Biot (1941) to describe its deformation. We define
the variation in fluid content m(r, t) as the change in pore fluid mass per undeformed volume of the mush,
which has unit of density. By this definition, m> 0 indicates that pore fluid is gained, and m < 0 indicates
that pore fluid is lost relative to the initial condition. The constitutive relations for an ideal poroelastic material
prescribe the linear relations between the strain (i.e, determined by u⃗m(r, t)), stress 𝝈m(r, t), pore pressure
Pf (r, t), and variation in fluid content m(r, t)

𝝈m = (Km − 2
3
𝜇m)∇ ⋅ u⃗m(r)I + 𝜇m

(
∇u⃗m + ∇u⃗T

m

)
− 𝛼Pf I (1a)

m = 𝜌f𝛼(∇ ⋅ u⃗m + 𝛼

Ku − Km
Pf ), (1b)

where I is the unit tensor. The constitutive relations include several micromechanical properties of the mush
(see Table A2 for their definitions). For example, the undrained modulus Ku and the drained modulus Km indi-
cate the strength of mush for a given volumetric deformation with and without the participation of pore fluid.
Specifically, Ku depends on the strength of the solid crystals, strength of the pore structure, and the compress-
ibility of the pore fluids, while Km depends only on the strength of the solid crystals and the strength of the
pore structure in the mush.

LIAO ET AL. 9378



Journal of Geophysical Research: Solid Earth 10.1029/2018JB015985

Figure 2. (left panel) The relations between the bulk moduli of the porous ensemble Km, Ku, and the bulk moduli of the
separate phases. Km is the drained bulk modulus, which is determined by the bulk modulus for the solid phase Ks, and
the structural strength of the pore space. Ku is the undrained bulk modulus, which is determined by Ks , the structural
strength of pore space, and the bulk modulus (inverse of compressibility) Kf of the fluid phase. (right panel) Two cases
with different structural strengths of the pore space: the structure consisting spherical pores are stronger, while slit-like
pores are weaker (Cheng, 2016).

A unique property of poroelastic material, compared to elastic material, is that the pore fluids accommo-
date a portion of the applied stress on the ensemble, which is reflected by the coefficient 𝛼 in the last term
on the right-hand side of (1a). The poroelastic coefficient 𝛼 (also known as Biot coefficient) can be further
estimated via

𝛼 = 1 −
Km

Ks
, (2)

where Ks is the bulk modulus of the crystals in the mush. Typically, the bulk modulus Km of the dry solid with
interstitial spaces is smaller than Ks, leading to the range of 𝛼 between 0 to 1. For the crystal mush, we assume
that the fluid magma is distributed along the boundaries of the crystals and hence forms pore spaces that are
closer to slit shaped, rather than sphere shaped. Slit-shaped pore spaces in the crystal mush tend to weaken
the pore structure (see Figure 2), lowering the value of Km and increasing the coefficient 𝛼. We consider a large
value of 𝛼 (i.e., 0.5–1) to be more likely for the crystal mush.

We assume the mush shell to be permeable and that the fluid occupying the interstitial spaces flows according
to Darcy’s law in which q⃗ is the Darcy velocity of the pore fluid, 𝜅 is the permeability of the porous crystalline
structure in the mush, 𝜂f is the viscosity of the pore fluid magma, and 𝜌f is the density of the pore fluid magma:

q⃗ = − 𝜅
𝜂f
∇Pf (3a)

𝜕m
𝜕t

+ ∇ ⋅ (𝜌f q⃗) = 0 (3b)

in which (3b) is the mass conservation of the pore fluid mass and (3a) is the Darcy’s law for porous flow (we
assume negligible gravitational force relative to pressure gradient).
2.3.2. Deformation in Crust Rock and Core Fluid Pressure
The deformation in the crustal rock caused by the inflation of the magma chamber and the generated stress
are linked by the constitutive relation for a linear elastic solid:

𝝈rock = (Kr −
2
3
𝜇r)∇ ⋅ u⃗rockI + 𝜇r

(
∇u⃗rock + ∇u⃗T

rock

)
, (4)

where Kr and 𝜇r are the bulk and shear modulus of the host rock, respectively.

Magma chamber inflation results from injecting magma of finite mass ΔM into a chamber with a liquid core
of mass Mo. At any moment t, we define Minj(t) as the amount of magma that has been injected into the liquid
core between time 0 to t. As magma can be driven across the liquid-mush interface, we define Mleak(t) as
the total mass of magma that has been transported into the mush shell at any given time, which is related
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to the variable m(r, t), defined as the variation of fluid content in (1b) as Mleak(t) = ∫ Ro
ro

4𝜋r2m(r, t)dr, due to
the conservation of fluid mass. We assume that isothermal compression of the core fluid during and after the
injection causes the core pressure to increase and find that the increase in core pressure Pl(t) is

Pl(t) = Kl(
Minj(t)

Mo
−

Mleak(t)
Mo

)
(

1 − 3
um(ro, t)

ro

)
, (5)

where Kl is the bulk modulus (i.e., inverse of compressibility) of the core magma and um(ro, t) indicates the
radial displacement at the boundary r = ro on the liquid-mush interface (derived in Appendix A1). In our
study, we explore two types of injection: gradual injection where the injected magma ΔM is added into the
chamber with a constant mass flow rate over a period from t = 0 to t = tinj and sudden injection where
the same amount of magma is added into the liquid core instantaneously at time 0. The two cases lead to the
expression for Minj(t):

Minj(t) =

{ ΔM
tinj

(
t − (t − tinj)H(t − tinj)

)
, for gradual injection

ΔM , for sudden injection
, (6)

where H is the Heaviside function.
2.3.3. Boundary Conditions
We assume that the elastic host rock and elastic solid network in the mush are at quasi-equilibrium state due
to the rapidity of the elastic response of the solid matrix; hence,

∇ ⋅ 𝜎rock(r, t) = 0, ∇ ⋅ 𝜎m(r, t) = 0. (7)

The combination of equations (7), ((1)), and (3) leads to a diffusion equation for m(r, t) (see Appendix A2.3):

𝜕

𝜕t
m − c∇2m = 0 (8)

where the poroelastic diffusivity c is defined as

c = 𝜅

𝜂

(Km + 4
3
𝜇m)(Ku − Km)

𝛼2(Ku +
4
3
𝜇m)

, (9)

which is controlled by the micromechanical properties of the mush (e.g., Km, Ku, and 𝜇m). The solution for (8),
which will lead to the solution of other quantities in the system, is determined by the boundary conditions.
Forces are mechanically balanced on both the liquid-mush interface and the mush-rock interface, leading to

Pl(t) + 𝜎m(ro, t) = 0 (10a)

𝜎rr
m(Ro, t) = 𝜎rr

rock(Ro, t) (10b)

u⃗m(Ro, t) = u⃗rock(Ro, t), (10c)

where (10c) requires the continuity of displacement across the mush-rock boundary. For the pore fluid, we
assume that fluid pressure at the core-mush interface is continuous and that the mush-rock interface is
impermeable for the magma:

Pf (ro, t) = Pl(t) (t> 0) (11a)

∇Pf (Ro, t) = 0. (11b)

2.3.4. Solution Method
To facilitate solving for the evolution of the system, we choose the chamber radius Ro for the length scale, the

poroelastic diffusion time
R2

o

c
for the time scale, the preinjection density of magma 𝜌f ,(0) for the scale of m, and

the elastic rigidity of the host rock 𝜇r for the scale of stress or pressure. We nondimensionalize the variables
in the governing equations and boundary conditions using their respective scales and obtain a governing
equation for the dimensionless variation in fluid content m (for convenience, we use the same symbols for the
dimensionless variables):

𝜕

𝜕t
m(r, t) − ∇2m(r, t) = 0. (12)
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Figure 3. Deformation in the mush shell (a) during and (b) after an injection. The radial displacement in the mush shell
is shown as function of radial position in the mush shell. The color indicates a progression in time during and after the
injection: The injection period is shown from blue to magenta, and the postinjection evolution is shown from magenta
to yellow. During the injection, all points in the mush shell push radially outward; after the injection, the inner rim of the
shell retracts inward due to the loss of fluid from the liquid core, while the outer rim continues to push outward, due to
the inflation of the shell caused by increased fluid content. The maximum displacement at the core-shell boundary
occurs at the end of the injection, as shown by the black dashed line. The evolution is calculated numerically using a
finite difference scheme, for a system with parameter set #1 from Table A3.

The boundary conditions (10) and (11) can be transformed into constraints on m at the two boundaries (note
that after being normalized by the length scale, the inner and outer boundary of the mush shell corresponds
to r = ro

Ro
and 1, respectively):

f1m

(
ro

Ro
, t

)
+ h0 ∫

1

ro
Ro

m(r′, t)r′2dr′ = h1, (t> 0) (13a)

𝜕m
𝜕r

(1, t) = 0, (t> 0) (13b)

m(r, 0) = 0,
(

ro

Ro
< r < 1

)
, (13c)

where (13c) is the initial condition for m, indicating that initially the pore fluids are not moving. The constants
h0, f1, and h1 are determined by the micromechanical properties of the liquid-filled mush material and the
geometrical property ro∕Ro of the magma chamber (see Appendices A2.5 and A2.6). We solve (12) with the
boundary conditions (13) numerically and analytically for the evolution of m(r, t) during and after the injec-
tion. Once m(r, t) is obtained, other quantities, including the displacement, stresses, and pressures, can be
determined (see Appendix A2.5). We identify how these quantities evolve with time, the new steady state
reached by the system after the injection, and the time it takes for the system to arrive at the new steady state.

3. Syn-injection and Postinjection Evolution
One distinct feature of the mush model, compared to the conventional elastic model, is that the mechanical
state of both the chamber itself and the host rock surrounding it can evolve after an injection has terminated.
In this section, we explore the postinjection evolution of the core liquid pressure and the tensile stress in the
host rock. Both of these properties are thought to play important roles in magmatic systems, as the former
can modulate the injection rate, and the latter may cause wall rock to rupture and trigger an eruption (Blake,
1981; Gudmundsson, 2016; McTigue, 1987; Segall, 2016). As the injection rate of magma can vary many orders
of magnitude in nature (Crisp, 1984), we select a variety of injection rates (by varying the injection time tinj for
the same volume of magma) in order to qualitatively understand the impact of injection rate on the transient
evolution of the system. Realistically, the injection rate is likely modulated by the change in the liquid core
pressure, which we discuss in section 6. For simplicity, we assume that the injection rate is a constant during
the injection and instantaneously becomes 0 once the injection terminates.

3.1. Transient Evolution of Deformation and Stresses
We find that the deformation in the mushy chamber and host rock and the liquid core pressure and host rock
tensile stress all increase during the injection and continue to evolve after the injection terminates. The liquid
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Figure 4. Evolution of (a) core pressure Pl and (b) tensile stress 𝜎𝜃𝜃
rock

in the rock at the mush-rock boundary as functions
of time t (normalized), for three different injection times tinj (normalized), respectively. The vertical dash lines in green,
blue, and red indicate the moments when the injection terminates, at t = 0.01, t = 0.1, and t = 0.5, respectively. Insets
in (a) and (b) show the evolutions of the core pressure and tensile stress corresponding to a liquid magma chamber
model with the same liquid core volume, for which both quantities linearly increase with time and stop changing once
the injection terminates (indicated by the black vertical dash line). The horizontal dash line in magenta indicates 90% of
the final steady tensile stress, intersecting with the three curves, as indicated by the green, blue, and red stars. The
definition for 𝜏90 is shown for the case of tinj = 0.1, indicated by the blue star and arrow. (c) The (normalized)
postinjection evolution time 𝜏90, defined as the extra postinjection time before the tensile stress reaches 90% of its final
steady value. Green, blue, and red stars correspond to the three different injection times shown in panel (b). For large
injection time tinj (e.g., when tinj ⩾ 0.5), the system would have reached more than 90% of the final stress before the
injection terminates, in which case 𝜏90 = 0. For all four panels, the system has parameter set #1 from Table A3.
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core pressure reaches its maximum at the end of the injection period and decreases during the postinjection
evolution, while the tensile stress on the host rock, in most cases, keeps increasing during the postinjection
evolution. Thus, in most cases the whole magma chamber continues to inflate after the injection event (see
Figures 3 and 4).

We find that the fluid content within the mush shell increases and the volume of the liquid core decreases after
the injection ceases (see Appendix A2.6 and Figure A1). This reflects diffusion of magma into the poroelastic
mush shell, which causes the postinjection evolution of the system. During the injection, the fluid pressure
gradient across the liquid-mush boundary increases and drives the diffusion of magma content from the inner
boundary of the mush shell toward the outer boundary. As the speed of this process is limited by the finite
diffusivity, the pressure gradient in the mush is not eliminated at the time the injection terminates, resulting in
continued melt transport and deformation during the postinjection evolution (Figure 3). Because the magma
is injected into the fluid core, the pressure in the liquid core is always higher than in the mush immediately
after the injection ceases. As a result, the core fluid pressure and volume always decrease due to the porous
flows during the postinjection period. Meanwhile, as more magma is transported into the mush shell, the
pore spaces in the mush swell and the mush shell volume increases during the postinjection evolution. In the
example shown in Figure 3, the porosity in the mush shell increases by only 0.001–0.002 (see Figure A1 in
Appendix A2.6), which is still well within the limits of a locked/uneruptable mush (Cashman et al., 2017). The
postinjection change in the total volume of the magma chamber, hence the tensile stress in the host rock,
results from the combined effects of the shrinking liquid core and the swelling mush shell and may either
increase (Figure 4b) or decrease (discussed in section 4), depending primarily on the value of 𝛼. However, we
find that a postinjection increase in the total chamber volume is more likely to occur, given the expected large
value of 𝛼 for the crystal mush ensemble (as discussed in section 2.3.1), as well as the high compressibility of
the core magma compared to the host rock.

3.2. Characteristic Time for Postinjection Evolution
With enough time postinjection, the system approaches a steady state (Figure 4). In contrast, if a liquid magma
chamber is mushless (as in the conventional elastic models), a new steady state is reached as soon as the
injection terminates due to the instantaneous elastic deformation in the wall rock (insets in Figures 4a and
4b). In this section, we quantify the time scale associated with the postinjection poroelastic evolution, using
the analytical solution for the case of a sudden injection. Following a sudden injection, the time-dependent
solutions involve an infinite number of exponentially decaying terms with the form

A0(r) + A1(r)e−x1t + A2(r)e(−x2t) + … + An(r)e−xnt + ...,

where A0,A1,A2,… ,An, ... are r-dependent coefficients, and positive values x1 < x2 < ... < xn < ... determine
the decay rate for each term. The smallest decay rate x1, calculated graphically using Laplace transform, yields
the longest and most dominant decay time (see Appendix A2.7 for details). This dominant time scale occurs
when injection time tinj → 0 (Figure 4c), and is defined as

tpost = (R2
o∕c) ∗ (1∕x1)

in which (R2
o∕c) is the poroelastic diffusion time (see Appendix A2.8). The tpost is determined by the geometry

of the system and physical properties of the magma and mush. We find that tpost is strongly positively and
nonlinearly influenced by the volume fraction of mush in the chamber and the poroelastic coefficient 𝛼 (see
Figure 5). The relationship between tpost and 𝛼 suggests that slit-shaped interstitial spaces in crystal mush
favor longer postinjection time. Other micromechanical properties, such as the relative mush rigidity 𝜇m

𝜇r
, the

compressibility of the core magma Kl

𝜇r
, and pore magma Kf

𝜇r
, (see Appendix A2.8 and Table A2), also affect tpost

nonlinearly, but to a lesser degree (see Figure A3b in Appendix A2.8).

In addition to the dimensionless parameters that influence tpost nonlinearly, we find that tpost also increases

linearly with a lumped parameter tpost ∝ R2
o𝜂f

𝜅𝜇r
. Thus, tpost generally increases with larger chamber size and

higher magma viscosity, and decreases with increasing mush permeability. Figure 5 illustrates that tpost can
vary from hours to over 1,000 years using liquid core radii from 0.1 to 5 km, mush permeability 𝜅 from 10−10 −
10−8 m2, rock rigidity 𝜇r of ∼10 GPa, and magma viscosity from 102 –106 Pa s.

4. Effects of Crystal Mush on the Postinjection Steady State
After an injection, a steady state is eventually achieved when the fluid pressure reaches a uniform value in
the mush shell. The displacement and stresses in this new steady state, which correspond to their solutions at
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Figure 5. The postinjection evolution time tpost as a function of various system parameters, based on equation (A63) in
Appendix A2.8. (a) The tpost as function of the poroelastic coefficient 𝛼 for a chamber with 50% volume of mush. Blue
and green curves correspond to a chamber with 1-km liquid core radius and 1 km of total radius, respectively. (b) The
tpost as function of the mush volume fraction, for two cases with 𝛼 = 0.5 and 0.9, respectively. A zoom-in on small mush
volume ratio is shown in the inset panel in (b). (c) The tpost as function of the magma viscosity 𝜂f , for a system with
𝛼 = 0.9 and mush volume fraction of 0.5. The functions are shown for various combinations of mush permeability 𝜅 and
liquid core size. In all panels, magenta stars correspond to the same combination of parameters with 𝜂f = 103Pa s,
𝜅 = 10−9 m2, 𝛼 = 0.9, mush volume fraction 0.5, and a liquid core with 1-km radius. Other parameters are given in set
#2 in Table A3.
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Figure 6. Postinjection steady state of the system, where core pressure and tensile stress are shown as functions of
injected magma volume for different 𝛼 and mush volume fraction in the chamber, assuming no rupture happens. The
steady states are calculated analytically (see Appendix A2.8). The system has parameter set #2 in Table A3. Column
(a) corresponds to a system with a core volume, wherein the total size of the chamber increases with the mush volume
fraction; column (b) corresponds to a system with a total chamber volume, wherein the size of the core decreases with
increasing mush volume fraction.

t → ∞, are functions of the micromechanical parameters that also influence tpost (see section 3.2). As men-
tioned in section 3.2, the postinjection steady state is independent of the injection rate (Figures 4a and 4b).
The postinjection steady state is also independent of the absolute value of Ro, 𝜅, and 𝜂f , which only affect the
time it takes to reach the steady state. Although the physical arrangement of mush and melt within a mag-
matic system is not well constrained and likely to be complex (Caricchi & Blundy, 2015), we examine some
simple cases to evaluate the importance of mush content on the final steady state of the system. By varying
the volume fraction of mush (i.e., volume of mush shell divided by the total volume of the magma chamber),
we find that the effect of mush content may influence the final steady state differently, depending on whether
the core volume or the total chamber volume is held constant.

In one case, we hypothesize a series of magma chambers each with the same volume liquid core but
an increasingly thick shell of surrounding mush. This case study reflects our ability to seismically detect
liquid-filled bodies but the difficulty in resolving the amount of crystal mush or, in some cases, discerning it
from hot country rock (e.g., Singh et al., 1998; Ward et al., 2014). With increasing mush shell thickness, the rel-
ative mush to liquid volume, hence the mush content, and the volume of the chamber increase. In this case,
as the mush content increases, the same amount of injected magma causes lower core pressure and tensile
stress. The end member of an elastic magma chamber model (i.e., no mush) results in the greatest increase in

LIAO ET AL. 9385



Journal of Geophysical Research: Solid Earth 10.1029/2018JB015985

Figure 7. Postinjection change in tensile stress following a sudden injection for (a) 𝜇m = 0.5𝜇r , Kf = 0.5𝜇r and varying
values of 𝛼 and core fluid compressibility (1∕Kl); (b) 𝛼 = 0.9, 𝜇m = 0.5𝜇r and varying values of pore fluid compressibility
(1∕Kf ) and core fluid compressibility (1∕Kl); and (c) Kl = Kf = 0.5𝜇r and varying values of 𝛼 and mush rigidity 𝜇m. The
color red indicates that the tensile stress increases during the postinjection evolution (i.e., the magma chamber inflates);
the color blue indicates that the tensile stress decreases during the postinjection evolution (i.e., the magma chamber
deflates). Black lines are contours of normalized tensile stress increment. (d) Syninjection and postinjection evolution of
the tensile stress for three cases, whose parameters are indicated on plot (c). Case A leads to a postinjection deflation
(blue curve), case B leads to negligible postinjection tensile stress change (green curve), and case C leads to
postinjection inflation (red curve), which we consider to be the most likely outcome for crystal mush. For all cases,
𝜙o, Ks, and Ro∕ro are given in parameter set # 1 in Table A3.

core pressure and tensile stress and hence has the highest likelihood of wall rock rupture for a given amount
of injected magma (Figure 6 column a). In this case, the poroelastic mush functions as a buffer, allowing more
magma to be injected before rupture happens, which is consistent with the findings of earlier, poroelastic
chamber models (Gudmundsson, 2016). In another case, we hypothesize that the mushy chamber is formed
from a liquid chamber by crystallization on the chamber walls (e.g., Marsh, 1989). With time, the mush shell
becomes thicker and the liquid core volume decreases, while the total volume of the magma chamber remains
constant. In this case, with increasing mush content, the same amount of injected mass causes increased core
pressure and tensile stress (Figure 6 column b). In both cases, increasing the volume of injected magma causes
a linear increase in the final core pressure and tensile stress, as is the case for the elastic (i.e., no mush) model.
In addition to the relative proportions of mush and magma, the poroelastic coefficient of the mush (𝛼) also
strongly influences the final steady state of the system. A higher value of 𝛼 (i.e., relatively weak pore structure)
makes the mush shell more leaky, which reduces the core pressure by increasing core-to-mush magma trans-
port. Higher value of 𝛼 also causes the mush shell to swell more, leading to higher tensile stress in the host
rock (Figures 7 and A4). Other micromechanical quantities, such as the relative compressibility of magma and
rigidity of the mush, influence the final steady state to a lesser degree (see Appendix A2.9, Figure A4).
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Figure 8. Diffusion and relaxation processes following sudden injection of ΔM = 2%Mo for a system with a poroelastic
mush shell (dashed line) and a system with an effective viscoelastic shell (solid line). (a–c) The postinjection evolution of
liquid core pressure, rock tensile stress, and the volume change of the liquid core for mush volume fraction of 50%. The
postinjection time (x axis) is normalized by the postinjection evolution time tpost for the poroelastic shell and tvisc

post for
the viscoelastic shell, respectively (see Appendix A3). (d) The postinjection evolution time tpost (or tvisc

post, for the
viscoelastic cases), as functions of the total size of the magma chamber, for two different mush volume fraction. To
calculate tpost or tvisc

post, we assume magma viscosity 𝜇f = 103 Pa s and mush permeability 𝜅 = 10−9 m2 for the
poroelastic mush and assume the viscosity of the crystalline framework 𝜂m = 1018 Pa s following Segall (2016). Other
parameters are given in set #3 in Table A3.

As discussed in section 3.1, during the postinjection evolution, the pressure in the liquid core always decreases
(Figure 4a) due to diffusion of magma into the mush, regardless of its specific micromechanical properties of
the mush. However, the postinjection evolution of the tensile stress in the host rock (i.e., the total volume of the
magma chamber) may increase, decrease, or remain constant, depending on the specific system (Figure 7d).
Using the analytical solution for the end member of an instantaneous injection (see Appendix A2.9), we find
that how the tensile stress evolves after the injection depends on a combination of different micromechanical
properties. Specifically, the tensile stress is more likely to increase (i.e., the postinjection increment Δ𝜎𝜃𝜃rock > 0
in Figures 7a–7c) if the pore structure is significantly weaker than the solid crystals (i.e., corresponding to
large 𝛼 value), if the fluids in the core are relatively compressible, or if the mush ensemble is relatively rigid to
shearing (i.e., moderate 𝜇m).

5. Poroelastic Versus Viscoelastic Response
Transient evolution in a magma chamber after an injection is not strictly poroelastic response but can also be
caused by viscoelastic deformation, as suggested in previous research (Dragoni & Magnanensi, 1989; Jellinek
& DePaolo, 2003; McTigue, 1987; Nooner & Chadwick, 2009; Segall, 2016). Here we explore a case where the
mush behaves effectively as a viscoelastic material. We consider the rheology of poroviscoelasticity involv-
ing a short viscoelastic relaxation time and a long poroelastic diffusion time (e.g., if the magma viscosity is
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very high, or if the mush has very low permeability). In this end member case, the mush shell remains in an
undrained condition during the viscoelastic relaxation of the crystalline matrix (i.e., the pore magma is always
locked in the interstitial spaces). The deformation of the mush shell is therefore equivalent to a viscoelas-
tic shell, which we then approximate as a Maxwell solid. We apply a Laplace transform on the poroelastic
solution in an undrained condition (see Appendix A3), similar to the approach for comparable viscoelastic
models (Dragoni & Magnanensi, 1989; Segall, 2016). Comparing the postinjection evolution of the viscoelas-
tic case with the poroelastic model, we find that both models involve a postinjection decrease in the liquid
core pressure and increase in the tensile stress in the host rock (Figures 8a and 8b). However, the postinjec-
tion evolution of the volume of the liquid core follows opposite trends for the two models. In the poroelasitc
model, the transport of magma from the core to the shell causes the liquid core volume and core pressure
to decrease, whereas in the viscoelastic model, the outward creeping of mush shell (i.e., both the liquid-mush
boundary and the mush-rock boundary push outward) causes the core volume to increase and the core pres-
sure to decrease (Figure 8c). It is also worth noting that, contrary to the postinjection poroelastic evolution
time tpost (as discussed in section 3.2), which depends sensitively on the total size of the chamber (tpost ∝ R2

o),
the characteristic viscoelastic postinjection evolution time tvisc

post depends only on the ratio ro∕Ro. Hence, for a
given mush volume fraction, tvisc

post is independent of the total size of the magma chamber (see Appendix A3
and Figure 8d). These differences between the two models, particularly the size dependence of the postinjec-
tion transient evolution, can potentially provide a means to determine which rheology is responsible for the
observed transient deformation in volcanic systems.

6. Summary and Conclusions
In this study, we develop an analytical model to evaluate how the abundance of crystal mush influences the
mechanical evolution of crustal magmatic systems. By assuming a spherical magma chamber consisting a liq-
uid core enveloped by a mush shell, we explore the behavior of the magma-mush-rock system during and
after a magma injection event. We find that when the mush behaves poroelastically, the system continues
to evolve after the injection of magma has terminated. Porous flow from the liquid core into the mush shell
causes the pressure in the liquid magma core to decrease during the postinjection evolution. Expansion of
the mush shell due to added pore pressure often causes the system to reach maximum tensile stresses at
some time after the injection has already ceased. For a liquid magma core of given volume, a thicker mush
shell (higher mush-melt ratio) acts as a buffer, decreasing the final core pressure and the tensile stress. As a
result, more mush can potentially allow more liquid magma to be injected before a chamber ruptures. We
find that the poroelastic coefficient 𝛼 of the crystal mush and the volume fraction of mush in the chamber
play important roles in determining the postinjection steady state of the system. In addition, chamber dimen-
sion, magma viscosity, and mush permeability exert a strong control on the time scale of the postinjection
evolution. The importance of the parameters such as the poroelastic coefficient, magma viscosity, and mush
permeability on the transient evolution and/or the final steady state of mushy systems demonstrates the need
for further investigation of the micromechanical properties of crystal mush.

We compare the above poroelastic syninjection and postinjection evolution with model predictions using a
viscoelastic rheology for the mush shell and using an elastic model (i.e., no mush). Both poroelastic and vis-
coelastic mush shells result in postinjection transient evolution, in contrast to the mushless case, wherein the
magma chamber achieves a new steady state immediately when the injection ceases. The poroelastic and vis-
coelastic models display some similar behaviors as both can yield a postinjection increase in tensile stress and
decrease in core pressure. However, a notable difference between the models is that the poroelastic postin-
jection evolution time depends on the size of the magma chamber, while the time scale of the postinjection
viscoelastic response, for a fixed mush volume fraction (i.e., the ratio ro∕Ro), is independent of the absolute
size of the chamber. This difference may provide a means to distinguish which rheology (poroelasticity or vis-
coelasticity) is dominant for natural magmatic systems where the time scales and magnitudes of transient
evolutions can be observed through geodetic measurements. However, we recognize that for such compar-
isons, the described models would require further development, including incorporation of a free surface
to model deformation and exploration of nonradially symmetric geometries both in the dimensions of the
magma chamber and distribution of the mush within it.

In this first step for considering the mechanical effects of poroelastic mush in a magma chamber, one of the
key findings is that magma is transferred from the liquid core to surrounding mush. The ability of a poroelastic
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mush shell to store magma has important potential implications when a mushy chamber is a part of a larger
magmatic plumbing system. For example, during an injection event, the injection rate is typically assumed
to be proportional to the difference between a shallow magma chamber and deep magmatic reservoir with
higher pressure Pdeep (Mastin et al., 2008; Segall, 2016). In the case of a mushy, shallow chamber, porous flow
from the core into the mush shell will decrease the chamber pressure, maintaining a larger-pressure differ-
ence Pdeep − Pl and allowing more magma to be injected into the shallow mushy chamber. Conversely, when
a mushy chamber discharges magma to the surface, the overpressure between the chamber and the litho-
sphere Pl−Plith controls the discharge rate. In this case, the decrease in core pressure can draw the pore magma
back into the core and hence maintain a higher overpressure, potentially leading to longer discharge time,
and more magma erupted. Thus, understanding the properties of mushy magmatic systems, and especially
whether the mush behaves as a poroelastic material, will be essential in order to improve our models of the
behavior and potential hazards posed by volcanism.

Appendix A: Theoretical Framework
The variables in our study are defined in Table A1, which vary with space (radial position r) or time t. The
constant parameters are shown in Table A2.

A1. Model Setup
We assume that the system is initially at a steady state, with uniform liquid pressure in both the core magma
and the pore fluids in the mush shell. At time t = 0+, an injection begins and causes the system to deviate from
its initial equilibrium state. We define subscripts (0) to refer to the preinjection equilibrium state and define
radial position r as the distance from the center of the magma chamber to the equilibrium position of any
given element in the mush shell or host rock and t as time (see Table A1). Following the onset of the injection,
the new displacements in the system become u⃗m,(0)(r) + u⃗m(r, t) (in the mush) and u⃗rock,(0)(r) + u⃗rock(r, t) (in
the rock); the stresses become 𝝈m,(0)(r) + 𝝈m(r, t) (in the mush) and 𝝈rock,(0)(r) + 𝝈rock(r, t) (in the rock); the
core pressure and pore pressure become Pl,(0) + Pl(t) and Pf ,(0) + Pf (r, t), respectively. We assume that the
deformations in the mush shell and host rock obey the constitutive relations for linear poroelastic and elastic
solids. By linearizing the system, we can show that the increments u⃗m, u⃗rock, 𝝈m, 𝝈rock, Pl , and Pf obey (Cheng,
2016; Biot, 1941; Landau & Lifshitz, 1959; Rice & Cleary, 1976)

𝝈rock = (Kr −
2
3
𝜇r)∇ ⋅ u⃗rockI + 𝜇r

(
∇u⃗rock + ∇u⃗T

rock

)
(A1a)

𝝈m = (Km − 2
3
𝜇m)∇ ⋅ u⃗mI + 𝜇m

(
∇u⃗m + ∇u⃗T

m

)
− 𝛼Pf I, (A1b)

Table A1
Variables in the System

Symbol Definition

r equilibrium radial distance of a given element

t time, measured from the beginning of the magma injection

u⃗m(r, t) displacement increment in mush shell

u⃗rock(r, t) displacement increment in host rocks

𝝈m, 𝜎
rr
m(r, t) increments in poroelastic stress and its radial component in the mush

variables 𝝈rock, 𝜎rr
rock

, 𝜎𝜃𝜃
rock

(r, t) increments in elastic stress, its radial, and its tensile components in host rock

Pf (r, t) pore fluid pressure increment in mush shell

Pl(t) liquid core pressure increment

m(r, t) variation in pore fluid content in the mush

Mleak(t) mass of magma transported from core into mush from time 0 to t

q⃗(r, t) Darcy’s velocity in mush shell

𝜌f (r, t) pore fluid density increment in mush shell

Minj(t) mass injected into the liquid core from time 0 to t

𝜙(r, t) porosity change in mush shell
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Table A2
Symbols of the Constants Used in the Study

Symbol Definition Typical value/expression

ro radius of liquid magma core at initial steady state 0.1–5 km

Ro radius of magma chamber at initial steady state 2ro

𝛼 poroelastic coefficient (Biot coefficient) 0.5, 0.9

c poroelastic diffusivity 𝜅

𝜂f

(Km+ 4
3
𝜇m)(Ku−Km)

𝛼2(Ku+
4
3
𝜇m)

Km drained bulk modulus of mush (1 − 𝛼)Ks

constants Ku undrained bulk modulus of mush (1 − 𝛼)Ks +
𝛼2KsKf

𝜙oKs+(𝛼−𝜙o)Kf

Kr elastic bulk modulus of host rock 5
3
𝜇r

Kl bulk modulus of pore fluid 0.01𝜇r –𝜇r

Kf bulk modulus of core magma 0.01𝜇r – 𝜇r

𝜇r shear modulus (rigidity) of host rock 10GPa

𝜇m shear modulus (rigidity) of mush ensemble 0.01𝜇r – 𝜇r

𝜌f ,(0) magma density at initial steady state value not used

𝜂f viscosity of pore magma 102 –106Pa.s

𝜂m viscosity of the mush ensemble 1018Pa.s

𝜅 permeability in mush 10−10 –10−8m2

𝜙o porosity in mush at initial steady state 0.2

Mo total mass in the liquid core before injection value not used

ΔM total mass injected into the chamber 0.02%Mo

tinj injection time (normalized) 0.01, 0.1, 0.5 (normalized)

rinj injection rate ΔM
tinj

(
1 − H(t − tinj)

)
tpost postinjection evolution time scale (poroelastic case) solved from model

tvist
post postinjection evolution time scale (viscoelastic case) solved from model

𝜏system factor in tpost = 𝜏system𝜏m with unit of time
R2

o𝜂f

𝜅𝜇r

𝜏m dimensionless factor in tpost = 𝜏system𝜏m solved from model

where material constants Kr, 𝜇r, Km, 𝜇m, and 𝛼 are defined in Table A2 and discussed in section 2.3.1. As
discussed in section 2.3.1, we assume an intermediate to large value of 𝛼 (close to 1) in the crystal mush.

We define the variation in pore fluid content m(r, t) by the pore fluid mass gained or lost per unit unde-
formed volume of mush (Biot, 1941; Cheng, 2016), which has units of density. Considering isothermal
compression/dilation of the pore fluid, we approximate m using the linear relation (Biot, 1941; Cheng, 2016;
Rice & Cleary, 1976)

m = 𝜌f ,(0)𝛼

(
∇ ⋅ u⃗m + 𝛼

Ku − Km
Pf

)
(A2)

and assume the undrained bulk modulus of the mush is (see Table A2 and Cheng, 2016):

Ku = (1 − 𝛼)Ks +
𝛼2KsKf

𝜙oKs + (𝛼 − 𝜙o)Kf
(A3)

Table A3
Parameters Used in Computations for Figures in the Main Text

Parameter combination 𝛼
Ro
ro

𝜙0
Ks
𝜇r

Kf
𝜇r

Kl
𝜇r

𝜇m
𝜇r

ΔM
m0

1 0.9 2 0.2 5∕3 0.5 0.1 1 0.02%

2 a a 0.2 5∕3 0.5 0.1 0.5 b

3 0.9 2 0.2 5∕3 0.5 0.5 0.5 0.02%

adenotes that the parameter is varied in the computation. bdenotes that the parameter is irrelevant to the computation.
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m can be integrated across the mush shell to yield the total amount of magma gained or lost by the mush
shell Mleak:

Mleak(t) = 4𝜋 ∫
Ro

ro

m(r, t)r2dr. (A4)

According to the definition of m, Mleak > 0 indicates that magma is transported (i.e., leaked) from the liquid
core into the mush shell.

A2. Governing Equation for Syninjection and Postinjection Evolution
A2.1. Pressure and Mass in the Liquid Core
The injection of magma causes the pressure in the liquid core to increase, which can be calculated if the
injection rate is known. In our study, we assume that the injection occurs over the time period 0 ≤ t ≤ tinj,
during which magma with total mass ΔM is added into the core at a constant mass flow rate. At t = tinj, the
injection terminates. The injection rate, defined as the mass injected into the liquid core per unit time, is

rinj =
ΔM
tinj

(
1 − H(t − tinj)

)
, when tinj > 0, (A5)

where H is the Heaviside function (i.e., H(t−tinj) = 0 for t−tinj < 0 and H(t−tinj) = 1 for t−tinj > 0). We can verify
that rinj = ΔM∕tinj during the injection and rinj = 0 after the injection. When the injection is very rapid and
tinj → 0, the end member case corresponds to an instantaneous injection with injection rate rinj = ΔM𝜹(0),
where 𝜹 is the Dirac delta function. At any time t, we define Minj to be the total amount of magma that has
been added into the chamber from time 0 to t:

Minj(t) = ∫
t

0
rinj(t′)dt′. (A6)

Substituting (A5) into (A6), Minj becomes

Minj(t) =

{ ΔM
tinj

(
t − (t − tinj)H(t − tinj)

)
, tinj > 0

ΔM , tinj = 0,
(A7)

where the lower case corresponds to the end member of an instantaneous injection. We can verify that Minj

increases linearly with time during the injection and holds a constant value Minj = ΔM after the injection
terminates. At time t, the total increase of magma in the liquid coreΔMcore(t) = Minj(t)−Mleak(t) then becomes

ΔMcore(t) =

{ ΔM
tinj

(
t − (t − tinj)H(t − tinj)

)
− 4𝜋 ∫ Ro

ro
m(r, t)r2dr , tinj > 0

ΔM − 4𝜋 ∫ Ro
ro

m(r, t)r2dr , tinj = 0.
(A8)

The increase in core fluid mass ΔMcore(t) can also be approximated using linear expansion:

ΔMcore(t) = Vcore,(0)Δ𝜌core(t) + 𝜌core,(0)ΔVcore(t)

=
(4𝜋

3
r3

o

)(
Pl(t)

Kl
𝜌core,(0)

)
+ 𝜌core,(0)

(
4𝜋roum(ro, t)

)
,

(A9)

where the 𝜌core,(0) = 𝜌f ,(0) is the preinjection magma density, Vcore,(0) =
4
3
𝜋r3

o is the preinjection core volume, Kl

is the bulk modulus of the core fluid during isothermally compression, and um(ro, t) is the radial displacement
of the boundary between the liquid core and the mush shell. Substituting (A8) into (A9), the core pressure
increment Pl(t) becomes

Pl(t) =
⎧⎪⎨⎪⎩

Kl

(
ΔM

Motinj

(
t − (t − tinj)H(t − tinj)

)
− 4𝜋

Mo
∫ Ro

ro
m(r, t)r2dr − 3um(ro ,t)

ro

)
, tinj > 0

Kl

(
ΔM
Mo

− 4𝜋
Mo

∫ Ro
ro

m(r, t)r2dr − 3um(ro ,t)
ro

)
, tinj = 0.

(A10)
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A2.2. Deformation in Country Rock
The country rock surrounding the magma chamber is modeled as an infinite domain of elastic solid, whose
deformation is described by the constitutive relation (A1a). Assuming radial symmetry, the displacement in
the country rock during and after the injection only has a radial component u⃗rock = urock(r, t)r̂ (r ≥ Ro), where
r̂ is the unit vector along the radial direction. Assuming a quasi-static state in the country rock ∇ ⋅ 𝝈rock = 0 at
all time, we obtain (

Kr −
2
3
𝜇r

)
∇
(
∇ ⋅ u⃗rock

)
+ 𝜇r

(
∇2u⃗rock + ∇

(
∇ ⋅ u⃗rock

))
= 0. (A11)

Using the relation∇2u⃗rock = ∇
(
∇ ⋅ u⃗rock

)
−∇×∇×u⃗rock and considering the radial symmetry (i.e.,∇×u⃗rock = 0),

the equilibrium condition ∇ ⋅ 𝝈rock = 0 leads to

𝜕

𝜕r

(
r2 𝜕

𝜕r

(
r2urock(r, t)

))
= 0, (A12)

which has solution for the displacement and stress components

urock(r, t) =
C(t)R3

o

r2
, 𝜎rr

rock(r, t) =
−4𝜇rC(t)R3

o

r3
, 𝜎𝜃𝜃rock(r, t) = 𝜎

𝜙𝜙

rock(r, t) =
2𝜇rC(t)R3

o

r3
, (A13)

where C(t) is an unknown dimensionless function in time and 𝜎rr
rock and 𝜎𝜃𝜃rock are the radial and tensile

components of the elastic stress. We assume that the stresses and deformation in the host rock vanish at
infinity.

A2.3. Deformation and Fluid Transport in Mush Shell
We assume the mush to be an ideal poroelastic material, whose displacement u⃗m = umr̂ and stress 𝝈m are
described by the constitutive relation (A1b) (Cheng, 2016). Assuming quasi-static state ∇ ⋅ 𝝈 = 0 and radial
symmetry (i.e., ∇ × u⃗m = 0), we obtain

∇
(
(Km + 4

3
𝜇m)∇ ⋅ u⃗m − 𝛼Pf

)
= 0, (A14)

which indicates that the combination of volumetric strain and pore pressure (Km + 4
3
𝜇m)∇ ⋅ u⃗m(r, t) − 𝛼Pf (r, t)

only varies with time. Taking the gradient of the equilibrium condition (A14) and the constitutive relation (A2),
respectively, we obtain the relation between Pf (r, t) and the variation in fluid content m(r, t):

∇Pf =
(Km + 4

3
𝜇m)(Ku − Km)

𝛼2𝜌f ,(0)(Ku +
4
3
𝜇m)

∇m. (A15)

We assume that the motion of the pore magma in the permeable mush obeys the Darcy’s law and the
conservation of mass:

q⃗ + 𝜅

𝜂f
∇Pf = 0 (A16a)

𝜕

𝜕t
m(r, t) + 𝜌f ,(0)∇ ⋅ q⃗ = 0, (A16b)

where q⃗ is the Darcy’s velocity, 𝜂f is the viscosity of the magma in the pore space, and 𝜅 is the permeability
of the mush, here assumed to be uniform in space and constant in time. Taking the gradient of (A16a) and
combine it with (A16b) and (A15), we obtain a diffusion type equation for m

𝜕

𝜕t
m − c∇2m = 0 (A17)

where c is the effective diffusivity

c = 𝜅

𝜂f

(Km + 4
3
𝜇m)(Ku − Km)

𝛼2(Ku +
4
3
𝜇m)

. (A18)

Therefore, the porous magma flow in the quasi-static mush shell is described by the diffusion of the variance
in fluid content m.
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A2.4. Boundary Conditions
During the injection, we assume that rapid elastic deformation can always maintain a force balance on the
fluid-mush interface and mush-solid interface. We also assume that the deformation is continuous on the
mush-rock interface and that the mush-rock boundary is impermeable to magma (ie., no magma is allowed
to leak into the host rock). These assumptions lead to the conditions on the inner boundary r = ro and outer
boundary r = Ro:

𝜎rr
m(ro, t) + Pl(t) = 0 (A19a)

𝜎rr
m(Ro, t) − 𝜎rr

rock(Ro, t) = 0 (A19b)

∇Pf (Ro, t) = 0 (A19c)

um(Ro, t) − urock(Ro, t) = 0 (A19d)

Pl(t) − Pf (ro, t) = 0, (t> 0), (A19e)

where (A19a) and (A19b) describe the force balances on the inner and outer boundary of the mush shell,
respectively, (A19c) indicates that the porous flows must vanish at the mush-rock interface, and (A19d)
describes the continuity of radial displacement at the mush-rock boundary. The last condition (A19e)
describes the continuity in fluid pressure at the fluid-mush boundary, which is satisfied unless when t = 0
for an instantaneous injection, in which case the sudden compression of the core fluid causes an instanta-
neous pressure discontinuity across the core-mush boundary. Given the solutions for the deformation in the
host rock (A13), the boundary values of urock and 𝜎rr

rock satisfy the relation −4𝜇r
u(Ro ,t)

Ro
= 𝜎rr(Ro, t), which is

substituted into (A19b) and (A19d) to obtain the relation

− 4𝜇r

um(Ro, t)
Ro

= 𝜎rr
m(Ro, t). (A20)

A2.5. Dimensionless Governing Equations and Boundary Conditions
For convenience and better interrogation of the parameter space, we nondimensionalize the quantities in the
fluid-mush-rock system using the length scale L∗, pressure/stress scale 𝝈

∗, time scale t∗, and the scale for the
variation of fluid content (i.e., density) m∗, which are

L∗ = Ro, 𝝈
∗ = 𝜇r, t∗ =

R2
o

c
m∗ = 𝜌f ,(0).

The time scale is determined by the diffusivity c defined in (A18). Using the scales above, the quantities in the
system are normalized, such that

r →
r

L∗
, um,rock →

um,rock

L∗
, t →

t
t∗
, Pl,f →

Pl,f

𝝈∗ , 𝝈m,rock →
𝝈m,rock

𝝈∗ ,m →
m

m∗

where um,rock and 𝝈m,rock indicate the displacement and stress in either the mush shell or the crust rock and
Pl,f indicates the fluid pressure in either the core or the pore spaces. Using the normalized quantities, the
dimensionless diffusion equation for the dimensionless variation in fluid content m becomes

𝜕

𝜕t
m − ∇2m = 0 (A21)

and the constitutive relation (A2) leads to the relation between the dimensionless quantities

m(r, t) = 𝛼

⎛⎜⎜⎝∇ ⋅ u⃗m(r, t) + 𝛼
Ku

𝜇r
− Km

𝜇r

Pf (r, t)
⎞⎟⎟⎠ (A22)

where ∇ ⋅ u⃗m and Pf are further related by the dimensionless form of the equilibrium condition (A14)

𝜕

𝜕r

((
Km

𝜇r
+ 4

3

𝜇m

𝜇r

)
∇ ⋅ u⃗m − 𝛼Pf

)
= 0. (A23)
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As
(

Km

𝜇r
+ 4

3

𝜇m

𝜇r

)
∇ ⋅ u⃗m −𝛼Pf does not vary in space, we define a dimensionless function in time 𝜁 (t), such that

𝜁 (t) =
(

Km

𝜇r
+ 4

3

𝜇m

𝜇r

)
∇ ⋅ u⃗m − 𝛼Pf . (A24)

The combination of (A22) and (A24) leads to

∇ ⋅ u⃗m(r, t) =
Ku − Km

𝛼(Ku +
4
3
𝜇m)

m(r, t) +
𝜇r

Ku +
4
3
𝜇m

𝜁 (t) (A25a)

Pf =
(Km + 4

3
𝜇m)(Ku − Km)

𝛼2𝜇r(Ku +
4
3
𝜇m)

m(r, t) −
Ku − Km

𝛼(Ku +
4
3
𝜇m)

𝜁 (t). (A25b)

In (A25a), the divergence ∇ ⋅ u⃗m = 1
r2

𝜕

𝜕r
(r2um) can be integrated to obtain um

um(r, t) =
um(1, t)

r2
− 1

r2

Ku − Km

𝛼(Ku +
4
3
𝜇m) ∫

1

r
r′2m(r′, t)dr′ −

𝜇r

Ku +
4
3
𝜇m

𝜁 (t)
3

( 1
r2

− r), (A26)

where um(1, t) is the radial displacement of the mush-rock interface (i.e., at normalized radial position r = 1).
With radial symmetry, the dimensionless radial component 𝜎rr

m, according to the constitutive relation (A1b),
becomes

𝜎rr
m =

(
Km

𝜇r
+ 4

3

𝜇m

𝜇r

)
∇ ⋅ u⃗m − 4

𝜇m

𝜇r

um

r
− 𝛼Pf , (A27)

which is further expressed using (A25a) and (A26)

𝜎rr
m(r, t) = 𝜁 (t) −

4um(1, t)𝜇m

r3𝜇r
+

4𝜇m

r3𝜇r

Ku − Km

𝛼(Ku +
4
3
𝜇m)∫

1

r
r′2m(r′, t)dr′ +

4𝜇m

Ku +
4
3
𝜇m

𝜁 (t)
3

( 1
r3

− 1). (A28)

Inside the liquid core, the dimensionless core pressure (A10) becomes

Pl(t) =
⎧⎪⎨⎪⎩

Kl

𝜇r

(
ΔM

Motinj

(
t − (t − tinj)H(t − tinj)

)
− 3

(
Ro

ro

)3 ∫ 1
ro∕Ro

r′2m(r′, t)dr′ − 3 Ro

ro
um(

ro

Ro
, t)

)
Kl

𝜇r

(
ΔM
Mo

− 3
(

Ro

ro

)3 ∫ 1
ro∕Ro

r′2m(r′, t)dr′ − 3 Ro

ro
um(

ro

Ro
, t)

)
,

(A29)

where the injection time period tinj in the upper case is normalized by the diffusion time scale and the
lower case corresponds to the end member of a sudden injection. Outside of the magma chamber, the
dimensionless solutions (A13) for the radial displacement and stress in the country rock become

urock(r, t) = C(t)
r2
, 𝜎rr

rock(r, t) = −4
C(t)

r3
, 𝜎𝜃𝜃rock(r, t) = 𝜎

𝜙𝜙

rock(r, t) = 2
C(t)

r3
. (A30)

The dimensionless boundary conditions corresponding to (A19a), (A19c), (A19e), and (A20) become

Pl(t) + 𝜎rr
m

(
ro

Ro
, t

)
= 0 (A31a)

Pf

(
ro

Ro
, t

)
− Pl(t) = 0 (A31b)

∇Pf (1, t) = 0 (A31c)

− 4um(1, t) − 𝜎rr
m(1, t) = 0. (A31d)

The dimensionless boundary condition (A31) states the constraints on the displacement, stresses, and pres-
sures in the system, which can be transformed into constraints for the variation in fluid content m(r, t). To do
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so, we use the equilibrium solutions (A25)–(A28) to express the boundary values Pf (
ro

Ro
, t), um(

ro

Ro
, t), 𝜎rr

m(
ro

Ro
, t)

and 𝜎rr
m(1, t) then substitute the inner boundary value um(

ro

Ro
, t) into (A29) to obtain Pl :

Pf

(
ro

Ro
, t

)
= a1m

(
ro

Ro
, t

)
+ a2𝜁 (t) (A32a)

um

(
ro

Ro
, t

)
= b1 ∫

1

ro
Ro

r′2m(r′, t)dr′ + b2𝜁 (t) + um(1, t)
R2

o

r2
o

(A32b)

𝜎rr
m

(
ro

Ro
, t

)
= c1 ∫

1

ro
Ro

r′2m(r′, t)dr′ + c2𝜁 (t) − 4
R3

o

r3
o

𝜇m

𝜇r
um(1, t) (A32c)

𝜎rr
m(1, t) = 𝜁 (t) − 4

𝜇m

𝜇r
um(1, t) (A32d)

Pl(t) = d1 ∫
1

ro
Ro

r2m(r, t)dr + d2𝜁 (t) −
3KlR

3
o

𝜇rr3
o

um(1, t) +

{ Kl

𝜇r

ΔM
Motinj

(
t − (t − tinj)H(t − tinj)

)
Kl

𝜇r

ΔM
Mo

, (A32e)

where the lower case in (A32e) corresponds to the end member of a sudden injection and the constant values
a1, a2, b1, b2, c1, c2, d1, and d2 are determined by the mechanical properties of the system:

a1 =
(Km + 4

3
𝜇m)(Ku − Km)

𝛼2𝜇r(Ku +
4
3
𝜇m)

, a2 = −
Ku − Km

𝛼(Ku +
4
3
𝜇m)

b1 = −
R2

o

r2
o

Ku − Km

𝛼(Ku +
4
3
𝜇m)

, b2 = −
𝜇r

Ku +
4
3
𝜇m

1
3
(

R2
o

r2
o

−
ro

Ro
)

c1 =
4R3

o

r3
o

𝜇m

𝜇r

Ku − Km

𝛼(Ku +
4
3
𝜇m)

, c2 = 1 +
4𝜇m

Ku +
4
3
𝜇m

1
3
(

R3
o

r3
o

− 1)

d1 = −
3KlR

3
o

𝜇rr3
o

− b1

3KlRo

𝜇rro
, d2 = −b2

3KlRo

𝜇rro
.

Substituting (A32d) into the boundary condition (A31d), we obtain the relation between um(1, t) and 𝜁 (t):

𝜁 (t) = eoum(1, t), eo = 4
(
𝜇m

𝜇r
− 1

)
(A33)

which, together with (A32e), (A32a), and (A32c), transform the boundary conditions (A31a)–(A31c) to

f1m

(
ro

Ro
, t

)
+ f2um(1, t) + f3 ∫

1

ro
Ro

m(r′, t)r′2dr − f4 = 0 (A34a)

g1 ∫
1

ro
Ro

m(r′, t)r′2dr′ + g2um(1, t) + f4 = 0 (A34b)

𝜕m
𝜕r

(1, t) = 0, (A34c)

where the dimensionless constants

f1 = a1, f2 = (a2 − d2)eo +
3Kl

𝜇r

R3
o

r3
o

, f3 = −d1

f4 =

{ Kl

𝜇r

ΔM
Motinj

(
t − (t − tinj)H(t − tinj)

)
, gradual injectiontinj > 0

Kl

𝜇r

ΔM
Mo
, sudden injectiontinj → 0

g1 = c1 + d1, g2 = (c2 + d2)eo −
R3

o

r3
o

(
4
𝜇m

𝜇r
+ 3

Kl

𝜇r

)
Eliminating um(1, t), (A34) finally leads to the constrains on m on the boundaries

f1m

(
ro

Ro
, t

)
+
(

f3 −
f2g1

g2

)
∫

1

ro
Ro

m(r, t)r2dr −
(

f4 +
f2f4

g2

)
= 0 (A35a)

𝜕m
𝜕r

(1, t) = 0. (A35b)

The initial condition for m is
m(r, 0) = 0, (

ro

Ro
< r < 1), (A36)

indicating that initially, magma is not moving in the shell. The solution for m(r, t) is uniquely determined by
the boundary and initial conditions (A35) and (A36), which can lead to the solution um(1, t) and 𝜁 (t) using
(A34) and (A33). The solutions for other quantities can be further obtained using (A25)–(A28).
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Figure A1. Evolution of (a) porosity change at the core-mush boundary, (b) relative increase in liquid core volume,
(c) relative increase in total chamber volume, and (d) mass of magma leaked from the liquid core into the shell, as
functions of time, following injection with normalized injection time period of 0.1 (blue) and 0.5(red), respectively. Blue
and red dashed lines indicate the moments when the injection terminates. When the injection period is infinitely short
in the case of an instantaneous injection, the evolutions are shown in black dotted line. The system has the same
parameters with Figure 4 in the main text.

A2.6. Numerical Solution for the Evolution of the System on Gradual Injection
As shown above, the evolutions of the displacement and stresses in the system can be obtained by solving
the governing equation:

𝜕

𝜕t
m(r, t) − ∇2m(r, t) = 0 (A37)

in spherical coordinates, with the initial and boundary conditions

f1m

(
ro

Ro
, t

)
+ h0 ∫

1

ro
Ro

m(r′, t)r′2dr = h1 (A38a)

𝜕m
𝜕r

(1, t) = 0 (A38b)

m(r, 0) = 0,

(
ro

Ro
< r < 1

)
, (A38c)

where the constants

h0 = f3 −
f2g1

g2
, h1 = f4 +

f2f4

g2

are determined by the micromechanical properties and geometry of the system (f1, f2, f3, f4, g1, and g2 are
defined in Appendix A2.5).

The system determined by (A37) and (A38) can be solved either numerically or analytically. For numerical solu-
tion, we employ a finite difference scheme. At each time step, m is integrated across the mush shell to obtain
the boundary value for the following time step. We use the numerical solution for the case of gradual injection
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over finite period of injection time (tinj > 0) and find that the system keeps evolving after the injection termi-
nates (when t> tinj). During gradual injection, the syninjection increase of the core pressure is accompanied
by the expansion of the fluid core volume (see Figures 4, A1a, and A1c). The maximum core pressure and core
volume are achieved at the end of the injection, and their values increase with more rapid injection. After the
injection terminates, the core pressure and volume decrease, due to the continuous leading of magma into
the mush shell (see Figure A1d).

Once the fluid content m(r, t) is fully solved, we use the relations in (A34a) and A33 to obtain um(1, t) and 𝜁 (t):

um(1, t) = −
f1

f2
m

(
ro

Ro
, t

)
−

f3

f2 ∫
1

ro
Ro

m(r′, t)r′2dr +
f4

f2
, 𝜁 (t) = e0um(1, t), (A39)

which lead to solutions for the displacement and stress in the mush shell via (A26) and (A28). As magma flows
from the liquid core into the mush shell, the volumes of the pore spaces and the total mush shell expand,
leading to changes in the porosity Δ𝜙 = Δ(Vpore∕Vtotal), where Vpore and Vtotal are the pore fluid volume fill-
ing up the deformed pore space and total volume of a deformed, infinitesimal small segment in the mush.
Using chain rule, we evaluate the change in porosity by expanding the first-order changes with regard to the
equilibrium state:

Δ
(Vpore

Vtotal

)
=

ΔVpore

Vtotal,0
−

Vpore,0

Vtotal,0

ΔVtotal

Vtotal,0

= 1
Vtotal,0

Δ
(

Mfluid

𝜌f

)
− 𝜙0∇ ⋅ u⃗m

= 1
Vtotal,0

(
ΔMfluid

𝜌f ,0
−

Mfluid,0

𝜌f ,0

Δ𝜌f

𝜌f ,0

)
− 𝜙0∇ ⋅ u⃗m

= m(r, t) − 𝜙0

(
𝜇r

Kf
Pf (r, t) + ∇ ⋅ u⃗m(r, t)

)
,

(A40)

where m(r, t), Pf (r, t), and u⃗m(r, t) are the dimensionless solutions obtained via the numerical solution, Mfluid

denotes the mass of pore magma in the mush segment, and Kf is the bulk modulus of the pore magma. We
use this relation to evaluate the change in porosity and find that the porosity changes is typically small, on
the order of 10−3.

Outside the chamber, the displacement and stress components can be obtained via the continuity of dis-
placement on the mush-rock boundary: Using urock(1, t) = um(1, t), the time-dependent function C(t) in (A30)
is thus determined C(t) = um(1, t), leading to the displacement and the dimensionless stress components in
the crust:

urock(r, t) =
um(1, t)

r3
, 𝜎rr

rock =
−4um(1, t)

r3
, 𝜎𝜃𝜃rock(r, t) = 𝜎

𝜙𝜙

rock(r, t) =
2um(1, t)

r3
, (A41)

which has a dependence on r similar to the solutions around an elastic inclusion (Landau & Lifshitz, 1959;
Mogi, 1958).

We also notice that when the injection period decreases and the injection rate increases, the syninjection
and postinjection evolution of the system approaches the end member case of a sudden injection (see both
Figure A1 and Figure 4). Meanwhile, for the sudden injection, the system takes the longest time to approach
its final steady state. We consider the time scale associated with the transient evolution following a sudden
injection, which is independent of either the injected amount of magma or the injection rate, as an intrinsic
time scale for the system. Below, we study this end member case in order to obtain its transient evolution, as
well as the intrinsic time scale.

A2.7. Analytical Solution for Sudden Injection
In this section, we solve the governing equations (A37) and (A38) for the case of a sudden injection event, in
order to obtain a postinjection time scale that is independent of the injection rate.

The evolution of the system during the diffusion of pore pressure and stress can be solved using Laplace
transform. For a dimensionless function f (r, t) (r and t are normalized with their respective scales), we denote

f̄ (r) = (f ) = ∫
∞

0
f (r, t)e−stdt (A42)
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where s is a complex variable. We can show straightforwardly that the Laplace transform of the new function
𝜕f∕𝜕t becomes

𝜕f
𝜕t

(r) = sf̄ (r) − f (r, 0), (A43)

where f (r, 0) is the initial value of f at time t = 0. Once the solution for f̄ (r, s) is obtained, f (r, t) can be calculated
using the inversion in complex space f (r, t) = ∫ 𝜎+i∞

𝜎−i∞ f̄ (r)ests, where 𝜎 > 0 is a large positive value. We apply
the Laplace transform for all terms on the evolution equations (A37) and (A38) and use the initial condition of
m to obtain the governing equation for the Laplace transform of m:

∇2m̄(r) − sm̄(r) = 0 (A44a)

f1m̄

(
ro

Ro

)
+ ho ∫

1

ro
Ro

m̄(r′)r′2dr −
h1

s
= 0 (A44b)

𝜕m̄
𝜕r

(1) = 0, (A44c)

which is a second-order ordinary differential equation fully determined by two boundary conditions. The
radial symmetric solution for (A44a) in spherical coordinates has solutions with forms of spherical Bessel
functions (with imaginary wavenumber of ±i

√
s):

m̄(s) = A
er
√

s

r
+ B

e−r
√

s

r
, (A45)

where A and B are coefficients to be determined using the boundary conditions (A44b) and (A44c). Substitut-
ing (A45) into the boundary condition at the mush-rock interface (A44c), we obtain the relation

B = 𝜆(s)A, 𝜆(s) =
√

se
√

s − e
√

s√
se−

√
s + e−

√
s
. (A46)

To determine A, we integrate (A45) with (A46) to obtain

∫
1

ro∕Ro

m̄r′2dr′ = 𝜆A
(
√

s ro

Ro
+ 1)e−

√
s ro

Ro

s
− A

(
√

s ro

Ro
− 1)e

√
s ro

Ro

s
, (A47)

which can be substituted into boundary condition (A44b), finally leading to

A =
h1

2

(
√

s + 1)e−
√

s

g(s)
, B =

h1

2

(
√

s − 1)e
√

s

g(s)
, (A48)

where

g(s) =
√

s

(
f1Ro

ro
s + h0

(
1 −

ro

Ro

))
cosh

(√
s

(
1 −

ro

Ro

))
+
((

h0

ro

Ro
−

f1Ro

ro

)
s − h0

)
sinh

(√
s

(
1 −

ro

Ro

))
.

(A49)

Substituting (A48) into (A45) and (A47), we obtain the solution for the Laplace transform of m

m̄(r) =
h1

r

√
s cosh(

√
s(1 − r)) − sinh(

√
s(1 − r))

g(s)
. (A50)

The amount of magma leaked into the mush shell is defined by (A4), which is expressed by the dimensionless

fluid content as Mleak

Mo
= 3

(
R3

o

r3
o

) ∫ 1
ro
Ro

m(r′, t)r′2dr′ and has the Laplace transform using (A50)

Mleak

Mo
= 3

(
R3

o

r3
o

)
∫

1

ro
Ro

m̄(r′)r′2dr′ = 3

(
R3

o

r3
o

)
h1

s
f (s)
g(s)

, (A51)

where

f (s) =
(

s
ro

Ro
− 1

)
sinh

(√
s

(
1 −

ro

Ro

))
+
√

s

(
1 −

ro

Ro

)
cosh

(√
s

(
1 −

ro

Ro

))
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Figure A2. Decay time scales identified from the analytical solution. (a) Numerical solution for Mleak∕Mo (black circle
line) and analytical solution that only involves the decay functions up to n = 1. The dash line indicates the time
corresponding to 90% decay, predicted from the slowest decay component. (b) Decay time scales 1∕x corresponding to
the first 10 roots xn (n = 1 − 10) that satisfy the characteristic equation 𝜓(x) = 0 according to (A57), calculated for a
system of 𝜙o = 0.2, Ro = 2ro, Kl = Kf = 0.5𝜇r , 𝜇m = 0.5𝜇r , and Ks = 5∕3𝜇r , and 𝛼 = 0.9. Insets show function 𝜓(x) and xn
with increasing value. For the given parameters, the first positive root x1 = 18.69, which yield a dimensionless decay
time 1∕x1 = 0.053.

Using the solutions (A50) and (A51), the solutions for m(r, t) and Mleak(t) in real time can be obtained by

m(r, t) =
h1

r ∫
𝜎+i𝜔

𝜎−i𝜔

√
s cosh(

√
s(1 − r)) − sinh(

√
s(1 − r))

g(s)
estds (A52a)

Mleak(t)
Mo

= 3
R3

o

r3
o
∫

𝜎+i𝜔

𝜎−i𝜔

h1

s
f (s)
g(s)

estds. (A52b)

The integrations in (A52) can be calculated using the residual theorem. Without loss of generality, we demon-
strate how to integrate (A52b). We identify the poles for the integrated function h1

s
f (s)
g(s)

est (in this case, the poles
are zeros for the function g(s), which render the integrated function meaningless) as sn (n = 0, 1, 2, ...). The
integration is obtained by summing up the residuals at all poles:

Mleak(t)
Mo

= 2𝜋i
3R3

o

r3
o

∑
n

Res(sn) (A53)

in which the residual for the nth pole Res(sn) can be calculated according to the residual theorem:

Res(sn) =
1

2𝜋i
lim
s→sn

(s − sn)
h1

s
f (s)
g(s)

est (A54)

We calculate the limit in (A54) using the L’hopital’s law and obtain

Res(sn) =
1

2𝜋i

h1

sn

f (sn)
g′(sn)

esnt = −
h1e−xnt

2𝜋i

f1(xn + 1)
E(xn)

, (n> 0) (A55a)

Res(s0) =
1

2𝜋i
h1

f ′′(s0)
g′′(s0)

= 1
2𝜋i

h1

1 − r3
o

R3
o

3f1 + ho

(
1 − r3

o

R3
o

) , (n = 0), (A55b)

where g′, g′′, and f ′′ indicate the first derivative of g(s), the second derivative of g(s), and the second derivative
of f (s), respectively, evaluated at the poles. When n = 0, s0 = 0, and when n> 0, we express the residuals with
the inverse of the poles xn = −sn and only allow xn > 0, considering finite solutions with e−xnt → 0|t→0. The
coefficient E(xn) in (A55a) is

E(xn) =
f 2
1

(
1 − ro

Ro

)
x2

n

2 r2
o

R2
o

−
2h0f1 − 3h0f1

ro

Ro
+ f 2

1 + h0
r3

o

R3
o

(
ro

Ro
− 1

)
2 ro

Ro

xn +
h2

0

(
1 − r3

o

R3
o

)
2

+ 3
2

h0f1 (A56)
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, and xn are the positive solutions for 𝜓(x) = 0 (see Figure A2b inset panel), where the function 𝜓(x) = ig(−x)
is

𝜓(x) =
((

horo

Ro
−

f1Ro

ro

)
x + h0

)
sin

(√
x

(
1 −

ro

Ro

))
−
√

x

(
h0

(
1 −

ro

Ro

)
−

f1Rox

ro

)
cos

(√
x

(
1 −

ro

Ro

))
.

(A57)

Substituting (A55) into (A53), we obtain the solution for the mass of magma transported to/from the shell
Mleak(t) as a function of time

Mleak(t)
Mo

= 3
R3

o

r3
o

h1

⎛⎜⎜⎜⎝
1 − r3

o

R3
o

3f1 + ho

(
1 − r3

o

R3
o

) − f1

∞∑
n=1

xn + 1

E(xn)
e−xnt

⎞⎟⎟⎟⎠ , (A58)

where xn and E(xn) are defined in (A57) and (A56). Following similar approach, the solution for m(r, t) can be
obtained by inverting (A50), which yields

m(r, t) =
3h1

ho

(
1 − r3

o

R3
o

)
+ 3f1

+
h1

r

∞∑
n=1

ho + xn

(
horo

Ro
− f1Ro

ro

)
E(xn)

G(xn, r)e−xnt (A59)

where

G(xn, r) =
cos

(√
xn(1 − r)

)
cos

(√
xn

(
1 − ro

Ro

)) (
1 −

tan
(√

xn(1 − r)
)√

xn

)
. (A60)

Following the same steps in Appendix A2.6, m(r, t) leads to the solutions for um(1, t) and 𝜁 (t) according to
(A39), the displacement and radial stress in the mush via (A26) and (A28), and the displacement and stress
components in the crust rocks via (A41).

A2.8. Time Scale of Postinjection Evolution
The solutions (A58) and (A59) consist of an infinite number of decay functions, each corresponding to a
dimensionless decay rate xn and decay time scale of 1∕xn (n> 0). Because xn increases with n, the slow-
est decay function has the minimum decay rate when n = 1 and the longest decay time scale 1∕x1 (see
Figure A2b). The longest decay time scale 1∕x1 determines the long-term evolution of the solutions, while the
other decay functions quickly damp out with time. This can be justified by comparing the full numerical solu-
tion and the analytical solution approximated using only the slowest decay function and the constant term
(see Figure A2a). Comparing the numerical solution and the analytical solution based on the slowest decay
term, we define the longest decay time 1∕x1 as the dimensionless time scale for postinjection evolution. We
note that the solution for x1 strictly applies to the case of an instantaneous injection and marks the upper
limit of the transient, postinjection time scale. Because 1∕x1 is dimensionless, the actual time scale, denoted
by tpost, is obtained by

tpost =
1
x1

t∗, (A61)

where t∗ = R2
o∕c is the system’s time scale determined by the radius of the magma chamber and the

poroelastic diffusivity c:

c = 𝜅

𝜂f

(Km + 4
3
𝜇m)(Ku − Km)

𝛼2(Ku +
4
3
𝜇m)

. (A62)

Substituting the expression for c into t∗, we obtain the postinjection dimensional time scale tpost

tpost =

(
R2

o𝜂f

𝜅𝜇r

)⎛⎜⎜⎜⎝
1
x1

𝛼2
(

Ku

𝜇r
+ 4

3

𝜇m

𝜇r

)
(

Km

𝜇r
+ 4

3

𝜇m

𝜇r

)(
Ku

𝜇r
− Km

𝜇r

)⎞⎟⎟⎟⎠
= tsystem𝜏m, (A63)
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Figure A3. The mush-dependent time coefficient 𝜏m as functions of mush and fluid properties, according to (A64). The
system has 𝜙o = 0.2, for all panels. Panel (a) has Kl = 0.1𝜇r , Kf = 0.5𝜇r , 𝜇m = 0.5𝜇r , Ks = 5∕3𝜇r , and Ro = 2ro ; panel (b)
has Kl = 0.1𝜇r , Kf = 0.5𝜇r , 𝜇m = 0.5𝜇r , Ks = 5∕3𝜇r , and 𝛼 = 0.9 or 0.5; panel (c) has
Kf = 0.5𝜇r , 𝜇m = 0.5𝜇r , Ks = 5∕3𝜇r , Ro = 2ro , and 𝛼 = 0.9 or 0.5; panel (d) has
Kl = 0.5𝜇r , 𝜇m = 0.5𝜇r , Ks = 5∕3𝜇r , Ro = 2ro , and 𝛼 = 0.9 or 0.5; panel (e) has Kl = 0.5𝜇r , Kf = 0.5𝜇r , Ks = 5∕3𝜇r , Ro = 2ro ,
and 𝛼 = 0.9 or 0.5.

which can be split into two terms: the term with the unit of time tsystem = R2
o𝜂f

𝜅𝜇r
depends on the physical dimen-

sion Ro, magma viscosity 𝜂f , mush permeability 𝜅, and rigidity of host rock 𝜇r . The dimensionless term 𝜏m only
depends on the ratios between the quantities, as well as the solution for the dimensionless time scale 1∕x1:

𝜏m

(
ro

Ro
, 𝛼,

𝜇m

𝜇r
,

Km

𝜇r
,

Ku

𝜇r

)
= 1

x1

𝛼2
(

Ku

𝜇r
+ 4

3

𝜇m

𝜇r

)
(

Km

𝜇r
+ 4

3

𝜇m

𝜇r

)(
Ku

𝜇r
− Km

𝜇r

) (A64)

in which x1 is identified as the first positive root for the function 𝜓(x, ro

Ro
, 𝛼,

𝜇m

𝜇r
,

Km

𝜇r
,

Ku

𝜇r
) = 0. We find that 𝜏m

varies most strongly with the relative structural strength in the mush (i.e., with poroelastic coefficient 𝛼), as
well as the volume fraction of mush in the chamber (see Figures A3a and A3b). Apart from these two proper-
ties (which cause variations up to 2 orders of magnitudes), other micromechanical quantities, including the
relative compressibility of either the core or the pore fluid and the relative rigidity of the mush, influence the
value of 𝜏m to a smaller degree (up to 1 order of magnitude, see Figures A3c–A3e). In contrast, the system
time scale tpost can cause discrepancies of many orders of magnitude, primarily due to the large uncertainties
in the magma viscosity and the permeability of mush, as shown in the main text (Figure 5).

A2.9. Initial Response and Final Steady State Following a Sudden Injection
When the injection is infinitely rapid, the magma chamber responds to the initial sudden change in core pres-
sure elastically. At the moment of the sudden injection, there is not enough time for the magma residing
in the pore spaces to be transported. The mush therefore is in an undrained condition, with zero variation
in the fluid content m = 0 everywhere, except for the liquid-mush boundary. Substituting the integration
∫ 1

ro
Ro

r2mdm = 0 into the boundary condition (A34), we can obtain the instantaneous displacement defor-

mation of the chamber um(1, 0+) as well as the instantaneous increase in fluid content at the mush magma

boundary m
(

ro

Ro
, 0+

)
:

um(1, 0+) = −
f4

g2
, m

(
ro

Ro
, 0+

)
=

f4

f1
+

f2f4

f1g2
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Figure A4. Initial response and final responses for a system with parameters
𝜙o = 0.2, Kl = 0.1𝜇r , Kf = 0.5𝜇m, 𝜇m = 0.5𝜇r , and Ks = 5∕3𝜇r . Column (a) shows variations in mush rigidity 𝜇m, column
(b) shows variations in the bulk modulus of the core fluid Kl , and column (c) shows variations in the bulk modulus of the
pore fluid Kf . The changes in the mush final states are calculated for both 𝛼 = 0.5 (green) and 𝛼 = 0.9 (blue). For both 𝛼
values, the initial responses are similar, hence shown by one curve (black dash line). The injected mass is ΔM = 2%Mo .

, which is substituted into (A32) and (A34) to obtain the instantaneous response in core pressure Pl(0+). Using
(A30c) and (A19e), the tensile stress in the rocks 𝜎𝜃rock𝜃(1, 0

+) = 2um(1, 0+) can be obtained:

Pl(0+) =

(
1 −

e0d2

g2
+

3Kl

g2𝜇r

R3
o

r3
o

)
Kl

𝜇r

ΔM
Mo

, 𝜎𝜃𝜃rock(1, 0
+) = − 2

g2

Kl

𝜇r

ΔM
Mo

.

The instantaneous response of the system upon a sudden injection is equivalently an elastic response,
wherein the effective bulk modulus is the undrained modulus Ku. It is worth noting that the instantaneous
response calculated above would be the same response if the mush shell is impermeable (e.g., if the porosity
in the mush is not high enough to reach the percolation threshold), or if the diffusion of pore magma is too
slow compared to the injection. In this case, the instantaneous response will persist in time. In the last section,
we will use this end member case to obtain a solution for viscoelastic deformation in the mush shell.

Long after the injection, the system approaches a new steady state, whose characteristics can be obtained
straightforwardly from the analytical solution. Let t → ∞, the time-dependent decay components in the
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solutions (A58) and (A59) vanish, and only the time-independent components are left:

m(r,∞) =
3
(

1 + f2

g2

)
ho

(
1 − r3

o

R3
o

)
+ 3f1

Kl

𝜇r

ΔM
Mo

,
Mleak(∞)

Mo
=

3
(

1 + f2

g2

)(
R3

o

r3
o
− 1

)
3f1 + ho(1 − r3

o

R3
o
)

.

At the steady state, the fluid content m at the core-mush boundary m
(

ro

Ro
,∞

)
is the same as the interior of

the mush, which can be substituted into the boundary condition (A34), (A33), and the relations in (A32) to
obtain the steady state response in other quantities, including the core pressure and the tensile stress:

Pl(∞) =
Kl

𝜇r

ΔM
Mo

⎛⎜⎜⎜⎝1 + 1
g1

(
3Kl

𝜇r

R3
o

r3
o

− d2eo

)
+

(
1 + f2

g2

)(
1 − r3

o

R3
o

)
3f1 + ho

(
1 − r3

o

R3
o

) (
d1 +

g1

g2

(
3Kl

𝜇r

R3
o

r3
o

− d2eo

))⎞⎟⎟⎟⎠
𝜎𝜃𝜃rock(1,∞) = 2um(1,∞) = −

2Kl

g2𝜇r

ΔM
Mo

⎛⎜⎜⎜⎝1 +
g1

(
1 − r3

o

R3
o

)(
1 + f2

g2

)
3f1 + ho

(
1 − r3

o

R3
o

) ⎞⎟⎟⎟⎠ .
We find that among the micromechanical properties, 𝛼 and the mush content have the most prominent influ-
ence on the final steady state of the system (Figure 6 in the main text). Other quantities, such as the rigidity
of the mush and the compressibility of the magma in the core or pore space, play lesser roles in determining
the steady state (see Figure A4).

A3. Postinjection Evolution for an Effectively Viscoelastic Mush Shell
To probe the similarity and differences between the two rheologies of poroelasticity and viscoelasticity, we
assume that the crystalline matrix in the mush shell behaves as a Maxwell linear solid. By assuming that the
pore magma is trapped in the pore space (i.e., undrained condition), the mush shell behaves as a viscoelas-
tic material effectively. Similar to the standard practice of calculating the transient evolution for viscoelastic
material using Laplace transform on the solution for elastic deformation, here we use the solution obtained
for the instantaneous poroelastic response upon a sudden injection (i.e., with undrained condition) to obtain
the viscoelastic solution. We first calculate the Laplace-transformed solution for the poroelastic shell under
the undrained condition. By applying Laplace transform on the boundary condition (A34b), substituting the
undrained condition for m(r, t) = 0 and assuming a Maxwell viscoelasticity that effects only the shear bulk
modulus 𝜇m, we obtain the Laplace transform for the radial displacement um(1, t) at the mush-rock interface:

um(1) = −
f̃4

g̃2

, (A65)

where

g̃2 = 1

Ku +
4
3
𝜇m

((
4
𝜇r

(
Ku − Kl − Ku

R3
o

r3
o

)
− 16

3

R3
o

r3
o

)
𝜇m − 4

(
Ku + Kl

(
R3

o

r3
o

− 1

))
− 3

KlKu

𝜇r

R3
o

r3
o

)
results from substituting the instantaneous shear modulus 𝜇o

m (we now use o to denote that the value corre-
sponds to the poroelastic mush property) by the transformed time-dependent shear modulus for a Maxwell
solid:

𝜇m ≡ 𝜇o
m𝜂ms

𝜂ms + 𝜇o
m

,

where 𝜂m is the viscosity of the mush ensemble and s is the complex variable in the Laplace transform. The
transform

f̃4 =
Kl𝛿m

𝜇r

1
s

results from the Laplace transform of the constant on the right-hand side of (A34b). Substituting the above
expressions into (A65), we obtain the Laplace transform of the displacement at the mush-rock interface:

um(1) = −
Kl𝛿m

𝜇r

1
s − s(0)

Ku+
4
3
𝜇o

m

I0𝜇
o
m−I1

s + Ku𝜇
o
m

(I0𝜇o
m−I1)𝜂m

s − s(1)
, (A66)
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where the constants

I0 = 4
𝜇r

(
Ku − Kl − Ku

R3
o

r3
o

)
− 16

3

R3
o

r3
o

, I1 = 4

(
Ku + Kl

(
R3

o

r3
o

− 1

))
+ 3

KlKu

𝜇r

R3
o

r3
o

The poles of um(1) are s(0) and s(1)

s(0) = 0, s(1) =
I1𝜇m

(I0𝜇
o
m − I1)𝜂m

< 0

Substituting the solution (A66) into the Laplace-transformed boundary conditions (A33) and (A34), we obtain
the Laplace transforms for other quantities, including the radial displacement at the fluid-mush boundary and
the core pressure:

um

(
ro

Ro
, s

)
= 4

3

Kl𝛿m

𝜇r

(
R2

o

r2
o

−
ro

Ro

)
Φ̃(s) +

R2
o

r2
o

um(1) (A67a)

Pl(s) = −
4K2

l 𝛿m

𝜇2
r

(
R3

o

r3
o

− 1)Φ̃(s) −
3Kl

𝜇r

R3
o

r3
o

um(1) +
Kl𝛿m

𝜇r

1
s
, (A67b)

where Φ̃(s) is an s-dependent function

Φ̃(s) ≡ 𝜇o
m − 𝜇r

I0𝜇
o
m − I1

1
s − s(0)

s − 𝜇r

𝜇o
m−𝜇r

𝜇o
m

𝜂m

s − s(1)
(A68)

Following similar approach in Appendix A2.7, we transform (A66) to obtain the solution for um(1, t) in real
time:

um(1, t) = ∫
𝜎+i∞

𝜎−i∞
um(1)estds = lim

s→s(0)
(s − s(0))um(1)est + lim

s→s(1)
(s − s(1))um(1)est. (A69)

Note that for this case, we do not normalize the time in the system (because the viscoelastic relaxation and
the poroelastic time scale are independent), and therefore, the poles s(0) and s(1) have unit of frequency, and
t has the unit of time. Substituting (A66) into the (A69), we obtain the solution in real time

um(1, t) =
KuKl𝛿m

𝜇r I1
−

Kl𝛿m

𝜇r

(
Ku +

4
3
𝜇o

m

I0𝜇
o
m − I1

+
Ku

I1

)
es(1)t. (A70)

Following similar approach, we transform (A67) to obtain

um

(
ro

Ro
, t

)
= 4

3

Kl𝛿m

𝜇r
(

R2
o

r2
o

−
ro

Ro
)Φ(t) +

R2
o

r2
o

um(1, t) (A71a)

Pl(t) = −
4K2

l 𝛿m

𝜇2
r

(
R3

o

r3
o

− 1)Φ(t) −
3Kl

𝜇r

R3
o

r3
o

um(1, t) +
Kl𝛿m

𝜇r
, (A71b)

where the time-dependent function

Φ(t) = −1(Φ(s)) =
𝜇r

I1
+
(
𝜇o

m − 𝜇r

I0𝜇
o
m − I1

−
𝜇r

I1

)
es(1)t. (A72)

The displacement in the mush also leads to the evolution of the tensile stress (see Appendix A2.9), as well as
the approximated relative increase of the volume of the liquid core

𝜎𝜃𝜃rock(1, t) = 2um(1, t),
ΔVcore(t)

Vcore,(0)
∼

4𝜋r2
oum

(
ro

Ro
, t
)

Ro

4
3
𝜋r3

o

= 3um

(
ro

Ro
, t

)
Ro

ro
. (A73)

The three quantities Pl, 𝜎
𝜃𝜃 , and ΔVcore

Vcore,(0)
are then compared to those obtained using the poroelastic model,

as shown in Figure 8. Similar to the case of a poroelastic mush shell, we can define a postinjection evolution
time scale using the slowest decay component in the solutions for the viscoelastic shell. Because s(1) is always
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negative, the quantities shown above consist of a constant value and a single decay function with decay rate
−s(1) and decay time scale

tvisc
post = −1∕s(1) =

𝜂m

𝜇o
m

(
1 −

Io𝜇
o
m

I1

)
. (A74)

We notice that tvisc
post does not depend on the actual value of Ro. This is because that the viscoelastic time scale

𝜂m∕𝜇o
m, which determines the actual time unit in tvisc

post (i.e., it is the counterpart of tsystem for the poroelastic case),
is an intrinsic material property independent of the dimension of the system. In contrast, the postinjected
evolution time for the poroelastic shell, defined in (A63), increases with the chamber’s radius.
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