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Abstract

Ecological systems with asymptotically stable equilibria may exhibit significant tran-

sient dynamics following perturbations. In some cases, these transient dynamics include

the possibility of excursions away from the equilibrium before the eventual return; sys-

tems that exhibit such amplification of perturbations are called reactive. Reactivity is

a common property of ecological systems, and the amplification can be large and long-

lasting. The transient response of a reactive ecosystem depends on the parameters of

the underlying model. To investigate this dependence, we develop sensitivity analyses

for indices of transient dynamics (reactivity, the amplification envelope, and the opti-

mal perturbation) in both continuous- and discrete-time models written in matrix form.

The sensitivity calculations require expressions, some of them new, for the derivatives

of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix

calculus. Sensitivity analysis provides a quantitative framework for investigating the

mechanisms leading to transient growth. We apply the methodology to a predator-prey

model and a size-structured food web model. The results suggest predator-driven and

prey-driven mechanisms for transient amplification resulting from multispecies interac-

tions.

Keywords: Ecological models, transient dynamics, reactivity, sensitivity analysis,

consumer-resource interactions, matrix population models.
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1 Introduction

Sufficiently small perturbations of an asymptotically stable equilibrium will eventually de-

cay. The asymptotic rate of return to equilibrium has long been used as a measure of

ecological stability (e.g., May, 1973; Pimm, 1984; Ives and Carpenter, 2007). However,

the long-term return to the equilibrium does not determine the transient response to the

perturbation, which may carry the trajectory farther away from the equilibrium before its

eventual return. Equilibria with this property are called “reactive” (Neubert and Caswell,

1997). It is now known that reactivity is a common property of predator-prey models,

food web models, ecosystem compartment models, and stage-classified matrix population

models (Neubert and Caswell, 1997; Caswell, 2001; Chen and Cohen, 2001; Neubert et al,

2004; Marvier et al, 2004; Caswell and Neubert, 2005). Reactivity has been shown to be a

necessary condition for pattern formation via Turing instability (Neubert et al, 2002).

The transient amplification of perturbations is important because ecological systems

may not complete their response to a perturbation before the next one occurs. Instead,

they are buffeted by a more-or-less continual series of perturbations and the appearance of

transient responses in our observations of nature may be the norm rather than the exception

(Hastings, 2004). Managers charged with ecosystem restoration, for example, are likely to be

interested in both the short-term and long-term effects of their manipulations (cf. Caswell,

2007), particularly if the short-term effects can be large.

To understand transient dynamics, it is useful to know how their properties respond

to the parameters in the underlying model. To this end, we present here the sensitivity

analysis of several properties of reactive transient dynamics. The paper begins with a brief

introduction of the indices used to describe transient growth, followed by a description of

the sensitivity problem. Section 2 deals with the calculation of the sensitivity of equilibrium

solutions and of linearized dynamics; these are used to calculate sensitivities of indices of

transient dynamics in Section 3. The method is applied to two ecological problems in

Section 4 and briefly discussed in Section 5.
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1.1 Characterizing transient dynamics

The stability and asymptotic properties of an equilibrium are determined by the dominant

and subdominant eigenvalues of the linearization of the model at that equilibrium. Simple

analysis of these eigenvalues does not, however, capture the transient behavior of systems

whose time evolution is described by non-normal matrices or operators (Trefethen and

Embree, 2005). Mathematical developments in areas such as fluid dynamics (e.g., Farrell

and Ioannou, 1996; Trefethen et al, 1993) and numerical analysis (e.g., Trefethen, 1992)

have led to the formulation of indices that characterize the transient response of nonlinear

ecological systems (Neubert and Caswell, 1997).

We focus on three such indices of transient dynamics. The reactivity of an asymp-

totically stable equilibrium is the maximum, over all perturbations, of the rate at which

the trajectory departs from the equilibrium in the linearized system (or equivalently, for

sufficiently small perturbations). It measures the maximum instantaneous amplification of

perturbations of that equilibrium. At any time following a perturbation, there is a maximum

(again, over all perturbations) possible deviation from the equilibrium. This maximum is

the amplification envelope (Neubert and Caswell, 1997). It provides an upper bound on

the extent of transient amplification as a function of time. Transient amplification depends

on the direction of the initial perturbation. The perturbation that produces the maximum

amplification at a specified time is the optimal perturbation, also called the optimal ex-

citation (Farrell and Ioannou, 1996). The reactivity, amplification envelope, and optimal

perturbation are important descriptions of the behavior of ecosystems subject to random

perturbations. They provide information about the timing and magnitude of the growth of

perturbations, the potential for transient amplification, and the perturbations to which the

system is most sensitive.

We consider both continuous and discrete models, written in matrix form:

dx
dt

= A[θ,x] x continuous (1)

x(t+ 1) = A[θ,x] x(t) discrete (2)
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where x is a vector (s × 1) of state variables and the matrix A contains per-capita vital

rates. The vital rates depend on the current system state x and on a vector θ of parameters.

Many ecological systems, including structured populations, interacting species, food webs,

compartment models, and epidemic models can be written in this form. When it seems

unlikely to cause confusion, we will suppress the explicit dependence of A on x and θ.

Let x̂ be an equilibrium. The linearization around x̂ is given by the Jacobian matrix

M = M[θ, x̂]. Deviations from x̂, defined as z(t) = x(t)− x̂, follow

dz
dt

= M[θ, x̂] z continuous (3)

z(t+ 1) = M[θ, x̂] z(t) discrete (4)

We assume that x̂ is asymptotically stable, so that the dominant eigenvalue of M has

negative real part (in continuous time) or is less than 1 in magnitude (in discrete time).

The transient dynamics of the perturbed system are described by the evolution of the

magnitude of z, as measured by the Euclidian norm ‖z‖ =
√

zTz. We consider the transient

response following a perturbation z0 at t = 0. The reactivity is the maximum, over all

perturbations, of the growth rate of ‖z‖, as t→ 0.

In continuous time, the reactivity is

ν0 = max
‖z0‖6=0

1
‖z‖

d‖z‖
dt

∣∣∣∣
t=0

(5)

= max
‖z0‖6=0

zT
0 (M + MT) z0

2z T
0 z0

(6)

= λ1 (H(M)) (7)

where H(M) = (M + MT)/2 is the Hermitian part of M and λ1 denotes the eigenvalue

with largest real part (Neubert and Caswell, 1997).

In discrete time, reactivity is defined as the average instantaneous rate of growth, from

t = 0 to t = 1, following the perturbation z0:

ν0 = log

(
max
‖z‖6=0

‖Mz0‖
‖z0‖

)
(8)
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= log ‖|M‖| (9)

= log (σ1(M)) (10)

where log(·) is the natural logarithm, and the matrix norm ‖| · ‖| induced by the Euclidian

norm is the largest singular value, denoted by σ1. In either continuous or discrete time, if

ν0 > 0 there exists a perturbation that produces a trajectory departing from x̂ at the rate

ν0.

To obtain the amplification envelope, we solve (3) and (4) as

z(t) = Φ(t) z0 (11)

where Φ(t) is the fundamental matrix1 (Coddington and Levinson, 1955, p. 69), given by

Φ(t) =


eMt continuous

Mt discrete
(12)

and the matrix exponential is defined as eMt =
∑∞
i=0

(Mt)i

i! .

The amplification envelope at time t is the maximum, over all initial perturbations, of

the growth of z(t),

ρ(t) = max
‖z0‖6=0

‖z(t)‖
‖z0‖

(13)

= ‖|Φ(t)‖| (14)

= σ1 (Φ(t)) (15)

The optimal perturbation, normalized to length 1, is given by the right singular vector

v(t) corresponding to the singular value σ1 (Φ(t)).

1Also called the propagator (Farrell and Ioannou, 1996), or matricant (e.g., Gantmacher, 1959, p. 125).
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1.2 The sensitivity problem

We can define the sensitivity problem for these three indices of transient dynamics. Let r

denote one of these indices; r is a function of the linearization M, which in turn depends

on the parameters and the equilibrium. Our goal is to obtain the sensitivities

dr

dθT
(16)

and the elasticities
1
r

dr

dθT
diag (θ) (17)

in a way that accounts for both the direct effects of θ on M and the indirect effects of θ on

M through x̂.

Making use of the chain rule, we write

dr

dθT
=

dr

dvec TM
dvec M
dθT

(18)

which, because M depends on both x̂ and θ, expands to

dr

dθT
=
(

dr

dvec TM

)(
∂vec M
∂θT

+
∂vec M
∂x̂T

dx̂
dθT

)
(19)

The sensitivity of r in (19) requires four pieces: the linearization M at the equilibrium,

the sensitivity of the equilibrium x̂ to the parameters, the sensitivity of the linearization to

the parameters, and the sensitivity of r to the linearization.

These derivatives are written using the matrix calculus conventions of Magnus and

Neudecker (1985, 1988) [see Nel (1980) for a review, and Caswell (2007) for an ecological

introduction]. In this approach, the derivative of a n× 1 vector y with respect to a m× 1

vector x is the n×m Jacobian matrix

dy
dxT

=
(

dyi
dxj

)
(20)

Derivatives of, or with respect to, matrices are converted to vector derivatives using the
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vec operator, which stacks the columns of a matrix one above the other (the first column

is on top and the last one on the bottom). Thus the derivative of the m×n matrix Y with

respect to the p× q matrix X is the mn× pq matrix

dvec Y
dvec TX

(21)

where vec TX = (vec X)T. We make frequent use of the result (Roth, 1934) that

vec (ABC) = (CT ⊗A) vec B (22)

The Kronecker product of two matrices is defined as

A⊗B =


a11B a12B . . .

a21B a22B . . .

...
...

. . .

 (23)

2 Equilibria, linearizations, and their sensitivities

In this section, we present the analysis of the linearization and the equilibrium. In Section

3 we will combine these to obtain the sensitivity of reactivity, the amplification envelope,

and the optimal perturbation.

2.1 The linearization

The matrix of the linearization at an equilibrium x̂ is

M =



∂ẋ
∂xT

∣∣∣∣
x̂

continuous

∂x(t+ 1)
∂xT(t)

∣∣∣∣
x̂

discrete

(24)

where ẋ = dx/dt is given in (1) and x(t + 1) is given in (2). Because we have written

the models in matrix form, the expression for M is the same for both models; here is the

derivation for the continuous case.
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Differentiating ẋ in (1) gives

dẋ = (dA) x + A (dx) (25)

Applying the vec operator to both sides gives

dẋ = (xT ⊗ Is) dvec A + Adx (26)

from which

M = (xT ⊗ Is)
dvec A
dxT

+ A (27)

where Is is an identity matrix of order s. The linearization at the equilibrium is obtained

by evaluating M at x = x̂:

M [θ, x̂] = (x̂T ⊗ Is)
∂vec A [θ, x̂]

∂xT
+ A [θ, x̂] (28)

2.2 Sensitivity of equilibria

The equilibrium x̂ depends on the parameters through the entries in A[θ,x]. Its sensitivity

is obtained by differentiating the equations defining the equilibrium (see Appendix A for the

continuous case, and Caswell (2008) for the discrete case). The sensitivity in the continuous

case is

dx̂
dθT

=
{
−A− (x̂T ⊗ Is)

∂vec A
∂xT

}−1

(x̂T ⊗ Is)
∂vec A
∂θT

. (29)

The sensitivity in the discrete case is

dx̂
dθT

=
{

Is −A− (x̂T ⊗ Is)
∂vec A
∂xT

}−1

(x̂T ⊗ Is)
∂vec A
∂θT

. (30)

In both expressions, the matrix A and all its derivatives are evaluated at x̂.
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2.3 Sensitivity of the linearization

To obtain the sensitivity of the linearization, we differentiate Eq. (28) for M[θ, x̂]:

dM = {d (x̂T ⊗ Is)}
∂vec A
∂xT

+ (x̂T ⊗ Is) d
(
∂vec A
∂xT

)
+ dA (31)

Applying the vec operator to both sides gives

dvec M =
{(

∂vec A
∂xT

)T

⊗ Is
}
dvec (x̂T ⊗ Is)

+ {Is ⊗ (x̂T ⊗ Is)} dvec
(
∂vec A
∂xT

)
+ dvec A (32)

Theorem 11 of Magnus and Neudecker (1985), for the differential of a Kronecker product,

implies that

d [vec (x̂T ⊗ Is)] = (Is ⊗ vec Is) dx̂ (33)

To differentiate ∂vec A/∂xT, define

B[θ, x̂] ≡ dvec A
dxT

(34)

Then

dvec B =
∂vec B
∂θT

dθ +
∂vec B
∂xT

dx̂
dθT

dθ (35)

Similarly,

dvec A =
∂vec A
∂θT

dθ +
∂vec A
∂xT

dx̂
dθT

dθ (36)

Substituting (33), (35), and (36) into (32) and collecting terms gives

dvec M
dθT

=
{(

∂vec A
∂xT

)T

⊗ Is
}

(Is ⊗ vec Is)
dx̂
dθT

+ {Is ⊗ (x̂T ⊗ Is)}
(
∂vec B
∂θT

+
∂vec B
∂xT

dx̂
dθT

)
+
∂vec A
∂θT

+
∂vec A
∂xT

dx̂
dθT

(37)
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where all matrices and derivatives are evaluated at x̂, and where dx̂/dθT is given by (29)

for continuous models and (30) for discrete models.

3 Sensitivity of transient indices

We turn now to the sensitivity of reactivity, the amplification envelope, and the optimal

perturbation. To do so, we must find the sensitivity of each index to the linearization

M[θ, x̂] and then, following (19), combine this with the sensitivity of M as given in (37).

3.1 Sensitivity of reactivity

In continuous systems, the reactivity ν0 is the dominant eigenvalue of the matrix H(M) =

(M + MT)/2. Appendix B.1 shows that differentiating ν0 with respect to M gives

dν0

dvec TM
= (wT ⊗wT) (38)

where w is the eigenvector of H(M) associated with the eigenvalue ν0 (Magnus and Neudecker,

1988). This result is given in different notation in Neubert and Caswell (1997).

In discrete systems, the reactivity is the logarithm of the dominant singular value σ1 of

M. Its derivative is (cf. Stewart, 1991; Caswell and Neubert, 2005)

dν0

dvec TM
=

1
‖|M‖|

(vT ⊗ uT) (39)

where u is the left singular vector and v is the right singular vector of M corresponding to

σ1. Thus the sensitivity of reactivity is

dν0

dθT
=


(wT ⊗wT)

dvec M
dθT

continuous

1
‖|M‖|

(vT ⊗ uT)
dvec M
dθT

discrete
(40)

where dvec M/dθT is given by (37).
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3.2 Sensitivity of the amplification envelope

The amplification envelope ρ(t) is the largest singular value of Φ(t). Its derivative is

dρ(t)
dvec TM

=
dρ(t)

dvec TΦ(t)
dvec Φ(t)
dvec TM

(41)

The derivative of the singular value is

dρ(t)
dvec TΦ(t)

=
(
vT(t)⊗ uT(t)

)
(42)

where u(t) and v(t) are the left and right singular vectors of Φ(t) corresponding to σ1.

In continuous time, the derivative of the fundamental matrix is

dvec Φ(t)
dvec TM

=
dvec eMt

dvec TM

=
∞∑
i=0

ti

i!

i∑
j=1

(MT)i−j ⊗Mj−1 (43)

The equivalent in discrete time is

dvec Φ(t)
dvec TM

=
dvec Mt

dvec TM

=
t∑

j=1

(MT)t−j ⊗Mj−1 (44)

Thus the sensitivity of the amplification envelope is

dρ(t)
dθT

=



(
vT(t)⊗ uT(t)

) ∞∑
i=0

ti

i!

i∑
j=1

(MT)i−j ⊗Mj−1

 dvec M
dθT

continuous

(
vT(t)⊗ uT(t)

) t∑
j=1

(MT)t−j ⊗Mj−1

 dvec M
dθT

discrete

(45)

where dvec M/dθT is given by (37).
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3.3 Sensitivity of the optimal perturbation

The optimal perturbation is given by v(t), the leading right singular vector of Φ(t). To

calculate the sensitivity of v(t) we require the sensitivity of the singular vector to the matrix

Φ. This is given by

dv
dvec TΦ

=

(
σ2Is −ΦTΦ +

σ2

2
(vT ⊗ v) +

σ2

2
vvT

)−1

×
[

(vT ⊗ Is)− (vT ⊗ vvT)
] [

(ΦT ⊗ I)P + (I⊗ΦT)
]

(46)

where P is the vec-permutation matrix (Henderson and Searle, 1981); see Appendix B.2 for

the derivation. The sensitivity of the optimal perturbation is then

dv(t)
dθT

=
dv(t)

dvec Φ(t)
dvec Φ(t)
dvec TM

dvec M
dθT

(47)

where dvec Φ(t)/dvec TM is given by (43) for continuous systems and by (44) for discrete

systems, and dvec M/dθT is given by (37).

3.4 Anisotropic measures of transient amplification

In Section 1.1 the reactivity, amplification envelope, and optimal perturbation are defined in

terms of the Euclidean distance from the equilibrium x̂. In applications, some components

of the perturbation may be of more interest than others. For example, one might want

apply relative weights to the elements of the perturbation vector, to translate numbers of

individuals into biomass or nutrient content. The transient dynamics of such anisotropic

state vectors are easily analyzed.

To apply weights to the elements of the perturbation, define a diagonal weighting kernel

matrix K, whose elements give the relative importance of each element of z. Define the

rescaled vector z̃ = Kz, the norm of which is ‖z̃‖ =
(
zTK2z

)1/2. Solving the optimization

problem for ‖z̃‖, we obtain a modified expression for the reactivity and the amplification

envelope; these are the same as (7) and (15) but with the Jacobian and fundamental matrix
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replaced by

M̃ = KMK−1 (48)

Φ̃ = KΦK−1 (49)

Differentiating these expressions gives

dvec M̃
dvec TM

=
dvec Φ̃
dvec TΦ

=
(
K−1 ⊗K

)
(50)

Then, for any transient index r, we can write

dr

dθT
=

dr

dvec TΦ̃
dΦ̃

dvec TΦ
dvec Φ
dvec TM̃

dvec M̃
dvec TM

dvec M
dθT

(51)

The weighting kernel effectively “stretches” the space in which we measure deviations

from equilibrium. The same result could be obtained by scaling the nonlinear model, and

then analyzing the perturbations in the rescaled space. The advantage of the weighting

kernel is that it allows for consideration of different norms without the need to repeat the

calculations of sensitivity matrices.

4 Applications to consumer-resource dynamics

Consumer-resource models are often reactive, and reactivity tends to increase with the

number of species (Chen and Cohen, 2001; Neubert et al, 2004). In this section, we apply

sensitivity analysis to a predator-prey model and a multispecies food web model. The

results provide insight into the mechanisms by which reactivity and transient amplification

can be produced.
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4.1 Predator-prey interactions

The Rosenzweig–MacArthur model (Rosenzweig and MacArthur, 1963) for a predator (Z)

and prey (P ) is

dP

dt
= rP

(
1− P

K

)
− g P

P + Ph
Z (52)

dZ

dt
= εg

P

P + Ph
Z − δZ (53)

The prey grows logistically, with maximum growth rate r and carrying capacity K. The

predator has a mortality rate δ and exhibits a Holling type II functional response; g is

the maximum predation rate, Ph the half-saturation prey density, and ε the assimilation

efficiency.

The system has a single coexistence equilibrium, given by

P̂ =
Phδ

εg − δ
(54)

Ẑ = r

(
1− P̂

K

)
P̂ + Ph

g
(55)

The model (52–53) can be expressed in the formalism (1), with 2

A =

 r
(
1− P

K

)
− g

P+Ph
Z 0

0 ε gP
P+Ph

− δ

 (56)

We define a population vector x ≡ [P Z]T and a parameter vector θ ≡ [ε g δ Ph rK]T.

The first derivatives of A are

B ≡ ∂vec A
∂xT

=


−r
K + g

(P+Ph)2
Z −g

P+Ph

0 0
0 0

ε gPh
(P+Ph)2

0

 (57)

2It is not essential to write A as a diagonal matrix, but in this case it simplifies the calculation of
derivatives.
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∂vec A
∂θT

=


0 −Z

P+Ph
0 g

(P+Ph)2
Z 1− P

K
−rP
K2

0 0 0 0 0 0
0 0 0 0 0 0
gP

(P+Ph)
εP

(P+Ph) −1 −εgP
(P+Ph)2

0 0

 (58)

The second derivatives are

∂vec B
∂xT

=



−2 g
(P+Ph)3

Z g
(P+Ph)2

0 0
0 0

−2ε gPh
(P+Ph)3

0
g

(P+Ph)2
0

0 0
0 0
0 0


(59)

∂vec B
∂θT

=



0 Z
(P+Ph)2

0 −2 g
(P+Ph)3

Z −1
K

r
K2

0 0 0 0 0 0
0 0 0 0 0 0
gP

(P+Ph)2
εP

(P+Ph)2
0 εg(P−Ph)

(P+Ph)3
0 0

0 −1
(P+Ph) 0 g

(P+Ph)2
0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(60)

We will examine two equilibria, with parameters given in Table 1; both are locally stable.

We focus first on equilibrium A.

4.1.1 Transient growth following arbitrary perturbations

Figure 1 illustrates the transient growth of perturbations around equilibrium A. In the

linear approximation, deviations from the equilibrium evolve according to (3). We consider

initial conditions on the unit circle centered on the equilibrium, shown as gray dots in Figure

1; the transient responses corresponding to those initial conditions are shown as black dots.

States outside the unit circle at any time (e.g., Figure 1a) correspond to initial per-

turbations that are amplified. The maximum amplification occurs at t = 5.7 (Figure 1b).
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Perturbations then decay (Figure 1c) as the system returns to equilibrium. The direction

of the optimal perturbation at each time is shown by a gray arrow (positive and negative

perturbations have the same effect due to symmetry of the linearized system). The optimal

perturbation rotates clockwise between t = 2 and t = 5.7. The largest growth at t = 5.7 re-

sults from a perturbation of the predator population only; this suggests a “predator-driven”

mechanism for reactive dynamics around this equilibrium.

The amplification envelope (Figure 2a) shows that maximum amplification occurs at

t = 5.7. The initial rate of growth is the reactivity (ν0). Fluctuations in the amplification

envelope reflect damped oscillations in the dynamics of the perturbed system.

Sensitivity of the amplification envelope, calculated from (45) is shown as a function

of time in Figure 2b. The sensitivities exhibit synchronous fluctuations that appear to be

modulated by the amplification itself. For some parameters, the sensitivity changes sign

during the period of oscillation. There also appears to be a qualitative change in the effect

of parameters after the first minimum of the amplification envelope, suggesting a change in

dynamics between the initial growth and the period of decay.

The elasticities of reactivity and of the amplification envelope at the time of maximum

growth are shown in Figure 3. Increases in the predation rate, mortality rate, or carrying

capacity will increase reactivity, whereas the assimilation efficiency, half-saturation prey

density, and prey growth rate have the opposite effect. This information can be used to

explore the mechanisms regulating transient dynamics.

4.1.2 Mechanisms of amplification

Sensitivity analysis can identify the ecological processes responsible for transient amplifica-

tion. In this model there appear to be two distinct mechanisms leading to reactive dynamics;

we describe them as “predator-driven” and “prey-driven” mechanisms. We carry out this

analysis in terms of the dimensionless parameters ε (the assimilation efficiency of the preda-

tor), g/r (the scaled predation rate), δ/r (the scaled mortality rate), and K/Ph (the prey

enrichment ratio).

We rewrite the predator-prey model in terms of these scaled variables, and compute the

sensitivities following the same procedure as before, with the parameter θ now containing
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the four dimensionless parameters.

First, we examine the effect of assimilation and predation. Reactivity is plotted in

Figure 4 in the (ε, g/r) plane in the region where coexistence is a stable equilibrium. There

are two distinct regions of high reactivity; one corresponds to low predation rate but high

efficiency and the other corresponds to high predation rate but low efficiency. Intermediate

values of ε and g/r lead to low reactivity. To describe the mechanisms driving transient

growth, we will focus on the equilibrium points A and B (Table 1); these have the same

reactivity, but differ in other properties.

The sign of the sensitivity of reactivity reveals some differences between the two reactive

regions (Figure 5). Predation and enrichment have positive effects on reactivity, except

where reactivity is very small. Assimilation and mortality can have a positive or negative

effect, depending on the parameter values.

Reactivity at equilibrium A is increased by reducing the assimilation efficiency and in-

creasing the mortality rate. This implies that the mechanism for amplification relies on

slow uptake of resources by the predator. At equilibrium, a relatively small predator popu-

lation keeps the prey constant; consequently, a small reduction in the predator population

translates into rapid multiplication of the prey. We call this predator-driven transient dy-

namics. Eventually, the predator catches up and removes the excess prey; this explains the

qualitative change in sensitivity of the amplification envelope for t > 11 (Figure 2b).

In contrast, at equilibrium B there is a prey-driven transient response. At equilibrium,

a large predator population is sustained by the highly efficient, albeit slow, consumption

of prey. The predators can take advantage of transient increases in the prey. Because

amplification at equilibrium B relies on rapid predator growth, reactivity is enhanced by

increasing assimilation efficiency and reducing mortality rate.

The transition between these two scenarios is accompanied by a change in the ratio of

predator to prey biomass. The dashed white line in Figure 4 bounds the region of resource-

depleted equilibria (above the curve), where transient dynamics are controlled by the lower

species in the food chain.

These mechanisms are also reflected in the directions of the optimal initial perturbations

and the resulting responses, as shown in Figure 6 for a fixed time (t = 4) during the initial
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period of growth. Perturbations leading to maximal growth in the predator-driven scenario

correspond to a decrease in predator biomass and increase in prey or, by symmetry, increase

in predator and decrease in prey. The transient response also lies in the second and fourth

quadrants (Figure 6a). In the prey-driven scenario, by contrast, optimal perturbations

and their associated transient response are found in the first and third quadrants; they

correspond to concurrent increase or reduction in the prey and predator biomass (Figure

6b).

4.2 Multiple food chains

Armstrong (1994) introduced a model for a size-structured marine food web. The model in-

cludes size classes of phytoplankton (P1, P2, . . .) and zooplankton (Z1, Z2, . . .). We consider

the case of connected food chains, where each zooplankton size class feeds on phytoplank-

ton in the corresponding size class and on zooplankton in the size class below (Figure 7).

Allometric relations are assumed for the size-dependence of biological activities.

In our model, we assume logistic growth of phytoplankton, with a carrying capacity

chosen to produce the same equilibrium as in Armstrong (1994; his case T = 5) for the case

NT = 5. Using the parameters in Table 2 (the values are taken from Armstrong, 1994), the

model allows for coexistence of 3 phytoplankton classes and 5 zooplankton classes.

The equations are

dPi
dt

=
[
ri

(
1−

∑
P

K

)
− λ− Zi

gi
Ps

]
Pi (61)

dZi
dt

=
[
ε
gi
Ps

(Pi + Zi−1)− δi − Zi+1
gi+1

Ps

]
Zi (62)

with i = 0, . . . , 4.

The predation rate gi, mortality rate δi, and prey growth rate ri depend on the body

length Li according to the allometric relations:

gi = g0

(
Li
L0

)β
δi = δ0

(
Li
L0

)β
+ λ

(
Li
L0

)γ

19



ri = r0

(
Li
L0

)β
Li = 4i × L0

Values for β and γ are given in Table 2.

The unique coexistence equilibrium is shown in Figure 8. In this food web, the total

predator biomass exceeds the prey biomass because of the rapid turnover rate of phyto-

plankton.

For sensitivity analysis, we write the model in matrix form with a state vector, of length

m = 8, x = [P0 P1 P2 Z0 Z1 Z2 Z3 Z4]T. The matrix A in (1) is diagonal with elements

A11 = r0

(
1− P0 + P1 + P2

K

)
− λ− Z0

g0
Ps

A22 = r04β
(

1− P0 + P1 + P2

K

)
− λ− Z1

g04β

Ps

A33 = r042β
(

1− P0 + P1 + P2

K

)
− λ− Z2

g042β

Ps

A44 = ε
g0
Ps
P1 − δ0 − λ− Z1

g04β

Ps

A55 = ε
g04β

Ps
[(P1 + Z0]− δ04β − λ4γ − Z2

g042β

Ps

A66 = ε
g042β

Ps
[P2 + Z1]− δ042β − λ42γ − Z3

g043β

Ps

A77 = ε
g043β

Ps
Z2 − δ043β − λ43γ − Z4

g044β

Ps

A88 = ε
g044β

Ps
Z3 − δ044β − λ44γ

The matrices dvec A/dxT, dvec A/dθT, and dvec B/dθT required for the sensitivity analysis

are large, but because A is diagonal, most of their entries are zero. These matrices are

presented in Verdy (2008).

The equilibrium is reactive, with the maximum amplification occurring at t = 37 (Figure

9). Time is measured in days in this parameterization, so the largest effect of perturbing the

equilibrium appears more than a month later. The amplification envelope remains above

1 for over 3 years (t = 1185 days). This is an example of a system in which transient

amplification is likely to be more ecologically relevant than the asymptotic return to the
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equilibrium.

Even in the 2-species predator-prey model, the effects of the parameters were not al-

ways intuitive. In more complex models, sensitivity analysis is particularly useful for un-

derstanding what controls the transient dynamics and how a system responds to changes

in the parameters. In this food web model, the assimilation efficiency, predation rate, prey

growth rate and carrying capacity have positive impacts on reactivity, whereas mortality

and saturation prey density have negative impacts (Figure 10a). Parameters that increase

reactivity are found to increase the maximum amplification as well (Figure 10b), an indica-

tion that the same mechanism driving amplification at t = 0 causes the maximum growth

at t = 37. The elasticity to assimilation efficiency is particularly large: a 10% increase in ε

would increase reactivity by more than 20% and the maximum amplification by more than

70%.

Sensitivity analysis could be employed to investigate, for example, how the mechanisms

of transient dynamics vary with food chains’ lengths. In Armstrong’s (1994) model, the

number of trophic levels is controlled by the total nutrient availability. Although this

question is not addressed here, it could be studied using the framework presented in this

paper.

5 Discussion

When perturbed from their equilibria, ecosystems exhibit transient dynamics. These tran-

sients can last for extended periods of time and have important ecological consequences.

When the equilibrium is reactive, small fluctuations can be amplified. In nature, perturba-

tions result from the stochasticity inherent to the environment and the biological processes

themselves. Ecologists have long conceptualized ecological stability in terms of the asymp-

totic rate of return to equilibrium [see Ives and Carpenter (2007) for a recent example], but

it is not yet widely appreciated how deficient this approach is. It bears repeating that the

asymptotic rate of return does not determine the transient amplification. For example, it is

easy to construct matrices with identical eigenvalues, and hence identical asymptotic rates

of return, but with very different reactivities and amplification envelopes (e.g., Trefethen et
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al, 1993; Neubert and Caswell, 1997).

As more examples accumulate of reactive ecological models, it becomes of more interest

to understand how the transient responses depend on the parameters of the underlying

model. The sensitivity analyses we have presented here make it possible to do so. Sensitivity

analysis, in this context, can serve two purposes. One is to reveal the biological mechanisms

that produce it. Knowing, for example, that reactivity in the size-structured food web model

is highly elastic to assimilation efficiency suggests that the amplification of perturbations is

related to the efficiency of energy transfer between trophic levels. The second is predicting

the effect of parameter changes, such as might occur due to pollution, nutrient input,

climate change, or other events. Of particular interest would be analysis of infectious disease

outbreaks and biological invasions, in both of which transient phenomena are particularly

important.

Writing the model in matrix form as in Eqs. (1–2) focuses attention on the role of the

per-capita (or per-unit) rates that appear in the matrix A, and the dependence of those

rates on the parameters and the population state. Our analysis, however, can also be applied

to systems not written as matrix models, in which (1) and (2) are replaced by

dx
dt

= f [θ,x] (63)

x(t+ 1) = f [θ,x(t)] (64)

where f [θ,x] is a vector-valued function. The linearization of (63) or (64) around an equi-

librium x̂ is given by

M =
df
dx

∣∣∣∣
x̂

(65)

This linearization, obtained without benefit of the matrix formulation, can then be further

analyzed as described here. In particular, we obtain for its sensitivity

dvec M
dθT

=
∂vec M
∂θT

− ∂vec M
∂xT

M−1 ∂f
∂θT

(66)

which would then be used in Eqs. (40), (45), and (47). The remainder of the sensitivity

calculations proceed unchanged.
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A Sensitivity of stable equilibria

The sensitivity of the equilibrium for the discrete model is derived in Caswell (2008). Here

we show the derivation for the continuous model (1). The equilibrium x̂ satisfies

0 = A [θ, x̂(θ)] x̂ (67)

Taking the differential of both sides gives

0 = (dA) x̂ + A (dx̂) (68)

Applying the vec operator to both sides, noting that vec x̂ = x̂, and using Roth’s (1934)

relation (22), gives

0 = (x̂T ⊗ Is) dvec A + Adx̂ (69)

But A depends on both θ and x̂, so

0 = (x̂T ⊗ Is)
(
∂vec A
∂θ

dθ +
∂A
∂xT

dx̂
)

+ Adx̂ (70)

Collecting terms, solving for dx̂, and rearranging gives

dx̂ =
(
−A− (x̂⊗ Is)

∂vec A
∂xT

)−1

(x̂T ⊗ Is)
∂A
∂θT

dθ (71)

The “first identification theorem” of Magnus and Neudecker (1985) says that the matrix

multiplying dθ is the derivative dx̂/dθT, as shown in (29).

B Sensitivities of eigenvalues and singular vectors

B.1 Sensitivity of eigenvalues

The sensitivity of reactivity in continuous systems requires the sensitivity of the largest

eigenvalue ν0 of H = (M + MT) /2. Let w be the right eigenvector of H corresponding to

ν0. Since H is symmetric, w is also the left eigenvector, and we suppose that wTw = 1.
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The sensitivity of ν0 to M is

dν0

dvec TM
=

dν0

dvec TH
dvec H
dvec TM

(72)

where the standard eigenvalue sensitivity formula, written in matrix calculus notation, is

dν0

dvec TH
= wT ⊗wT (73)

The sensitivity of H to M is
dvec H
dvec TM

=
1
2

(Is2 + P) (74)

where P is the vec-permutation matrix (Henderson and Searle, 1981). Because both H and

P are symmetric in this case, it follows that

dν0

dvec TH
P =

dν0

dvec T(HT)
=

dν0

dvec TH
(75)

Thus
dν0

dvec TM
= wT ⊗wT (76)

B.2 Sensitivity of singular vectors

We treat the right singular vector v of a matrix X, corresponding to a singular value σ, as

the eigenvector v of XTX corresponding to the eigenvalue σ2, normalized to unit length. We

find the derivative of v using by adapting the approach used for eigenvectors of population

projection matrices by Caswell (2008). Let Y = XTX. Then Yv = σ2v and v is also a

fixed point of the system

v(t+ 1) =
Yv(t)
‖Yv(t)‖

(77)

Write this fixed point as

v =
Yv

(vTYTYv)1/2
(78)

and differentiate, obtaining

dv =
Y(dv) + (dY)v

(vTYTYv)1/2
− Yv d (vTYTYv)

2 (vTYTYv)3/2
(79)
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Expand the differential in the second term and then simplify, using the relations

Yv = YTv = σ2v

vTYT = vTY = σ2vT

vTv = 1

vTYTYv = σ4 (80)

Applying the vec operator yields, after some rearrangement

(
σ2Is −Y +

σ2

2
(vT ⊗ v) +

σ2

2
vvT

)
dv = [(vT ⊗ Is)− (vT ⊗ vvT)] dvec Y (81)

Since Y = XTX, it follows that

dvec Y = [(XT ⊗ I)P + (I⊗XT)] dvec X (82)

where P is the vec-permutation matrix. Finally,

dv
dvec TX

=

(
σ2Is −XTX +

σ2

2
(vT ⊗ v) +

σ2

2
vvT

)−1

×
[

(vT ⊗ Is)− (vT ⊗ vvT)
] [

(XT ⊗ I)P + (I⊗XT)
]

(83)
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Table 1: Parameters for the predator-prey model

Symbol Definition Value Units
Equilibrium A Equilibrium B

ε assimilation efficiency 0.15 0.8 -
g predation rate 2.3 0.8 d−1

δ mortality rate 0.1 0.1 d−1

Ph half-saturation prey density 1 1 µmol m−3

r prey growth rate 1 1 d−1

K carrying capacity 1.25 1.25 µmol m−3

P̂ equilibrium prey biomass 0.41 0.18 µmol m−3

Ẑ equilibrium predator biomass 0.41 1.26 µmol m−3

Table 2: Parameters for the multiple food chains model; values are from Armstrong (1994).

Symbol Definition Value Units
L0 length of organism in smallest size class 1 (arbitrary)
β allometric constant -0.75 -
γ another allometric constant -0.4 -
ε assimilation efficiency 0.4 -
g0 maximum predation rate of organism in smallest size class 1.4 d−1

δ0 mortality rate of predators in smallest size class 0.068 d−1

r0 maximum growth rate of prey in smallest size class 1.4 d−1

Ps full-saturation prey density 2 mmol m−3

λ mortality rate (size-independent component) 0.016 d−1

K carrying capacity 2.43 mmol m−3
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Figure 1: Transient amplification of perturbations in the predator-prey model (54–55) at
t = 2.0 (showing growth of perturbations), t = 5.7 (maximum of the amplification envelope),
and t = 13 (as perturbations decay). Initial conditions (with unit norm) are represented by
gray dots; the response is shown by black dots. Parameters from Table 1, Equilibrium A.
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Figure 2: (a) The amplification envelope ρ(t) for Equilibrium A of the predator-prey model
(54–55); the equilibrium is reactive (ν0 = 0.24). Maximum growth occurs at t = 5.7. (b)
The sensitivity of the amplification envelope to the log of each parameter, as a function of
time.
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Figure 3: Perturbation analysis of transient dynamics for Equilibrium A of the predator-
prey model (54–55). (a) The elasticity of reactivity. (b) The elasticity of the amplification
envelope at the time of maximum amplification.
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Figure 5: The sign of the sensitivity of reactivity of the predator-prey model (54–55) in the
region of parameter space where the coexistence equilibrium is stable. Dark areas indicate
negative sensitivity to the non-dimensional parameters, light gray areas indicate positive
sensitivity. Sensitivity of ν0 to (a) assimilation (ε), (b) predation (g/r), (c) mortality (d/r),
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34



Z
0

Z
1

Z
2

Z
3

Z
4

Z
5

P
0

P
1

P
2

P
3

P
4

P
5

Figure 7: Size-structured multiple food chains model, inspired by Armstrong (1994). Zoo-
plankton in a given size class can feed on a single class of phytoplankton, as well as on
the next smaller zooplankton class. For the parameters of Table 2, the system supports
3 phytoplankton classes (Pi for i ≤ 2) and 5 zooplankton classes (Zi for i ≤ 4). Larger
organisms (shown in gray) become extinct.
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Figure 8: Equilibrium densities in the size-structured multiple food chains model (61-62),
for the parameters given in Table 2.
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Figure 9: The amplification envelope for the size-structured multiple food chains model
(61-62); the equilibrium is reactive (ν0 = 0.29). Maximum transient growth occurs at
t = 37.
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Figure 10: Perturbation analysis of transient dynamics for the size-structured multiple food
chains model (61-62). (a) The elasticity of reactivity. (b) The elasticity of the amplification
envelope at the time (t = 37) of maximum amplification.
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