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Abstract. We present a methodology for statistical analysis of randomly-located marine 

sediment point data, and apply it to the U.S. continental shelf portions of usSEABED mean grain 

size records.  The usSEABED database, like many modern, large environmental datasets, is 

heterogeneous and interdisciplinary. We statistically test the database as a source of mean grain 

size data, and from it provide a first examination of regional seafloor sediment variability across 

the entire US continental shelf.  Data derived from laboratory analyses (“extracted”) and from 

word-based descriptions (“parsed”) are treated separately, and they are compared statistically and 
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deterministically.  Data records are selected for spatial analysis by their location within sample 

regions: polygonal areas defined in ArcGIS chosen by geography, water depth, and data 

sufficiency.  We derive isotropic, binned semivariograms from the data, and invert these for 

estimates of noise variance, field variance, and decorrelation distance.  The highly erratic nature 

of the semivariograms is a result both of the random locations of the data and of the high level of 

data uncertainty (noise).  This decorrelates the data covariance matrix for the inversion, and 

largely prevents robust estimation of the fractal dimension.  Our comparison of the extracted and 

parsed mean grain size data demonstrates important differences between the two.  In particular, 

extracted measurements generally produce finer mean grain sizes, lower noise variance, and 

lower field variance than parsed values. Such relationships can be used to derive a regionally-

dependent conversion factor between the two.  Our analysis of sample regions on the U.S. 

continental shelf revealed considerable geographic variability in the estimated statistical 

parameters of field variance and decorrelation distance.  Some regional relationships are evident, 

and overall there is a tendency for field variance to be higher where the average mean grain size 

is finer grained.  Surprisingly, parsed and extracted noise magnitudes correlate with each other, 

which may indicate that some portion of the data variability that we identify as “noise” is caused 

by real grain size variability at very short scales. Our analyses demonstrate that by applying a 

bias-correction proxy, usSEABED data can be used to generate reliable interpolated maps of 

regional mean grain size and sediment character.  
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1. Introduction 

 The physical properties of seafloor sediments on the continental shelf are spatially variable 

on many scales due to a complex underlying geologic framework and seafloor processes: from 

regional-scale variations (10 to 100 km), such as those associated with proximity to major 

depocenters or the shoreline, down to mesoscale variations (1 to 10 cm), such as those associated 

with ripple bedforms.  In between are variations associated with a multitude of bedform types 

and scales (e.g., sand ridges, rippled scour depressions, dunes, megaripples, ribbons), reworking 

and erosion, or patchiness caused by such factors as localized erosion, biologic processes (e.g., 

shell patches), bedrock outcrop, or glacial detritus (gravel patches).  Spatial variability is related 

to process, and we seek, ultimately, to achieve a basic understanding of the geological response 

to the oceanographic and sedimentological processes acting on the seafloor.  We seek as well to 

utilize that relationship as a predictive tool.  In other words, if we understand the seabed 

environment sufficiently, can we make reliable predictions about the quantitative characteristics 

of sediment variability?  Such a capability would have important applications in, for example, 

ocean acoustics, where regional seabed variability strongly affects acoustic response over long 

path lines (e.g., Lapinski and Chapman, 2005), or benthic habitats, where environmental 

heterogeneity is a particularly strong predictor of species richness (e.g., Kerr et al., 2001).  

Quantitative understanding of seafloor variability at all scales is also important for map making, 

in particular for applying techniques that reduce data uncertainty (Goff et al., 2006), and for 

geostatistical interpolation (e.g., kriging; Cressie, 1990). 

 Data quantity and coverage are the most significant challenges to investigating the variability 

of seafloor sediments.  Spatial variability is a statistical measure of ensemble properties, 

quantified by such functionals as the power spectrum, covariance function or semi-variogram.  
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Robust estimation of these types of functions requires large quantities of data sampled over a 

large range of spatial scales.  However, that is very difficult to obtain.  Despite years of advances 

in acoustic remote sensing (e.g., Pratson and Edwards, 1996), and increased sophistication of 

classification algorithms (e.g., Atallah and Probert Smith, 2004; Bartholomä, 2006), 

characterizing the physical properties of seafloor sediments remains a significant challenge.  For 

example, although acoustic backscatter data are strongly related to sedimentary properties, the 

number of potential variables affecting backscatter are so large as to make the problem of seabed 

discrimination exceedingly difficult (e.g., Jackson et al., 1986; Ferrini and Flood, 2006).  

Furthermore, the seabed factors of greatest importance in determining backscatter appear to be 

very local in scope (e.g., Goff et al., 2000; 2004), so that global algorithms for determining 

sedimentary character from backscatter data will likely perform poorly.  It remains necessary to 

directly sample sediments in order to measure properties consistently from one region to another.  

Unfortunately, direct sampling is very time consuming and expensive and, even with extensive 

effort, often results in a relatively small number of sample sites for any single field campaign.  
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 The issue of comprehensive data coverage of seabed samples for the U.S. continental 

margins is being addressed in a collaborative research effort between the U.S. Geological Survey 

and INSTAAR at the University Colorado (usSEABED; Williams, et al., 2003; Reid et al., 2005, 

2006; Buczkowski et al., 2006).  This work has resulted in a database methodology for 

assembling extant seabed observations (dbSEABED; Jenkins, 1997, 2002).  Extensive effort has 

gone into collecting, evaluating, assembling, and publishing available records within published 

and unpublished data sets from federal and state agencies, universities, industry and individual 

researchers.  The result is a combined U.S. database of such observations (Figure 1).  Although 

coverage is far from uniform and is based on surveys spanning approximately the past 120 years, 
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these collections provide, in many continental shelf and estuarine regions, a data set that is 

sufficient in quantity and coverage to robustly map seabed properties and to estimate spatial 

variability functions such as the semi-variogram.  The usSEABED database is a unique resource 

that would not be possible to collect by individual investigators.  The methods employed in the 

usSEABED project relate to a growing and necessary computational resource in environmental 

sciences: large aggregated, heterogeneous and interdisciplinary data bases (e.g., Osenberg et al. 

1999; Jones et al. 2006). 
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 Our primary goal for this paper is to statistically test the viability of the heterogeneous 

usSEABED database for mapping seabed properties and for investigating sediment variability on 

the seafloor.  This is a test case for wider application to worldwide coverage. To maintain focus 

in our analysis, we will restrict consideration to mean grain size measurements of unconsolidated 

sediments (i.e., no outcrop observations) in an open-ocean (i.e., no estuary observations), 

continental shelf setting.  Mean grain size is a commonly reported measurement in the 

dbSEABED databases, which provides a good opportunity to maximize data content in any given 

area.  Mean grain size can also be related to other important physical parameters, such as bulk 

density, seismic velocity, and sediment transport potential (e.g., Stoll, 1977; Hamilton and 

Bachman, 1982; Ogushwitz, 1985).   

 Our secondary goal is to employ the results of our analysis in a preliminary investigation of 

variability as a function of geography and, to the extent warranted by the data, water depth.  At 

this exploratory stage in our investigation we seek first to obtain an overall view of what 

sediment variability looks like on the US continental shelf.  Future investigations, probably 

requiring a larger, global database, may seek to answer more refined questions regarding the 

relationship of sediment variability to environmental parameters such as shelf slope, shelf width, 
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wave climate, proximity to sources/sinks, etc.  The data employed here primarily permit only 

regional interpretations.  More detailed investigations, e.g., ground-truthing sonar backscatter 

maps, would require extensive additional sampling.  However, the methodology we describe can 

be used on small or large spatial scales to integrate data from multiple sources. 
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 While our primary goal may, on first consideration, appear straightforward, in reality it 

presents significant and important challenges owing to the heterogeneous nature of the data base.  

The usSEABED data base holds data that were collected by a large number of different 

investigators at different times utilizing a range of methodologies.  The issues that arise also 

appear in aggregated bathymetric datasets of the seafloor (e.g., Jakobsson et al., 2002; Calder, 

2006).  In the case of the usSEABED data base these issues are of particular relevance: 

 (1) Mean grain sizes are reported in two fundamentally different ways: “extracted” and 

“parsed”.  Extracted data are computed from grain size histograms determined by precise 

analytical means (e.g., sieves, settling tubes, diffractometry).  Parsed data are inferred through a 

conversion by means of a fuzzy set theory (Zadeh 1965) of visual descriptions (i.e., including 

coarse, medium or fine sand, gravel, silt, mud, clay, shells, etc.).  Such inferences are less 

precise, but in many regions constitute the majority of the data coverage and in some cases the 

only data available. 

 (2) Parsed and extracted mean grain size measurements perform differently in various parts 

of the grain size spectrum with respect to accuracy and precision. For example, while analytic 

methods can accurately measure grain size contributions from ~10mm to 2µm, visual 

descriptions are limited to grain sizes above ~20μm, and so have lower accuracy in the fine grain 

sizes (silt and finer). 
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 (3) Laboratory analyses of sediment grain size histograms sometimes exclude shell and 

gravel contents, and other difficult-to-treat components. This happens typically when a 

researcher is primarily interested in sediment transport or physical properties issues, and does not 

consider the shell content germane to the research (e.g., Poppe, et al., 2001; Moore et al., 2002).  

Visual descriptions typically do represent the presence of shell and gravel when it is present, 

hence a bias may arise between parsed and extracted determinations of mean grain size. 
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 (4) Data within usSEABED are collected across several decades in most regions, so that 

temporal variability may be superimposed on spatial variability.  In addition, navigational 

uncertainties have changed markedly through the years, from >1 km for old star fixes and  

LORAN-navigated data, to < 100 m for satellite navigation, to < 10 m for GPS.  Large 

uncertainties can lead to juxtaposition of different types of sediment where the natural 

heterogeneity is strong.  At present, temporal information cannot be extracted from the 

usSEABED database.   

 Our challenge is to utilize this complex data set in a coherent and consistent manner, and to 

properly characterize uncertainty and bias in each of the types of data included in it.  Many 

readers may question a priori the value of treating quantitatively a data set which is subjective by 

its very nature.  But the value lies in the statistics of large numbers: a single estimate of mean 

grain size from a visual description may have little credibility, but many such estimates, when 

considered as an ensemble, can.  In this paper we establish that credibility by demonstrating a 

quantitative, statistical relationship between the word-based and analytically-derived estimates of 

mean grain size. 
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2. Methods 159 
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2.1. Derivation of mean grain size from observations and samples 

 The dbSEABED software deals with both analytical (numeric) and descriptive (word-based) 

data types, which pass outputs that are termed “extracted” and “parsed”, respectively.  Extracted 

mean grain size values are derived with minimal processing from the original records, whereas 

parsed values are formulated via recognition of the linguistic parts of sediment description 

leading to analysis of the meaning (e.g., Grune and Jacobs, 1990).  Here we employ φ grain size 

units, where φ = -log2[mm size] (gravel is -8 to -1φ, sand is -1 to 4φ, and mud is 4 to 12φ) 

 In the extraction stream of processing, we begin by nominating a standard (moment mean) to 

which other measures of grain size must conform, or be made to conform with, to be accepted as 

inputs. Those various measures include: median, Folk (1974) and Inman (1952) graphic ‘means’, 

geometric mean, and mode. The conformance of these measures is revealed by cross-

comparisons using data collections of over 10,000 samples (including, for example, Poppe et al., 

2005) where two or more have been determined together (Figure 2). The Folk and Inman graphic 

means do conform (and are acceptable as input), but modes do not (and are unacceptable). 

Conformance to the moment mean standard can be improved during processing using an 

adjustment on the incoming data (e.g., Smith and McConnaughey, 1999). 

 In many datasets, analytic determinations of detailed grain size histograms are available 

instead of the mean value. In these circumstances, the moment mean grain size is calculated 

directly from the histogram. We have implemented a set of filters to reject analyses which 

purport to be of the entire sediment, but are actually limited to a certain instrumentation and 

fraction (e.g., to sand in the case of settling columns). Where a sediment mean grain size is 
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reported in the data in addition to detailed grain size histogram, the reported mean takes 

precedence. 
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 The possibility of a bias in analytical measures of mean grain size is raised because common 

practice for many investigators is to remove all carbonate content, including coarser shell hash, 

from a sample prior to analysis.  This practice is highlighted in the USGS manual on grain size 

analysis (Poppe et al., 2001):  

Whole or fragmented calcite secreting micro- and macro-organisms can bias the 
grain size distribution if they occur in significantly high concentrations. Because 
biogenic carbonates commonly form in situ, they usually are not considered to be 
hydraulically representative of the depositional environment from a textural 
standpoint (Reineck and Singh, 1980).  Their presence alters the textural data and 
complicates interpretation.   ...  If limited to the gravel fraction, it is often easier to 
manually remove the fragments of bivalve shells and other biogenic carbonate 
debris .... 

The reportage, or not, of shell material as part of the sample analysis is therefore a point-of-view 

issue.  For purposes of hydraulic analysis, shells are considered unrepresentative of the processes 

under consideration, and so are simply ignored.  For other purposes, such as understanding 

acoustic backscatter, the presence of shells can be a critical factor (e.g., Goff et al., 2004).  Over 

the entire usSEABED database, however, it is important to consider the possibility of a bias in 

analytic measures of mean grain size due to the under-reportage of shell material. 

 Word-based data are treated with an algorithm which parses (recognizes) and analyzes 

(comprehends) text descriptions of the sediments and compiles an estimated grain size using 

fuzzy set theory memberships for lithologic and size terms (Jenkins, 1997). The input 

descriptions are held in original, although abbreviated terms. With the use of pointers and some 

special syntaxes, potential ambiguities in descriptions are resolved. Functional roles for terms as 

(geological material) objects, (property) modifiers, quantifiers and locators are recognized from 

the dictionary. A dictionary, organized as thesaurus, provides numeric and coded meanings to 
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each term. Terms may be relevant/irrelevant and known/unknown in meaning for each parameter 

(e.g., for grain size respectively: “fine sand” / “green”, and “fine sand” / “sediment”). The 

numeric meanings, including the grain size characteristics of described components, are 

assembled in a linear weighting scheme (Jenkins, 1997, Fig. 2). During processing the unknown 

parts are monitored and, if above 5%, the parsing is aborted. Any term not in the dictionary also 

causes an abort. More information on the parsing process is given in Jenkins (1997, 2002), Reid 

et al. (2005, 2006), and Buckzowski et al. (2006). 
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 Opportunities exist in the process to monitor how well the parser is performing. We use those 

samples where word-based and measured analytical data are both available. A recent calibration 

using 10,029 usSEABED samples yielded a correlation coefficient of +0.59 between extracted 

and parsed mean grain size values. Across the same dataset (Figure 3) the median average 

deviation was 0.9 φ. The ranges of confidence at 1σ and 2σ were 1.25 and 4.2 deviation in 

absolute φ. 

 

2.2 Data preparation and sampling 

 Prior to statistical analysis, we process the mean grain size data in two ways: (1) “culling,” 

which eliminates redundancies at any specific location and restricts consideration to only 

seafloor samples of unconsolidated sediments, and (2) definition of polygonal sample areas 

which restrict consideration to only samples that fall within areas that they define.  Culling is 

required because usSEABED records frequently list multiple entries with identical coordinates.  

This can occur with repeat measurements on a single surface sample, but also when different 

subbottom samples are analyzed, such as from cores. We restrict consideration to “seafloor” 

samples by excluding those whose bottom depth entry in the usSEABED database is greater than 
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0.5 m below the seafloor.  Where we did encounter multiple seafloor grain size measurements at 

a single location, they were simply averaged.  Parsed and extracted measurements of mean grain 

size are kept in separate data files, so that one type of measurement does not exclude the other 

where both are made at the same location. We also restrict consideration to observations from 

unconsolidated sediments.  “Hard ground” observations (exposures of old, lithified material) do 

not fit within the mathematical framework of mean grain size measurements.  A complete 

statistical treatment of seafloor terrains with outcrop exposures would require separate 

characterization of both the unconsolidated sediments and the binary hard ground/soft ground 

relationship.  Such a treatment is beyond the present scope, but could readily be incorporated if 

required for some applications.  An example of statistical characterization of a binary field can 

be found in Goff et al. (1994). 
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 We define sample areas for statistical analysis to investigate geographic changes in sediment 

variability.  Choosing sample areas necessarily involves a balance among two competing factors: 

geographic and statistical resolution.  Geographic resolution is maximized by minimizing the 

size of sample areas.  Conversely, statistical resolution is maximized by increasing the number of 

samples, which, given a preexisting data set, requires increasing the size of the sample area.  As 

a rule-of-thumb, we found that having at least 1000 well-distributed (i.e., not all clumped 

together) samples in a sample area resulted in a semi-variogram estimate that was well-enough 

resolved (i.e., not overly erratic) to obtain stable statistical parameter estimates; we used this as a 

guiding factor for choosing the size of sample regions.  This is not a hard-and-fast rule, however.  

A region with fewer samples may be chosen if tolerance for statistical inaccuracy is higher, or if, 

by enlarging the area further, one would unduly risk combining overly different geographic 

environments into a single estimate.  Some areas simply have too-few samples in them to include 
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in this analysis; this includes large portions of the Pacific and Gulf of Mexico shelves.  Other 

than sample size, we also considered major geographic features (e.g., Cape Hatteras, NC or Cape 

Cod, MA) and, where data coverage provided adequate support, water depth in defining sample 

area boundaries.  Jenkins and Goff (2007), in a statistical analysis of mean grain size data in the 

Adriatic Sea, separated the data by depth values and found that statistical parameters changed 

markedly across the 20-m isobath.  For the usSEABED database, only the Atlantic shelf afforded 

sufficient coverage to utilize water depth to define sample areas.  For those data, we also use the 

20-m isobath as a boundary, as well as the 50-m and 100-m isobaths to distinguish between 

inner, middle and outer continental shelf sample areas.  Overall we defined 31 sample areas for 

the usSEABED database in U.S. continental shelf waters (19 in the Atlantic, 6 in the Gulf of 

Mexico, and 6 in the Pacific). 
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 ArcGIS (Ormsby et al., 2001) was used to define polygonal sample areas, and then to select 

usSEABED data points within those areas for statistical analysis.  An example from the mid-

Atlantic Bight is presented in Figure 4.  We first import a freely-available US political boundary 

shape file to define the coastline.  Bathymetry is extracted from the NOAA (2007) Coastal Relief 

Model directly into an ArcGIS-compatible grid format.  Upon loading the bathymetry into 

ArcGIS, we use the contour tool (in the spatial analyst tool box extension) to determine the 20, 

50, and 100 m contours for display.  These are subsequently used to guide our choice of 

polygonal sample areas.  The culled usSEABED mean grain size values, both parsed and 

extracted, are loaded into ArcGIS for display.  Polygonal areas are then defined within a new 

shape file using the interactive graphics capabilities of ArcGIS.  In the example shown in Figure 

4, the Hudson Shelf Valley was excluded from the sample areas because it is, in essence, a 

geologic province unto itself: an anomalous region of fine grained sediments that is a result of 
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the unique presence of the shelf valley across the continental shelf morphology (Vincent et al., 

1981; Harris et al., 2003).  Figure 5 displays all the sample areas defined on the continental shelf 

for the usSEABED database, color coded by the average mean grain size of the parsed records in 

those areas.  The areas are identified numerically for reference to Table 1, which lists grain size 

statistics for each region derived in the following sections. 
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2.3 Semivariogram analysis of data field 

2.3.1 Computation of the semi-variogram 

 The semivariogram is a common tool for geostatistical characterization of a data field (e.g., 

Deutsch and Journel, 1992; Christakos, 1992).  As a function of lag vector, L, the semivariogram 

S(L) is defined by: 

  [ ]2))()((
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where E[] is the expected value, and d(x) is a zero-mean data value at location X.  In practice, we 

typically remove a trend field from the data over a sample area by fitting a bilinear surface 

(Wessel and Smith, 1998) to the data and subtracting it.  Equation (1) assumes that the field is 

statistically homogenous; i.e., that statistical properties are not a function of X.  Removal of a 

trend surface, as described previously, helps to enforce this assumption.  The semivariogram is 

related to the covariance function C(L) by the simple relationship S(L) = H2 – C(L), where H2 is 

the field variance. 

 Although this paper is focused on situations where the field data are randomly (meaning: not 

located on a regular grid) and sparsely located in space, it is instructive to first consider the 

formulation for estimating the discrete semivariogram from field data di,j that are sampled fully 



  14 

on an Nx by Ny grid, with x and y increments Δx and Δy and coordinates indexed by (i,j): 1 ≤ i ≤ 

N

299 

300 x; 1 ≤ j ≤ Ny: 
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where the lag vector is defined by L = (kΔx, lΔy).  The semivariogram (or covariance) estimated 

in this way is generally a smoothly-varying function by virtue of the fact that proximal values are 

highly correlated with each other (Goff and Jordan, 1989).  This can be understood intuitively by 

recognizing that, for example, the formulas for  and  utilize nearly all the same dlkS ,
ˆ

1,
ˆ

+lkS i,j 

values, and the di+k,j+l values are likely to be only slightly different from the di+k,j+l+1 values. 

 Estimating the semivariogram from randomly-located data is not as straightforward; it must 

be accomplished with a binning method.  In addition, sufficient support of two-dimensional 

characterization of the semivariogram from generally sparse, randomly-sampled data is generally 

not available.  We therefore restrict our attention here to the isotropic, one-dimensional 

semivariogram, which is a function of the lag distance L = |L|2.  We define bins using a bin size 

ΔL, where the kth bin is defined by the range (k-1)ΔL ≤ L < kΔL.  Assume we have randomly-

located field data points, d(Xi), i ∈ 1,N, in a sample area.  We express the semivariogram 

estimation via: 
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 An example semivariogram estimated from a sample area of the Atlantic usSEABED 

database, computed using equations (3)-(5), is displayed in Figure 6. Here and elsewhere we 

employ a lag bin size ΔL of 200 m.  For most regions we examined, this bin size typically results 

in bin populations (determined by the number of point pairs whose lag distance falls within the 

bin) of ~1/2 to 2 times the total data population of the region (although fewer at the shortest lag 

distances).  A defining characteristic of this and all other such examples is the very high level of 

erraticity (i.e., strong variability from one discrete lag value to the next).  This observation stands 

in sharp contrast to smoothly-varying semivariograms typically derived from regularly-sampled 

data using equation (2).  The fundamental reason for this behavior is that the values of  are 

highly uncorrelated with each other.  This is, in part, a direct consequence of the sparse, random 

sampling: heuristically it is evident in equation (3) that  and  will be computed using 

very different sets of data values, rather than very similar sets as in equation (2) for regularly 

sampled data.  The value N

kŜ

kŜ 1
ˆ

+kS

k is itself a random number, which can change substantially from one 

lag index to the next.  High levels of data uncertainty (noise) can also contribute significantly to 

the erraticity of the semivariogram.   

 

2.3.2 Parameter estimation 

 We estimate second-order statistical properties of the data field through an iterative, 

weighted, least-squares inversion of the semivariogram (e.g., Menke, 1989).  Following the 

notation of Menke (1989), we define d as the “data” vector of semivariogram estimates , 

as the vector of model parameters at the n

kŜ

est
nm th iteration, and  as the vector of model )( est

nmg
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predictions from those parameters.  The iterative, linearized inversion formulation is then 

expressed as: 

341 

342 

343 

344 

345 

346 

347 

348 

349 

   )((1
est
n

g
n

est
n mgdGm −= −

+

  , (6) nn
g

n GdGG 1T ][cov −− =

where cov d is the covariance matrix of the data vector, and the sensitivity matrix [Gn]ij = 

 is evaluated at .   ji mg ∂∂ / est
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 We fit the one-dimensional, semivariogram form of the von Kármán statistical model (e.g., 

Goff and Jordan, 1988), with white noise variance, N2, added.  In discrete form, where L = kΔL, 

this can be written as 

  [ ],)0(/)(1)( 22
vv GLKkGHNLkS Δ−+=Δ  (7) 350 

351 where K is a lag scale parameter and the Gν is defined by 
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Kν is the modified Bessel function of the second kind of order ν.  Gν  are a class of 

monotonically decaying functions (see plots in Goff and Jordan, 1988).  There are four model 

parameters to be fitted: N2, H2, K and ν.  In geostatistical terminology, N2 represents the 

“nugget” of the semivariogram, and N2 + H2, the maximum value reached with increasing lag, is 

the “sill.”  The order parameter ν primarily controls the behavior of Gν(r) at the origin; its slope 

at r = 0 is zero for ν = 1 and infinite for ν = 0.  G1/2(r) is simply an exponential function.  The 

Hausdorff (fractal) dimension D of a topographic surface can be related to the asymptotic 

properties of the covariance/semivariogram function at small lag (Adler, 1981).  The Hausdorff 
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dimension associated with Equation (7) is D = 2 − ν for profiles and 3 − ν for surfaces (Goff and 

Jordan, 1988). 
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 The lag scale parameter, K, largely determines how quickly the field decorrelates with 

increasing lag (i.e., how quickly the semivariogram approaches the sill), although the order 

parameter also has an influence.  A decorrelation length, λ, can be defined by the width (second 

moment) of the covariance (Goff and Jordan, 1988): 
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The decorrelation length is a physically intuitive parameterization of the approximate width of 

the principal structures of the field. 

 Partial derivatives for the covariance form of the von Kármán were calculated by Goff and 

Jordan (1988; 1989), and are easily converted to the semivariogram form of the model.   

 The weighted inversion formulation also requires identification of a data covariance matrix 

(cov d in Equation 6), which involves defining the fourth moment of the field data (Goff and 

Jordan, 1989).  This is a tractable computation for regularly sampled data, but becomes very 

difficult for randomly located data.  However, we infer from our observation that these 

semivariograms are highly erratic, and we can reasonably assume that the data points are largely 

uncorrelated with each other.  We thus approximate the data covariance with a diagonal matrix, 

where the elements are defined by the semivariogram error variance.  We estimate these 

elements empirically, employing two metrics: (1) the variance of the misfit between the 

semivariogram estimated from the data and the semivariogram model, which is iteratively 

reduced during the least-squares inversion procedure, and (2) the number of data pairs, Nk, that 

are used to estimate the kth semivariogram bin.  The error variance for the bin average is 
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expected to be proportional to the inverse of the number of sample points for that bin.  We define 383 

2
AE  as the average error variance,  384 
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where Nb is the number of semivariogram estimation bins, and S(kΔL) is the model function 

defined in Equation (7), updated iteratively by the inversion Equation (6).  We further define NA 

as the average number of bin samples: 
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and these values are used to define the diagonal elements of the semivariogram covariance 

matrix.  We often find that the lowest lag values of the semivariogram are highly erratic owing to 

a scarcity of samples in those bins.  The bin error formulation of Equation (12) sufficiently 

reduces the weight of such values so that they do not adversely affect the inversion result. 

 The erratic nature of the semivariograms estimated from randomly located data unfortunately 

make accurate estimation of the ν parameter (i.e., the fractal dimension) a nearly impossible task, 

in that the inversion quickly becomes unstable.  The value of ν typically needs to be fixed to 

enable stable estimation of the other parameters, and for these data examples we choose ν = 0.5 

(fractal dimension of 1.5 for a profile, 2.5 for a surface), which is identical to an exponential 

model. 
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 Figure 6 demonstrates a best-fit semivariogram model employing the method described 

above.  The inversion formulation also provides estimates of the errors on model parameters 

(Menke, 1989): 
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However, errors computed by this formulation must be considered underestimates because our 

assumption of uncorrelated semivariogram estimates is not strictly correct.  Realistic 1-σ errors 

for N2 and H2 are ~10% of the sill value (the sum of N2 and H2), and for decorrelation length are 

~25-50% (generally increasing with the decorrelation length). 

 

3. Extracted vs. Parsed mean grain size value comparison 

 Our most fundamental issue in utilizing the usSEABED database mean grain size values is 

the comparability of extracted and parsed forms of measurements.  In this section, we make two 

forms of comparison: (1) a direct comparison of proximal values, and (2) comparison of 

statistical parameters in sample areas that are well-covered by both record types. 

 

3.1 Direct comparison of proximal values 

 We form extracted/parsed mean grain size pairs for comparison by finding, for each extracted 

measurement, the nearest parsed measurement no greater than 200 m away.  No comparison is 

made for pairs greater than 200 m distant.  More than 6,900 such proximal comparisons can be 

made over the entire usSEABED database (Figure 7), many of which are collocated.  Figure 7 

displays a significant amount of scatter, but nevertheless indicates a positive relationship 

between the two types of measurements of mean grain size.  To better characterize this 

relationship, we have averaged the plotted points in two ways: (1) for each 1-φ extracted bin, we 
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have determined the average parsed mean grain size, and (2) for each 1-φ parsed bin, we have 

determined the average extracted mean grain size.  The vast majority of samples fall within the 

range ~1-7 φ, and within this range both forms of averaging consistently indicate that parsed 

measurements tend to have lower φ values (coarser mean grain sizes) than extracted 

measurements, typically by ~0-1 φ.  This indicates a bias in one of the two measurement types.   
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 The average extracted/parsed bin averages diverge, however, at both ends of the φ scale.  At 

the upper end (finer grain size), extracted mean grain sizes reach values as high as 10 φ, whereas 

the parsed mean grain sizes are limited to ≤ 7 φ.  This can be explained by the fact that the 

presence of “clay” (≤ 8 φ) cannot be verified in visual observations.  Analytic methods, however, 

are able to discern finer grain sizes.  At the lower end (coarser grain sizes), we observe that low-

φ parsed measurements are generally not matched by low-φ extracted measurements, and 

likewise that low-φ extracted measurements are not generally matched by low-φ parsed 

measurements (although there are far more examples of the former than the latter).  The 

disparities worsen with decreasing φ (increasing grain size).  We can envision two possible 

explanations for this observation: (1) that gravel/shelly patches tend to be spatially very 

confined, so that even proximal measurements can have large disparities, or (2) that the reporting 

of the gravel portion of samples in the usSEABED records is not very consistent, and worse for 

extracted measurements than for parsed measurements although examples of each are probable. 

 

3.2 Comparison of statistical parameters 

 Of the 31 sample areas defined for the usSEABED database, 12 had sufficient coverage (see 

discussion in Section 2.2) of both parsed and extracted mean grain sizes to robustly estimate the 

variogram for inversion of statistical parameters.  Figure 8 shows three such comparisons with 
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contrasting results.  Figure 8a presents what may be considered the ideal situation: the 

semivariograms estimated from both parsed and extracted mean grain sizes are nearly identical 

in shape, as evidenced by the similarity of the field variance and decorrelation length parameters.  

The only substantive difference between the two is that the level of noise variance is higher in 

the semivariogram estimated from the parsed data, in accordance with expectations.   
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  Figure 8b presents a situation where the field variance is much larger for the parsed data 

than it is for the extracted data.  Otherwise, as with Figure 8a, the decorrelation lengths are very 

similar, and parsed data exhibit greater noise variance.  The difference in field variance could 

have a number of causes, including the possibility that coarse fractions are under-reported for the 

extracted data. 

 Figure 8c presents a third different case: here the field variance of the extracted mean grain 

sizes are much larger than for the parsed data.  On the other hand, the “sill” value (the maximum 

value approached by the semivariogram) of the parsed semivariogram is ~1 φ2 larger than for the 

extracted semivariogram, and the noise variance of the parsed data is much larger than can be 

reasonably explained by data uncertainty.  The evidence here suggests that a significant portion 

of the true field variance in the parsed data is being expressed as uncorrelated (noise) variance.  

The reasons for this are not clear, but could be related to spatial undersampling of real features or 

to location uncertainty in older data sets. 

 The primary lesson to be learned from the examples shown in Figure 8 is that the relationship 

between parsed and extracted measurements of mean grain size cannot be determined on a 

national or global scale, but rather must be determined on a case-by-case, region-by-region basis.  

Nevertheless, it may be possible to utilize these sorts of comparisons to formulate a local 

conversion factor between the two types of data measurements.   
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 Figure 9 displays graphs of parsed versus extracted statistical parameters (including the 

average mean grain size) for the 12 sample areas well covered by each type of data.  In the 

comparison between average mean grain sizes (Figure 9a), we again observe the tendency, noted 

in Figure 7, for the parsed values to be less than the extracted values.  Otherwise the averaged 

mean grain size for the regions are strongly correlated (correlation coefficient of +0.89, with 

confidence >99%).  In the comparison of field variance (Figure 9b), we find at the lower values a 

tendency for the parsed values to increase faster than the extracted values.  That trend appears to 

reverse, however, at the larger field variance values.  On the other hand, the two largest field 

variances for the extracted samples, one of which is the example shown in Figure 8c, correspond 

to the two anomalously large noise variances in the parsed data (Figure 9c).  If, as we argued 

earlier, these sample areas are cases where a significant amount of the parsed field variance is 

being expressed as noise variance, then these two anomalous values in Figure 9b would plot 

much closer to the 1:1 line (correlation coefficient of +0.83, with confidence = 97%).  Aside 

from these two anomalous values, the noise variances in Figure 9c display a clear pattern of 

larger parsed values than extracted values (average difference 0.43 φ
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2), and furthermore exhibit a 

strong positive correlation between parsed and extracted noise variances (correlation coefficient 

of +0.80, confidence = 99%).  We will consider the causes for this correlation, which is 

unexpected, in the following section.  The decorrelation lengths (Figure 9d) display considerable 

scatter, as befits the least well-resolved statistical parameter, but generally display a positive 

correspondence between the two types of measurements (correlation coefficient +0.54, with 

confidence = 99%) with no obvious biases. 
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4. Results of statistical analysis  493 
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 Our estimates of field variance and decorrelation length scale within the usSEABED 

continental shelf sample areas (Figure 5) are listed in Table 1 and summarized graphically in 

Figures 10 and 11, respectively.  In sample areas for which we were able to obtain estimates 

from both parsed and extracted data records, the higher of the two field variance values were 

used for display in Figure 10.  As noted earlier and in Figure 9b, most of the higher field 

variances were recorded with the parsed data, and we speculate is largely due to under-reportage 

of coarse fraction in analytic methods used for the extracted data.  The two primary exceptions 

(Figure 9b) are those where an unrealistically large portion of the total parsed field variance is 

accounted for by the noise variance, and in these cases we assume that the larger field variances 

from the extracted data are more representative.  For the display of decorrelation length scales in 

Figure 11 we average the values from parsed and extracted data sets in regions where both are 

estimated, weighted by the number of samples of each.  Geographically, we can use these plots 

to make several important observations: 

 (1) While the carbonate sands of the southeast and southwest Florida shelf and the 

siliciclastic sands of the U.S. Atlantic shelf south of Cape Cod are both among the largest overall 

mean grain sizes (Figure 5), they present strongly contrasting statistical behaviors.  The grain 

size variance (Figure 10) of the Florida shelf is relatively large (~1.5-3 φ2), and the decorrelation 

lengths (< 8 km; Figure 11) are among the shortest observed.  With the exception of regions just 

north of Cape Hatteras, the U.S. Atlantic shelf sediments exhibit low variance (< 1 φ2; Figure 

10), and a large range of decorrelation lengths (Figure 11). There is no evident relationship 

between decorrelation distance and water depth, in contrast to the observations of Jenkins and 

Goff (2007) for the sediments of the Adriatic sea.  The high variance and short decorrelation 
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scales on the Florida shelf imply that there is less spatial predictability in these sediments than 

most anywhere else.  Short-scale patchiness of shell beds may be a contributing factor.  By 

contrast, the U.S. Atlantic shelf exhibits some of the highest grain size predictability (not 

counting “hard-ground” outcrops, such as are know to be present on the Carolina shelf, for 

example; Thieler et al., 1995), owing to the low variances and larger decorrelation length scales. 
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 (2) Finer-grain size regions appear to exhibit moderate to large variances.  The sediments off 

Cape Cod and within the Gulf of Maine, which are strongly influenced by glacial detritus 

deposited by Late Pleistocene ice sheets (Emery and Uchupi, 1984; Poppe at al., 2003), exhibit 

the largest variances found in our analysis (~3-10 φ2).  Most of these sample regions have 

average mean grain sizes > 2 φ, with the exception of < 50 m water depth regions both north and 

south of Cape Ann, MA and directly off Cape Cod.  In these areas it is not uncommon for 

samples to alternate between fine grained muds or sands and coarser material, up to and 

including gravel.  Along the U.S. Pacific shelf and Gulf of Mexico shelf, west of Florida, 

average mean grain sizes are generally ~2-5 φ, and variances are mostly between ~0.8 and 2.7 φ2. 

 (3) Aside from the evident association of shorter decorrelation lengths along the Florida 

shelf, decorrelation lengths in general do not exhibit much in the way of regional continuity.   

 We utilize inter-parameter graphs (Figure 12) to explore the relationships between the 

different statistical parameters estimated from the usSEABED continental shelf sample regions.  

Figure 12a displays average mean grain size in each sample region plotted against field variance.  

At first examination, there appears to be no trend between the two parameters.  However, the 

scatter in the plot is largely driven by the regions with the largest field variance values.  These 

regions are localized in the Gulf of Maine and Florida shelf areas, where we have cause to 

presume that the enhanced variance is being driven by the presence of gravel or shell patches.  If 
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we remove all results from these two regions (Figure 12b), a clear positive correlation is 

observed between the average and field variance of the mean grain size in φ (which translates 

into an inverse correlation in mm), with separate correlations are noted for parsed and extracted 

data results (correlation coefficients are +0.74, with 99% confidence, and +0.66, with 99% 

confidence for extracted and parsed, respectively), with the parsed samples exhibiting larger 

variances and/or coarser grain sizes (lower φ values).  Regression lines for both parsed extracted 

measurements are also plotted on Figure 12b (for parsed: y = 0.157 + 0.586x; for extracted: y = -

0.154 + 0.287x). 
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 Other inter-parameter graphs (decorrelation length vs. average mean grain size in Figure 12c; 

decorrelation length vs. mean grain size variance in Figure 12d; noise variance vs. average mean 

grain size in Figure 12e; and noise variance vs. mean grain size in Figure 12f) evince no clear 

correlations.  We include here measurements of the noise variance plotted against the average 

and field variance.  Earlier we noted an evident correlation between the noise variances derived 

by parsed and extracted records of mean grain size.  There is no self-evident reason why such a 

correlation should exist.  One possibility is that noise variance for each is somehow related to the 

physical parameters of the mean grain size field, so that both parsed and extracted noise 

variances are responding to a common input.  The lack of correlations noted in Figures 12d and 

12f does not support this supposition, at least as related to the correlated component of the field.  

We cannot, however, discount the possible existence of an uncorrelated component to the field, 

or at least a component which has a shorter decorrelation scale than can be measured by the by 

the available spatial density of samples.  If such a component does exist, it would contribute to 

what we identify as the noise variance, both for extracted and parsed measurements, thereby 

inducing a correlation between the two.   
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5. Example application: mapping grain size character of the Long Island shelf 

 The Long Island shelf region exhibits complex sediment character and distribution due to 

several factors such as: proximity to terminal moraine glacial deposits that compose Long Island, 

underlying framework geology, and transgressive marine processes associated with 

approximately 100 m of Holocene sea level rise (Williams, et al., 2006a). In addition to 

providing basic information about the spatial variability of a field, the semivariogram 

characterization provides important constraints on the production of maps through interpolation 

of point data.  Ordinary kriging is a well-known interpolation methodology that explicitly utilizes 

the semivariogram in a weighted averaging algorithm (e.g., Cressie, 1990; Deutsch and Journel, 

1992).  The primary advantage Kriging has over deterministic interpolation methods, such as 

splines (e.g., Smith and Wessel, 1990), is that it provides a geostatistical framework for 

estimating the error of the prediction.  Other interpolation methods could be used, however, with 

similar results for map generation.  The kriging solution can be identified as the expected value 

at an unsampled location given the data constraints at proximal and distal locations.  We 

demonstrate kriging of the usSEABED mean grain size data on the Long Island shelf to 50 m 

water depth (Figure 13).  This area includes two of our defined sample regions, from 0-20 m 

(area 5) and 20-50 m (area 11).  The parsed and extracted semivariogram characterizations of the 

0-20 m sample region are shown in Figure 8a.  The 20-50 m semivariogram characterizations are 

nearly identical, allowing us to apply a single statistical characterization to the kriging 

interpolation of the combined area.  Because the field variances and decorrelation lengths 

derived from both parsed and extracted records are very similar, we conclude that it is 

appropriate in this case to combine the two types of records for the interpolation with a simple 
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static shift, a “bias-correction proxy”,  to accommodate differences in the mean.  Here that proxy  

is ~0.5 φ, which is the approximate difference between the average extracted and parsed mean 

grain sizes in these regions (Table 1).  We subtracted this value from all of the extracted records 

under the assumption that the extracted values underreport coarse fraction.  This is speculative, 

however, and other workers may consider other rationales for choosing how to apply the proxy.  

The resulting kriged field is shown in Figure 13a. 
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 A direct interpolation of the usSEABED mean grain size records is not necessarily desirable, 

however.  With a parsed record noise variance that is nearly double the field variance (Figure 8; 

Table 1), many positive and negative spikes appear in the mappings.  Goff et al. (2006) recently 

formulated a methodology for resampling noisy, correlated data to mitigate the spikes prior to 

resampling.  The method employs both a characterization of the field semivariogram (as 

characterized by the field variance, decorrelation distance and fractal dimension), and an a priori 

characterization of the data uncertainty.  Here we assume that the data uncertainty is well-

characterized by the square root of our estimation of the noise variance.  Figure 13b displays the 

results of kriging the resampled mean grain size data, clearly demonstrating a significant 

reduction in the number and intensity of spikes.   

 For the Long Island shelf data set, the accuracy of the mean grain size map can be checked 

qualitatively by comparing it to existing USGS backscatter data collected off western Long 

Island, NY (Schwab et al. 2000).  In Figure 14, we compare overlapping components of the two 

maps.  Bearing in mind the much lower spatial resolution of the seafloor sample map (of order 

kilometers) as compared to the acoustic backscatter (of order meters), there are evident 

associations of coarser grain sizes on the mean grain size map to regions of higher backscatter 

intensity (i.e., sand shoals).  This is particularly notable in the central part of the figure.  A 
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quantitative comparison between the two mapped values is presented in Figure 15.  Considerable 

scatter is evident in this direct comparison, likely due both to the very different spatial 

resolutions of the two maps and to the generally erratic behavior of backscatter data (e.g., Goff et 

al., 2004).  As noted previously, temporal variability of the usSEABED records may also 

contribute to spatial erraticity of the mean grain size values.  The resampling algorithm mitigates 

these effects.  The binned mean values (Figure 15), however, present a much clearer relationship.  

We first observe a general decrease in backscatter intensity with decreasing grain size going 

from very coarse sand (~-0.5 φ) to the medium/fine sand transition (~2 φ).  This observation is 

consistent with what can be most readily observed qualitatively on Figure 14.  At grain sizes 

finer than 2 φ, however, an inverted trend (increasing backscatter with decreasing grain size) is 

noted.  A similar reversal in backscatter-versus-grain size trend, also occurring at fine-sand grain 

sizes, was noted by Goff et al. (2005; Figure 4)) within the Martha’s Vineyard Coastal 

Observatory.  We speculate that fine sands mark a transition between backscatter dominated by 

surface/grain size roughness and volumetric heterogeneity (e.g., Jackson et al., 1986).  That is, at 

finer grain sizes, the acoustic energy is able to penetrate deeper into the sediments, and in so 

doing intersects with a greater cross-section of potential scatterers.  Whether or not this is the 

case, however, the consistency of trends with another grain size-versus-backscatter study in a 

similar inner-shelf environment provides a measure of validation for our usSEABED-based 

mean grain size map of the Long Island shelf. 
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6. Conclusions and Discussion  

 In this paper, we have presented a methodology for statistical analysis of randomly-located, 

noisy point data, and applied it to the usSEABED records of mean grain size on the continental 
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shelf seabed.  The method has proven robust at obtaining estimates of the field variance and 

decorrelation distance, as well as estimates of the data noise variance.  However, the erratic 

nature of semivariograms generated from such randomly-located data generally precludes robust 

estimation of the fractal dimension.   
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 As primary component of the study we examined the suitability of the aggregated 

usSEABED data collection for mapping and variability analysis.  Our deterministic and 

statistical comparison between the parsed and extracted forms of mean grain size data reveal 

some differences.  As expected, the noise variance tends to be larger for the parsed records (by 

~0.2-1.0 φ2), which reflects a higher level of uncertainty in the measurements. Greater temporal 

variability (i.e., timing of sample collection) may also be important.  At present, temporal 

information cannot be extracted from the usSEABED database, but it is likely that the word-

based data records span a much greater range in dates.  Any temporal effects on grain size 

measurements (e.g., changes in sedimentary conditions, changes in navigational resolution) will 

presumably factor into the data uncertainty.  Higher levels of uncertainty in the parsed 

measurements might also be related to the likelihood that they are more likely to incorporate a 

wider set of materials, such as coarse biogenics. 

 In general, the extracted mean grain sizes tend to exhibit higher φ values (finer grain sizes), 

~0.5 φ on average, and lower field variance relative to the parsed mean grain sizes.  Both 

observations might be explained by a tendency for grain size analysts to discard the very coarsest 

fraction of a sediment, particularly if it contains shell material.  These differences between 

parsed and extracted measurements are, however, somewhat regionally dependent, and it is not 

possible to formulate a precise universal conversion factor between the two.  Nevertheless, if 

sufficient numbers of each type of data exist within a particular sample region, it should be 
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possible to empirically define a local conversion so that the two types of data can be used 

together, along with their respective uncertainties, for quantitative applications such as mapping.   
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 Our analysis of sample regions for the usSEABED records on the continental shelf reveal 

considerable geographic variability in the estimated parameters of field variance (Figure 10) and 

decorrelation distance (Figure 11).  High field variances and short decorrelation lengths on the 

Florida shelves may indicate a high level of patchiness due to shelly material.  Very high 

variances in the Gulf of Maine may be a result of residual glacio-fluvial gravel patches 

interspersed with fine-grained sediments.  Elsewhere, we observe a fairly strong inverse 

relationship between the average mean grain size and the field variance (expressed as a positive 

correlation in φ units).  We are uncertain as to the cause of this correlation.   

 Other than the small values on the Florida shelf, the estimated decorrelation length scales do 

not present coherent geographical relationships.  Unlike the results of Jenkins and Goff (2007) 

for the analysis of mean grain size measurements in the Adriatic Sea, we do not find evidence on 

the U.S. Atlantic margin for any consistent depth relationship for this parameter (other regions 

were insufficiently sampled to discriminate sample regions based on water depth).  We believe 

that analysis of more sample areas from a greater variety of settings will be needed to decipher 

the primary influences on decorrelation length scale.  We suggest here that it may be controlled 

by competing relationships of geologic inputs (e.g., sediment facies), which probably tend 

toward larger decorrelation length scales, and oceanographic reworking, which probably tends 

toward shorter length scales (e.g., bedforms).   

 In Figure 9c we presented evidence that the noise variance estimated from parsed and 

extracted mean grain size measurements are correlated.  Assuming the noise variance is related 

only to the data uncertainty, there is no reason to expect such a correlation, suggesting that noise 
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is somehow influenced by the properties of the field.  However, no such evidence could be found 

in our interparameter plots presented in Figures 12e and 12f.  To explain these observations, we 

hypothesize that a very short-scale of field variability exists that is superimposed on the larger 

scale of variability that we discern through estimate of the decorrelation length of the 

semivariogram, and that the decorrelation length of this shorter scale variability is shorter than 

the resolution scale of the sample data.  In other words, the portion of data variability that we 

identify as “noise” includes both a real field component and a data uncertainty component.  If 

true, then we cannot directly distinguish between the two, although we may be able to infer the 

field component if we are able to postulate globally constant values of uncertainty for parsed and 

extracted measurements.  More data analysis will be required to determine if that is the case. 
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 Our example using the Long Island shelf data (Figures 13, 14) shows that usSEABED can 

reliably be utilized for creating maps of seafloor mean grain size and possibly other sediment 

characteristics.  Due to the noisy character of the data, some sort of filtering or other noise 

reduction algorithm (e.g., Goff et al., 2006) is recommended prior to map generation.  To 

combine the parsed and extracted measurements, a bias correction proxy must be applied, and 

such a correction should be evaluated individually for each region of interest.  For the Long 

Island shelf data, a simple mean correction of 0.5 φ was found to be suitable because the 

semivariogram statistics were otherwise found to be very similar between the two types of data.  

Recognizing that coarse content is excluded from many analytic results, we applied the 

correction by subtracting it from the extracted data.  Other regions, however, exhibit significant 

difference in both the mean and variance of parsed versus extracted mean grain size values, and 

in those cases a more complex bias correction proxy must be devised. 
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Figure 1.  Location map of current (2007) usSEABED data coverage (250,000 records), color 

coded by mean grain size (Williams, et al., 2006b). 

 

Figure 2. Conformance test between various measures of grain size: median, mode, Inman 

graphical mean, and moment mean. Moment mean grain size (1:1 line) is the accepted standard. 

The others deviate to a degree which may be compensated for in the processing of the analytical 

data. Based on 3813 samples from USGS laboratories (Reid, et al., 2005;  Poppe et al., 2005). 

 

Figure 3. Example calibration of parsed and extracted mean grain size using samples where both 

are available. The statistics are based on 10,029 sediment samples in the usSEABED database.  

 

Figure 4.  Location of usSEABED records within the mid-Atlantic Bight, color coded by mean 

grain size, and overlain on bathymetric contours (meters).  Sample areas defined for this region 

are indicated by green polygons with yellow boarders. 

 

Figure 5.  Sample areas defined over the entire usSEABED database, color coded by the average 

of the parsed mean grain size measurements within the sample area.  Numbered identifications 

provide reference for Table 1 statistical parameters. 

 

Figure 6.  A binned semivariogram (solid) derived from parsed mean grain size measurements in 

the 0-20 m depth range of the New York Bight (Figure 4).  The best-fit von Kármán model with 
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noise spike is overlain (dashed), with parameter values as indicated.  The fractal dimension of 

the model is 1.5, which corresponds to an exponential curve. 
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Figure 7.  Plot of mean grain size estimated via extracted versus parsed methods, where samples 

of each type are separated by less than 200 m.  Binned averages are also shown, both for 

extracted and parsed bins. 

 
Figure 8.  Semivariograms derived from both extracted and parsed mean grain size 

measurements within three sample areas: (a) the New York Bight, 0-20 m; (b) the Gulf of the 

Farallons, CA 0-150 m; and (c) Gulf of Maine just north of Cape Ann, 50-100 m.  Area numbers 

refer to identifications in Figure 5.  Best fit von Kármán models are overlain in dashed lines, 

with parameters as indicated. 

 

Figure 9.  Plots of extracted versus parsed statistical parameters from sample areas with adequate 

coverage of both types of data records.  Dashed line indicates 1:1 correspondence.  Circled 

symbols in (b) and (c) are from Gulf of Maine sample regions, and are discussed in the text.  

Correlation coefficients (ρ) are given for each plot, neglecting the outliers identified in (b) and 

(c). 

 

Figure 10.  Sample areas color coded by estimated field variance of mean grain size 

measurements.  In regions where both extracted and parsed estimates are made, the maximum 

value is displayed.  Numbered identifications provide reference for Table 1 statistical parameters. 
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Figure 11.  Sample areas color coded by estimated decorrelation distance of mean grain size 

measurements.  In regions where both extracted and parsed estimates are made, the average 

value, weighted by the number of samples of each, is displayed. Numbered identifications 

provide reference for Table 1 statistical parameters. 
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Figure 12.  Interparameter plots of statistical parameters estimated from usSEABED mean grain 

size measurements.  Sample areas are coded by parsed (PRS) or extracted (EXT), and by shelf 

region (ATL = Atlantic; GMX = Gulf of Mexico; PAC = Pacific).  The data points in (b) are 

reproduced from those in (a), but without the values from the Gulf of Maine and the Florida 

shelf.  These samples typically display very high variances, probably in association with the 

presence of gravel or shell patchiness.  The remainder exhibit a clear trend, both for parsed and 

extracted measurements, which are illustrated with the dashed lines.  Trends are otherwise not 

evident in the other interparameter plots displayed. 

 

Figure 13.  (a) Kriging interpolation of the usSEABED mean grain size data off the Long Island 

shelf to 50 m water depth.  The statistical parameters noted on Figure 6 were utilized in the 

kriging operator.  (b) Same as (a) for the mean grain size data after “resampling” according to the 

maximum a posteriori method of Goff et al. (2006), which decreases spiky artifacts.  Dots 

indicate location of data records. 

 

Figure 14.  Comparison of overlapping portions of USGS acoustic backscatter data (a; from 

Schwab et al., 2000) and the interpolated, resampled mean grain size off the western Long Island 

shelf (b; from Figure 13b).  Lighter shades indicate in (a) higher backscatter and coarser 
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sediment, darker shades indicate lower backscatter and finer sediments.  Bathymetric contours on 

both plots, from the NOAA (2007) coastal relief model, are in meters. 
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Figure 15.  Comparison of coregistered values (black dots) for backscatter intensity (Figure 14a) 

and interpolated mean grain size (Figure 14b).  Backscatter values, originally gridded at 4 m, are 

averaged within 0.00167-degree cells (approximately 200 m).  Cyan diamonds indicate average 

backscatter values within 0.25-φ grain size bins.  
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Figure 14
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Figure 15


