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Abstract 

Responses of infaunal saltmarsh benthic invertebrates to whole-ecosystem fertilization and 

predator removal were quantified in Plum Island Estuary, Massachusetts, USA.  Throughout a 

growing season, we enriched an experimental creek on each flooding tide to 70 µM NO3
- and 4 

µM PO4
-3 (a 10 x increase in loading above background), and we reduced Fundulus heteroclitus 

density by 60% in a branch of the fertilized and a reference creek.  Macroinfauna and meiofauna 

were sampled in creek (mudflat and creek wall), marsh edge (tall form Spartina alterniflora) and 

marsh platform (Spartina patens and stunted S. alterniflora) habitats before and after treatments 

were begun; responses were tested with BACI-design statistics.  Treatment effects were most 

common in the mid-range of the inundation gradient.  Most fertilization effects were on creek 

wall where ostracod abundance increased, indices of copepod reproduction increased and 

copepod and annelid communities were altered.  These taxa may use epiphytes (that respond 

rapidly to fertilization) of filamentous algae as a food source.  Killifish reduction effects on 

meiobenthic copepod abundance were detected at the marsh edge and suggest predator 

limitation.  Fish reduction effects on annelids did not suggest top-down regulation in any habitat; 

however, fish reduction may have stimulated an increased predation rate on annelids by grass 

shrimp.  Interactions between fertilization and fish reduction occurred under S. patens canopy 

where indirect predator reduction effects on annelids were indicated.  No effects were observed 

in mudflat or stunted S. alterniflora habitats.  Although the responses of infauna to fertilization 

and predator removal were largely independent and of similar mild intensity, our data suggests 

that the effects of ecological stressors vary across the marsh landscape.  

Keywords: saltmarsh gradient; fertilization; predator removal; Fundulus heteroclitus; 

macroinfauna; meiofauna; impact assessment; indirect effects 
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Introduction  

Agrawal et al. (2007) recently pointed out that three assumptions are implicit in most 

ecological research; (1) the effects of multiple factors are independent (2) traits of interacting 

species are uniform and unchanging and (3) feedbacks inherent to ecological interactions may be 

ignored without diminishing the understanding of complex interactions.  Few experiments have 

been conducted to test these assumptions across large spatial scales and in different ecological 

contexts; however, conditional outcomes of species interactions (Bronstein, 1994), indirect 

effects (Wootton, 1994) and trait-mediated interactions (Preisser et al., 2005) have been reported.  

Coastal ecosystems are becoming increasingly threatened as humans exploit resources and alter 

habitats (Vituosek et al., 1997; Jackson et al., 2001), and understanding multifactor 

anthropogenic-induced change is a priority (Riedel and Sanders, 2003; Wiegner et al., 2003).  It 

is therefore important for coastal resource managers, conservationists and ecologists alike to 

know if the assumptions listed above compromise our understanding of anthropogenic effects. 

 The salt marsh is an appropriate model system to examine how ecological effects vary 

across physical gradients in coastal systems.  Salt marshes exhibit complex habitat structure and 

biotic zonation.  Marsh landscapes include unvegetated mudflats, a creek-marsh ecotone between 

vegetated and non-vegetated sediments and a densely vegetated high marsh platform.  

Inundation, aerial exposure, flow, light, and sediment chemistry, along with biotic factors, vary 

across the elevation/inundation gradient.  Because of this variation, traits of interacting species 

may differ across the gradient and variable responses to environmental challenges are possible.  

Studies of saltmarsh benthos have examined abiotic (e.g., flow, Fleeger et al., 1984, and nutrients 

Valiela et al., 2004) and biotic factors (Silliman and Zieman, 2001) or both (Posey et al., 1999; 

Novak et al., 2001; Posey et al., 2002).  Most studies, however, have been conducted in only one 
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habitat type (but see Palmer, 1986 for an exception) and/or in small experimental plots.  Small-

scale manipulations are susceptible to artifacts that may limit ecosystem phenomena, e.g., natural 

movements of animals may be restricted or cage artifacts may occur, limiting the generality of 

findings (Carpenter et al., 1995).  Little is known about gradients of predation pressure on 

saltmarsh animals although Pennings and Bertness (2001) posit that predation pressure is highest 

at creek-marsh interface.  Thus, how the landscape responds as a whole to human impacts may 

be poorly addressed by most previous studies. 

 Identifying the most informative bioindicators (Walker, 1992) is also an important 

consideration in assessment studies.  As relatively sedentary consumers of primary production 

and prey for higher trophic levels, benthic infauna are often used to assess the impact of 

anthropogenic activities (Warwick et al., 1990; Levin and Talley, 2002).  Although there is 

limited information regarding benthic infaunal communities along the marsh tidal inundation 

gradient (although see Coull et al., 1979 and Johnson et al. 2007), two size classes, meiofauna 

(63 µm – 500 µm) and macroinfauna (> 500 µm), are often used to monitor benthic 

environments.  Although meiofauna taxonomy may be daunting to non-specialists, meiofauna 

may be advantageous for monitoring because of their: (1) relative ease of sample collection and 

processing (2) short generation times (3) intimate association with sediments throughout life 

history (without dispersing larvae) that increases the likelihood that changes in abundance are 

due to effects of the factor of interest and (4) high density and biodiversity that provide 

exceptional information content regarding community responses.  Meiofauna have been 

implicated as the more sensitive indicator (Boucher, 1980; Coull and Chandler, 1992; Warwick, 

1993; Christie and Berge, 1995; Schratzberger et al., 2003) but may not be sensitive to all 

ecological stressors.  For instance, meiofauna disperse quickly via resuspension (Chandler and 
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Fleeger, 1983; Palmer, 1988) and may not be as sensitive to mechanical disturbance as 

sedentary, tubiculous macroinfauna (e.g., amphipods, annelids) (Austen et al., 1989).  Thus, the 

responses of these two biotic groups may provide complementary information.  Studies rarely 

examine ecological responses of macroinfauna and meiofauna simultaneously (exceptions 

include Bell and Woodin, 1984; Netto et al., 1999; Gobin and Warwick, 2006). 

 As trophic intermediates in food webs, infauna may shed light on the relative importance 

of top-down and bottom-up control and reveal interactions between these human-induced 

stressors.  Nutrient loading increasingly threatens coastal systems and predator reductions by 

overfishing are common; as a result, both often occur simultaneously (Heck et al., 2000; Deegan 

et al., 2007).  The purpose of this report is to discuss the effects of whole-ecosystem 

experimental nutrient addition (bottom-up effect) and predator reduction (top-down effect) on 

saltmarsh macroinfauna and meiofauna.  To this end, we conducted fertilization and predator 

removal manipulations in tidal creeks of the Plum Island Estuary (PIE), Massachusetts, USA in 

such a way that treatment effects were exerted across the marsh landscape.  Thus, we are able to 

test assumptions of independence between multiple factors across a landscape and examine the 

possibility that trait-mediated responses, such as those associated with trophic cascades, vary 

across locations.  Our null hypotheses are: (1) top-down and bottom-up responses (and 

interactions) by infauna do not differ across the landscape and (2) meiofauna and macroinfauna 

respond equally to our treatments. 

Materials and Methods: 

Site Description 

 Two bifurcated intertidal creek systems, Sweeney and West, were studied; both open into 

the Rowley River (42°44'N, 70°52'W), which opens into Plum Island Sound at about 7-km inland 
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from where Plum Island Sound enters the Atlantic Ocean (Fig. 1).  Sweeney Creek, the creek 

farthest inland, opposes West Creek across the Rowley River.   

 Infaunal invertebrates were examined in five habitats that span the inundation gradient: 

two creek habitats, the creek-marsh interface, and two marsh platform habitats.  Mudflats are 

gently sloping unvegetated creek habitats consisting of poorly consolidated sediments in the 

creek floor near the creek wall.  Migrating diatoms, chlorophytes and cyanobacteria dominate 

sediment-dwelling algae (hereafter referred to as edaphic algae) in mudflat (Galván, 

unpublished).  Creek walls are steep, almost vertical walls about 1.5 m in height with cohesive 

sediments and an approximately 30-cm wide band of macroalgae and filamentous algae.  Marsh 

edge is dominated by a zone of tall-form Spartina alterniflora ( >130 cm in late summer) that 

baffles water flow and shades sediment.  The marsh platform consists of an expansive area 

dominated by a dense canopy of S. patens that greatly reduces light penetration to the sediment 

and a smaller zone of stunted S. alterniflora ( < 40 cm in late summer) adjacent to saltmarsh 

pannes.  PIE experiences a mean tidal amplitude of ~3 m during spring tides, and mudflat, creek 

wall, and tall-form Spartina alterniflora habitats are inundated twice daily while S. patens and 

stunted-form S. alterniflora habitats are inundated (to a depth of ~10 cm) during spring tides.  

 A faunal baseline survey was conducted before manipulations were initiated.  Four creeks 

(including West and Sweeney) exhibited similar macroinfauna abundance, species composition 

and assemblages, although large faunal differences were found among habitats (Johnson et al., 

2007).  Preliminary analysis suggests similar trends for meiofauna major taxon abundance and 

composition, and for copepod species and assemblages (Fleeger unpublished). 

Experimental Design 



7 
 

 Long-term, whole-ecosystem manipulations of fertilization and predator removal were 

initiated in 2004 (Deegan et al., 2007).  Here we report results from the first year of treatment 

application.  In mid-May 2004, an enrichment of 70 µM NO3
- and 4 µM PO4

-3 (15x over 

background) was implemented in Sweeney Creek downstream of the confluence of the two 

branches.  Background nutrient values prior to fertilization were < 5 µM NO3
- ; ~1 µM PO4

3- , 

indicating Plum Island Estuary is a relatively low nutrient system, favoring a response to 

fertilization (Posey et al., 2006).  Nutrients were added by pumping a concentrated solution of 

NO3
- and PO4

-3 to the water of every flooding tide during the growing season (mid-May – Oct.; 

~150 d) using a computer-controlled automated peristaltic pump.  The pump rate was adjusted, 

based on a hydrologic model, every 10 min throughout each incoming tide to maintain constant 

N and P concentrations in incoming waters (Deegan et al., 2007).  Watershed nutrient loading 

averaged 30 g N m-2 y-1 in 2004 (~10x background loading) but spatial variation across the 

landscape was significant.  The tall S. alterniflora habitat experienced a higher nutrient loading 

than the less frequently flooded S. patens (Deegan et al., 2007).  Fertilizer was not added to West 

Creek which is considered a reference creek. 

 The killifish, Fundulus heteroclitus, is considered a top predator in US salt marshes 

(Kneib 1986), and was selected to examine top-down effects on infauna.  We opted to reduce 

rather than enhance killifish density because the marsh drains at low tide to only a few cm of 

standing water in creek channels, and concentrating a larger than normal number of fish into a 

small volume of water may have unexpected consequences.  Thus, we considered density 

reduction a more tenable option.  Although not commercially harvested, killifish reduction 

allowed us to mimic overfishing effects common in the real world.   
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A branch of each creek (downstream of the nutrient addition in Sweeney) was selected 

for large-scale removal of killifish.  This was achieved by stretching a Vexar (6.35-mm mesh) 

block net across the entrance of the branch from June – September 2004, coupled with 

continuous fish trapping and removal.  This method of exclusion should produce fewer artifacts 

than traditional small-scale exclusions (Virnstein, 1978).  A 60% reduction in killifish density 

was achieved (Deegan et al., 2007).  Reduction of large killifish (> 40 mm) was greater than 

small killifish (< 40 mm); however, a 40% reduction of small killifish was observed.  Killifish 

are omnivorous, consuming a range of food including primary producers, infauna and larger prey 

(Allen et al., 1994).  Killifish diet changes with size (Currin et al., 2003) and diet varies among 

habitats within salt marshes (James-Pirri et al., 2001).  Further, different habitats within salt 

marshes offer unique trade-offs between predation and growth of killifish (Halpin, 2000), 

although little is known of the variation in foraging intensity of killifish across the marsh 

landscape.  The species richness of nekton in experimental creeks is low (11 species) and 

killifish and grass shrimp comprised ~98% of the total abundance (19% and 79%, respectively) 

(Deegan et al., 2007).  The mesh size of the block nets prevented larger killifish from entering, 

but allowed access by grass shrimp and small killifish.  Because any other potential consumers 

(e.g., green crabs) were found in such low relative abundance, it is unlikely that their exclusion 

impacted infauna significantly.   

The full factorial design of our experiment included two creek systems with four 

branches.  Creek branches with each of the following treatments were examined; (1) nutrient 

addition (NA) and no fish reduction (FR), (2) no nutrient addition but with fish reduction, (3) NA 

and FR, and (4) no NA or FR.  Because these treatments impacted the entire marsh landscape as 

a function of tidal flux, we were able to assess their impact across the landscape. 
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Benthic Sampling and Laboratory Analysis 

 Macroinfauna and meiofauna were sampled by hand coring at low tide.  Pre-treatment 

collections were taken in June (17-19), July (9-10), and August (4-5) 2003 and post-treatment 

collections were taken in June (14-15) and August (2-3) 2004.  In each creek branch, three 

transects were selected at ~50, 100, and 150 m from the confluence of the two branches.  Each 

transect (50 m in length and 20 m in width) was stratified along an inundation gradient into the 

five habitat zones discussed above.  Thus, a sample site in our hierarchical design consisted of a 

habitat nested within a transect nested within a branch nested within a creek.  Meiofauna samples 

from marsh platform habitats and from all locations in August, 2003 were not examined due to 

resource limitations.  

 In 2003 collections, a single macroinfauna sample was taken at each sampling site 

(habitat within a transect within a branch within a creek), whereas two samples were taken at 

each site in 2004.  Macroinfauna cores (6.6-cm inner diameter) were taken to a depth of 5 cm.  

This method inadequately samples larger, more mobile infauna (e.g., Nereis diversicolor) and 

surface-dwelling epifauna (e.g., amphipods).  Cores were placed on ice in the field and fixed 

with 10% formalin and Rose Bengal in the laboratory.  After a minimum of two days, cores were 

sieved through a 1-mm sieve stacked on top of a 500-µm sieve.  Large debris and roots retained 

on the 1-mm sieve were discarded after visual inspection and removal of large invertebrates.  

Annelids constituted 97% of macroinfaunal abundances and are the focus of this study.  All 

annelids were sorted and identified to species (some rare species were assigned a nominal 

species designation). 

 In 2003 collections, two meiofauna cores (2.2 cm inner diameter) were pooled into a 

single sample at each site, whereas two samples (each sample consisted of two pooled cores) 
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were taken at each site in 2004.  Cores were placed on ice in the field and fixed with 10% 

formalin and Rose Bengal in the laboratory.  After a minimum of two days, cores were sieved 

through a 500-µm sieve stacked on top of a 63-µm sieve.  Meiofauna  retained on the 63 µm 

sieve were extracted from sediments using Ludox centrifugation following Somerfield and 

Warwick (1996).  Meiofauna were identified and enumerated to higher taxonomic status (e.g., 

nematodes, polychaetes, ostracods).  Further, each copepod was examined for sexual maturity.  

Mature copepods were identified to species, sexed and, if present, egg broods were noted.  

Demographic data were pooled for all copepods and sex ratio (M/F), percent ovigerous females 

and percent immature (i.e., copepodites) copepods were calculated for each collection.  

Manayunkia aestuarina, one of the most abundant polychaetes in macroinfaunal samples and the 

most abundant meiofaunal annelid, was enumerated from macroinfauna and meiofauna samples. 

 Species diversity (estimated as the number of species, Shannon’s value and Pielou’s 

evenness) of copepods and annelids was calculated separately from each sample with the use of 

PRIMER 5.2.9 software (Clarke and Warwick, 2001).  Shannon’s value was calculated as loge. 

Univariate Statistical Techniques 

 We used a before-after, control-impact (BACI) experimental design which pairs 

experimental units and accounts for variability that may contribute to error in a completely 

randomized design (Underwood, 1994).  Replication of ecosystem-scale experiments is difficult 

because it is often hard to find similar ecosystems (Carpenter et al., 1995); the matched-pair 

approach helps ameliorate this difficulty (Stewart-Oaten and Bence, 2001).  Although our design 

entails pseudoreplication, the BACI design is a powerful method for detecting impacts because it 

incorporates both temporal and spatial variation by observing reference and impact sites over 

time (Parker and Wiens, 2005).  We used a BACI-type ANOVA (based on a level-by-time 
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“parallelism” design) to analyze changes in abundance, copepod demography and species 

diversity.  Level-by-time designs are ineffective if many zeroes are present (Parker and Wiens, 

2005), and we analyzed taxa only in habitats where they were abundant.  Previous analysis 

(Johnson et al., 2007) suggested that variance associated with transects for macrofauna 

populations did not contribute significantly to spatial variation in PIE, and therefore samples for 

macrofauna and meiofauna from the three transects were pooled for each branch for analysis; n / 

branch = 3 in 2003 and n / branch = 6 in 2004. 

 To detect interactions between fertilization and predator reduction, we performed 

analyses directly on values (abundance, demographic and diversity) instead of deltas (differences 

between reference and impact sites) (Stewart-Oaten and Bence, 2001).  Data were analyzed 

using GLIMMIX, a SAS macro for fitting generalized linear mixed models (GLMM) using Proc 

Mixed (SAS v. 9.1.3).  GLMMs are extensions of mixed models and can accommodate non-

normal errors (Littell et al. 1996).  GLMMs produce Type III F statistics and P values, which are 

based on likelihood estimations rather than sums of squares as in ANOVA.  The GLIMMIX 

macro allows one to analyze fixed and random effects and sets the error distribution of the data.  

All data were loge-transformed and errors were assumed to have a Poisson distribution (Littell et 

al. 1996).  Period, nutrient level, fish level and all possible interactions were set as fixed factors, 

whereas month within period was defined as a random factor.  Only significant period*treatment 

interactions were of interest because they suggest that change over time occurred due to 

treatment effects.  One assumption using this type of analysis is that although response variables 

at different sites may differ spatially, those differences track each other over time.  This 

assumption, however, may be violated, reducing confidence in results (Wiens et al., 2004).  To 

bolster confidence and to identify the direction of changes for significant interactions, we 
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visually inspected graphs of data in pre-treatment and treatment periods.  While other large-scale 

impact studies have used an alpha up to 0.20 (e.g., Steinbeck et al., 2005), we chose an alpha of 

0.05 to counter the effects of Type I error-rate inflation due to a large number of univariate 

analyses (~70). 

Multivariate Techniques 

 To detect differences among communities due to treatments, analysis of similarity 

(ANOSIM) and non-parametric multidimensional scaling (MDS) were conducted with PRIMER 

5.2.9 software (Clarke and Warwick, 2001).  Copepod and annelid communities were analyzed 

separately.  In all ANOSIMs, creek (nutrient addition) and branch (fish reduction) effects were 

examined in a 2-way crossed design based on a Bray-Curtis similarity matrix of log (x+1) 

transformed and non-standardized data.  Species were excluded if they comprised less than 1% 

of the total community.  If evidence for a significant treatment affect was detected, MDS plots 

were generated to visualize trends.  Cluster dendrograms were used (but not shown) to verify that 

sample clusters on plots represented true clustering and were not an artifact of high stress due to 

dimensional reduction (Clarke and Warwick, 2001).  If an outlier was detected, it was removed 

and the ANOSIM and MDS plots rerun.  SIMPER analysis was used to determine species 

contributing the most dissimilarity to community differences.   

Results 

Population responses 

 Macroinfaunal annelid abundance was variable, ranging from ~2000-65000 m-2, across 

the landscape (Fig. 2).  Highest abundances were on creek walls and lowest on the marsh 

platform.  Thirteen major taxa of meiofauna were sampled; nematodes comprised ~80% of the 

total meiofauna, although copepods and juvenile annelids were also abundant and ubiquitous.  
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Other common groups included copepod nauplii, ostracods, insect larvae and tanaids.  Total 

meiofaunal abundance ranged from ~300-6000 10 cm-2 with lowest values in mudflats and 

highest at the marsh edge (Fig. 3). 

 We examined the most abundant (> 5 %) species of annelids and major taxa of meiofauna 

for treatment effects in all habitats.  Most macrofaunal and meiofaunal taxa (including total 

fauna) were similar in abundance in both creeks and all branches pre-treatment (Johnson et al., 

2007) and few showed evidence for divergence post-treatment.  Below, we discuss taxa that 

provide evidence for treatment effects based on BACI results (Tables 1 & 2). 

 An effect of nutrient addition on population abundance was observed only in meiobenthic 

ostracods, with a significant increase (period*nutrient interaction, p = 0.021; Fig. 3) regardless of 

fish treatment.  Pre-treatment ostracod abundances were relatively low and similar in both creeks 

and all branches but became more variable and reached much higher values after treatments were 

initiated.  Ostracod increases were notable in the fertilized creek, especially in the creek wall 

habitat (Fig. 3).  Abundance in creek wall diverged between control and nutrient addition creeks 

in 2004 and differences were consistent in both branches across time.  Creek-wall ostracod 

abundance increased ~2x in the fertilized creek and this abundance difference remained 

throughout the period of fertilization. 

 Meiobenthic copepods at the marsh edge provided the strongest evidence for a direct 

effect of fish reduction.  Pre-treatment copepod abundance was similar under tall S. alterniflora 

canopy in both creeks and all branches and was generally lower than abundances in the post-

treatment year (Fig. 3).  Significant differences between branches emerged post-treatment 

(period*fish interaction, p = 0.014), especially in the creek not receiving nutrient addition; 

abundances were consistently higher in fish reduction branches.  Copepod abundance in this 
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habitat reached the highest observed value in August 2004 in the fish reduction branch in the 

creek not receiving nutrients and was > 2x that found in the corresponding branch without fish 

manipulation.  This increased copepod abundance as a result of killifish reduction suggests 

copepods are predator limited.   

 Significant effects of killifish reduction were also observed at the marsh edge for 

nematodes and total meiofauna (period*fish interaction, p = 0.0015 and p = 0.0022, respectively) 

and in creek wall for copepods (period*fish interaction, p = 0.0394).  In tall S. alterniflora, steep 

declines in nematode and total meiofauna abundance (nematodes comprised ~85% of the total 

meiofauna in this habitat) in all branches occurred from June 2004 to August 2004; however, 

declines in both creeks were less in branches with fish reduction (Fig. 3).  Copepods in creek 

wall similarly experienced large population declines from June to August 2004 with final values 

becoming very similar among branches within creeks.  Our results suggest that killifish reduction 

moderated these decreases in population size, as would be expected in predator-limited 

populations.  However because the mechanism causing the large apparent changes in density is 

unclear and unrelated to predation, we consider support for limitation by predation for these taxa 

to be weak.  

 Of the macroinfauna taxa, only the subsurface deposit-feeding oligochaete 

Cernosvitoviella immota and total annelids responded to experimental treatments.  Significant 

responses to fish reduction treatment differed with and without nutrient addition for C. immota in 

creek wall habitat (period*nutrient*fish interaction, p = 0.0006), but the relationship may be 

spurious.  Sharp abundance increases among all creek branches occurred in June 2004 (after only 

4 weeks of fish manipulation, suggesting the effect was not due to fish manipulation) and were 

not sustained through August 2004 (Fig. 2).  Effects of fish reduction were not significant in a 
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BACI test with June 2004 data removed.  Under S. patens canopy, abundance of C. immota was 

relatively low throughout 2003 and June 2004.  In August 2004, abundance in all branches of 

both creeks increased by about 3x (Fig. 2).  Increases differed among branches within creeks 

however.  In the creek without nutrient addition, C. immota abundance increased much more in 

the branch without fish reduction.  With fertilization, August 2004 abundance was similar with 

and without fish reduction.  The effect of killifish reduction therefore differed with and without 

nutrient addition (period*nutrient*fish interaction was significant, p = 0.032).  Total annelids in 

S. patens also responded significantly (partly due to the response by C. immota), however BACI 

revealed a significant effect of only fish reduction (period*fish interaction, p = 0.0249).  Rather 

than enhancing a population increase, as would be expected if these annelids were limited by 

killifish predation, fish reduction under S. patens canopy inhibited increases in abundance, and 

may have been caused by an unknown indirect effect associated with a reduction in fish density.  

 The polychaete Manayunkia aestuarina was abundant in macrofauna samples in all 

habitats, except mudflat.  In meiofaunal samples, M. aestuarina was found across the gradient 

examined.  The percent of the total M. aestuarina population that was meiofaunal in size was 

90.7% in creek wall and 85.7% in tall S. alterniflora.  Neither size class of M. aestuarina 

responded to treatments in any habitat.  

Copepod demography 

 Copepod sex ratio (males/females pooled across species) ranged between 0.1 and 1.0 but 

did not vary greatly between creeks or among branches in any habitat (data not shown).  Percent 

ovigerous females was variable and ranged from about 2 to 40% (Fig. 4).  However, a sharp 

increase in ovigerous females was observed in August, 2004 in both branches of the fertilized 

creek.  Percent immature copepods averaged about 50% across all collections (Fig. 4).  
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Generally, values were similar between creeks and among branches in 2003 and little change 

was noted in 2004, except in creek wall habitat in August when the fraction of immature 

copepods increased sharply in both branches of the creek receiving nutrients.  A nutrient effect 

(period*nutrient interaction, p = 0.0004 for both % immature and % ovigerous copepods) at 

creek wall was observed, regardless of fish manipulation, suggesting that copepods under 

conditions of fertilization reproduced more rapidly and exhibited a younger population age 

structure.  

Species diversity responses 

 Overall, 36 copepod and 17 annelid species were found among the habitats sampled in 

PIE.  The most abundant species were found in all creeks and branches; occurrences of rare 

species were sporadic.  Across all habitats, there was a higher species richness and Shannon 

diversity for copepods than annelids (mean copepod species number ranged from 5.5-7.8 and 

mean annelid species number ranged from 2.7-5.9 across the gradient) (Table 3).  Species 

richness and Shannon’s diversity decreased similarly for both groups across the 

inundation/elevation gradient.   

 Treatment effects on species diversity of annelids and copepods were examined in all 

habitats with BACI statistics.  Diversity (Shannon value, evenness and number of species) was 

generally similar in all habitats of both creeks and all branches in 2003 (data not shown).  

Diversity changed little after treatments were initiated.  BACI tests revealed two isolated 

significant results (in habitats without simultaneous treatment effects on population abundance or 

community structure from the same habitat), and we conclude that infaunal species diversity of 

these two abundant taxa was not affected by nutrient addition or fish reduction.  

Community responses 
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 ANOSIM was conducted on each habitat-specific collection of copepods and annelids 

separately to determine if community similarities differed among branches or between creeks.  

Evidence for a treatment effects may best be inferred for a habitat when creeks or branches do 

not differ before and when differences become evident after treatment initiation.  Before 

treatments were initiated, copepod and annelid communities differed between creeks in the 

mudflat habitat (see ANOSIM probability values, Tables 4 & 5), suggesting strong natural 

dissimilarities between the two creeks in this habitat.  Therefore, we did not test for community 

differences after treatment initiation (i.e., for treatment effects) in mudflat.  Differences among 

branches before treatments were initiated also occurred, but were uncommon (Tables 4 & 5).  

Using the criteria above, we found 10 instances in which ANOSIMs suggested treatment effects 

(Tables 4 & 5).  MDS plots were examined in each of these instances, and some did not show 

clear separation among treatments, i.e., the annelid community in stunted S. alterniflora habitat 

and copepod community in tall S. alterniflora (Fig. 5).  Significant ANOSIMs and distinct 

groupings with MDS occurred in six instances (variation associated with fertilization in annelids 

in creek wall, tall S. alterniflora and S. patens, and copepods in creek wall and variation 

associated with predator reduction in annelids at tall S. alterniflora and copepods in creek wall). 

 Annelid communities differed after treatments were initiated between the two creeks in 

creek wall, marsh edge and S. patens habitats, even though no annelid species individually 

responded to nutrient addition.  ANOSIMs were significant and MDS showed clear separation in 

August 2004 between the two creeks, suggesting a fertilization effect in these habitats.  SIMPER 

analysis revealed that surface-feeding annelids were associated with community change in 90% 

of the instances.  In addition to changes in indices that indicate increased reproduction in 

copepods, the copepod community at creek wall differed between the two creeks further 
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suggesting a fertilization effect (significant ANOSIM values, August 2004; p < 0.05).  SIMPER 

analysis of copepods suggested a strong differentiation related to two species; in the creek 

without nutrient addition, Heterolaophonte sp. contributed most to average similarity values after 

Nannopus palustris while in the creek with nutrient addition, Mesochra sp. contributed most 

after N. palustris.  

 Fish reduction effects were detected on the annelid community in tall S. alterniflora 

(August 2004, ANOSIM, p = 0.010, Fig. 5) and on the copepod community in creek wall, 

without corresponding changes in abundance.  MDS in August 2004 in both taxa suggests that 

each creek branch could be distinguished from others although groupings due to nutrient addition 

were more distinct. 

Responses of other taxa 

 Deegan et al. (2007) detail treatment effects on taxa (e.g., killifish and benthic 

microalgae) that are relevant to explain potential top-down and bottom-up effects on infauna in 

this experiment.  Killifish abundance varied among creeks branches and years in experimental 

creeks.  Abundance was much higher in the pre-treatment year than the first year of treatment in 

both experimental creeks and differed among creek branches in pre-treatment collections.  Fish 

removal, however, lead to significant reductions in killifish abundance in both the reference and 

nutrient enrichment creeks (see Deegan et al., 2007, Figure 4).  Although benthic microalgal 

biomass differed among habitats, within habitat biomass was similar among creeks and branches 

in the pre-treatment and the first post-treatment year in mudflat, tall S. alterniflora and S. patens 

habitats (Deegan et al., 2007, Figure 7).  A BACI test found no treatment effects until the second 

year (which is not examined here for invertebrates) when a synergism between fish reduction and 

nutrient addition was found in creek and marsh edge habitats.   
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Discussion 

Here, we report some results of a long-term, ecosystem-wide experiment designed to 

examine the effects of multiple factors across a saltmarsh landscape.  We fertilized each flooding 

tide of a creek to mimic the way anthropogenic nutrients are delivered to salt marshes, and 

achieved annual N loadings of 15-60 g N m2 y-1.  We also significantly reduced the density of F. 

heteroclitus from 65 in reference branches to 30 individuals 30 m-2 in treatment branches 

(Deegan et al., 2007).  We were able to detect some early effects (after about 3 mo of 

manipulation) and draw conclusions regarding responses of two size classes of benthic infauna in 

a more holistic manner than traditional plot-level experiments. 

Nutrient (bottom-up) effects  

 Benthic macroinfauna responses to increases in nutrient loading have been shown to be 

highly variable.  Some studies suggest strong nutrient-induced increases (Sarda et al., 1995; 

Nixon and Buckely, 2002) or decreases (Kemp et al., 2005) in abundance or biomass of many 

taxa, while other studies suggest that increases in abundance occur for only a few taxa (Posey et 

al., 1999; Posey et al., 2002).  In addition to numerical responses, the body size of individual 

infauna may increase in response to nutrient addition (Posey et al., 2006).  There have been 

fewer studies of nutrient addition effects on meiofauna but changes in community composition 

are more common than large changes in biomass or abundance (Widbom and Elmgren, 1988; 

Hillebrand et al., 2002).  We found no fertilization effects on infauna at the extremes of the 

inundation gradient (i.e., mudflat and stunted S. alterniflora habitats) (Fig. 6).  Under tall S. 

alterniflora and S. patens canopy, fertilization caused shifts in macrobenthic annelid community 

structure (with no change in population size or species diversity).  Fertilization at creek wall 

resulted in increased meiobenthic ostracod abundance, increases in ovigerous female and 
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immature copepods, and simultaneous shifts in copepod and annelid communities (again without 

changes in total population size or species diversity) (Fig. 6), suggesting effects were strongest 

here.  Shifts in the annelid community were caused mostly by surface-feeding polychaetes, 

which were much more influenced by fertilization than were subsurface oligochaetes, a finding 

in opposition to the long-term study of (Sarda et al., 1996) who found that oligochaetes increased 

with fertilization. 

 The younger population age structure (demonstrated by increases in the proportion of 

immature copepods) of the copepod population in the creek wall habitat under the influence of 

fertilization was probably caused by increased reproductive activity as evidenced by significant 

increases in the proportion of egg-bearing females.  Intuitively, this should stimulate an increase 

in copepod density; however, copepod densities were not affected by fertilization (Table 2).  

Total copepod density may have remained unchanged because of a differential response of 

individual copepod species to fertilization.  The most abundant copepod in creek walls 

(Nannopus palustris) did not respond to fertilization but the contribution of Heterolaophonte sp. 

to the community decreased with fertilization while the contribution of Mesochra sp. increased 

with fertilization.  Thus, the increase in one species may have offset the decrease in another, 

leaving total copepod abundance unchanged while altering the copepod community in response 

to fertilization.  

 Bottom-up effects of fertilization on infauna are mediated through primary producers.  

Sediment-dwelling algae associated with creek wall and marsh edge habitats, where most effects 

on infauna were observed, have a high biomass and may be expected to respond quickly to 

fertilization (Deegan et al., 2007).  Creek wall is dominated by canopy-forming macroalgae, 

primarily Enteromorpha spp., filamentous algae (e.g. Rhizoclonium spp.) and associated 
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epiphytic diatoms (Galván et al., 2008).  Tall S. alterniflora habitats lack macroalgae but non-

canopy forming filamentous algae and associated epiphytic diatoms are abundant on the 

sediment surface.  Deegan et al. (2007) examined fertilization effects on sediment algae and 

found no effects in the first year of treatment manipulation (when our analysis was conducted) in 

mudflat, marsh edge and S. patens habitats, but not did examine responses in creek wall.  In the 

absence of strong responses by sediment algae, we observed few bottom-up effects on infauna in 

habitats studied by Deegan et al (2007).  Galván (unpublished) subsequently examined responses 

at creek wall (where infaunal responses were strongest) and found that algal biomass increased 

with nutrient addition and fish removal in the first year of nutrient addition.  Taxa that responded 

to fertilization at creek wall may interact with epiphytic algae associated with filamentous algae.  

Galván et al. (2008) noted that the harpacticoid, Heterlaophonte sp., and some surface deposit 

feeding annelids took up 15N label in an isotope addition study directly from epiphytes.  Copepod 

reproduction varies with types of microalgae/microbes in its diet (Carli et al., 1995; Pinto et al., 

2001) and diatoms are considered an excellent source of nutrition for harpacticoids (Pinto et al., 

2001; Caramujo et al., 2005).  Ostracods also consume edaphic algae (Goldfinch and Carman, 

2000) and infaunal annelids respond positively to increasing algal mat spread (Thiel and 

Watling, 1998).  These observations suggest that nutrient responses by epiphytes (which might 

respond faster than other algal communities) may influence these taxa.  Thus, bottom-up effects 

on infauna in PIE appear to be generally explained by changes in the amount or the composition 

of sediment and epiphytic algae. 

Predation (top-down) effects 

 The significance of killifish predation to infauna is poorly understood in salt marshes.  

Most studies of epibenthic predation use devises designed to exclude all predators of a given size 



22 
 

(Wiltse et al., 1984; Sarda et al., 1992; Foreman et al., 1995; Posey et al., 1995; Posey et al., 

2002; Posey et al., 2006), but authors sometimes suggest that predation by F. heteroclitus is 

responsible for resulting infaunal abundance changes because it is such an abundant species (e.g., 

Sarda et al., 1998).  Of the four studies that have isolated the effects of killifish by use of species-

specific inclusions, Kneib and Stiven (1982) show that small killifish (< 40 mm) impact 

polychaetes in sediments under S. alterniflora canopy, Walters et al. (1996) found a strong 

impact of small (< 20 mm) killifish on stem-dwelling copepods while Service et al. (1992) and 

Cross and Stiven (1999) found that killifish > 40 mm had no effect on macrofauna and 

meiofauna in sediment populations respectively. 

 In our study, evidence for direct top down effects by killifish was observed on 

meiofaunal taxa in the mid range of the tidal inundation gradient (Fig. 6).  Copepod densities 

increased with killifish reduction in tall S. alterniflora, suggesting a top-down release from 

killifish predation.  Furthermore and as expected in top-down control, abundances of copepods 

and killifish were generally inversely correlated among creek branches and years in our 

experimental creeks.  Deegan et al. (2007) reported that killifish density was higher throughout 

the pre-treatment year than the first year of treatment in these creeks; copepod density was 

inversely related and was consistently lower in the pre-treatment year only in the tall S. 

alterniflora habitat (Figure 3).  We also found weak evidence that copepods at creek wall and 

nematodes at marsh edge were released from killifish predation, and fish reduction led to a 

community shift in copepods at creek wall.  Meiobenthic copepods are a principal prey of 

killifish < 40 mm (Kneib, 1986) and may be consumed in high numbers.  Walters et al. (1996) 

found 50% of copepods were consumed by killifish over 3 days from epiphytes on S. alterniflora 

stems.  Juvenile killifish may directly influence copepod density in the tall S. alterniflora habitat 
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because edaphic algae under S. alterniflora does not form a canopy and has little structural 

complexity that could serve as a refuge from predation for copepods.  Creek wall macroalgae 

may provide a refuge for copepods from killifish predation by its complexity (Coull and Wells, 

1983), preventing a predator impact on density but allowing selective predation that may affect 

community structure. 

 Surprisingly, we detected no direct effect of killifish reduction on the abundance of 

annelids, although killifish consume annelids (Kicklighter et al., 2004).  The annelid community 

changed due to fish reduction at the marsh edge, suggesting a modest impact.  Johnson 

(unpublished) conducted an exclusion experiment with grass shrimp and killifish and concluded 

that predation by grass shrimp on annelids may increase (by a trait-mediated indirect effect) 

when killifish are reduced in abundance.  This increase in grass shrimp predation may 

compensate for the decreased predation rate by the reduced number of killifish.  Although 

killifish and grass shrimp both probably prey on annelids and copepods, predation effects of 

killifish and grass shrimp may differ.  Gregg and Fleeger (1998) found that grass shrimp are 

efficient predators on stem-dwelling copepods but that predation is much lower on sediment-

dwelling copepods and that a different functional response by grass shrimp is generated when 

sediment is available to copepods.  Perhaps small killifish have higher predation rates on 

copepods than grass shrimp and grass shrimp have higher predation rates on annelids (shrimp are 

becoming increasingly recognized as important predators of macroinfauna (Kneib and Stiven, 

1982; Posey and Hines, 1991; McTigue and Zimmerman, 1998; Beseres and Feller, 2007).  If so, 

then grass shrimp may not compensate with increased predation on sediment-dwelling copepods 

when killifish are removed; therefore, copepods increased in abundance when killifish were 

removed (as a direct effect) while annelids did not. 
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 Possible indirect effects of killifish reduction on annelid abundance (annelids decreased 

with killifish reduction) were observed under S. patens canopy.  Indirect effects are often 

mediated by an intermediate predator (Kneib, 1991).  Intermediate consumers such as grass 

shrimp on the marsh platform may have been responsible for the observed indirect effects of 

killifish reduction under the S. patens canopy, but these effects cannot be isolated without 

directed experiments (Fleeger et al., 2003).  Support for this hypothesis, however, comes from 

the observation that killifish reduction led to increases in grass shrimp body size (but not 

abundance) that could be caused by increasing growth rates resulting from increased 

consumption by grass shrimp (Deegan et al., 2007). 

Top-down vs. bottom-up effects 

 Our work demonstrates that the assumption of independence between factors, an 

assumption often made in ecological studies (Argawal et al. 2007) may be incorrect.  We 

identified an interaction between fertilization and predator reduction in S. patens habitat on 

annelids associated with an indirect effect of killifish reduction (Table 1).  Interactions in salt 

marshes between fertilization and predator removal have been observed by (Posey et al., 2006) in 

a mudflat location for haustoriid amphipods, and our related work in PIE suggests that talitrid 

amphipods at the marsh edge and sediment algae respond to these treatments in a non-additive 

fashion (Deegan et al., 2007).  Other studies (Foreman et al., 1995; Posey et al., 1999; Hillebrand 

et al., 2002) found no evidence for interactions between nutrient addition and predator reduction 

on infauna.  Trophic cascades mediated by infauna on sediment algae were also not apparent 

from our study or work by Posey et al. (1995; 2002) suggesting infauna are weak interactors with 

sediment algae, and that trait-mediated effects associated with top-down factors are functionally 

similar throughout the inundation gradient.  Finally, it is difficult to compare the relative 
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importance of top-down vs. bottom up effects from our study because we did not exclude all 

epibenthic predators and because indirect effects of killifish reduction on other predators may 

have occurred, obscuring effects.  MDS plots (Fig. 5) show more distinct groupings associated 

with fertilization than killifish reduction when both effects were significant (e.g., copepods on 

creek wall) suggesting that fertilization effects on communities were stronger.  However, both 

top-down and bottom up effects were relatively uncommon and similarly mild in our 

experiments (Fig. 6). 

Landscape effects 

 Our results demonstrate that research programs that focus on one part of the marsh 

landscape may miss important effects of ecological stressors.  In salt marshes, benthic studies 

examining the anthropogenic activities rarely look across the landscape and generally focus on 

unvegetated mudflats (Posey et al. 1999).  In our experiment, we found no effects of nutrient 

loading or predator reduction on any taxon in the mudflat habitat and the strongest and most 

frequent effects were found in the creek wall, a habitat often overlooked and rarely examined.  

Thus, potentially important effects may go undetected in a sampling program focused strictly on 

one portion of inundation gradient in salt marshes. 

Implications for bioindicators 

 In terms of abundance, meiofaunal major taxa were more sensitive to our treatment 

effects than were species of annelids.  Interestingly, neither annelid or copepod species diversity 

responded to treatments, and even though copepods had a higher diversity, community responses 

of both groups were often similar.  Although meiofaunal taxa were more sensitive to treatments, 

utilizing both macrofauna and meiofauna may enhance benthic monitoring programs because 

parallel findings may provide strong evidence of an effect (e.g., both groups were significantly 
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affected by fertilization at creek wall) or lack thereof (e.g., treatment effects on meiofaunal and 

macrofaunal Manayunkia aestuarina were size and habitat independent).  Regardless of which 

size class (or both) is utilized, sensitivity – the ability to detect effects – of selected response 

variables (e.g., abundance) is important in decisions regarding any monitoring program.  For 

meiofauna, copepods reproductive indices proved useful and may be valuable for predicting 

long-term population effects (Montagna and Harper, 1996).  For macroinfauna, we suggest 

focusing on surface deposit feeders because they proved most sensitive to treatments. 

Conclusions 

 In our experiment examining the effects of whole ecosystem fertilization and predator 

removal, we found that the most frequent and strongest responses of infauna occurred in the mid 

region (creek wall and marsh edge, Fig. 6) of the tidal inundation gradient.  Although significant 

effects were found on abundance, reproduction and community structure in some taxa and 

habitats, the effects were relatively mild (e.g., no effects were found on species diversity of 

copepods or annelids).  Interactions between fertilization and predator reduction were observed 

in association with indirect predation effects on infauna in one habitat and for benthic microalgae 

in various habitats (Deegan et al., 2007).  These results illustrate the importance of examining 

effects across the landscape and falsify the assumption of independence among multiple factors 

(Argawal et al., 2007).  More research is needed to determine if trait-mediated effects that 

contribute to top-down trophic cascades (and other ecological expressions) vary over the 

landscape, and we will continue to analyze the results of our longer-term manipulations for such 

effects.  We suggest that both macroinfauna and meiofauna provide complementary information 

for monitoring effects, although meiofauna appear to be more sensitive, at least in the short term.  
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Limiting study of human-induced stressors to a single habitat may lead to false conclusions about 

the entire ecosystem. 
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Table 1:  Summary of p-values for macrofauna from GLMM testing for treatment effects.  In this BACI-type design, only 

Period*Treatment interactions are of interest.  MF = mudflat, CW = creek wall, TSA = tall-form Spartina alterniflora, SP = S. patens 

and SSA = stunted S. alterniflora. 

Macroinfauna 
Habitat Taxon Period(B/A) Nutrients Fish Period*Nutrient Period*Fish Nutrient*Fish Period*Nutrient*Fish 
MF         
 S. benedicti 0.5437 0.0005 0.0051 0.9066 0.9199 0.4342 0.7196 
 Total Oligochaetes 0.6965 0.0771 0.1053 0.7201 0.5570 0.5344 0.4895 
 Total Annelids 0.6353 0.0055 0.0009 0.3653 0.3922 0.1983 0.1406 
CW         
 M. aestuarina 0.1269 0.3823 0.8643 0.2441 0.8643 0.3158 0.3865 
 P. litoralis 0.2352 0.0382 0.2872 0.2335 0.8090 0.7030 0.3589 
 C. immota 0.8019 0.7804 0.4900 0.1057 0.8035 0.578 0.0006 
 Total Annelids 0.1286 0.3331 0.6060 0.0868 0.4063 0.2700 0.1362 
TSA         
 M. aestuarina 0.5778 0.0903 0.1088 0.2091 0.6504 0.6603 0.1306 
 P. litoralis 0.251 0.088 0.3450 0.1975 0.9446 0.3636 0.3066 
 C. immota 0.2222 0.0602 0.0728 0.0561 0.8557 0.5445 0.5007 
 Total Annelids 0.0352 0.0494 0.3175 0.1153 0.5959 0.8395 0.4940 
SP         
 M. aestuarina 0.7866 0.3753 0.6228 0.7331 0.1855 0.0485 0.5221 
 C. immota 0.2786 0.5564 0.0651 0.6744 0.8709 0.8997 0.0320 
 Total Annelids 0.3782 0.045 0.5323 0.4675 0.0249 0.344 0.1631 
SSA         
 M. aestuarina 0.442 0.5745 0.0196 0.3930 0.2032 0.0071 0.6703 
 P. litoralis 0.3881 0.0808 0.0159 0.7080 0.5704 0.5460 0.4360 
 C. immota 0.3647 0.4245 0.7600 0.9765 0.3632 0.4418 0.3769 
 Total Annelids 0.3686 0.2208 0.1945 0.6293 0.6794 0.0362 0.1218 
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Table 2:  Summary of p-values for meiofauna from GLMM testing for treatment effects.  In this BACI-type design, only 

Period*Treatment interactions are of interest.  MF = mudflat, CW = creek wall, TSA = tall-form Spartina alterniflora. 

Meiofauna 
Habitat Taxon Period(B/A) Nutrients Fish Period*Nutrient Period*Fish Nutrient*Fish Period*Nutrient*Fish 
MF         
 Nematodes 0.2442 0.0380 0.7052 0.3953 0.8678 0.1325 0.9435 
 Copepods 0.2863 0.6460 0.9812 0.5824 0.0693 0.2441 0.4508 
 Ostracods 0.9219 0.0105 0.2408 0.4145 0.3003 0.8567 0.2295 
 M. aestuarina 0.4297 0.0083 0.5569 0.6617 0.5790 0.5002 0.5075 
 Total Annelids 0.2152 0.0090 0.1197 0.6807 0.5206 0.3471 0.5358 
 Total Meiofauna 0.1865 0.0294 0.6235 0.4753 0.8891 0.2101 0.9768 

CW         
 Nematodes 0.2881 0.0706 0.2791 0.4986 0.9835 0.602 0.2340 
 Copepods 0.7546 0.0007 0.0106 0.5336 0.0394 0.8296 0.5701 
 Ostracods 0.0604 0.269 0.4378 0.0210 0.8588 0.6509 0.8730 
 M. aestuarina 0.8932 0.0178 0.0606 0.5187 0.4010 0.5890 0.2070 
 Total Annelids 0.7595 0.0208 0.3655 0.5310 0.4408 0.9615 0.2517 
 Total Meiofauna 0.3314 0.0334 0.3936 0.4702 0.7257 0.5750 0.2091 
TSA         
 Nematodes 0.3927 0.3349 0.2913 0.6256 0.0015 0.9158 0.3191 
 Copepods 0.1215 0.1339 0.8998 0.1866 0.0140 0.1235 0.5343 
 Ostracods 0.2434 0.515 0.0802 0.6880 0.4169 0.7980 0.1169 
 M. aestuarina 0.9994 0.0068 0.0527 0.1860 0.1700 0.5299 0.8628 
 Total Annelids 0.9687 0.0566 0.0608 0.2253 0.1359 0.9222 0.7392 
 Total Meiofauna 0.3947 0.1760 0.3359 0.8434 0.0022 0.7189 0.4122 
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Table 3:  Average species diversity per sample along the marsh tidal inundation gradient.   

Values are composites of all samples taken (i.e., all treatments, all time points) for  

meiofauna and macrofauna.  H’ = Shannon’s diversity index and S = species richness.   

 
 Annelid community Copepod community 
 H’ S H’ S 

Mudflat 1.28 5.9 1.64 7.8 
Creek Wall 1.05 4.9 1.25 7.0 

Tall S. alterniflora 0.85 4.1 0.93 5.5 
S. patens 0.77 2.7 - - 

Stunted S. alterniflora 0.65 2.7 - - 
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Table 4.  Copepod ANOSIM p values.  In June and August, 2004, creek included two 

levels, with and without nutrient addition and fish was reduced in branches within creeks.  

An * indicates significance of 0.05 or lower. MF = mudflat, CW = creek wall, TSA = 

tall-form Spartina alterniflora.  Tests not done in MF in 2004 because differences 

between creeks were observed in 2003. 

 
 June 2003 July 2003 June 2004 August 2004 
 Creek Branch Creek Branch Creek Branch Creek Branch 

MF 0.180 0.410 0.050* 0.900 - - - - 
CW 0.410 0.910 0.600 0.033* 0.100 0.470 0.002* 0.016* 
TSA 0.370 0.110 0.490 0.430 0.004* 0.008* 0.003* 0.038* 
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Table 5.  Annelid ANOSIM p values.  In June and August, 2004, creek included two  
 
levels, with and without nutrient addition and fish was reduced in branches within creeks.   
 
An * indicates significance of 0.05 or lower.  MF = mudflat, CW = creek wall, TSA =  

tall-form Spartina alterniflora, SP = Spartina patens, SSA = stunted S. alterniflora =   

Tests for TSA for August, 2004, and SP and SSA in June, 2004 and August, 2004 were 

conducted with an outlying data point removed.  Tests not done in MF in 2004 because 

differences between creeks were observed in 2003. 

 
 June 2003 August 2003 June 2004 August 2004 
 Creek Branch Creek Branch Creek Branch Creek Branch 

MF 0.020* 0.130 0.050* 0.720 - - - - 
CW 0.400 0.940 0.550 0.820 0.010 0.070 0.020* 0.130 
TSA 0.350 0.250 0.080 0.300 0.001* 0.240 0.010* 0.010* 
SP 0.100 0.230 0.490 0.260 0.164 0.313 0.039* 0.085 

SSA 0.110 0.020* 0.470 0.220 0.036* 0.010* 0.050* 0.045* 
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Figure Legends 

Figure 1.  Map of Plum Island Estuary showing location of experimental creeks 

(MassGIS orthophoto 2002).  The upper left insert is a map of Massachusetts, indicating 

the location of PIE.  The upper right insert shows a schematic figure (not to scale) of 

habitats sampled across the salt marsh inundation gradient.  SW = Sweeney Creek, WE = 

West Creek.  MF = mudflat, CW = creek wall, TSA = tall-form Spartina alterniflora, SP 

= S. patens, SSA = stunted-form S. alterniflora.   

Figure 2.  Density of total macroinfauna throughout the experimental period in 

experimental creeks and the oligochaete species C. immota in habitats where BACI tests 

revealed significant treatment effects.  Significant effects are listed in the left corner of 

each panel.  Habitat designations as in Fig. 1. 

Figure 3.  Density of total meiofauna throughout the experimental period in experimental 

creeks and individual taxa in which BACI tests revealed significant treatment effects.  

Significant effects are listed in the left corner of each panel.  Habitat designations as in 

Fig. 1. 

Figure 4.  Percent immature copepods and percent ovigerous female copepods throughout 

the experimental period in experimental creeks.  Significant effects are listed in the left 

corner of each panel.  Habitat designations as in Fig. 1. 

Figure 5.  MDS plots of copepod and annelid responses in August, 2004 to experimental 

treatments.  Treatment designations:  NA = nutrient additions, FR = fish removal, AN = 

ambient nutrients, AF = ambient fish. 
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Figure 6.  Summary of effects of fertilization and predator removal in PIE across the 

inundation gradient.  NA designates nutrient addition effects and FR designates fish 

removal effects.  Habitat designations as in Fig. 1. 
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Figure 4 
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Figure 6 
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