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ABSTRACT 

A unique dataset from paired low- and high-temperature vents at 9°50’N East Pacific Rise 

provides insight into the microbiological activity in low-temperature diffuse fluids.  The stable 

carbon isotopic composition of CH4 and CO2 in 9°50’N hydrothermal fluids indicates microbial 

methane production, perhaps coupled with microbial methane consumption.  Diffuse fluids are 

depleted in 13C by ~10‰ in values of δ13C of CH4, and by ~0.55‰ in values of δ13C of CO2, 

relative to the values of the high-temperature source fluid (δ13C of CH4 = -20.1 ± 1.2‰, δ13C of 

CO2 = -4.08 ± 0.15‰).  Mixing of seawater or thermogenic sources cannot account for the 

depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature 

vents.  The substrate utilization and 13C fractionation associated with the microbiological 

processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and 

CO2 concentrations and carbon isotopic compositions.  A mass-isotope numerical box-model of 

these paired vent systems is consistent with the hypothesis that microbial methane cycling is 

active at diffuse vents at 9°50’N.  The detectable 13C modification of fluid geochemistry by 

microbial metabolisms may provide a useful tool for detecting active methanogenesis. 
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1. INTRODUCTION 

 Although the genetic traces of suites of archaea and bacteria have  been identified in 

hydrothermal fluids at more than 300°C (DEMING and BAROSS, 1993; HUBER et al., 2003; TAKAI 

and HORIKOSHI, 1999), it is unlikely that these organisms were active well above the ~120°C 

current upper temperature limit for life (KASHEFI and LOVLEY, 2003).  While fluids at black 

smoker temperatures cannot be absolutely discounted as a potential microbial habitat (BAROSS et 

al., 2004; SCHRENK et al., 2003), it is much more plausible that these unique organisms were 

active in nearby lower temperature hydrothermal environments and entrained into the hot 

sampled fluid.  Such lower temperature hydrothermal environments occur when high-

temperature hydrothermal fluid is cooled, conductively or through mixing with seawater.  The 

seafloor expressions of this low-temperature hydrothermal activity are diffusely venting fluids 

that provide a warm, mineral, metal, and volatile rich habitat that is amenable to microbial life.   

 The term “diffuse fluid”, used interchangeably herein with “low-temperature fluid”, 

explicitly refers to fluid venting directly out of cracks in the basaltic substrate (VON DAMM and 

LILLEY, 2004).  This definition of diffuse fluid does not include fluids leaking out of vent 

structures or shimmering water that is a result of high-temperature fluids mixing above the 

seafloor.  Diffuse fluids have been shown to be, primarily, a dilution of high-temperature fluids 

and crustal seawater (BUTTERFIELD et al., 1999; BUTTERFIELD and MASSOTH, 1994).  Conductive 

cooling of high-temperature fluids in the shallow crust (COOPER et al., 2000), and three-

component mixing between high-temperature fluids, seawater, and modified-seawater sources 

(RAVIZZA et al., 2001), are minor formation mechanisms of diffuse fluids.   
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 The comparison of heat and chemical flux estimates from low-temperature and high-

temperature fluids suggests a greater (BAKER et al., 1993; ELDERFIELD and SCHULTZ, 1996; 

SCHULTZ and ELDERFIELD, 1999) contribution to the global ocean basins from diffuse vents than 

from high-temperature vents.  Despite the relative importance of diffuse fluids in hydrothermal 

systems, chemical data describing these low-temperature fluids have been sparsely reported, and 

the results have often been overshadowed by high-temperature revelations (BUTTERFIELD et al., 

1999; BUTTERFIELD and MASSOTH, 1994).  Although the groundwork for detailed biological and 

chemical work in diffuse fluids was laid in a comprehensive study in the late 1980’s (JOHNSON et 

al., 1988), not until recently have diffuse fluids emerged as the focal point of hydrothermal 

investigations (BUTTERFIELD et al., 2004; COOPER et al., 2000; HOLDEN et al., 1998; HUBER et 

al., 2003; VON DAMM and LILLEY, 2004).  Microbiological and geochemical interest in diffuse 

fluids has been invigorated in part because these fluids have been indicated as the closest 

environmental model for a subseafloor biosphere (SUMMIT and BAROSS, 2001).  Despite the 

renewed focus, diffuse fluids remain challenging to study, both analytically and from a sampling 

standpoint.   

 As the name implies, diffuse fluids emanate from the seafloor in an unfocused wafting of 

warm water, unlike the focused flow of high-temperature fluids venting directly out of a chimney 

orifice.  Thus, obtaining a sample of diffuse fluid without entraining large quantities of seawater 

is extremely rare, and diffuse samples are typically 90-95% seawater.  The seawater dominated 

composition of diffuse fluids is problematic because large extrapolations (to a seawater-free 

endmember) are required to directly compare low-temperature and high-temperature fluid 

concentration data.  A critical challenge in the evaluation of the microbiological impact on the 

chemistry of diffuse fluids is accurately assessing the modifications to the high-temperature 
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parent fluid, a difficult task when using considerably manipulated concentration data.  Because 

the effects of mixing and dilution are inherently recorded in isotopic data, the error and 

complexity in normalizing concentration data is muted or absent when comparing diffuse and 

high-temperature stable isotope data.   

 Many biological and chemical processes preferentially utilize 12C relative to 13C, leaving 

substrates enriched in 13C and metabolic products depleted in 13C.  Thus, evidence for microbial 

metabolic activity may be preserved in the isotope record. We attribute the differences in the 

carbon isotopic composition of CH4 and CO2 between the low- and high-temperature fluids to 

microbiological modifications by methanogens and, perhaps, methanotrophs. As many biological 

and chemical processes preferentially utilize 12C relative to 13C, microbial metabolisms typically 

yield substrates enriched in 13C and metabolic products depleted in 13C.  Methanogens, obligate 

anaerobic archaea that produce CH4 during the metabolism of an oxidized carbon source, are 

commonly detected and isolated from hydrothermal environments (JANNASCH, 1995).  

Methanotrophy, the microbial oxidation of methane, is mediated by methanotrophic bacteria in 

aerobic environments and by obligate anaerobic methanotrophic archaea in anaerobic 

environments. Although anaerobic methanotrophs have been identified in anoxic sediments 

(HINRICHS et al., 2000), indications that this group is active at hydrothermal vent environments is 

scarce, as anaerobic methane oxidizers have only been detected at the sedimented hydrothermal 

site Guaymas (TESKE et al., 2002).  

 To decipher the impact of microbial activity in hydrothermal fluids, links between 

specific microbial groups and specific geochemical modifications must be established.  This 

requires the integration and reconciliation of molecular methods, experimental culture work, and 

geochemical fluid analysis.  The intention of this manuscript is to present an isotopic dataset 
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suggestive of active microbial methanogenesis and methane oxidation in diffuse hydrothermal 

fluids as a baseline example of the microbiological influence on the volatile geochemistry of 

hydrothermal vent systems.   

 Here we present the results of a natural experiment examining the carbon isotopic 

composition of low-temperature fluids that are located proximal to, and are a chemical dilution 

of, a high-temperature “parent” fluid.  We attribute the isotopic depletions in δ13C of CH4 from 

low-temperature fluids, relative to values from high-temperature fluids, to microbial 

methanogenesis.  Despite limited microbiological evidence of methanotrophy in hydrothermal 

environments, we hypothesize that the observed isotopic depletions in δ13C of CO2 from low-

temperature fluids, relative to values from high-temperature fluids, is suggestive of active 

methanotrophy. 

 

2. MATERIALS AND METHODS 

2.1. Geologic setting 

The 9°50’N area of the EPR is perhaps the best example of a prototypical fast-spreading ridge 

(ALT, 1995).  The symmetric ridge profile shallows to ~2500m water depth at the axis, and is 

characterized by a full spreading rate of 11 cm/yr (CARBOTTE and MACDONALD, 1992), a 

shallow magma chamber located ~1 km beneath the seafloor (DETRICK et al., 1987), extensive 

evidence of volcanism (FORNARI et al., 2004), and an ~60 m wide axial summit trough (AST) 

that supports active hydrothermal vents.   

 The area between 9°46’-51’N was impacted by seafloor eruptive events in 1991 and 1992 

(HAYMON et al., 1993), triggering a series of research expeditions to chronicle the dynamic 
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chemical, biological, and geological responses to this volcanic perturbation. In the months 

preceding April 2006 a series of earthquakes signaled eruptive activity at this intensively studied 

area, and a series of response cruises sponsored by the Ridge2000 program verified extensive 

volcanism (COWEN et al., 2007; LILLEY et al., 2006; VON DAMM et al., 2006).  At the time of 

writing, it is unclear the extent to which the eruptive events have modified the specific vent sites 

described here.  It is important to note that all data and descriptions of vent sites presented here 

are based on measurements and observations prior to the most recent eruptive events, and may 

not accurately depict their present state.  

 Samples analyzed herein are from vents located within the AST along an ~8 km stretch 

of the EPR between 9°46’-51’N (Figure 1).  Two diffuse vents, Bio9R and Y, are ideally suited 

to examining the processes that modify high-temperature fluids in diffuse flow environments.  

Bio9R and Y vents are located directly adjacent to the high-temperature vents Bio9 and TWP, 

respectively.  The diffuse vent Biomarker9 Riftia (Bio9R) adjoins the Bio9 vent site; Y vent is 

diffusely venting at the base of a lava pillar upon which the TWP sulfide structure and vent are 

located.  The close proximity of low- and high-temperature fluids, and the absence of other vent 

sites within 10m of Bio9/Bio9R and 20m of TWP/Y, allows for the safe assumption that the 

diffuse fluid (Bio9R, Y) is the diluted and modified analog of the proximal high-temperature 

fluid (Bio9, TWP) (VON DAMM and LILLEY, 2004).  

 

2.2. Sample collection and analysis 

Accurate analysis of hydrothermal volatiles requires that both diffuse fluid samples and high-

temperature black smoker samples be obtained using “gas-tight” sampling vessels.  As samples 

are collected under high hydrostatic pressures, gas-tight samplers (GT) are designed to prevent 
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degassing of the fluid during the subsequent release of pressure upon ascent.  The gas-tight 

samplers (GT) employed in this study are fixed volume samplers that maintain the integrity of 

the fluid sample until it is quantitatively transferred to a shipboard vacuum extraction line where 

the volatile fraction is quantitatively removed.  The GT samplers are constructed entirely of 

titanium and enclose a 150 mL sample volume that is spring sealed and hydraulically opened 

using a gold tipped piston that ensures degassing does not occur upon ascent.  Gas-tight, 

samplers are most often deployed in high-temperature vent work as discrete samples where the 

¼-inch titanium tube inlet is positioned in the vent orifice and triggered by the vehicle’s 

manipulator arm.  All samples presented here were collected using the DSV Alvin; the sample 

number reflects the Alvin dive number followed by the numerical identity of the gas-tight 

sampler employed.  Due to the low flow rates and poorly defined orifices of diffuse vents, the 

acquisition of good-quality diffuse samples requires special consideration.  All of the low-

temperature fluids presented here were obtained using GT vessels mounted on the NOAA 

manifold system described in Massoth (1988) and Von Damm and Lilley (2004).  The manifold 

system pumps diffuse fluids into a titanium manifold where temperature is monitored as a quality 

control, and multiple GT sample bottles may be triggered once a stable temperature has been 

reached. 

 Once shipboard, high-temperature and diffuse vent fluid samples were processed 

identically using the extraction procedure described here.  Using internal standards this method 

was shown to be insensitive to the volatile concentrations, a concern as high-temperature 

samples can have orders of magnitude more gas, by volume, than diffuse samples.  The fluid was 

quantitatively extracted from the GT sampler on a portable titanium and glass vacuum line.  

Extracted fluid was acidified to convert all carbonate species to CO2(aq), agitated ultrasonically to 
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move >97% of the CO2 into the gas phase.  This gas was subsequently passed through a -60°C 

cold trap to remove water, and, using a mechanical bellows pump, moved to a set of calibrated 

volumes.  After manometric determination of the volume, several aliquots were preserved in 

30mL pyrex breakseal vials.  Remaining degassed fluid was stored in acid rinsed HDPE bottles 

for shore-based determination of normalization elements Mg and Si using methods described in 

Von Damm (2000). 

 In a land-based laboratory glass vacuum line, breakseals were broken and the volatile 

samples were manipulated so that pure fractions of CO2 and CH4 could be measured by isotope-

ratio mass spectrometery (IRMS).  A bellows pump was used to adjust the volume of sample to 

be analyzed, ideally ~500uL CO2 and ~200nL CH4.  After passing through a slush trap (to 

remove water), the condensable fraction (CO2, H2S) was frozen out in a liquid nitrogen trap, and 

methane was trapped in a valved u-trap on silica gel under liquid nitrogen temperatures.  The 

non-condensable fraction (primarily H2, and N2) was slowly evacuated using a metered valve to 

vacuum.  The methane fraction frozen in the u-trap was analyzed on a continuous flow Finnigan 

Delta+XL mass spectrometer, using a combustion and pre-concentrating inlet system (BRAND, 

1996).   The CO2 and H2S remaining in the vacuum line were separated by passing the gas over 

powdered Ag3PO4, effectively removing all H2S by producing solid Ag2S.  The CO2 was frozen 

into a valved finger and analyzed on a dual-inlet Finnigan 251 mass spectrometer.   Using 

internal gas standards, mixed to approximate a hydrothermal sample and processed using the 

described method, analytical error was found to be ±0.3‰ for δ13C of CH4 and better than 

±0.05‰ for δ13C of CO2.  All samples were measured in triplicate, and the mean standard 

deviation of all triplicate measurements was in agreement with error analysis by internal 
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standards.  All measured 13C/12C ratios are reported in standard δ notation and ‰ units, 

referenced to the vPDB scale. 

 

2.3.  Data reduction and normalization 

 

During sampling, seawater is inevitably entrained into the sampler, and thus measured 

concentrations do not accurately reflect the composition of the pure vent fluid.  For high-

temperature samples, endmember concentrations presented here are calculated using established 

methods that assume pure vent fluid has a zero Mg concentration, and therefore seawater mixing 

during sampling is the source of all Mg present in the sample (BUTTERFIELD et al., 1994; LILLEY 

et al., 1993; VON DAMM, 2000).  This method is effective for samples where minor amounts of 

seawater have been entrained during sampling because endmember values require only a small 

extrapolation.  However, for diffuse fluids, where samples may only be a few percent by volume 

vent fluid, large extrapolations are required, and an alternate method for calculating endmember 

concentrations is preferred.   The high precision of aqueous silica measurements (relative to 

magnesium measurements), and smaller extrapolations used in Si normalization (relative to 

Mg=0 extrapolations) encourages the use of Si to normalize fluid data in the comparison of high-

temperature and diffuse fluids (VON DAMM and LILLEY, 2004).  Here we assume that vent fluid 

Si is conservatively mixed with a 0.155 mmol/kg seawater endmember (as measured from 

sample 3547-12, a background seawater sample from 9°50’N).  While Von Damm and Lilley 

(2004) normalized all fluid data to Si=1 mmol/kg, a value that approximates the Si 

concentrations measured in low-temperature fluids, here we normalize the low-temperature data 

to the endmember Si concentration of the adjacent high-temperature fluid.  Although this method 
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of Si-normalization involves larger extrapolations for the low-temperature data (compared with 

normalization to Si=1 mmol/kg), this approach has the advantage that endmember high-

temperature gas concentrations can be directly compared with previously reported endmember 

hydrothermal volatile data.   

 It should be noted that endmember CO2 concentrations and δ13C values of CO2 have been 

corrected only for the seawater bicarbonate entrained during sampling and not for seawater 

bicarbonate that was present in the initial fluid.  Although previous studies have made additional 

corrections to endmember CO2 values to include the seawater bicarbonate contained in the 

original parcel of downwelled fluid (EVANS et al., 1988; LILLEY et al., 1993; WELHAN and 

LUPTON, 1987), recent evidence from the Endeavour hydrothermal system (PROSKUROWSKI et 

al., 2004), Baby Bare (SANSONE et al., 1998) and several ODP drill cores (ALT and TEAGLE, 

1999), suggest that correcting for original seawater bicarbonate is not appropriate.  The diffuse 

samples presented here have low measured CO2 concentrations and high Mg concentrations, 

such that the molar amount of seawater bicarbonate entrained during sampling (as determined by 

Mg) added to the 2.3 mmol/kg of bicarbonate assumed to be present in the original fluid 

accounts for nearly all, and in some cases, more than, the CO2 measured in the sample.  This 

untenable result supports the hypothesis that seawater bicarbonate originally present in the 

downwelled fluid has been removed prior to venting at the seafloor. Assuming that the original 

bicarbonate has been removed, and applying just the Mg correction for entrained seawater to the 

13C measurement yields internally consistent values for the Y and Bio9R vents, whereas 

additional corrections for original bicarbonate result in implausible and inconsistent isotope 

values.   
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 Although the low-temperature samples have near-seawater Mg values, the correction 

applied to the 13C isotope value of CO2 is done by the isotope-mass balance approach shown 

below, and does not involve large extrapolations:   

R
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2
]
measured

= R
vent
[CO

2
]
vent
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entrained
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entrained

  (1) 
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2
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Where R=13C/12C, Rmeasured and [CO2]measured denote the raw measured vent fluid values, Rvent and 

[CO2]vent denote the values for the pure vent fluid component, and Rentrained and [CO2]entrained 

denote the values for the entrained seawater bicarbonate component.  The mass balance is solved 

for Rvent, as all other variables are known, given that Rentrained was measured at 0.9996 (-0.40‰), 

and: 

[CO
2
]entrained =

[Mg]measured

[Mg]SW
[CO

2
]SW      (3) 

Where Mgmeasured is the measured Mg value reported in Table 1, MgSW is the measured 

background seawater Mg value (52.2 mmol/kg) and [CO2]SW is the measured background 

seawater bicarbonate concentration (2.3 mmol/kg). The errors, involved in this approach are 

±0.2‰ as determined by a Monte Carlo error analysis, and are tied mainly to the precision of the 

Mg measurement.  Isotope values for CH4 are not corrected, as seawater CH4 concentrations are, 

at least, three orders of  magnitude smaller than measured vent CH4 concentrations. 

 Uncorrected (measured) data are presented in Table 1, and endmember data 

(concentrations of high-temperature fluids normalized to Mg=0; concentrations of low-

temperature fluids normalized to the endmember Si value of the proximal high-temperature vent; 

and CO2 isotope values corrected for the contribution of entrained seawater bicarbonate) are 
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presented in Table 2.  Unless specifically noted, all subsequent discussion of data pertains to the 

endmember values. 

 

3. RESULTS 

3.1. Endmember gas concentrations 

Endmember gas concentrations and isotope compositions from high-temperature black smoker 

vents (Bio9, TWP) and proximal low-temperature diffuse flow vents (Bio9R, Y) from the 

BIOGEOTRANSECT study area near 9°50’N along the EPR are presented in Table 2.  For 

comparative purposes, original data from Q, A, and V vents (located within ~5 km the Bio9-

Bio9R vents) and previously published data from sites along the East Pacific Rise, the Mid-

Atlantic Ridge, and the Juan de Fuca Ridge are also presented.  These samples represent a sub-

set of a time series beginning in 1991, directly following a large eruptive event centered at 

9°50’N (HAYMON et al., 1993), and ending in 2000. 

 The high-temperature vents in the study region have high endmember CO2 

concentrations, ranging from 45 mmol/kg up to 185 mmol/kg.  The lowest 9°50’N CO2 values 

approximate the observed gas concentrations at Endeavour during periods of sub-seafloor 

magmatism (LILLEY et al., 2003), and are significantly greater that 5-20 mmol/kg values 

typically reported from hydrothermal vents (VON DAMM, 1995).  The highest CO2 concentrations 

reported here aproximate the high values reported from Axial Seamount, a volcanically active 

vent site believed to have a near-continuous supply of magmatic CO2 (BUTTERFIELD et al., 1990; 

BUTTERFIELD et al., 2004).  The low-temperature diffuse vents at 9°50’N also exhibit high CO2 

concentrations when normalized to the Si content of the neighboring high-temperature vent.  In 

general, the CO2 concentration of the diffuse fluid approximates the concentration of the 
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proximal high-temperature endmember; however, the large extrapolations used in calculating 

diffuse endmember concentrations discourage a more detailed assessment. 

 Endmember CH4 concentrations range from 0.05 to 0.12 mmol/kg for post-1991 high-

temperature samples (Bio9 and TWP) and 0.06 to 1.87 mmol/kg for post-1991 low-temperature 

samples (Bio9R and Y).  Methane concentrations in 1991, sampled directly after eruptive 

activity, are ubiquitously high, with the high-temperature vent samples averaging 0.13 mmol/kg 

and a 1991 mean diffuse vent CH4 concentration of 5.86 mmol/kg.  The 1991 Y and V vent 

values (10.20 and 1.52 mmol/kg, respectively) are similar to the mmolar CH4 levels at sediment 

influenced vents such as those at Main Endeavour Field (LILLEY et al., 1993) and Guaymas 

Basin (VON DAMM et al., 1985; WELHAN and LUPTON, 1987).  Methane concentrations of post-

1991 Y vent samples are two to three times those of TWP, the adjacent high-temperature vent, 

while the low-temperature Bio9R vent has similar CH4 concentrations to its high-temperature 

analog, Bio9 vent.  The low CH4 values, 0.05-0.16 mmol/g, associated with many of the vents 

near 9°50’N are similar to reported values along the EPR at 11°N, 13°N and 21°N (LILLEY et al., 

1983; MERLIVAT et al., 1987; WELHAN and CRAIG, 1979; WELHAN and CRAIG, 1983), the Mid-

Atlantic Ridge (MAR) at MARK, TAG and Broken Spur (CHARLOU et al., 1996; JAMES et al., 

1995; JEAN-BAPTISTE et al., 1991), and the Juan de Fuca Ridge at South Cleft and Axial Volcano 

(BUTTERFIELD et al., 2004; EVANS et al., 1988). 

 Hydrogen concentration data reveal two trends: 1) low-temperature samples have 

extremely depleted H2 levels compared with their high-temperature analogs, and 2) elevated H2 

concentrations observed in 1991 high-temperature samples systematically decrease in subsequent 

years.  Hydrogen concentration plotted against measured vent temperature (Figure 2) clearly 

shows the difference in hydrogen concentration between high-temperature and diffuse vents.  
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Highly extrapolated endmember H2 concentrations of 9°50’N low-temperature vents range from 

0.01 mmol/kg to 0.16 mmol/kg, values that are low compared to basalt hosted sites not 

influenced by recent seafloor eruption events (BUTTERFIELD et al., 2004; CHARLOU et al., 2000; 

CHARLOU et al., 2002; EVANS et al., 1988; LILLEY et al., 1993; VON DAMM, 1995).  Post eruptive 

high-temperature vents exhibit H2 concentrations of 0.08 to 0.51 mmol/kg, excluding the 

anomalously high 3.42-8.36 mmol/kg concentrations observed at TWP.  Hydrogen 

concentrations during periods of eruptive activity in 1991 and 1992 are similar to those observed 

at TWP, ranging from 1.40-2.80 mmol/kg at Bio9, to 3.01 mmol/kg at Q vent, and greater than 

27 mmol/kg at A vent, the site of the highest reported hydrothermal vent H2 concentrations 

(LILLEY et al., 2003). 

 

3.2. Stable carbon isotopic composition 

The carbon isotopic compositions of methane and carbon dioxide from 9°50’N samples are 

summarized in Figure 3 and Table 2.  The reported δ13C values of CO2 have been corrected to a 

zero Mg endmember composition using measured background EPR seawater CO2 concentration 

and δ13C value of CO2 (2.3 mmol/kg and -0.40‰, respectively).  High-temperature vents 

sampled between 1992 and 2000 have a well-constrained carbon isotopic composition, a δ13C 

value of CO2 of -4.08 ± 0.16‰ and a δ13C value of CH4 of -20.1 ± 1.2‰.  Compared to 

neighboring high-temperature vents, 9°50’N diffuse fluids are depleted in 13C in both CO2 and 

CH4, with an average δ13C value of CO2 of -4.55 ± 0.53‰, and an average δ13C value of CH4 of 

-30.2 ± 2.7‰.  Due to extremely large amounts of high-temperature fluids exiting the crust 

through cracks and fissures, rather than well-defined vent orifices (HAYMON et al., 1993), 

focused flow fluids were difficult to sample in 1991.  Samples from the Bio9 cluster (368°C) and 
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A vent (396°C), taken shortly after the 1991 seafloor eruption, are isotopically distinct from 

samples taken on subsequent visits.  Methane from Bio9 in 1991 (a δ13C value of -34.6‰) is 

depleted in 13C relative to high-temperature samples subsequent to 1991, resembling the methane 

isotopic composition of diffuse samples.  Similarly, 1991 A vent CH4 (δ13C value of -26.5‰) is 

more depleted in 13C relative to any other high-temperature vent CH4 measured in this study.  

 The δ13C values of CO2 presented here are among the heaviest measured at hydrothermal 

vents (CHARLOU et al., 2002; CHARLOU et al., 1996; JEAN-BAPTISTE et al., 1991; LILLEY et al., 

1993; SHANKS et al., 1995; TAYLOR, 1986; WELHAN and CRAIG, 1983; WELHAN and LUPTON, 

1987), and are very similar to the -4‰ values measured in highly vessiculated basalt “popping 

rocks” thought to represent the average composition of undegassed CO2 residing in the upper 

crust (JAVOY and PINEAU, 1991; PINEAU and JAVOY, 1994; SARDA and GRAHAM, 1990).  The 

high concentrations of CO2 enriched in 13C relative to other hydrothermal sites suggest an 

undegassed, primordial, magmatic source of CO2.  This conclusion is supported by the geologic 

evidence of fast spreading rate (CARBOTTE and MACDONALD, 1992), active volcanism (FORNARI 

et al., 2004; FORNARI et al., 1998; HAYMON et al., 1993; VON DAMM, 2000; VON DAMM et al., 

1995), and shallow heat source (LILLEY et al., 2003; VON DAMM, 2004) at 9°50’N.   The 

constant CO2 isotope and concentration values at high-temperature vents over the 7+ year 

sampling period imply that the magmatic source of CO2 is often replenished so that the melt 

reservoir is not appreciably degassed, a process that would deplete both the concentration and the 

isotopic composition of CO2 (BUTTERFIELD et al., 1990; JAVOY et al., 1978; KELLEY and FRÜH-

GREEN, 1999; KELLEY and FRÜH-GREEN, 2000; KELLEY and FRÜH-GREEN, 2001).  

 

4. DISCUSSION 
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The aim of this manuscript is to report the isotopic compositions of CH4 and CO2 at diffuse vents 

and proximal high-temperature sites, and interpret the observed isotopic depletions of the low-

temperature volatiles in the context of relevant chemical, and biological processes.  The sample 

set presented here was carefully chosen to create a seafloor experiment with the high-

temperature fluid as the control.  The close proximity (<1m) of TWP to Y vent and of Bio9 to 

Bio9R, as well as the absence of other vents within 20m of TWP/Y and 10m of Bio9/Bio9R, 

suggests that the low-temperature fluid is derived locally from the high-temperature fluid.  

Furthermore, the ratios of conservative tracers such as temperature, Si, and Mn (VON DAMM, 

1995) are invariant (for T/Si and Mn/Si) between the high-temperature fluid and the diffuse 

fluid, supporting the hypothesis that the diffuse fluids at Bio9R and Y vents are a dilution of the 

high-temperature endmember (VON DAMM and LILLEY, 2004).  In contrast, concentrations of 

bio-active and chemically reactive elements such as Fe, H2S, CO2, CH4, and H2 show dramatic 

differences between the low-temperature and high-temperature vent environments.  Von Damm 

and Lilley (2004) conclude that iron in diffuse fluids is lost to mineral precipitation, and that 

biological activity at the low-temperature sites leads to consumption of H2S, H2, and CO2 and 

production of CH4.  Here we present isotopic data that support Von Damm and Lilley’s  (2004) 

hypothesis of microbial methanogenesis at the diffuse sites and further suggest that microbial 

methanotrophy may be an active process in the low-temperature fluids. 

 

4.1.  Potential Mechanisms of Isotopic Modification of Vent Fluids 

The depletions in 13C of CH4 and CO2 observed at diffuse sites relative to high-temperature sites 

at 9°50’N vent sites may be attributed to three mechanisms: temperature dependent isotopic 
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equilibration, the mixing of isotopically distinct sources, and isotopic fractionation during 

chemical or metabolic reactions.   

 Temperature dependent isotopic fractionation can be confidently ruled out as a 

mechanism to deplete the carbon isotopic composition of low-temperature fluids based on data 

presented in Figure 3.  The expected isotopic fractionations at given temperatures are plotted 

based on the calculations of Horita (2001), demonstrating that the isotopic composition of neither 

the high-temperature (300-400°C) nor the low-temperature fluids (20-55°C) is accurately 

approximated by the isotopic equilibrium temperature. The fractionation between CO2 and CH4 

from high-temperature samples from 9°50’N (with the notable exception of the 1991 sample) is 

compatible with equilibrium fractionation at temperatures ranging from 420-585°C.  While these 

predicted temperatures fall within the range between the highest measured hydrothermal vent 

temperatures and temperatures observed in deeply penetrating hydrothermal fluids (GILLIS and 

ROBERTS, 1999; MANNING et al., 1996), they are, on average, 140°C greater than the 

corresponding measured temperature. At low-temperature sites the equilibrium isotopic 

fractionation predicted temperatures ranges 240-375°C, with the predicted temperature being, on 

average, 270°C higher than the measured value.  The result of apparent CO2-CH4 isotopic 

disequilibrium is not unexpected, as the kinetics of the uncatalyzed CO2-CH4 isotope exchange 

reaction at temperature less than 400-500°C, and the metal catalyzed reaction at temperatures 

less than 200°C, are exceedingly slow in laboratory experiments (HORITA, 2001; SACKETT, 

1993).  The increasingly sluggish kinetics of CO2-CH4 isotope exchange as temperature 

decreases precludes temperature dependent isotope fractionation at diffusely venting low-

temperature sites, and suggests that CO2-CH4 carbon isotopic equilibrium is not well established 

even at high-temperature vent sites. 
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 The mixing of isotopically distinct sources is a common mechanism by which the 

isotopic signature of a natural sample can be modified.  For the purposes of this discussion 

“mixing” refers to the addition of externally sourced CO2 and CH4 to the high-temperature vent 

fluid (rather than CO2 and CH4 produced by thermal or biological processes within the high-

temperature fluid and subsequently incorporated).  Because the low-temperature fluids are 

depleted in 13C in both CH4 and CO2 relative to the high-temperature fluid, an external source 

must be depleted in 13C in both CH4 and CO2 relative to the low-temperature fluid if a mixing 

model is assumed.  Seawater cannot be this external source, as there is no appreciable CH4 

contribution from seawater, and seawater bicarbonate is enriched in 13C relative to the high-

temperature CO2.  Moreover, because the mixing trajectories described by the δ13C values of 

CH4 and CO2 of the Bio9/Bio9R and Y/TWP vent pairs are divergent, a mixing model with a 

single external source is not a viable model.  Thus, either a) multiple sources, variably depleted 

in 13C in both CO2 and CH4, relative to the high-temperature samples, are available for mixing at 

each site, or b) reaction based fractionating mechanisms must be considered to explain the 

observed depletions in 13C at the diffuse sites relative to the high-temperature sites.   

 We suggest that there are only two possible external sources of CO2 depleted in 13C 

relative to the -4.5 to -3.7‰ δ13C values of CO2 from 9°50’N high-temperature vents:  highly 

evolved magmatic CO2 and thermogenic CO2.  Magmatic CO2 becomes increasingly depleted in 

13C as it degasses (BOTTINGA and JAVOY, 1989; PINEAU and JAVOY, 1983; PINEAU et al., 1976);  

however, a scenario where highly evolved magmatic CO2 is input solely to diffuse fluids is 

extremely unlikely.  Therefore, the thermal maturation of organic matter, producing both CO2 

and CH4, is required if a mixing model is to be invoked to describe the isotopic data.  
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4.2.  Assessing a Thermogenic Source of CH4 and CO2 to Bio9R and Y vents 

We suggest that thermogenic production of carbon at 9°50’N diffuse vents is unlikely to be more 

than a minor source for the following reasons:  a) the lack of a stable and sufficeintly large 

source of organic carbon, b) the lack of increased nutrient concentrations in diffuse vents, 

suggesting that fresh biomass is not being pyrolyzed, c) the thermal alteration of organic matter 

is constrained to temperatures above 50°C and, d) the observed depletions in 13C of CO2 in 

diffuse fluids relative to high-tempearture fluids are not adequately described by a thermogenic 

source.   

 The lack of sediments along the fast-spreading ridge precludes the necessary accumulation 

of sedimentary organic matter (HAYMON et al., 1993).  Despite the lack of sediments along the 

ridge axis the potential for organic matter to interact with hydrothermal fluids does exist.  In 

1991, a 1-10 cm thick lava flow at the aptly named Tubeworm BBQ site (<1km north of Bio9) 

was observed to envelop areas colonized by vent megafauna (HAYMON et al., 1993), creating a 

potential reservoir of organic matter.  However, the organic matter reservoir created by infrequent 

eruptive events is likely too small and too episodic to account for the steady-state isotopic 

depletion seen in diffuse fluids six years after the 1991 eruption.   

 Another potential source of organic carbon to this system is dissolved organic carbon 

(DOC), which has typical deep Pacific seawater concentrations of 33-36 µmol/kg (HANSELL and 

CARLSON, 1998; LANG et al., 2006).  Measurements from the Main Endeavour Field show that 

high-temperature fluid DOC concentrations (~14 µmol/kg) are less than seawater concentrations, 

while diffuse fluid DOC concentrations (~46 µmol/kg) are greater than seawater concentrations 

(LANG et al., 2006).   Thermal degradation of DOC at high-temperatures is hypothesized as a 

potential sink of DOC at high-temperature vent sites; however, elevated DOC concentrations at 
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diffuse sites suggest that these thermogenic processes are not active at low-temperatures and that 

biological production is the likely source of the additional DOC (LANG et al., 2006).  Even if 

seawater DOC was being thermogenically converted to CH4 in diffuse fluids, a ~30 µmol/kg 

DOC source of organic carbon is still only a fraction of the 100-260 µmol/kg differences in CH4 

concentrations observed at TWP/Y vents. 

 Low-level “nutrient” concentrations argue against a thermogenic source of CH4 via the 

pyrolysis of microbial biomass at 9°50’N diffuse vents.  The pyrolytic products of living biomass 

should include nitrogen and phosphorous approximating the Redfield ratio.  However, 

measurement of NH4
+ and PO4

-3 concentrations show no enrichment in 9°50’N diffuse fluids 

when compared to the high temperature fluid and are often depleted relative to the background 

seawater value (VON DAMM and LILLEY, 2004).  

 The potential for thermogenic CH4 and CO2 production by the pyrolysis of microbial 

biomass or DOC exists where microbial communities intersect transient fluxes of heat, such as 

the shallow ocean crust and, in particular, diffuse flow sites.  However, the thermogenic 

production of volatile carbon during sediment diagenesis at less than 50°C is extremely limited 

(HUNT, 1995; SCHIMMELMANN et al., 2006; SEEWALD, 2003).  Analysis of organic matter 

exposed to temperatures of 50-80°C at Middle Valley, a sedimented hydrothermal system along 

the northern segment of the Juan de Fuca Ridge, showed the absence of typical petroleum 

markers of thermogenic activity such as polycyclic aromatic hydrocarbons (SIMONEIT et al., 

1992).  These results suggest that a possible source of thermogenic volatiles to the diffuse vents 

described here must be constrained to a stable zone of mixing 80-400°C with a steady supply of 

organic matter.   Despite counter-indications from direct seafloor observations, it is 

concievable that thermogenically favorable conditions do exisit at 9°50’N, such as in sub-surface 
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pockets rich in microbial biomass.  However, we suggest that the observed δ13C values of CO2 

are not compatible a thermogenic source.  Thermal organic matter degradation experiments at 

temperatures >100°C, show that in addition to CH4, CO2 is produced in a near 1:1 ratio, with 

δ13C values of CO2 -15 to -5‰ (ANDRESEN et al., 1993; CHUNG and SACKETT, 1979; HUNT, 

1995).  Considering the maximum increase in CH4 between a high-temperature fluid and its 

diffuse fluid analog is 0.2 mmol/kg, mixing a similar amount of byproduct CO2 with the large 

(100+ mmol/kg) reservoir of CO2 present in the fluid would deplete the δ13C values of CO2 by a 

maximum of 0.03‰, an order of magnitude less than the 0.5‰ mean isotopic shift observed.   

  If a thermogenic source is only a minor contributor to the isotopic depletions at Y and 

Bio9R vents, then a pure mixing model between high-temperature endmembers and external CH4 

and CO2 sources cannot fully describe the observed isotopic data.   

 

4.3.  Origin of CH4 at 9°50’N 

High-temperature samples are characterized by low (<0.1 mmol/kg) CH4 concentrations and 

δ13C values of CH4 averaging -20‰, strongly suggesting that the CH4 is of magmatic origin.  

Methane venting at high-temperature 9°50’N sites is similar in stable carbon isotopic 

composition to fluids measured at unsedimented mid-ocean ridge hydrothermal systems, such as 

the Southern Juan de Fuca Ridge (-20.8 to -17.8‰) (EVANS et al., 1988), the EPR at 21°N (-17.6 

to -15.0‰) (WELHAN and CRAIG, 1983), the EPR at 13°N (-19.5 to -16.6‰) (MERLIVAT et al., 

1987), the MAR at Broken Spur (-19 to -18‰) (JAMES et al., 1995), and the MAR at Menez-

Gwen (-19.6 to -18/8‰) (CHARLOU et al., 2000) (see Table 2).   

 In order to explain the general trend of diffuse volatiles being depleted in 13C relative to 

high-temperature samples, we invoke the microbial processes of methanogenesis and methane 
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oxidation.  Methanogenesis must be the dominant microbial process as both low-temperature 

sites presented in this study are characterized by elevated CH4 concentrations and decreased H2 

concentrations relative to their high-temperature analog.  Methanogenesis, the microbial 

reduction of low-molecular weight oxidized carbon species (primarily CO2 and acetate) to 

methane, has been cited as a classic example of high-temperature chemolithoautotrophy since the 

first hyperthermophile was cultured from 21°N EPR hydrothermal vent fluid (JONES et al., 

1983).  Methanogens are obligate anaerobes that include mesophiles, thermophiles, and 

hyperthoermophiles (WHITMAN et al., 1992).  In addition to the successful isolation and 

enrichment of methanogens from ridge-crest low-temperature environments (HOLDEN et al., 

1998; JEANTHON et al., 1999; JEANTHON et al., 1998; JONES et al., 1989; SUMMIT and BAROSS, 

1998), methanogens have been detected using molecular methods in the high-temperature 

samples from vent fluids and sulfide chimneys (HUBER et al., 2002; SCHRENK et al., 2003; TAKAI 

and HORIKOSHI, 1999).  

 Microbiological methanogenesis, in its simplest form, proceeds according to the 

straightforward reduction of carbon dioxide: 

 

 

CO
2

+ 4H
2
!CH

4
+ 2H

2
O     (3) 

While an alternate, aceticlastic, pathway is important in many methanogenic environments, the 

reduction of CO2 is favored over acetate in moderately thermal environments (FEY et al., 2004), 

and extreme thermophiles capable of aceticlastic methane production have yet to be isolated 

(VALENTINE et al., 2004).  As illustrated in the above reaction, biogenic methane production 

consumes large amounts of hydrogen relative to the carbon dioxide reduced or the methane 

produced.  At the Bio9/Bio9R and TWP/Y sites milli-molar decreases in hydrogen concentration 

at the diffuse site relative to the high-temperature site do not consistently correspond with the 
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appropriate differences in methane and CO2 concentrations. The lack of a precise stoichiometric 

CH4 gain and CO2 loss relative to hydrogen consumption during methanogenesis is likely due to 

the error involved in calculating comparable high-temperature and low-temperature endmember 

concentrations, and may be further obscured by the potential for hydrogen consumption by other 

microbial processes (e.g. thermophilic sulfate reduction). 

 Unlike the concentration data, the 13C composition of CH4 is unaffected by seawater mixing 

and thus can be a sensitive and robust indicator of microbial activity.  Figures 4 and 5 contrast the 

isotopic composition of adjacent high-temperature and diffuse fluids, illustrating the concentration 

and isotopic differences between Y and TWP and Bio9R and Bio9 fluids.  The low-temperature 

fluid at Y vent is depleted in 13C by an average of 11.7‰ in δ13C of CH4, and 0.37‰ in δ13C of 

CO2, relative to TWP over a sampling period of three years.  Similar results are observed at Bio9R, 

where the low-temperature fluid is depleted in 13C by 4.3‰ in δ13C of CH4, and by 0.90‰ in δ13C 

of CO2, relative to samples taken at Bio9 between 1994 and 1997. 

 Natural methane samples with δ13C values of CH4 less than -50‰ are typically ascribed to 

methanogenic production (CICERONE and OREMLAND, 1988; SCHOELL, 1980; SCHOELL, 1988; 

WHITICAR, 1990).  However, the majority of natural samples are from low-temperature 

environments such as rice paddy soils and marine sediments utilizing CO2 substrates with typical 

δ13C values near -20‰ (SCHOELL, 1980).  Methanogens in hydrothermal environments primarily 

utilize magmatic CO2 with δ13C values of -9 to -4‰, and thus would be expected to produce CH4 

enriched in 13C relative to CH4 from low-temperature methanogenesis in sediments. The -32 to -

25‰ δ13C values of CH4 from 9°50’N diffuse fluids are enriched in 13C relative to values typically 

ascribed to methane of biogenic origin, but are compatible with methanogenesis of a substrate -4‰ 
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in δ13C of CO2 and a fractionation factor at the low end of the range 1.023 ≤ α ≤ 1.064 determined 

by Valentine et al. (2004).   

   

4.4.  Is methanogenesis coupled with methane oxidation? 

The depletions in 13C observed in CO2 from diffuse fluids, relative to CO2 from high-temperature 

fluids, cannot be explained if just methanogenesis is invoked. Methanogenesis alone would 

either a) have no observable effect on the 13C composition of CO2, as the amount of CO2 

consumed is insignificant compared with the large CO2 pool, or b) slightly enrich the CO2 

reservoir in 13C as light CO2 molecules are is preferentially metabolized.  However, the observed 

δ13C values of CO2 in diffuse fluids are depleted up to 0.9‰, a result that requires an additional 

process. 

 We hypothesize that methanogenesis is coupled with methane oxidation.  Microbial 

methane oxidation can occur both aerobically and anaerobically.  Aerobic microbial methane 

oxidation has been investigated extensively in numerous environments, including hydrothermal 

plumes (COWEN et al., 2002; DE ANGELIS et al., 1993), and basalt-hosted hydrothermal vent 

fluids (ELSAIED et al., 2005; NERCESSIAN et al., 2005).  Anaerobic methane oxidation is less well 

understood, as no anaerobic methane oxidizers have been cultured (ALPERIN et al., 1988; 

GIRGUIS, 2003; VALENTINE et al., 2000).  Although oxygenated seawater is mixed into diffuse 

fluids, oxygen is rapidly consumed heterotrophically or by reaction with reduced chemicals, and 

is not detectible in diffuse fluids above 8-12°C (CORLISS et al., 1979; JOHNSON et al., 1988). 

Although diffuse fluids hosting methanogens are requisitely anaerobic, based on the frequent 

identification of microaerobic or denitrifying microbes in diffuse fluids >20ºC (CAMPBELL et al., 
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2006), it is likely that microaerobic zones exist in the subseafloor where methane could be 

oxidized aerobically.    

 Both aerobic and anaerobic methane oxidation metabolisms isotopically fractionate the 

CH4 substrate, producing CO2 relatively depleted in 13C.  Carbon isotope fractionation factors 

vary from 1.005 to 1.031 for aerobic methane oxidation (determined experimentally) (BARKER 

and FRITZ, 1981; COLEMAN et al., 1981) and from 1.0088 to 1.014 for anaerobic methane 

oxidation (determined from natural sediment analysis) (ALPERIN et al., 1988; MARTENS et al., 

1999; WHITICAR and FABER, 1986).  Simply, the CH4 substrate will be enriched in 13C as 

methane oxidation proceeds, and the CO2 produced will be depleted in 13C relative to the CH4 

pool.  This pattern of isotopic fractionation is consistent with the δ13C values of diffuse fluid CO2 

that are depleted in 13C relative to the high-temperature fluid, as well as δ13C values of diffuse 

fluid CH4 that are enriched in 13C relative to values predicted from a mid-range methanogenic 

fractionation factor (α=1.044) (VALENTINE et al., 2000). 

 Unlike the abundant evidence for methanogenesis in hydrothermal environments, 

evidence of methanotrophy, and specifically anaerobic methane oxidation, has been elusive. 

Although anaerobic methane oxidizers have not yet been identified in mid-ocean ridge 

hydrothermal vent fluids, recent investigations have shown ANME groups to be present in deep-

sea environments such as the cool (<10°C) carbonate chimneys at the Lost City Hydrothermal 

Field (BRAZELTON et al., 2006), the sediments of a mud volcano (NIEMANN et al., 2006), and the 

gas seeps of the Black Sea (MICHAELIS et al., 2002).  Anaerobic methanotrophs have yet to be 

successfully isolated in culture, likely because a consortium of archaea and sulfate-reducing 

bacteria mediate the oxidation of CH4 (BOETIUS et al., 2000; MICHAELIS et al., 2002; NIEMANN et 

al., 2006; ORPHAN et al., 2001). The coupling of anaerobic methane oxidation to the presence of 



 27 

sulfate is important in the context of diffuse fluids which, due to seawater mixing, have high 

sulfate concentrations relative to sulfate depleted hydrothermal fluids (HUBER et al., 2006).  

Incubation experiments of Guyamas Basin sediments indicate that anaerobic microbial methane 

oxidation is most active at 30-60°C (KALLMEYER and BOETIUS, 2004).   

While the temperature range and isotopic composition of 9°50’N diffuse fluids are 

compatible with methane oxidation, other metabolic process that produce CO2, e.g. sulfate 

reduction coupled to oxidation of organic carbon other than methane (KNIEMEYER et al., 2007), 

cannot be discounted. The evidence presented here suggests that microbial methane oxidation 

may cycle methanogenic methane, and that further microbiological investigations of 

methanotrophy in diffuse fluids are warranted.  

An evaluation of the potential for microbial modification of diffuse fluid composition can 

be made if fluid residence time of the diffuse fluid, quantity of biomass, and in-situ metabolic 

rate are known.  At present the residence times of diffuse fluids are unknown, as are estimates of 

biomass and metabolic rates.  As these data become available they will provide an important 

verification of the conclusions presented here. 

  

4.5. Numerical box model of microbial methane cycling  

The impact of microbial CH4 production and subsequent oxidation on the isotopic composition 

and concentration of CH4 and CO2 was modeled using a numerical-box model depicted in 

Figures 6 and 7.  This model uses mass- and isotope-balance calculations to track carbon through 

the reservoirs of the box-model, and ignores kinetics, diffusion, and speciation.  This model 

serves as a numerical method of providing a qualitative answer to the question: Are observed 
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isotopic and concentration trends at Bio9/Bio9R and TWP/Y vents consistent with the microbial 

processes of methanogenesis coupled with methanotrophy?   

 The model is a spreadsheet-based series of iterative calculations of four different pools of 

carbon that are related through the processes of dilution, advection, methanogenesis and 

methanotrophy.  Each carbon pool (geometric shapes in Figure 6) is represented in the model as 

a mass-isotope balance equation of the inputs and outputs to the pool, where each input or output 

(arrows in Figure 6) is expressed as a rate and an isotopic fractionation factor.  As the goal of the 

model was to relate the observed δ13C values of CH4 and CO2 to the competing isotopic 

fractionations of microbial methanogenesis and methane oxidation, the model was tuned to 

reasonable initial conditions then run for ~2500 combinations of fractionations (α 

_methanogenesis and α_AMO).  The high-temperature pools of CH4 and CO2 are considered 

infinite reservoirs with concentrations and isotope values set to the average measured values, 

while the low-temperature pools are initially empty.  Less well defined are the relative rates of 

methanogenesis (k_methanogenesis) and methane oxidation (k_AMO), dilution of the high-

temperature fluid, and venting of the diffuse fluid to the surrounding ocean.  The rate of 

methanogenesis was constrained by assuming that methanogenesis in the diffuse fluid is limited 

by the concentration of H2 available from the high-temperature fluid, after dilution, and 

considering a 4H2:1CH4 stoichiometry for methanogenesis (ZINDER, 1993). Rates of anaerobic 

methane oxidation relative to methanogenesis have been observed to range from 1% in coastal 

sites to over 1000% in gas hydrate environments (ORCUTT et al., 2005).  Thus, the rate of 

methane oxidation was adjusted to approximate the rate of methanogenesis in terms of absolute 

amount of carbon processed per time step, and tuned to yield reasonable concentrations of low-

temperature CH4.  The transfer of high-temperature CH4 and CO2 to the low-temperature fluid 
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was constrained based on temperature estimates of dilution, adjusted to account for conductive 

cooling.  For example, a 30°C diffuse fluid represents a 300°C fluid diluted ten-fold, a dilution 

factor of 10.  The rate at which low-temperature CO2 and CH4 are vented to the ocean 

(advection) was constrained by the model result for low-temperature CO2 concentration, and thus 

is primarily linked to the input of CO2.  The modeled isotopic results are fairly insensitive to 

advection (as advection is increased from 5% to 50%, δ13C values of CH4 change by -1.5‰ and 

δ13C of CO2 changes by +0.05‰, a 5% and 1% change, respectively).  However, the 

concentrations of CH4 and CO2 are highly sensitive to advection, decreasing advection from 50% 

to 5% leads to a 500% increase in the amount of CH4 and an 800% gain in CO2.  An advection 

rate of 10% resulted in modeled diffuse CH4 and CO2 concentrations most similar to those 

measured at Bio9R and Y vents.  Although this advection rate is suggestive of short residence 

times for the diffuse fluid, this value should be considered an artifact of the mass-balance 

approach rather than an observation-based constraint. 

 The model, initialized with values given in Table 3 and iterated until steady state was 

achieved, was run for thousands of combinations of methanogenic and anaerobic methane 

oxidation fractionation factors (α_methanogenesis and α_AMO) to determine the best fit of 

measured isotope data from Bio9/Bio9R and TWP/Y vents (Table 4). The model accurately 

replicates the isotopic composition and steady-state concentrations of CH4 and CO2 at Y vent 

when fractionations for methanogenesis and methane oxidation are 1.035 and 1.008, 

respectively.  The fractionations predicted by the box model for TWP/Y vent are within the 

1.023 ≤ α ≤ 1.064 range of values for methanogenesis, as reported by Valentine et al. (2004), and 

within the 1.007 ≤ α ≤ 1.012 range reported for anaerobic methane oxidation in sediments 

(ALPERIN et al., 1988; MARTENS et al., 1999; WHITICAR and FABER, 1986).   
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 The low H2 and CH4 concentrations at Bio9/Bio9R relative to TWP/Y suggest that less 

CH4 is cycled through Bio9R than Y vent.  The diminished throughput of CH4 at Bio9R requires 

increased isotopic fractionations in order to fit the observed CH4 and CO2 isotopic data.  Best-fit 

results suggest that a methanogenic fractionation of 1.071 and a CH4 oxidation fractionation of 

1.053 to accommodate the low throughput of CH4.  The increased methanogenic fractionation 

predicted at Bio9R is at the high end of experimental values (VALENTINE et al., 2004).  Valentine 

et al. (2004) report increased values for methanogenic fractionation under H2-limiting conditions, 

a result that is consistent with the low H2 concentrations at Bio9 relative to TWP.  Although 

model predicted CH4 oxidation isotopic fractionation at Bio9R is greater than fractionations 

observed for anaerobic CH4 oxidation in sediments (ALPERIN et al., 1988; MARTENS et al., 1999), 

the predicted values are within the range for aerobic CH4 oxidation (BARKER and FRITZ, 1981; 

COLEMAN et al., 1981). However, justifying an aerobic environment is difficult considering 

active methanogenesis necessitates the absence of oxygen.  One possibility, albeit speculative, is 

that aerobic microenvironments could be more likely to occur in the less reducing fluids of 

Bio9/Bio9R (lower H2 concentrations than TWP/Y), yielding the increased isotopic 

fractionations associated with aerobic methanotrophy. 

 In summary, a box model that accounts for a flux of CO2 and CH4 from the high-

temperature vent coupled with microbial CO2 reduction and CH4 oxidation in the low-

temperature vent, is consistent with the observed isotope and concentration data. 

 

5. CONCLUSIONS 

The vent sites located near 9°50’N along the EPR were the subject of close investigation by the 

AdVenture cruise series during the 1990’s and a comprehensive set of volatile samples was 
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collected.  We report stable carbon isotope values for CH4 and CO2 from two vent pairs, both 

consisting of a high-temperature vent situated directly next to a low-temperature vent.  The vent 

pairs are assumed to have the same source, and thus insight can be gained from the 

compositional and isotopic differences.   

 Examination of the isotopic differences between low-temperature fluids and their 

modified high-temperature suggests that microbial methanogenesis is active in 9°50’N diffuse 

fluids, perhaps coupled with methane oxidation.  The diffuse fluids from Y and Bio9R are, on 

average, 10‰ lower in δ13C of CH4 and 0.55‰ lower in δ13C of CO2 than the source fluid 

measured at TWP and Bio9 vents.  Microbial methanogenesis is consistent with diffuse fluid 

CH4 depeted in 13C relative to the high-temperature source. Methanotrophy, a process yet to be 

identified in hydrothermal fluids, is consistent with diffuse fluid CO2 depeted in 13C relative to 

the high-temperature source; although so are other CO2 producing metabolic reactions, such as 

microbial sulfate reduction.  A numerical box model confirms that the competing processes of 

microbial methanogenesis and methane oxidation can result in the isotopic compositions and 

concentrations observed at 9°50’N. 

 The -31 to -26‰ δ13C values of microbially cylced CH4 reported here are enriched in 13C 

relative to the <-50‰ values typically ascribed to “biogenic methane” (CICERONE and 

OREMLAND, 1988; SCHOELL, 1980; SCHOELL, 1988; WHITICAR, 1990). Recent evidence showing 

methanogenic fractionation factors as low as 1.022 (VALENTINE et al., 2004), and evidence 

reported here suggesting the potential for microbial methane oxidation to enrich the methane 

pool in 13C, should serve as strong caveats when attempting to define the source of a natural 

methane sample according to its carbon isotope composition.  The continued integration of 
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molecular and genetic work, experimental culture studies and geochemical analysis will yield 

less equivocal interpretations of complex natural systems such as diffuse fluids. 

 This dataset demonstrates that microbial activity in diffuse fluids modifies the fluid 

geochemistry systematically, and detectably.  As such, similar isotopic investigations may prove 

useful in the detection and assessment of methanogenic activity during future exploration. 
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Table 1.  Comparison of measured hydrothermal fluids, see Table 2 for calculated endmember 
values.  As no correction is applied to the measured δ13C values of CH4, that data is presented in 
Table 2 as an endmember value. 

 
(a) endmember Si values reflect averages from multiple samples as reported in Von Damm (2004) 
(b) endmember Si values reflect average of all 1994 Y vent data, as no data exist for TWP (the neighboring high 
temperature vent) in 1991 and 1992 
(c) endmember Si values reflect averages of Si and Mg data from multiple 1995 TWP samples 
(d) as V vent has no proximal high-temperature vent the endmember Si value reflects an average of all 1991 
endmember Si values reported by Von Damm (2004) 
 

Vent  Year T°C [Mg] 
mmol/kg 
measured 

[Si] mmol/kg 
measured 

[Si] mmol/kg 
end- 

member 

 [H2] 
mmol/kg 
measured 

 [CH4] 
mmol/kg 
measured 

 [CO2] 
mmol/kg 
measured 

δ13CO2
  

measured 

Bio9R 1994 30 51.9 0.8 13.2a 0.001 0.006 9.5 -4.18 
Bio9R 1995 33 48.5 1.2 14.8 a 0.002 0.004 9.2 -3.42 
Bio9R 1997 27 51.6 0.7 13.0 a 0.001 0.003 4.3 -2.62 
Bio9 1991 368 25.2 5.1 9.9 1.448 0.082 24.2 -3.70 
Bio9 1992 388 5.7 6.5 7.0 1.258 0.043 119.3 -4.01 
Bio9 1994 359 2.1 11.9 13.2 a 0.313 0.088 180.3 -4.02 
Bio9 1995 364 2.2 14.2 14.8 a 0.328 0.081 128.1 -4.05 
Bio9 1997 369 2.3 12.6 13.0 a 0.201 0.087 109.5 -3.95 

Y 1991 55 46.7 0.7 12.7 b 0.002 0.468 10.1 -3.02 
Y 1992 22 51.4 0.7 12.7 b 0.001 0.087 4.6 -2.33 
Y 1994 20 50.6 0.7 12.8 0.007 0.016 5.0 -2.64 
Y 1995 25 51.4 0.9 13.8 c 0.000 0.014 5.9 -3.14 
Y 1997 18 51.9 0.5 18.1 0.001 0.004 3.8 -2.16 

TWP 1994 358 26.9 6.3 12.8 4.049 0.060 53.4 -4.14 
TWP 1995 341 36.0 4.6 13.8 c 1.592 0.033 33.2 -4.17 
TWP 1997 307 2.7 17.2 18.1 3.245 0.093 73.1 -4.17 

V 1991 70 43.6 2.8 7.6 d 0.030 0.540 6.8 -2.42 
Q 1991 371 21.5 n/a n/a 1.772 0.050 130.0 -4.14 
A 1991 396 45.2 0.6 n/a 3.630 0.020 8.8 -1.86 
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Table 2.  Comparison of endmember hydrothermal fluids. Endmember values correct the 
measured concentration data of high temperature vents for seawater entrained during sampling 
by normalizing data to a zero Mg value.  Further corrections are applied to low temperature 
concentration data so that the proximal high-temperature vent data can be directly compared.  
Low temperature concentration data are normalized to the endmember Si value of the 
neighboring high temperature vent (presented in this table as Si endmember).  CO2 isotope data 
is corrected for all samples for entrained seawater, using a mass-isotope balance approach and 
assuming the endmember vent fluid has a zero Mg concentration. 
Sample Vent Year T°C Measured 

[Mg]          
mmol/kg 

Measured  
[Si]          

mmol/kg 

Endmember 

[H2] a,b 
mmol/kg 

Endmember 
[CH4] a,b 
mmol/kg 

Endmember 
[CO2] a,b 
mmol/kg 

δ13C 
CH4

 c 

‰ 

δ13C 

CO2
d,e 

‰ 

2752-2 Bio9R 1994 30 51.91 0.8 0.02 0.12 188.35 -26.8 -5.36 
3025-3 Bio9R 1995 33 48.48 1.2 0.03 0.06 134.36 -25.2 -4.31 
3154-10 Bio9R 1997 27 51.60 0.7 0.02 0.06 104.66 -26.2 -5.03 
2351-3 Bio9 1991 368 25.24 5.1 2.80 0.16 44.76 -34.6 -3.86 
2498-3 Bio9 1992 388 5.73 6.5 1.41 0.05 133.76 -19.6 -4.02 
2735-4 Bio9 1994 359 2.07 11.9 0.33 0.09 187.66 -19.4 -4.02 
3030-2 Bio9 1995 364 2.21 14.2 0.34 0.09 133.70 -19.0 -4.06 
3157-9 Bio9 1997 369 2.31 12.6 0.21 0.09 114.44 -18.9 -3.95 
2372-3 Y 1991 55 46.71 0.7 0.04 10.20 220.02 -31.5 -3.68 
2499-2 Y 1992 22 51.41 0.7 0.03 1.87 98.11 -27.5 -4.17 
2852-7 Y 1994 20 50.55 0.7 0.16 0.38 121.16 -33.8 -4.42 
3020-3 Y 1995 24.7 51.35 0.9 0.01 0.28 115.56 -32.6 -4.81 
3158-10 Y 1997 18.2 51.89 0.5 0.03 0.21 194.40 -33.6 -4.64 
2850-5 TWP 1994 358 26.92 6.3 8.36 0.12 107.83 -21.0 -4.22 
3035-6 TWP 1995 341 36.00 4.6 4.89 0.10 102.00 -22.5 -4.36 
3169-11 TWP 1997 307 2.65 17.2 3.42 0.10 76.91 -21.4 -4.18 
2366-2 V 1991 70 43.56 2.8 0.09 1.52 19.28 -34.8 -3.80 
2368-3 Q 1991 371 21.47 n.m. 3.01 0.08 219.25 -19.9 -4.16 
2755-7 Q 1994 297 2.43 n.m. 0.51 0.12 168.78 -16.83 -3.83 
3176-11 Q 1997 319 2.56 n.m. 0.27 0.13 153.75 -18.96 -3.70 
2366-4 A 1991 396 45.20 0.6 27.07 0.14 51.07 -26.5 n.m. 
3547-12 9°N seawater f 2001 2 52.0 0.155 b.d.l. b.d.l. 2.3 n.m. -0.4 

 SJdFR g  285   0.53 0.12 4.5 -19.3 -8.3 
 21°N EPR g  350   1.7 0.09 5.7 -16.0 -7.0 
 13°N EPR g  300   0.14 0.051 18.4 -18.1 -4.8 
 MARK g  350   0.48 0.06 6.7 n.m. n.m. 
 Menez Gwen g  284   0.05 2.63 20 -19.2 -9.1 
  Broken Spur g   360   1.03 0.13 7.1 -18.5 -9.0 

(a) High-temperature endmember concentrations determined by extrapolation to a zero-Mg value, see text for 
details, total cumulative error  ± 3% 
(b) Low-temperature endmember concentrations determined by extrapolation to a zero-Mg adjusted Si value, see 
text for details, total cumulative error ± 5% 
(c) Average 13CH4 measurement error ± 0.3‰ 
(d) Average 13CO2 measurement error ± 0.05‰ 
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(e) Measured 13CO2 corrected to account for entrained seawater bicarbonate, average corrected 13CO2
 error ± 0.2‰, 

see text for details 
(f) 9°50’N bottom seawater, sampling and handling identical to other samples 
(g) SJdF(Evans et al., 1988),  21°N EPR (Welhan and Craig, 1983), 13°N EPR (Merlivat et al., 1987), MARK 
(Jean-Baptiste et al., 1991), Menez Gwen (Charlou et al., 2000), Broken Spur (James et al., 1995), concentrations 
are maximum reported, isotope values are median of range reported 
n.m.: not measured   
b.d.l.: beyond detection limits 
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Table 3.  Best fit results and boundary conditions of box model presented in Figure 6 
 model average model average 

parameter Bio9/Bio9R  Bio9/Bio9R  TWP/Y TWP/Y  

k_methanogenesis a,b 0.0015  0.0045  
k_AMO c 0.8  0.6  

k_recycled d 0.015  0.045  
dilution of HiT fluid e 10  10  

k_vent to ocean f 0.10  0.10  
δ13CO2_HiT (‰)  -3.96  -4.3 
δ13CH4_HiT (‰)  -19.3  -21.6 

[CO2]_HiT (mmol/kg)  120  95 
[CH4]_HiT (mmol/kg)  0.10  0.11 

[H2]_HiT (mmol/kg)  (1.19)  (5.63) 
δ13CO2_LoT (‰) -4.87 -4.90* -4.73 -4.55* 
δ13CH4_LoT (‰) -26.05 -26.07* -31.90 -31.90* 

α_methanogenesis g 1.071  1.0373  
α_AMO h 1.053  1.0101  

[CO2]_LoT (mmol/kg) 81 (142) 126 (132) 
[CH4]_LoT (mmol/kg) 0.24 (0.080) 1.07 (0.68) 

Boundary conditions are in bold, results in italics, data used for tuning of initial conditions in 
(parenthesis) 
* Average measured isotope values of diffuse fluids were benchmark that determined the best fit 
of model results.  Best fit determined by minimizing deviation of model isotope compositions 
from observed low-temperature isotope compositions (see Table 4). 
(a)  k_methanogenesis = [CH4]_produced/[CO2]_HiT 
(b)  rate constrainted by maximum CH4 produced by drawdown of [H2] according to a 4H2:1CH4 
stoichiometry; e.g. if 1mmol/kg H2 consumed, 0.25 mmol/kg CH4 is produced, and original CO2 
is 142 mmol/kg, then k_methanogenesis = .25/142 = .17  
(c)  k_AMO constrained to yield lower oxidation rates (in terms of total amount carbon) than 
methanogenesis and tuned to model results for [CH4]_LoT  
(d) rate of recycling between pool of low-temperature CO2 and CH4, the methanogenic rate is 
10x that of methane oxidation rate, and is set to k_methanogenesis (with no dilution)  
 (e)  dilution factor approximated using temperature constraints and estimates of conductive 
cooling 
(f)  rate of loss to ocean constrained by model results for [CO2]_LoT  
(g) α_methanogenesis = R_CO2/R_CH4, as determined by best fit to boundary conditions, where 
R = 13C/12C 
(h)  α_AMO = R_CH4/R_CO2, as determined by best fit to boundary conditions 
 



 54 

Table 4.  Best-fit model results for fractionation factors and isotopic composition selected from 
2500 simulations using unique combinations of fractionation factors for methanogenesis and 
methane oxidation. 
 

Bio9/Bio9R     
α_methanogenesis 

(RCO2/RCH4) 
α_AMO 

(RCH4/RCO2) 
δ13CO2_LoT 

(‰) 
δ13CH4_LoT 

(‰) 
deviationa 

1.071 1.053 -4.87 -26.05 0.03 
1.079 1.062 -4.97 -26.10 0.08 
1.072 1.054 -4.89 -26.18 0.11 

     
TWP/Y     

α_methanogenesis 
(RCO2/RCH4) 

α_AMO 
(RCH4/RCO2) 

δ13CO2_LoT 
(‰) 

δ13CH4_LoT 
(‰) 

deviationa 

1.035 1.008 -4.73 -31.87 0.18 
1.040 1.013 -4.82 -31.96 0.27 
1.036 1.009 -4.75 -32.09 0.28 

 
(a) deviation calculated as square root of the total sum of squares between model result and 
measured isotope value (for CH4 and CO2)
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Figure 1.  Bathymetry and vent locations of 9°50’N East Pacific Rise study.  Courtesy of D. 

Fornari. 
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Figure 2.  Hydrogen concentration plotted on a log scale.  The dramatic depletion in hydrogen at 

low-temperature vents is hypothesized to be the result of microbial consumption during 

methanogenesis (Von Damm and Lilley, 2004). 
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Figure 3.  Expected CH4-CO2   equilibrium isotopic fractionations from Horita (2001).  Both 

high-temperature and low-temperature vents appear to be out of isotopic equilibrium (high-

temperature vents measured at 300-370°C have isotopic signatures indicating equilibrium 

temperatures 420-585°C, while the isotopic signature of diffuse fluids at 20-50°C, indicate 

equilibrium temperatures of 240-375°C).  Note anomalous δ13CH4 value of 1991 Bio9 386°C 

sample, where isotopic depletion is due to unique environmental conditions immediately 

following the 1991 seafloor eruption. 
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Figure 4.  Comparison of TWP and Y vents.  Plots of a) H2 concentration, b) CH4 concentration, 

c) δ13C of CO2 and d) δ13C of CH4 from 1994, 1995, and 1997.  Concentration data and δ13C 

values of CH4 are compatible with active methanogenesis at Y vent.  The depletions in δ13C of 

CO2 at Y vent indicate microbial methane oxidation.  
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Figure 5.  Comparison of Bio9 and Bio9R vents.  Plots of a) H2 concentration, b) CH4 

concentration, c) δ13C of CO2 and d) δ13C of CH4 from 1994, 1995, and 1997.  Consumption of 

hydrogen, and the depletion in δ13C of CH4 at the low-temperature Bio9R vent is compatible with 

methanogenesis. The depletions in δ13C of CO2 at Bio9R vent indicate microbial methane 

oxidation.  The combined effect of microbial methanogenesis and methane oxidation may 

account for the apparent increase in 1994 and decrease in 1995 and 1997 in CH4 concentrations. 
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Figure 6.  Numerical box model describing active microbial methane cycling in low-temperature 

diffuse fluids.  All arrows are associated with a rate and the indicated fluxes are associated with 

an isotopic fractionation factor corresponding to the microbiological process.  Rates were 

estimated according to relative concentrations, and included dilution effects (seawater mixing 

with high-temperature fluids).  Rates, fractionation factors, boundary conditions and results are 

shown in Table 3. 

 



 61 

 
 
 

 
 

Figure 7.  Plot of δ13C of CH4 vs δ13C of CO2 simplifying the result of a numerical box model run 

(final composition) as the sum of its principle components- methanogenesis, methanotrophy, and 

mixing.  Arrows indicate microbial processes, dashed lines indicate mixing of microbial product 

with reservoir of carbon.   Because of high concentrations of CO2 input from high-temperature 

fluids, the final δ13C value of CO2 is only slightly depleted in 13C (~0.55‰) relative to the initial 

value, despite the production of CO2 highly depleted in 13C.  Note that methanogenesis causes the 

initial pool of CO2 to be slightly enriched in 13C as CH4 depleted in 13C is produced.   
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