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ABSTRACT

For a spherical acoustic wave incident on a horizontally
stratified ocean bottom, the reflected pressure field and the
plane-wave reflection coefficient are related through a two-
dimensional spatial-wavenumber Fourier transform. An algorithm
is proposed to evaluate the plane-wave reflection coefficient
from the bottom reflected field as a function of angle of
incidencè.

The algorithm is based on the "Projection-Slice" theorem
associated with the two-dimensional Fourier transform. This
technique is implemented to evaluate the plane-wave reflection
coefficient for a perfectly reflecting ocean bottom and for an
isovelocity-low speed ocean bottom model.
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CHAPTER 1

INTRODUCTION

For a horizontally stratified ocean bottom, the plane-wave

reflection coefficient as a function of incident angle and frequency

contains all the information necessary for the solution of acoustic

problems in the ocean. It is needed, for example, in implementing

ray tracing programs and in evaluating the performance of bottomed

and suspended hydrophones. Hence, it is of interest to implement

an algorithm to numerically calculate it from experimental bottom-

reflected data.

For many years, the measurement of the plane-wave reflection

coefficient from bottom-reflected data has been an important area

of research. The plane-wave reflection coefficient is a complex

function and it has been difficult to measure its magnitude and

phase as a function of horizontal wavenumer and frequency. Some

of the early techniques, in an attempt to measure the magnitude,

were based on approximating the bottom-reflected signal by the

field from an image source multiplied by the reflection coefficient

at the specular angle of incidence. This approximation, which is

based on the geometrical acoustic approximation, assumed high

values of acoustic frequency with source and receivers many wave-

lengths from the bottom and no significant influence of interface

h L (l6) d h' 't' L' b (9)waves on t e resu t . Base on t is approxima ion, ie ermann

(1948) conducted an experiment at a constant high frequency (24 kHz)

to measure the magnitude of the reflection coefficient from the
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resul tant of the interference between the direct and reflected

waves. Another application of the geometrical acoustics

't' 'l d b (8)approxima ion was imp emente y Hastrup (1970) to measure

the magnitude as a function of frequency by forming a ratio

between the Fourier transforms of the bottom-reflected and direct

signals.

In an effort to compute a more accurate estimate of the plane-

wave reflection coefficient, other techniques were developed based

on the exact Hankel transform relationship between the plane-wave

reflection coefficient and the bottom-reflected field, the

assumptions being a horizontally stratified ocean bottom where

all acoustic properties were only a function of depth, and an

acoustic point source. Based on this relationship, DiNapoli (3)

(1977) calculated the magnitude by approximating the exact Hanel

transform to be of the Fourier type integral, assuming the source

to be located many wavelengths in-range from the hydrophone. This

method provided close results for some region of the specular

angle domain, with poor convergence for normal and grazing angles(15) ,
(1978) started with theSimilarly, Schoenbergof incidence.

exact Hankel transform, and formed a linear combination of the

reflected data points. This technique was based on the Backus-

Gilbert inversion method. An estimate of the magnitude and phase

was then computed by minimizing a norm under the least-squares

criterion. This general procedure had the advantage that it
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included signals with additive noise, and the disadvantage of large

amounts of implementation time.

This thesis presents a different approach to measuring the

magni tude and phase of the plane-wave reflection coefficient as a

function of horizontal wavenumer and frequency. The proposed

algori thm is based on interpreting the exact relationship between

the bottom-reflected field and the plane-wave reflection coefficient

in the form of a zero-order Hankel transform, making it suitable to

the application of a recent method by Oppenheim, Frisk, and

, (10) thMartinez to compute an n -order Hankel transform. The tech-

nique is based on the "Projection-Slice" theorem associated with

the two-dimensional Fourier transform. The result of this approach

permi ts the estimation of the effect of a horizontally stratified

ocean bottom on all propagating compressional waves in the water,

including plane waves at real angles of incidence and inhomogeneous

plane waves propagating parallel to the ocean floor and decaying

exponentially in the vertical direction away from the bottom.

The details of the algorithm are presented in Chapter 2. The

chapter introduces a derivation of the exact Hankel transform

between the plane-wave reflection coefficient and the bottom-

reflected field, with the discrete processing to determine the

reflection coefficient from samples of the reflected data. In

Chapters 3 and 4, the algorithm is examined in two simple ocean

bottom models. Chapter 3 considers a perfectly reflecting ocean
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bottom for which the reflected field is known analytically.

Chapter 4 studies the estimation of the reflection coefficient

for an isovelocity-low speed bottom.

As a generalization of the algorithm, some of the most common

Hankel transforms are presented in Appendix I and are compared to

their exact theoretical answers. The Fortran program is included.
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CHATER 2

PLAE-WAVE REFLECTION COEFFICIENT AND ITS COMPUTATION

2. 1 Introduction

The ocean and its environment are very complex and difficult

to analyze when trying to infer some of the ocean bottom properties.

It is possible to simplify the complexity by including physical

assumptions and still preserve a model of experimental interest.

The following sections introduce the model, its fundamentals, and

the details of the algorithm in computing the plane-wave reflection

coefficient from the bottom-reflected data.

2.2 Ocean Model and Assumptions

In finding a general model that represents the ocean and its

environment, the sound velocity, density, and attenuation must be

included, since they are primarily the properties that dictate the

behavior of propagation of sound in the ocean. The first

as sumption, to simplify the complexi ty of the model, is that the

sound velocity and density are of constant magnitude over the

water column and that in the ocean bottom they are only a function

of depth, i. e., a horizontally stratified ocean bottom. Also,

the attenuation is assumed to be zero in the water colum and a

function of frequency and depth in the bottom. In Figure 2. l, the

general model is shown, including the source-receiver geometry.

In order to simplify the model even further, a distinction
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must be made between a model for propagation of sound in shallow

water and deep water. Shallow water propagation is considered

when the acoustic source wavelength is of the order of the water

depth. If the source wavelength is of much smaller magnitude than

the water depth, the process is modeled as deep water propagation;

that is,

À=C~Hf shallow water

c
À = f ~~ H deep water

where À wavelength

c = sound velocity in the water

f acoustic source frequency

H water depth

If the frequency of interest is on the order of 200 Hz or more,

corresponding to a wavelength less than 7 m, the example falls

in the category of deep water propagation when performing the

experiment in locations of water depth greater than a hundred

meters. The model can then be simplified by considering the

water colum as a half-space, when the source and receivers are

a small numer of wavelengths away from the bottom. This implies

that any surface-relfected energy can be neglected, since it is
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sufficiently time-separated from the direct and bottom-reflected

signals.

This general simplified model, shown in Figure 2.l, permts

an analytic derivation of the wave equation

2'i p(x,y,z,t)
21 3 p(x,y,z,t)

c2 3t2
(2.2.l)

where p (x, y, z, t) = acoustic pressure

x,y,z = rectangular coordinates (see Figure 2.l)

and leads to an expression which represents the acoustic field for

propagating waves in the ocean. The derivation of Eq. 2.2.l can

be found in reference (5).

In what follows, we present a solution to this wave equation

to find an analytic relationship between the plane-wave reflection

coefficient and the reflected pressure field.

Solution to the Wave Equation

In spherical coordinates (see Figure 2.l), Eq. 2.2.l has

the following form

32 2 3 1 32-E+_L=--E
3R2 R aR c2 at2

(2.2.2)

where R2
2 2 2
x + y + (z-zO)

z = receiver height

Zo = source height
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A general solution to this equation is

P (R, t)
1
R (fi (R-ct) + f2 (R+ct) )

(2.2.3)

where fi (R-ct) = spherical waves radiating away from

the source

f2 (R+ct) = spherical waves radiating towards

the source

1
R

spherical spreading loss

The physical constraint that no energy radiates from infinity

towards the source makes

f2 (R+ct) = 0

thus

P (R, t)
1
- f (R-ct)R 1

(2.2.4)

A simple source in acoustics can be assumed to a pulsating sphere

of small radius with harmonic time dependence. It radiates

spherical waves, and when its radius is small compared to the

wavelength it is referred to as point source. Then, the acoustic

pressure has the form
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P (R, t) = s ej (Ki R-wt)
R

(2.2.5)

where Ki = w/c = angular frequency/sound velocity; and it satisfies

the wave equation since it is of the same form as Eq. 2.2.4.

Equi valently ,

P (R, t)
-jwt

s p(R,w)e (2.2.6)

where s = acoustic source strength

P (R,w) = range dependent response

-jwt
e = harmonic time dependence

If, instead of a point source with harmonic time dependence, a

more general source is used, the pressure field is found by

evaluating a Fourier transform over angular frequency w of the

product between the range dependent response of the medium and

the angular frequency response of this general source.

In the derivation that follows, omission of the time dependence

-'wt
e J is made, and a point source of constant angular frequency w

and of strength s = 1 is assumed in Eq. 2.2.6. Thus,

P (R)
e j Ki R

R
(2.2.7)

where K = natural wavenumer = w/c
1
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w = 2irf

f acoustic source frequency

c sound velocity

2 2 2 2 2 2
R = x + y + (z-zO) r + (z-zO)

Reflection Coefficient ++ Pressure Field Relationship

The study of spherical waves is often simplified by representing

h' f 1 (l) 2 2 7 h ht em in terms 0 pane waves In Eq. .., we see t at t e

spherical wave representing the pressure field satisfies constant

phase at any point at the same radial distance from the source.

This corresponds to wavefronts of spherical shape. On the other

hand, plane waves hold constant phase at any point on a plane

perpendicular to the direction of propagation. Upon encountering

a boundary where there exists a change in sound speed and/or density,

a plane wave can be interpreted in terms of a ray incident at an

angle e (see Figure 2.l). The spatial rate of propagation of this

plane wave in the (x, y) plane is defined as the horizontal wave-

numer and it corresponds to

K Ki sin e (2.2.8)

where K horizontal wavenumer

Ki = natural wavenumer = w/c

8 angle of incidence
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The plane-wave reflection coefficient modulates each of the

plane waves incident at different angles or, equivalently, at

each horizontal wavenumer. If we model the horizontally stratified

ocean bottom as composed of a numer of discrete layers, the plane-

wave reflection coefficient can be analytically calculated for

simple types of ocean bottoms by satisfying the boundary conditions

of continuity of normal stress and displacement at the water-

bottom interface. A more detailed discussion of some analytically

computed reflection coefficients is considered in Chapters 3 and 4.

An interpretation of spherical waves in terms of plane waves

is achieved by forming a superposition of cylindrical functions

constrained to satisfy the cylindrical wave equation (5). That is,

P(r,z) =

'K R J
eJ 1R = o.

jl 2 2 I IF (K) J 0 (Kr) e Ki -K z-zO dK (2.2.9)

where J 0 (Kr)

I z-zol

zero-order Bessel function

vertical distance traveled by propagating

waves from source to receiver

F (K) a function of horizontal wavenumer (K) to

satisfy the equality

and, from Eq. 2.2.6,

p(r,z,t) s P(r,z)
-jwt

e (2.2.l0)
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If this equation is substituted in the cylindrical wave equation,2 2
â p(r,z,t) 1 âp(r,z,t) â p(r,z,t)- + - +
âr2 r âr âz2

2
-l â p(r,z,t)2 '\ 2c at

(2 . 2 . ll)

the result is

d2 J (Kr)
o

dr2

1 dJO (Kr) 2
+ r dr + K J 0 (Kr) = 0

(2.2.l2)

h' h' 'd d 'f' d(l7)w ic is in ee satis ie .

F (K) can be calculated by interpreting Eq. 2.2.9 as an

(l4)
inverse Hankel transform type integral . Thus, at z = zO'

F (K) = r 00K 0 ejKir ( ) dJO Kr r (2.2.l3)

which corresponds to a Hankel transform, and it can be analytically

t (l 7)calculated by assuming Ki to have a small positive imaginary par ,

i.e., the medium is slightly absorbing. The result is

K
(2.2. l4)F (K) = j

.¡ 2 2
Ki -K

Substituting Eq. 2.2.l4 into Eq. 2.2.9,

r
'.¡ 2 2 Iz-zol

'K R eJ K -K
eJ 1 j

1 JO(Kr) K dK
R

.¡ 2 2K -K
1

(2.2.l5)
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which constitutes the interpretation of a spherical wave in terms

of plane waves. The integrand, in the (x, y , z) coordinate system,

corresponds to plane waves, as will be illustrated more explicitly

in Chapter 3. The left-hand side of the equation is the unreflected

field from a point source located in a homogeneous medium.

The reflected field can be similarly interpreted by recalling

that the plane-wave reflection coefficient modulates each of the

plane waves upon reflection from a boundary. If we assume a

horizontally stratified ocean bottom, the plane-wave reflection

coefficient would only be a function of horizontal wavenumber

h f ' d(6)w en constant requency is assume . The reflected pressure

field is then

PR(r,z,zo)
j tOO R(K)

'.¡ 2 2e J K -K
1

¡ 2 2K -K
1

(z+zo)
JO (Kr) K dK (2.2.l6)

where P R (r, z, zO) = bottom-reflected field

R(K) = plane-wave reflection coefficient

z+z total vertical distance traveled by a
o

reflected propagating plane wave

It is of interest to know R(K) since it contains information that

characterizes the assumed horizontally stratified ocean bottom.

In the following section, the details of the algorithm to compute

R(K) from the bottom-reflected field PR(r,z,zO) are presented.
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2.3 Evaluation of the Plane-Wave Reflection Coefficient

In the previous section, we indicated that the bottom-reflected

field can be interpreted in terms of plane waves modulated by the

plane-wave reflection coefficient R (K); that is,

PR(r,z,zo)
~ j r 00 R (K)o

ej/K 2_K2 (z+z )1 0 J 0 (Kr) K dK
1 2 2
Ki -K

(2.3.l)

This equation can be reduced to be of the form of a Hankel trans-

form by redefining the integrand. Define,

G(K,Z,ZO)

'i 2 2
eJ Ki -K (z+zO)

j R (K)

1 2 2
Ki -K

(2.3.2)

as the reflection process Green's function, then Eq. 2.3. 1 reduces

to

PR(r,z,zo) ~ rOOO G(K,Z,ZO) JO(Krl K dK (2.3.3)

If we assume the source and receivers to be at a constant height

from the bottom, z and z become constant parameters, and Eq. 2.3.3o

simplifies to

P (r)
R r G(K) JO(Kr) K dK000

(2.3.4)

Eq. 2.3.4 constitutes a zero-order inverse Hankel transform. The
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plane-wave reflection coefficient R(K) can be represented in terms

of the bottom-reflected field P (r) by computing the Hankel trans-
R

form. Thus,

G(K)
r PR(r) JO(Kr) rdr000

(2.3.5)

This transformation can be proved valid by substituting Eq. 2.3.5

in Eq. 2. 3 . 4 and factoring the result using the orthogonali ty
. (l7)

property of Bessel functions

r J 0 (Kr) J 0 (Kr) rdr000

o (K-K)F
KK

(2.3.6)

l¡ K = K
where o (K-K) -(

0; K :f K

Substituting Eq. 2.3.2 in Eq. 2.3.5, the relationship between the

plane-wave reflection coefficient and the bottom-reflected field is

R(K) = -jKz r 00

-OK z+z)
e J z ( 0 0 P R (r) J 0 (Kr) rdr (2.3.7)

where K
z

vertical wavenumer I 2 2
K -K

1

The plane-wave reflection coefficient R(K) identifies a very
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general class of ocean bottom. The only constraint is that the

ocean bottom be horizontally stratified.

In computing R (K), the method exploits the circular symetry

2
of the bottom-reflected field PR(r) in the (x,y) plane (r =

2 2
x + y ). It is this property that allows a Hankel transform to

be equivalently defined in the form of a two-dimensional Fourier

transform.

F'rom Figure 2. l,

x = r cos a
(2.3.8)

y = r sin a

Similarly, R(K) is also circularly symetric in the (K ,K ) plane.x y

Thus,

K = K cos a
x

K K sin a
y

R(K) R(I 2 2K +K
x Y

(2.3.9)

An integral representation of Jo (Kr)
. (l7)is

JO(Kr) i- r 2ir e -jKr cos (a-a) da
2ir

o

(2.3.l0)

valid for any angle a.
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Substituting Eq. 2.3.l0 in Eq. 2.3.7,

R(K) -jK
z

-jKe z (z+zO) ~ I 00 P (r) r
21T 0 R I 21T

e -jKr cos (~-o) do dr
o

(2.3.11)

and with a change of variables, Eq. 2.3.ll becomes

00

R(K ,K )x Y -jK e -jKz (z+zO)
z i. II

-jK x -jK YP (x,y) e x e y dx dy
R

_00

(2.3.l2)

which, from Eq. 2.3.5, implies

G (K , K )x Y
1

21T

00

II -jK x -jK Y
P R (x,y) e x e y dx dy (2.3.l3)

_00

The integral in Eq. 2.3. l2 constitutes a two-dimensional

Fourier transform. Since the Fourier transform of a circularly

symetric function is also circularly symetric, P (x, y) andR

R(K ,K ) are completely specified by their corresponding radialx y

slices. The technique in evaluating Eq. 2.3. l2 is an application

of a recent method by Oppenheim, Frisk, and Martinez (LO) based

on the "projection-slice" theorem. In essence, this theorem

states that a slice at any angle through a two-dimensional trans-
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form is the one-dimensional transform of a projection at the same

angle of the original two-dimensional function. In the case of

a circularly symetric function R(K), the one-dimensional Fourier

transform of a projection of P R (x, y) specifies the entire two-

dimensional Fourier transform R(K ,K ). Therefore, Eq. 2.3. l2x Y

can be equivalently specified by

R(K )x
-jK

z
-jK (z+z )e z 0 ~. L-

--;K x
P (x) e " x dx

y
(2.3. l4)

and

K = 1 2 2
z Ki -Kx

L

00

P (x) = 2 P (I 2 2 ) dy (2.3. l5)
y R x +y

where

is the projection of the circularly symetric function P (I 2 2)R x +y

onto the x-axis.
( 2)The sampling theorem states that a band-limited function,

wi th zero spectral content for K ~ K , is completely specified- max

by the values of its samples located at a distance ôx apart

provided ôx ~ TI/K . That is, if P (r) is a band-limited function,- max R
i . e., G (K) = 0 for K ~ K , then Eqs. 2.3. l4 and 2.3. l5 can be- max

computed by evaluating a one-dimensional discrete Fourier transform

and a simple sumation, respectively. This can be shown by first

interpreting Eqs. 2.3. l4 and 2.3. l5 as follows:
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00

R(K )x
'K -jK (Z+ZO) ßx= -J e zz 21T ¿: p

y
(nßx)

-jK nßxe x (2.3.l6)
n=-oo

and

00

P (nßx) = 2ßy
Y

¿: P R (I (nßx) 2 + (ißy) 2

i=o
(2.3.l7)

1T 21T
provided only that ßx ~ -- and ßy ~ --- K - Kmax max

The plane-wave reflection coefficient in Eg. 2.3. l6 can then

1 21T

be efficiently calculated at N equally spaced values ßK = N ßx '

using the one-dimensional FFT. Thus,

R (mßK) = -jK
m

-jK (z+z ) ßxe m 0
21T

¿:

N-l
L

n=O
P (ßx (n+iN) )

y
-jnmÒxßKe

00

i =_00

(2.3.l8)

or

R(mÒK) =

N-l 00
-jK e -jKm (z+zo) Òx ¿: ( ¿:m 21T n=O i=-OO

,21T

P (Òx (n+iN) ) 1 e -Ji¡ nm
y

(2.3.l9)

where K = I 2 2m Ki - (mßK)
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If the samples P (x) constitute a finite-length sequence of
y

length ~ Nßx, the evaluation of the plane-wave reflection coefficient

reduces to

R(mßK) = -jK
m

( ) A N-l ,2'Ie -jKm z+Zo ~ ¿ P (nßx) e -JÑI nm2'I n=O y (2.3.20)

and

00

P (nßx)
y

= 2ßy ¿

Ji=O

P (I 2 2R (nßx) + (Jißy)
(2.3,2l)

2.4 Circular Windows

The computation of the plane-wave reflection coefficient R(K)

from samples of the bottom-reflected field has reduced to a one-

dimensional FFT and a sumation. That is,

R (mßK)
, ) A N-l ,2'I= 'K -JK (Z+Zo ~ ¿ P (nßx) e-JÑI nm-J m e m 2'I n=O y (2.4.l)

and

00

P (nßx)
y

2ßy ¿ PR(/(n~x)2+(Ji~y)2)
Ji=O

(2.4.2)

where
'Ißx .:

- K
max

2 'Ißy':-
- K

max

ßK =
1 2'I
N ßx
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K ¡ 2 2m Ki - (mllK)

These equations are strictly satisfied when P (r) is a band-R

limited function, or equivalently G (K) = 0 for K ~ K- max
However,

in actual physical systems, a function is not band-limited in the

strict sense. In most cases, on the other hand, there is some

range of wavenumer outside of which the wavenumer spectrum is

of sufficiently small magnitude to be assumed zero with negligible

error.

Another point of importance in the evaluation of Eq. 2.4.l

is the assumption that the projection P (nllx) is a finite-length
y

sequence of length ~ Nßx, which allows Eq. 2.3. l6 to reduce to

the form of Eq. 2.4.l. However, a function with most of the

energy confined to a finite bandwidth in the wavenumer domain,

in the range or x-domain, is often of considerable magnitude for

an appreciable distance. This forces the algorithm to numerically

compute the slice of the two-dimensional Fourier transform of a

truncated function. This means that Eq. 2.4. 1 represents the

reflection coefficient of a truncated pressure field P (r). TheR

result of this approximation can be better understood by inter-

preting the truncated field in the following form

'"P (r)
R

P (r) . w(r)
R

(2.4.3)
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where w(r) = circularly symetric window.

The circularly symetric window w(r) is a function of range r

pressure

of finite range; that is, r ~ R This causes the- max
IV

field, P (r), to be a windowed version of the theoretical
R

pressure field P R (r) .

and it is

Let us define:

IV
R(K) = the plane-wave reflection coefficient resulting

from processing a windowed version of the

pressure field P (r).
R

Then, from Eq. 2.3.l2,

00

IV
R (K , K )x Y -J'K -jK (z+zo) 1 IIZ e Z 21f

IV -jK x -jK y
PR(x,y) e x e y dxdy

_00

(2.4.4)

Substituting Eq. 2.4.3 in Eq. 2.4.4,
00

IVR(K ,K )x Y -jK
Z

-jK (z+z )e z 0 ~" II
-jK x -jK yPR(x,y) . w(x,y) e x e y dxdy

_00

(2.4.5)

Convolution ++ Fourier Transform Property

If we take the two-dimensional inverse Fourier transform

of the two-dimensional convolution of two functions, the result

is proportional to the product of their individual two-dimensional
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Fourier transforms, that is,

00

Y (K , K ) = H (K , K ) * F (K , K )x Y x Y x Y II H(À,ß) F(Kx-À,Ky-ß) dÀdß
_00

(2.4.6)

The inverse two-dimensional Fourier transform is

00 00

y(x,y) ";, II H(À,ß) II F (K -À,K -ß) ejKxx ejKyY dK dK dÀdßx y x y
_00 _00

(2.4.7)

Changing variables,

00 00

y(x,y) - II H(À,ß)
- 2lrr I I F (., ß) ej.X ej ßy d.dß ej Àx ejßy dÀdß_00 _00

(2.4.8)

2rr h(x,y) . f(x,y) (2.4.9)

Thus,

2-D FT

2rr h(x,y) . f(x,y) +- H(K ,K ) * F(K ,K )x Y x Y (2.4.l0)
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Interpreting Eq. 2.4.5 in the form of Eq. 2.4.l0,

'V
R (K , K )x Y -J'K -jK (z+zO) 1 G( K) * W( )e Z -2 K, K ,KZ 'I x Y X Y (2.4.11)

or

'V
R (K , K )x Y

1
-2 R(K,K) * W (K ,K )'I x Y X Y (2.4.l2)

where W(K ,K )x Y two-dimensional Fourier transform of w(x,y) .

'V

Eq. 2.4.12 indicates that R(K ,K ) is proportional to thex y

exact plane-wave reflection coefficient R(K ,K ) convolved withx y

the two-dimensional transform of the window. In the process of

convolution between the exact Fourier transform of a function

with the Fourier transform of the window, we try to choose a

window w(x,y) to minimize the effect of wavenumer leakage due

to the sidelobes and the degradation in resolution of the wave-

numer components due to the main-lobe of the window.

In an attempt to predict the effects of the two-dimensional

window on the computation of the plane-wave reflection coefficient,

we will present the radial slice of 
the two-dimensional Fourier

transform of a circular pill-box window, a circular Haming window,

and a circular Hanning window. Since the windows are circularly

symetric, their radial slices completely specify the two-
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dimensional Fourier transforms. The numerical steps are indicated

in Appendix I.

CIRCULAR PILL-BOX WINDOW

The pill-box window is generated by circularly rotating a

rectangular window in one dimension. That is,

w(r) w(! 2 2
x +y

1 r .: 1 (2.4.13)

o r :; 1

In Figure 2.2, we illustrate the radial slice of its two-

dimensional Fourier transform. The first zero-crossing, which

determines half of the width of the main-lobe, is at approximately

K 4.0w/z

and the level of the first side-lobe is about

LS -l7.0 dB

from the main-lobe.
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CIRCULA HAING WINDOW

Another window of interest is the circular Hamming window.

Its functional representation is

w(r) = 0.54 + 0.46 cos (~r) r .0 1 (2.4.l4)

= 0 r :; 1
The radial slice is shown in Figure 2.3. For this window, the

main-lobe is wider compared to the pill-box window. That is,

K / = 7.0
w 2

but the first side-lobe is of lower level,

LS -48.0 dB

CIRCULAR HANNING WINDOW

This third example is illustrated in Figure 2.4. It represents

the radial slice of the two-dimensional Fourier transform of a

circular Hanning window. The functional representation is

w(r) = 0.5 + 0.5 cos (~r) r .0 1 (2.4.l5)

o r :; 1
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It is similar to the previous circular Haming window in Eq. 2.4.l4.

The half-width of the main-lobe is approximately

KW/2 7.l

and with a first side-lobe level of

L = -34 dB
S

but with a faster side-lobe falloff. These results are analogous

to their corresponding one-dimensional windows.

In terms of width of main-lobe and level of first side-lobe,

it is apparent that either the circular Hamming window or a

circular Hanning window would be preferable to the circular pill-

box window. This is indeed the case for this application.

In Chapters 3 and 4, we will compute the plane-wave reflection

coefficient

'ù
R(K ,K )x Y

e-jKz (z+zo) 1-jK --2 G(K,K) * W(K ,K )z 11 xy xy (2.4.l6)

for two simple models of the ocean bottom. We will use the circular

Hamming and Hanning windows in Eqs. 2.4. l4 and 2.4. l5 , respectively.

In this application, we will find that a window with fast
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asymptotic rate of falloff of the side-lobes improves the accuracy

of the results more than a window with lower first side-lobe level.

2.5 Scaling Property

In the computation of a Hankel transform, we might have the

need to evaluate the same function for different parameters. For

example, the accuracy of the algorithm in the computation of the

plane-wave reflection coefficient might be checked for different

source and receiver distances andR different acoustic frequencies.

In this section, we present the conditions or the necessary scaling

on the parameters and functions to keep the same accuracy.

A two-dimensional Fourier transform pair satisfies the following

relationship:

2-D FT
P(x,y) ++ G(K,K)x y (P.2.5.l)

2-D FT2
P (x/ ~ , y / ~ ) ++ ~ G (~K , ~K )x Y

or, in terms of a Hankel transform,

HT

P (r) ++ G (K) (P.2.5.2)

HT

P (r / ~ ) ++ ~ 2 G (~K)
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From Eq. 2.4. l6, the computation of the plane-wave reflection

coefficient consists of

'ù
R(K ,K )x Y

I -jl 2 2 2 (z+zO)= -j 2 2 2 e K -K -KK -K -K 1 x Y1 x Y
(2.5.l)

1
-2 G(K,K) * W(K ,K )TI x Y X Y

Let us assume that an Experiment #l was conducted where the pressure

field was

P(x,y)

with a source plus receiver height (z+zo)' at an acoustic frequency

f, such that

Ki =
2TIf

c
w

c (2.5.2)

and it was numerically processed with a circularly symetric

window

W(x,y)

of radial aperture R . If an Experiment #2 consists of sourcemax

plus receiver height at
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(z+zo) /: = /: (z+zo) (2.5.3)

where the pressure field is

P(x,y) 1= ¡; p (x//:,y/M (2.5.4)

at an acoustic frequency f, such that

2nf w
Ki == c c

K

/:
(2.5.5)

and numerically processed with a circularly symetric window

w(x,y) w (x//:, y//:) (2.5.6)

of radial aperture

R = l' Rmax max (2.5.7)

'ù

the calculated reflection coefficient RA (K ,K ) is equivalent tou x Y
'ù
R(K ,K ) in Experiment #l.x y

The above statement can be proved by substituting Eqs. 2.5.3 -

2.5.7 in Eq. 2.5.l. That is,
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'V
Rh (K ,K )
i. X y

-jl K !:(z+z )e (-i) 2 -K 2 -K 2 0
2 2 !: x Y

-K
Y

-jl
Ki 2

(-) -K!: x

(2.5.8)

1 "-
-2 G (K ,K ) * W (K ,K )n x y x y

The convolution in Eq. 2.5.8 is defined

co

G(K ,K ) * W(K ,K )x Y x Y
II ~(a,ßl W(Kx-a,Ky-ßl dadß

(2.5.9)

-co

From Property P. 2.5. l, the two-dimensional Fourier transforms of

the pressure field (Eq. 2.5.4) and the window (Eq. 2.5.6) are

G (K , K ) = !: G (!:K ,!:K )x Y x Y (2.5.l0)

and

W (K , K )x Y
2

!: W (!:K ,!:K )x Y (2.5.11)

respectively. Therefore,

'V
Rh (K , K )i. X y

-j I~ Ki 2 - (!:K ) 2 _ (!:K ) 2x y
-jl 2 2 2e Ki - (!:Kx) - (!:Ky) (z+zO)

!:
. - G (!:K ,!:K ) * W (!:K ,!:K )2n x y x y (2.5.12)
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or, equivalently,

'V
RA (K ,K ) =LJ X Y

'V
R (ßK , ßK )x Y (2.5.l3)

In sumary,

Scaling Property

Experiment #l Experiment #2

P(x,y) = acoustic pressure field P(x,y) = l/ß P(x/ß,y/ß)

(z+zo) source plus receiver height (z+zO) ß = ß (z+zO)

Ki = w/c = natural wavenumer Ki = w/c = Ki/ß

w(x,y) circularly symmetric window w(x,y) w (x/ß,y /ß)

R
max

'V
R (K , K )x Y

plane-wave reflection
coefficient

R = ßRmax max'V 'V
RA (K ,K ) = R( K , K )LJ X Y X Y

radial aperture

In Figure 2.5, we present the scaling property for two equivalent

examples, assuming the following relationship is satisfied

P(x,y) 1-¡ P(x/ß,y/ß) (2.5. l4)

where P(x,y) pressure field for Experiment #l

P (x,y) = pressure field for Experiment #2

For a more general class of ocean models than the examples

presented in Chapters 3 and 4, the condition in Eq. 2.5. l4 is not
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strictly satisfied. Some examples of analytically calculated

plane-wave reflection coefficients can be found in references (l)

and (7).
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CHAPTER 3

PERFECTLY REFLECTING OCEAN BOTTOM

3 . 1 In troduction

In the previous chapter, the algorithm for the computation

of the plane-wave reflection coefficient from samples of the

spherical pressure field was introduced. It was based on

evaluating the zero-order Hankel transform of the pressure field

or, equivalently, the Green's function of the reflection process,

by numerically calculating the projection and its one-dimensional

Fourier transform. The plane-wave reflection coefficient was

then computed by simply multiplying the calculated Green's function

by a complex factor.

In the following sections, the algorithm is applied to the

computation of the plane-wave reflection coefficient for a

perfectly reflecting bottom. The plane-wave reflection coefficient

for this simple model is defined to be

R(K) 1 (3.l.l)

for all values of horizontal wavenumers K. The pressure field

reflected off this impenetrable bottom can be analytically

calculated, and it is presented in Section 3.2. The exact

analytic calculation of the pressure field is what motivates

the use of this ideal model, since there is no approximation
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in the values of the function as the input to the algorithm.

Section 3.3 discusses the evaluation of the Green i s function

from samples of the reflected field. The numerically calculated

plane-wave reflection coefficient is then examined in Section 3.4.

3.2 Acoustic Pressure Field

A point source located in the ocean water colum generates

spherical waves. For a continuous wave source, the total field

is the sum of a direct and a bottom-reflected arrival. That is,

PT(r,z,zo) -jwtST e (PD(r,z,zo) + PR(r,z,zo)) (3.2.l)

If we assume the source height Zo and receiver height z to be

constant, then

PD(r¡z,zo) P (r)
D

'K R
eJ 1

R
(3.2.2)

and

PR(r¡z,zo) = P (r)
R

j L~

ej/K 2_K2 (z+zO)R(K) 1

I 2 2
Ki -K

J (Kr) KdK
o

(3.2.3)

as derived in Eqs. 2.2. l5 and 2.2. l6, respectively.
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In most cases the bottom-reflected field can be identified

alone, either by using a time-limited pulse or by subtracting

out the direct field. In Figure 3. 1 the perfectly reflecting

bottom model is illustrated. The bottom-reflected field is

often interpreted as the field emanating from an image source

located at (O,O,-zO)'

The plane-wave reflection coefficient for a perfectly

reflecting bottom has magni tude of one and zero phase, as

defined in Eq. 3.l.l, for all horizontal wavenumber K, where

K Ki sin 8 (3.2.4)

The bottom-reflected field can then be analytically calculated

by substituting Eq. 3.l.l in Eq. 3.2.3. Thus,

P (r)
R

'i 2 2 (+ )00 eJ K -K z Zo

j L 1
J (Kr) KdK

o
(3.2.5)

1 2 2
K -K

1

(4 )or

P (r) =
R

'K R
eJ 1 R

RR
(3.2.6)

where R =12 2R r +(z+zO)
122 2x +y + (z+z )

o

K
1

2irf
c

w

c
natural wavenumer
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The expression in Eq. 3.2.6 represents a spherical wave propagating

away from the source at the natural wavenumer 2n/À, where À is the

source wavelength. If we follow the derivation presented on page 26

of Chapter 2, the reflected field can be equivalently interpreted

in terms of three-dimensional plane-waves. In general,

00

PR(x,y) 1
2n

II R(K,K)

j x y
K

z

jK x jK Y jK (z+zO) dK dKexeyez x y
_00

(3.2.7)

where K horizontal wavenumer in the x-direction
x

K = horizontal wavenumer in the y-direction
y

K = vertical wavenumer ¡ 2 2 ¡ 2 2 2
z Ki -K Ki -K -Kx Y

and for the perfectly reflecting bottom (R(K ,K ) = l) ,
x y

00

jKiR
1

H

1 jK (z+zO) jK x jK ye R j dK dK (3.2.8)- e z e x e y
RR 2n K x Yz

_00

The function

j (K x+K y+K (z+z ))plane-wave + e x y z 0

in the general expression (Eq. 3.2.7) or, in the perfectly reflecting

model (Eq. 3.2.8), represents a three-dimensional plane-wave
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propagating in the coordinate system (x, y, z) with the corresponding

wavenumer (K ,K ,K ) for (K 2 +K 2) ~ Ki, and it corresponds tox y z x y
a two-dimensional plane-wave propagating in the (x, y) plane and

decaying exponentially in the vertical direction away from the

2 2bottom for (K +K ) ~ Ki, Thus, Eq. 3.2. 7 is an expansion ofx y -
a spherical wave in terms of plane-waves.

This expansion in Eq. 3.2. 7 is commonly referred to as an

inverse Fourier transform. The Fourier transform is

co

G (K , K )x Y
~ ~. JJ

-jK x -jK yPR(x,y) e x e y dxdy (3.2.9)

-co

where

G (K , K )x Y j
R(K ,K )x Y

K
z

jK (z+zO)e Z (3.2.l0)

is defined as the Green's function of the reflection process.

3. 3 Green i s Function

The bottom-reflected field in Eq. 3.2.3 is circularly symetric,

2 2 2
since it is only a function of r = x +y. Similarly, the Green's

function in Eq. 3.2. LO is also circularly symetric, since it is

2 2 2only a function of K = K +Kx y
two-dimensional Fourier transform to be completely specified by

Circular symetry allows the

its radial slice. It is important to note that the radial slice
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constitutes the Hankel transform. Th~ plane-wave reflection

coefficient is, therefore, completely specified by its radial

slice.

For a perfectly reflecting bottom, a radial slice of the

Green's function is, from Eq. 3.2. lO,

G(K) j

jl 2 2 (z+z )e K -K 0
1

l-K 2 2"
-K

1

(3.3.l)

where z+z
o

total vertical distance traveled by the
propagating wave

It is a complex function of magnitude

magni tude -+

1

1 2 2
Ki -K

o .c K .c K- 1

-I 2 2 (z+zO)e K - Ki

1 2 2K -Ki
Ki .c K .c co

and phase

( ¡ 2 2 (z+zO) 'IKi - K + 2 o .c K .c K- 1
phase -+

o K .cK.cco
1
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The inverse of the Green's function leads to the pressure

field, and it can be numerically calculated under the same

principles of the algorithm discussed in Chapter 2. However,

some caution must be taken for the integration to be exact.

The natural wavenumer must be assumed to have a small imaginary

component in order for the function F (K) to satisfy the equality

in Eq. 2 . 2 . 9 . This constraint is physically interpreted as the

propagating medium being slightly absorbing. Thus, the function

1
K

z

1

¡ 2 2
Ki -K

(3.3.2)

will still have a branch point, but instead of having infinite

magnitude at K = Ki if Ki = Ki +ja (a small), then

f,
1
Kz K Ki

1

I 2 A
-a +2jaKi

(3.3.3)

will be finite, but of largemagni tude. The branch point effect

(i. e., + ¡ 2 2) can be avoided by preserving a posi ti ve- Ki -K

continuous function, i. e., a posi ti ve radical for 0 ~ K ~ 00;

this means that, in the process of computing the inverse Fourier

transform, there will not be a step discontinuity. On the other

hand, in evaluating Eqs. 3.2.9 and 3.2. LO, since the pressure

field is always an analytic function for all values of r I 2 2x ~
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the parameter a, in Ki Ki +ja can be made zero without affecting

the results.

In Figures 3. 2a and 3. 2b, the magnitude and phase of the

analytic Green's function (Eq. 3.3. l) are shown , respectively.

The physical parameters are

z = lO m

zo = lO m

50 Hz 7 K = 2rrf/c
1

c = l500 m/sec

0.20944f

Figure 3. 2a shows the result of large amplitude of the Green i s

function for values of K close to Ki i that is, plane waves

propagating almost at the natural wavenumer.
r,

The region of the wavenumer domain for 0 ~ K ~ Ki corresponds

to propagating real plane waves. As mentioned before, they are

waves propagating in the three-dimensional coordinate system

(x,y,z) at wavenumers (K ,K ,K ) respectively. That is,x y z

j (K x+K y+K (z+z ))plane wave 7 e x y z 0

or, equivalently, they are considered plane waves incident at

real angles of incidence e (Eq. 3.2.4). The section Ki ~ K ~ 00

is often interpreted as inhomogeneous propagating plane waves
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(l,7)(evanescent waves) . In this region, the vertical wavenumer

becomes a complex function of the form

K
z

1 2 2 =
Ki -K

'i 2 2J K +K -K 2
x Y 1 (3.3.4)

thus

j (K x+K y) -I 2 2 2 (z+z )e x y e K +K -K 0x y 1

which corresponds to plane waves propagating horizontally and

decaying exponentially as the source and receiver height from

the bottom is increased or as K becomes greater than Ki, It

is this behavior that makes the Green's function almost band-

limitedi that is, most of the source energy is confined to the

real plane wave region and part to the inhomogeneous region.

From Eq. 2.4.ll, the plane-wave reflection coefficient

resul ting from a windowed pressure field is

R(K ,K )x Y -jKz e-jKz (z+zO) --2l G(K ,K ) * W(K ,K )TI x Y X Y (3.3.5)

where W (K , K ) =x y two-dimensional Fourier transform of
the window w(x,y)

It is important to emphasize that the reflection coefficient
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is circularly symetric and, therefore, it is completely specified

by a radial slice. Furthermore, the radial slice corresponds to

the Hankel transform. From Eqs. 2.3.20 and 2.3. 2l, the discrete

plane-wave reflection coefficient resulting from a windowed pressure

field is

'V
R(mllK) -jK

m

-jK (z+z )e m 0
N -l

x
lIx ¿
2'I n=O

,2'I'V -J- nmP (nllx) e Ny x (3.3.6)

and

'V
P (nllx)

y

N
Y

211y ¿ P R (; (nllx) 2 + (£lIy) 2
£=0

w(; (nllx) 2 + (£lIy) 2

(3.3.7)

or, equivalently,

'V

R (mllK) -jK e -jKm (z+zO) ~ (mllK)
m

(3.3.8)

and

'V
G (mllK)

lIx
2 'I

N -l
x
¿

n=O

'V ,2'IP (nllx) e -J~ nmy x (3.3.9)

where
'V
G (mllK) = numerically calculated Green's function
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and w(/(nßx)2+(£ßy)2 = circularly symetric window

provided ßx ~ ~/K and ßy ~ 2~/K , for G (K) = a when K ~ K- max - max - max
The pressure field for the perfectly reflecting bottom is almost

band- limi ted, as shown in Figure 3. 2a. In terms of sampling, it

will be assumed that a value of K ~ 0.6 will introduce a minormax
(13)

aliasing effect and can be neglected. The corresponding

samplings for

K
max

0.6 (3.3.l0)

are ßx ~/O.6 (3.3. lla)

and ßy ~/0.3 ( 3 . 3 . llb)

in the x-direction and y-direction , respectively.

In Figure 3.3, we present the results of calculating the

magni tude and phase of the Green's function for a perfectly

reflecting bottom by processing the pressure field (Eq. 3.2.6)

applying a circular Hamming window of the following form

0.54 + 0.46 cos

~i 2 . 2
( (nßx) + (£ßy) ) ;

R
max

w(¡(n~x)2+(£~y)2

¡ 2 2
(nßx) + (£ßy) ~ R- max (3.3.l2)
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o otherwise

where R
max

Nx !:x(2 - l) !:X + 2

Figure 3.4 shows the magnitude and phase of the Green i s function

for a perfectly reflecting bottom, using a circular Hanning window

of the form

w(/(n!:x)2+ (i!:y)2
= 0.5 + 0.5 cos

/ 2 2
(1T (n!:x) +(My) ) i

R
max

I 2 2~R(n!:x) + (i!:y) - max (3.3.13)

o otherwise

The result for the phase clearly indicates that a more accurate

result is achieved by applying this circular Hanning window.

In the following section, we will discuss the improvement

in the magnitude and phase of the Green's function when using

a circular Hanning window instead of a circular Haming window.

Also, we will examine the contribution, as K approaches Ki, of

the function l/K (Eq. 3.3.2), when evaluating the slice of thez

two-dimensional convolution between the Green's function and the

window to calculate the plane-wave reflection coefficient in

Eq. 3. 3 . 5 .
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3.4 Reflection Coefficient

In the last section, we calculated the Green's function from

samples of the bottom-reflected field for a perfectly reflecting

bottom. Figure 3.3 illustrated the magnitude and phase using a

circular Hamming window. In Figure 3.4, the magnitude and phase

were shown for the case of a circular Hanning window .

The plane-wave reflection coefficient can then be simply

calculated by multiplying the Green's function by the complex

factor

CF (:rK) -jK
m

-jK (z+z )e m 0 (3.4.l)

where K
m
I 2 2
Ki - (mßK)

a 0( mßK 0( K- 1 (3.4.2)

== jl 2 2
(mßK) -Ki

Ki 0( mßK 0( 00

as specified in Eq. 3.3.8. This complex factor corresponds to

the discrete inverse of G (K) in Eq. 3.3. l. Therefore, if we

mul tiply Eq. 3.4. 1 times the Green's function, the result should

be

R(K) 1 (3.4.3)

for all regions of the wavenumer domain K.
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Figures 3.5 and 3.6 show the numerically calculated magnitude

and phase of the plane-wave reflection coefficient using a circular

Haming and a circular Hanning window, respectively.

As mentioned in the last section, we can divide the wavenumer

domain into two regions. These regions are

(l) Real plane waves for 0 ~ K ~ K- 1
(2) Inhomogeneous plane waves for Ki ~ K ~ 00

In Figure 3.5, the error for the real plane wave region is

small compared to the inhomogeneous region. In Figure 3.6, on

the other hand, there is a negligible error in the real plane

wave region for 0 ~ K ~ K = 0.2094, and there is a small deviation
1

from the theoretical answer (R (K) = l) for values of wavenumber K

in the range Ki ~ K ~ 0.36. These results indicate that a Hanning

window substantially improves the accuracy of the results, compared

to the results obtained using a Hamming window.

The discontinuity for values of K close to Ki is due to the

infini te magnitude of the function l/I 2 2 at K = Ki (Eq. 3.3.l).
Ki -K

the two-dimensional convolutionThus, in the process of evaluating

between the Green's function and the transform of the window, the

result of the discontinuity is analogous to a one-dimensional

convolution when one is numerically calculating the spectrum of

a function with a pole at the resonant frequency. The effect of
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this discontinuity on the accuracy of the results, for the real

and inhomogeneous plane wave regions, is assumed to be minimized

by the choice of window; a window of large side-lobe levels and

slow falloff contributes more to wavenumer leakage as it approaches

a region of infinite or of large magnitude.

In Section 2.4 on circular windows, we found that the main-

lobe for a circular Haming and a circular Hanning window were

almost of the same width (Kw/2 = 7) with different side-lobe

levels. The Hankel transforms illustrated in Figures 2.3 and

2.4 were of the same radial aperture, R = l, for a Hamingmax

and a Hanning window, respectively. In Figure 3. 7, we present

the Hankel transform of a Hamming window (Eq. 3.3 .l2) used to

range-limit the pressure field, with a radial aperture

R
max

N ßx
(~ - l) ßx +2 2 (3.4.4)

TI TI5ll -- + 2678.20.6 l.2

Tha t is, the Hankel transform in Figure 3. 7 is a scaled version

of the Hankel transform of Eq. 2.4. l4 with ß = 2678.2. In

Section 2.5, we presented the property

HT

P (r) ++ G (K) (P.3.4.l)

HT

P(r/ß) ++ ß2 G(ßK)
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applicable to the evaluation of a Hankel transform. From Property

P.3.4.l, we conclude that the first side-lobe in Figure 3.7 must

be located at approximately

Kw/2
7.0=--

R
max

2.6 . iO-3 (3.4.5)

This indicates that Figure 3.7, for the region 0 ~ K ~ 0.04, is

analogous to the Hankel transform of Eq. 2.4. l4 shown in Figure

2.3; i.e., this region corresponds to the main-lobe and first group

of side-lobes compressed together.

In Figure 3.7, if we define the region 0 ~ K ~ 0.06 as main-

side-lobe region and K ;: 0.06 as last-sidelobe region, the width

of the main-sidelobe region and the level of the last-sidelobe

region for a circular Haming window are, respectively,

CIRCULAR HAMING WINDOW

main-sidelobe width = 0.06 (3.4.6)

level of last-sidelobe region -90 dB

On the other hand, as shown in Figure 3.8 for a circular

Hanning window, the main-sidelobe width and the level of the

last-sidelobe region are,
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CIRCULAR HANNING WINDOW

main-sidelobe width = 0.04

level of last-sidelobe region

(3.4.7)

-130 dB

The circular Hanning window minimizes the wavenumer leakage,

since it has the fastest side-lobe falloff or, equivalently, the

shortest main-sidelobe width, and with the lowest level of last-

sidelobe region. It is this difference in main-lobe width and

level of last-sidelobe region between the two windows that causes

the improvement in the accuracy of the results (Figure 3.6) for

the magnitude and phase of the plane-wave reflection coefficient.

The results in Figure 3.6 show that the inhomogeneous plane-

wave region for K ~ 0.36 becomes very oscillatory as K increases.

This region corresponds to small values in the magnitude of the

exact Green 1 s function illustrated in Figure 3.2 or the calculated

function in Figure 3.4. Thus, the oscillations in the calculated

phase are expected since, in the limit, as the magnitude of the

complex vector approaches zero, the phase can hold any value.

Similarly, the oscillations in the magnitude of the inhomogeneous

region are suspected to be caused by some numerical problem.

Recall from Eq. 3.3.8 that the calculated plane-wave reflection

coefficient is proportional to the numerically calculated Green's

function; that is,
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R (m~K) = -jK e -jK m (Z+Zo) G (~K)
m

(3.4.8)

where the proportional factor is (Eq. 3.4. l)

CF(m~K) = J'K e-jK (z+zo)- m m (3.4.9)

and

K
m
I 2 2
Ki - '(m~K) O-:m~K-:K- 1 (3.4.l0)

jl (~K) 2 -K 2

1

Ki -: m~K -: 00

The factor in Eq. 3.4.9 corresponds to the discrete inverse of

the exact Green's function, for the plane-wave reflection

coefficient of a perfectly reflecting bottom, such that when

multiplied by the numerically calculated Green's function the

expected result would be

R(K) 1.0 (3.4.11)

for all wavenumers K. This indicates, since the Green 1 s

function is of small mangi tude for K ~ 0.36, that the product

involves large numers times small numers which can only be

carried out very accurately by performing double precision
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arithmetic (approximately l3 significant figures). Similarly,

the oscillations in the phase, as concluded from the previous

discussion, are caused by small values in the magnitude, which

are also expected to be improved by using double precision.

Figure 3.9 presents the results of using double precision

in the evaluation of the plane-wave reflection coefficient for

a perfectly reflecting bottom. The magnitude in Figure 3.9

illustrates accurate results for both the real plane-wave region

and the inhomogeneous plane-wave region. As discussed in the

early part of this section, the discontinuity for values of the

horizontal wavenumber K close to the natural wavenumber Ki is

a result of convolving through a point of infinite amplitude

(1/1 2 2). For values of K ~ 0.54, there is a need of evenKi -K

more accuracy than double precision. The phase, on the other

hand, holds almost a constant value of zero for both regions

of the wavenumer domain, except close to the infinite amplitude

section.

In this chapter, we have studied the application of the

algori thm to the computation of the plane-wave reflection

coefficient for a perfectly reflecting bottom. It was of interest

to analyze this simple model, since there was no approximation

in the discrete samples of the pressure field input to the

algorithm. In Chapter 4, we discuss an isovelocity-low speed

bottom model. For this more general model, the discrete samples
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of the pressure field as the input to the algorithm must be

analytically approximated.

82
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CHAPTER 4

ISOVELOCITY-LOW SPEED OCEAN BOTTOM

4. 1 Introduction

In the previous chapter, we have studied the application of

the algorithm presented in Chapter 2 to the numerical evaluation

of the plane-wave reflection coefficient for a perfectly reflecting

ocean bottom. An analytical expression was calculated for the

pressure field, which led to exact discrete samples as the input

to the algorithm. The plane-wave reflection coefficient was then

calculated from the Hankel transform of the pressure field,

indicating accurate results for both the real plane wave and

inhomogeneous plane wave regions.

This chapter discusses the application of the algorithm

to the computation of the plane-wave reflection coefficient for

an isovelocity-low speed ocean bottom. It represents a more

general model. For most ocean bottoms, the sound velocity in

the surficial sediments is of smaller magnitude than the sound

velocity in the overlying homogeneous half-space. It is also

of interest since we can analytically calculate an approximate

expression to the discrete samples of the acoustic pressure field

as the input to the algorithm; an exact analytic expression for

the pressure field can only be calculated for the perfectly

reflecting bottom model. Section 4.2 discusses the approximation

to the acoustic pressure field. The Green's function calculated
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from samples of the pressure field is presented in Section 4.3.

The plane-wave reflection coefficient is then analyzed in

Section 4.4.

4.2 Acoustic Pressure Field

The acoustic pressure field represented by a spherical wave

emanating from a point source was derived in Chapter 2. We found

that a spherical wave can be equivalently expanded into plane

waves. For a continuous source located at a constant height zO'

the reflected field recorded at the hydrophone at a height z from

-jwt
the bottom (omitting the time factor e and assuming the source

strength s = i) is
T

P (r)
R

= j foro

j I 2 2 (z+z )e Ki -K 0
R(K)

I 2 2K -K
1

J 0 (Kr) KdK (4.2.l)

where Ki = w/c ,and R(K) is the plane-wave reflection coefficient

that modulates each of the reflected plane waves.

The plane-wave reflection coefficient can be similarly

defined as the ratio of the reflected wave to the incident plane

wave evaluated at the boundary. For different types of ocean

bottoms it is found by satisfying the boundary conditions of

continuity of normal stress and displacement at the water-bottom

interface. An outline of the derivation of the plane-wave

reflection coefficient for a two-layer medium homogeneous
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water colum - isovelocity bottom is presented. A more complete

discussion can be found in reference ei).

Homogeneous Water Column - Isoveloci ty Bottom Reflection Coefficient

This model is illustrated in Figure 4. l. The incident plane

wave is of the form

P, (x,y,z)i
j (K x+K y-K z)e x y z (4.2.2)

and the reflected plane wave can be written

() j (K x+K y+K z)PR(x,y,z) = R K e x y z (4.2.3)

R(K) can be equivalently expressed in terms of the incident angle

e since K = Ki sin e. The total field in the water colum is then

P (x,y,z)
T

P, (x,y,z) + P (x,y,z)i R (4.2.4)

or

PT(x,y,z) ( -jK z () jK zJ j (K x+K Y Je z +RK e z e x y (4.2.5)

Similarly, the refracted wave is
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P ( ) W (K) -jK Z J' (K x + K y)B x, Y , Z = e zB e xB yB (4.2.6)

where KxB K sin ß cos a
B

KYB = K sin ß sin a
B

KZB KB cos ß

KB = w/cB

cB sound velocity in the bottom

PB density in the bottom

w (K) = transmission coefficient

The boundary conditions at the water-bottom interface (z 0) are

Continui ty of Pressure P = PT B (4.2.7a)

Continuity of Normal
Component of Particle
Veloci ty

w w
B

1 dPT+--=
P dZ

1 dPB--
P dZ

B

( 4 . 2 . 7b)

Substituting Eqs. 4.2.5 and 4.2.6 into Eq. 4.2.7a with Z 0,

we have

(l +R(K) ) W (K) ej ( (KXB -Kx) x + (KYB -Ky) y) (4.2.8)

but since the left hand side is independent of x and y, the right

hand side must also be independent of x and y. Thus,
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KxB K -+ K sin ß co s ct Ki sin e cos ct (4.2.9a)
x B

and

KYB K -+ K sin ß sin ct Ki sin e sin ct (4 .2. 9b)
Y B

or, equivalently,

Refraction Law (Snell's Law) K sin
B

ß = Ki sin e (4.2.l0)

De fine

K

n = ~ =Ki
c
cB

(4.2.l1a)

and

PB

m
p

(4 . 2 . 1 lb)

the, Eq. 4.2.8 reduces to

W(K) (l + R (K) ) (4.2.l2)

Now, substituting Eqs. 4.2.5 and 4.2.6 in the second boundary

condi tion (Eq. 4.2. 7b), the result is

K (l - R(K)) = l K W(K)z m zB (4.2.l3)
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or

cos e (l - R(K))
n

= - cos ß W (K)
m

(4.2.l4)

From Eqs. 4.2. l2 and 4.2. l4, the plane-wave reflection

coefficient is

PB I 2 2- I 2 2- K -K ~ -K
R(K) P 1

PB I 2 2 + I 2 2- K -K KB -K
P 1

where Ki w/c

KB = w/c
B

c sound velocity in the water colum

cB sound velocity in the bottom

P densi ty in the water colum

PB = densi ty in the bottom

(4.2.l5)

The pressure field reflected off this two homogeneous half-

spaces model can then be expressed in terms of the reflection

coefficient by substituting Eq. 4.2.l5 in Eq. 4.2.l. That is,

PB I 2 2 - I 2 2 jl 2 2(z+zO)

r
K -K ~ -K e K -K

PR(r) j (
P 1

)
1 J 0 (Kr) KdK

% I 2 2 + I 2 2 I 2 2
K -K K -K K -K

P 1 B 1

(4.2. l6)
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The integral in Eq. 4.2. l6 cannot be solved to determine an

exact analytic expression. However, it is possible to treat the

integral by the method of steepest descents and obtain an

asymptotic expression. Brekhovskikh (reference (l)) derives this

expansion in detail by interpreting the integral in Eq. 4.2. l6

in the form

I = Ie e(pf(E)l F(E) dE (4.2.17)

where C is the path of integration in the ~-plane. The path of

integration can be deformed such that the value of the integral

is principally determined by a more simplified expression. From

the general properties of analytic functions, the path of steepest

descent corresponds to the region where the integrand decreases

most rapidly as the variable of integration moves away from this

saddle point. It is this property that leads to the asymptotic

expansion.

From Brekhovskikh (Eq. 19. 36) the approximate expression for

the pressure field is

P (r)
R

'K ReJ 1 R N
R (R(e) - j~JR R (4.2.l8)

where ~ = I 2 2
r + (z+zO)

K Ki sin e
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R(e) plane-wave reflection coefficient in terms
of angle of incidence e

a2R(e) aR(e)l/2 ( + cot e )
ae2 ae

N

The first order approximation to Eq. 4.2.l6 is, therefore,

P (r) = R(e)
R

jKiRe R
RR

(4.2.l9)

The discrete samples of the pressure field as the input to the

algorithm can then be calculated from Eq. 4.2.l9.

4. 3 Green's Function

The Green's function is defined (Eq. 2.3.2)

G(K) = J' R(K) jK (z+zo)~e Z
Z

(4.3.l)

where K =,¡ 2 2Z Ki-K

Thus, the Green i s function is proportional to the plane-wave

reflection coefficient. It is related to the reflected pressure

field through the zero-order Hankel transform

G (K)

J P R ( r) J 0 (Kr) rdr000

(4.3.2)

The algortihm studied in Chapter 2 evaluates Eq. 4.3.2 by
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calculating the projection of the pressure field onto the x-axis

and consequently computing a one-dimensional FFT. That is,

'ù
G (mt.K)

N -l
x

= t.x ¿;

2'I n=O
'ù ,2'IP (nt.x) e -J~ nmy x (4.3.3)

and

'ù
P (nt.x) =

y
2t.y

N
Y

¿;

i=o
p (I 2 2R (nt.x) + (it.y) w(1 (nt.x) 2 +(it.y) 2 (4.3.4)

provided t.x ~ 'I/K and t.y ~ 2'I/K , for G (K) = 0 when K ~ K- max - max - max
Substi tuting Eq. 4.2. l5 in Eq. 4.3. l, the analytic Green's

function for an isovelocity-low speed bottom model is

PB 1 2 2 - 1 2 2 jl 2 2 (z+z )
- K -K ~ -K e Ki -K 0

G(K) j P 1 (4.3.5)
PB 1 2 2 + 1 2 2 1 2 2
- K -K KB -K K -KP 1 1

and it is illustrated in Figure 4.2. The physical parameters are

z 10 m

zo lO m

f 50 Hz

c l700 m/ sec

c = l500 m/sec
B

P 1.0

PB 1.5
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It is interesting to note the behavior of the Green i s function

when the numerator of the reflection coefficient is zero. At

this point, the value of the wavenumer identifies what is

commonly referred to as the Brewster's angle, or angle of intro-

mission, and it is physically interpreted as all the energy being

refracted into the bottom. For the above physical parameters,

it corresponds to

¡
2

2
2

2
w w

PB 2 P 2
c cB

K
¡ 2 2

PB
- P

(4 . 3 . 6a)

or at a Brewster i s angle

e
-l Ksin (-)Ki

620 (4.3.6b)

and refracted into the bottom at an angle (Eq. 4.2. LO) ,

ß
L Ki

sin - ( sin e J
K

B

5lo (4.3.6c)

The pressure field for this model has a more band-limited

behavior than for the perfectly reflecting bottom, as illustrated

in Figure 4.2. This is expected since the magnitude of the plane-

wave reflection coefficient is always bounded by 1 for these

examples of ocean bottom models. That is,



96

IR(K)\-:l (4.3.7)

The calculated Green's function from approximated samples of the

pressure field (Eq. 4.2.l9) is shown in Figure 4.3; for a Hanning

window of the form

w(; (nßx) 2 +(ißY) 2 = 0.5+0.5 cos (
; 2 2

ir (nßx) + (My)

R
max

) .. ,

; 2 2 -: R
(nßx) + (ißy) - max

=0 otherwise (4.3.8)

where R
max

N 1
= (( 2x - l) + '2) ßx = 2678.2 (4.3.9)

and a sampling (for K 0 . 6)max

ßx ir/0.6 (4.3.l0a)

ßy = 2ßx (4.3.l0b)

The effect of a first order approximation of the pressure field

is obvious. The calculated Green's function tends to follow the

exact analytical answer shown in Figure 4.2. At the Brewster's
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angle or , equivalently, K = . l624 l/m, the magnitude of the function

does not quite reach a value of zero. The oscillations for K ~ 0,36

is a result of small values in the magnitude of the complex vector.

As discussed in Chapter 3, these oscillations can be improved by

using double precision arithmetic. The plane-wave reflection

coefficient with single and double precision is presented in the

next section.

4.4 Reflection Coefficient

The plane-wave reflection coefficient, as discussed in

Chapter 2, is proportional to the Green's function. The pro-

portional factor is

CF (mlK) -jK
m

-jK (z+z )e m 0 (4.4.l)

K
m
I 2 2
Ki - (ml1K)

where o -: mßK -: K- 1

(4.4.2)

j/(A)22mLlK -K
1

K -: mßK -: 00
1

From Eq. 4.2.15, the exact analytic plane-wave reflection coefficient

is given by

~B I 2 2 - I 2 2- K -K KB -K
R(K) P 1 (4.4.3)

PB I 2 2 I 2 2- K -K + K -K
P 1 B



lOO

It is shown in Figure 4.4 for the same parameters used to calculate

the Green's function in the pre ceding section ¡i. e . ,

P = 1.0

PB 1.5

2nf 2n 50 Hz
Ki = = . l848

c l700 m/sec

K
2nf 2n 50 Hz-- = .2094

B cB 1500 m/sec

The calculated plane-wave reflection coefficient, from

Eq. 4.4.l, can be expressed as

'\
R (mllK) -jK e -jKm (z+zO) G (mllK), m (4.4.4)

'\
where G (mlK) represents the calculated Green 1 s function in Eq. 4.3.3.

The calculated plane-wave reflection coefficient is shown in

Figure 4.5 ¡it corresponds to the product of the calculated Green's

function and the complex factor, as specified in Eq. 4.4.4. The

double precision equivalent of Figure 4.5 is illustrated in

Figure 4.6. These results indicate that the oscillatory effect

due to small values in the magnitude of the Green's function is

improved by using double precision. This improvement is consistent

with the results found in Chapter 3. Also, these figures illustrate
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the result of approximating the pressure 
field by a first order

approxima tion in Eq. 4.2. 19 .

The examples in Chapters 3 and 4 have illustrated the

applicabili ty of the algorithm presented in Chapter 2 to the

computation of the plane-wave reflection coefficient from samples

of the reflected acoustic pressure field. The results in Chapter 3

showed favorable agreement with the exact analytic values; the

discrete samples of the pressure field as the input to the algorithm

were calculated from an exact derived expression. For the iso-

veloci ty-low speed bottom model, however, an exact analytic

expression for the reflected acoustic field was not possible;

a first order asymptotic expansion as an approximation to the

pressure field was used to calculate the samples. The resultant

computed plane-wave reflection coefficient was, therefore, a first

order approximation. For further reading on the topic presented,

we suggest references (ll, l2).

We can conclude, potentially, that the algorithm serves as

a technique to calculate the plane-wave reflection coefficient

from experimental data. Furthermore, the algorithm could also

be implemented to evaluate the reflected pressure field from the

plane-wave reflection coefficient. Favorably, the samples as

the input to the algorithm would be exact since the plane-wave

reflection coefficient can be analytically calculated for a

numer of general ocean bottom models.
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APPENDIX I

In a numer of applications there exists the need to calculate

a zero-order Hankel transform of the form

G(K)

J per) Jo(Kr) rdro.
(A. 1. l)

For a circularly symmetric function P (r), the Hankel transform

G (K) is also circularly symetric and, therefore, is completely

specified by a radial slice of the two-dimensional Fourier trans-

form of the function P (I 2 2). Thus, the numerical evaluation
x +y

of Eq. A.I.l can be implemented simply by a sumation to calculate

the projection of the function P (r) and a one-dimensional FFT,

provided per) can be assumed to be band-limited; i.e.,

'VP (i)
y

N
Y

2~y £:0 PR(/(~X/2 + i~x)2 + (~y/2 + £~y)2

. w(1 2 2
(~x/2 + i~x) + (~y/2 + £~y)

i 0, l, ...,
Nx
2

1

(A.1. 2)

and

'V
G (m) =

~x
21T

N -lx
i:

n=O

.21T'V -J- nm
P (n) e Ny x (A. 1. 3)
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provided ~x ~ TI/K and ~y ~ 2TI/K ¡for G (K) = a when K ~ K- max - max - max
'V

The function P (i) is defined as the projection of
y

PR (I (~x/2 + i~x) 2 + (~y/2 + i~y) 2 )

onto the x-axis.

A circularly symetric Hanning window is used to improve

the results of processing a finite-length sequence. This window

is given by

W(/(~X/2 + i~x)2 + (~y/2 + i~y)2 )=0.5 + 0.5

cos (
¡ 2 2TI (~x/2 + i~x) + (~y/2 + i~y)

R
max

1 2 2
(~x/2 + i~x/2) + (~y/2 + i~y)

~ R- max
(A.1.4)

a otherwise

where R
max

N

(( 2x - l) + t ) ~x (A.1.5)

In order to preserve symetry in the computation of the

'V

projection P (i), the two-dimensional grid has been sampled as
y

illustrated in Figure A.I.l. The operations explicit in Eqs.



1-----------
I

I

I

I

l:x
2

y

CJ

CJ

t l:y
'f . t:y _ A~2-UX

--------- I
I

((~X -1)+Y2J~X1
( N x - .1 ) l: x

(Nx discrete points)

~
l:x

Figure A. I. l. Two-dimensional grid

#V

Py (n)

Figure A. 1.2. Discrete sequence

llO

x

n

Nx
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A.I.2 and A.I.3 indicate the following steps:

(l) calculate the projection onto the x-axis,

(2) the first sample in the x-direction is spaced by ~x/2

and ~x every sample after that,

(3) the first sample in the y-direction is spaced by ~y/2

and ~y every sample after that.

Note that only the first quadrant must be sampled since the function

is circularly symetric. Similarly, in the evaluation of the

projection, by suming all the samples at each location on the

positive x-axis, the result is doubled to account for the values of

the function in the fourth quadrant. The projection samples onto

the negative x-axis are found simply by forming the image of the

positive x-axis projection samples. These equally spaced samples

are then used as the input to a one-dimensional FFT.

The one-dimensional FFT calculates the discrete Fourier

transform of an equally spaced sequence starting at the origin,

as shown in Figure A. 1.2. Therefore, a correction must be made

on the phase of the samples. The shift in the range domain is

given by Eq. A. 1.5, which implies that one-half of the samples

resul ting from the one-dimensional FFT must be multiplied by
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jR (mlìK)
e max (A.I.6)

the other half are the image of the first half,

where mlìK
21T

m N lìx
x

m 0, l, ...,
N

x
2

and it corresponds to the spacing of the Hankel transform samples.

Let us consider the following examples:

CIRCULAR CONSTANT

P (r) 1 r 0( 1

o otherwise

, (14)
Hankel transform :

G (K)

J 1 (K)

K

The real and imaginary parts of the exact and calculated

Hankel transforms are illustrated in Figures A.I.3 and A.I.4,

respectively.
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CIRCULAR Ji (r)/r

P (r) =

Ji (r)
r

(l4)
Hankel transform :

G (K) 1

o

K .ç 1

otherwise

The exact and calculated Hankel transforms are illustrated

in Figures A.I.5 and A.I.6.

CIRCULAR sin (KO or) /r

P (r)

sin(K 'r)
o

r

(4 )
Hankel transform

G (K)
1

¡ 2 2
(0.2) -K

o

KO 0.2

o .ç K .ç 0.2

0.2 .ç K .ç co

The results are shown in Figures A.I.7 and A.I.8.
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CIRCULAR KO . J 0 (KO . r)

P (r) K . J (K . r)o 0 0 KO 0.2

Hankel transform:

G (K) Õ (K-O. 2)

The results are shown in Figure A. 1.9. We can interpret the

examples in Chapter 3 and 4 as proportional to the superposition

in the wavenumber domain of the result in Figure A.I.9 for

different values of KO'

The Fortran program on page l29 has been implemented in a

Xerox Sigma 7 and an HP 2l00A computer at the Woods Hole

Oceanographic Institution.
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