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ABSTRACT

For a spherical acoustic wave incident on a horizontally
stratified ocean bottom, the reflected pressure field and the
plane-wave reflection coefficient are related through a two-
dimensional spatial-wavenumber Fourier transform. An algorithm
is proposed to evaluate the plane-wave reflection coefficient
from the bottom reflected field as a function of angle of

incidence.

The algorithm is based on the "Projection-Slice” theorem
associated with the two-dimensional Fourier transform. This
technique is implemented to evaluate the plane-wave reflection
coefficient for a perfectly reflecting ocean bottom and for an
isovelocity-low speed ocean bottom model.
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CHAPTER 1

INTRODUCTION

For a horizontally stratified ocean bottom, the plane-wave
reflection coefficient as a function of incident angle and frequency
contains all the information necessary for the solution of acpustic
problems in the ocean, It is needed, for example, in implementing
ray tracing programs and in evaluating the performance of bottomed
and suspended hydrophones. Hence, it is of interest to implement
an algorithm to numerically calculate it from experimental bottom-
reflected data.

For many years, the measurement of the plane-wave reflection
coefficient from bottom-reflected data has been an important area
of research. The plane-wave reflection coefficient is a complex
function and it has been difficult to measure its magnitude and
phase as a function of horizontal wavenumber and frequency. Some
of the early technigues, in an attempt to measure the magnitude,
were based on approximating the bottom-reflected signal by the
field from an image source multiplied by the reflection coefficient
at the specular angle of incidence. This approximation, which is
based on the geometrical acoustic approximation, assumed high
values of acoustic frequency with source and receivers many wave-
lengths from the bottom and no significant influence of interface

waves on the result(l6). Based on this approximation, Liebermann

(9)

(1948) conducted an experiment at a constant high frequency (24 kHz)

to measure the magnitude of the reflection coefficient from the



11

resultant of the interference between the direct and reflected
waves. Another application of the geometrical acoustics
approximation was implemented by Hastrup(a) (1970) to measure

the magnitude as a function of frequency by forming a ratio
between the Fourier transforms of the bottom—reflécted and direct
signals.

In an effort to compute a more accurate estimate of the plane-
wave reflection coefficient, other techniques were developed based
on the exact Hankel transform relationship between the plane-wave
reflection coefficient and the bottom-reflected field, the
assumptions being a horizontally stratified ocean bottom where
all acoustic properties were only a function of depth, and an
acoustic point source. Based on this relationship, DiNapoli(3)
(1977) calculated the magnitude by approximating the exact Hankel
transform to be of the Fourier type integral, assuming the source
to be located many wavelengths in-range from the hydrophone. This
method provided close results for some region of the specular
angle domain, with poor convergence for normal and grazing angles
of incidence. Similarly, Schoenberg (15) (1978) started with the
exact Hankel transform, and formed a linear combination of the
reflected data points. This technique was based on the Backus-
Gilbert inversion method. An estimate of the magnitude and phase

was then computed by minimizing a norm under the least-squares

criterion. This general procedure had the advantage that it
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included signals with additive noise, and the disadvantage of large
amounts of implementation time.

This thesis presents a different approach to measuring the
magnitude and phase of the plane-wave reflection coefficient as a
function of horizontal wavenumber and frequency. The proposed
algorithm is based on interpreting the exact relationship between
the bottom-reflected field and the plane-wave reflection coefficient
in the form of a zero-order Hankel transform, making it suitable to
the application of a recent method by Oppenheim, Frisk, and
Martinez(lo) to compute an nth—order Hankel transform. The tech-
nique is based on the "Projection-Slice" theorem associated with
the two-dimensional Fourier transform. The result of this approach
permits the estimation of the effect of a horizontally stratified
ocean bottom on all propagating compressional waves in the water,
including plane waves at real angles of incidence and inhomogeneous
plane waves propagating parallel to the ocean floor and decaying
exponentially in the vertical direction away from the bottom.

The details of the algorithm are presented in Chapter 2. The
chapter introduces a derivation of the exact Hankel transform
between the plane-wave reflection coefficient and the bottom-
reflected field, with the discrete processing to determine the
reflection coefficient from samples of the reflected data. In
Chapters 3 and 4, the algorithm is examined in two simple ocean

bottom models. Chapter 3 considers a perfectly reflecting ocean
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bottom for which the reflected field is known analytically.
Chapter 4 studies the estimation of the reflection coefficient
for an isovelocity~low speed bottom.

As a generalization of the algorithm, some of the most common
Hankel transforms are presented in Appendix I and are compared to

their exact theoretical answers. The Fortran program is included.
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CHAPTER 2

PLANE-WAVE REFLECTION COEFFICIENT AND ITS COMPUTATION

2.1 Introduction

The ocean and its environment are very complex and difficult
to analyze when trying to infer some of the ocean bottom properties.
It is possible to simplify the complexity by including physical
assumptions and still preserve a model of experimental interest.

The following sections introduce the model, its fundamentals, and
the details of the algorithm in computing the plane-wave reflection

coefficient from the bottom-reflected data.

2.2 Ocean Model and Assumptions

In finding a general model that represents the ocean and its
environment, the sound velocity, density, and attenuation must be
included, since they are primarily the properties that dictate the
behavior of propagation of sound in the ocean. The first
assumption, to simplify the complexity of the mpdel, is that the
sound velocity and density are of constant magnitude over the
water column and that in the ocean bottom they are only a function
of depth, i.e., a horizontally stratified ocean bottom. Also,
the attenuation is assumed to be zero in the water column and a
function of frequency and depth in the bottom. In Figure 2.1, the
general modél is shown, including the source-receiver geometry.

In order to simplify the model even further, a distinction
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must be made between a model for propagation of sound in.- shallow
water and deep water. Shallow water propagation is considered
when the acoustic source wavelength is of the order of the water
depth. If the source wavelength is of much smaller magnitude than

the water depth, the process is modeled as deep water propagation;

that is,
c
A= E-= H shallow water
c
A= §-<< H deep water
where A = wavelength

¢ = sound velocity in the water
f = acoustic source frequency

H = water depth

If the frequency of interest is on the order of 200 Hz or more,
corresponding to a wavelength less than 7 m, the example falls

in the category of deep water propagation when performing the
experiment in locations of water depth greater than a hundred
meters. The model can then be simplified by considering the
water column as a half-space, when the source and receivers are

a small number of wavelengths away from the bottom. This implies

that any surface-relfected energy can be neglected, since it is
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sufficiently time-separated from the direct and bottom-reflected
signals.
This general simplified model, shown in Figure 2.1, permits

an analytic derivation of the wave equation

2
2 0
Vp(x,y,z,t) = —13 p(x’yéz’t) (2.2.1)
c ot
where p{x,v,z,t) = acoustic pressure

X,v,z = rectangular coordinates (see Figure 2.1)
and leads to an expreésion which represents the acoustic field for
propagating waves in the ocean. The derivation of Eg. 2.2.1 can
be found in reference (5).

In what follows, we present a solution to this wave equation
to find an analytic relationship between the plane-wave reflection

coefficient and the reflected pressure field.

Solution to the Wave Eguation

In spherical coordinates (see Figure 2.1), Eq. 2.2.1 has

the following form

2 2
3__521+§_§%=i2-3_5 (2.2.2)
3R ¢ 9dt
2
where R2 = x2 +y + (z-zo)2

receiver height

N
]

source height

N
l
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A general solution to this equation is

-1 -
p(R,t) = = [fl(R ct) + f2(R+ct)] (2.2.3)

i

where fl(R—ct) spherical waves radiating away from

the source

fz(R+ct) = spherical waves radiating towards
the source

1 , .

§-= spherical spreading loss

The physical constraint that no energy radiates from infinity

towards the source makes

+ =
f2(R ct) 0

thus

P(R, t) =

|

fl(R—ct) (2.2.4)

A simple source in acoustics can be assumed to a pulsating sphere
of small radius with harmonic time dependence. It radiates
spherical waves, and when its radius is small compared to the
wavelength it is referred to as point source. Then, the acoustic

pressure has the form
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ej(KlR—wt)
p(R,t) = 5§ ——— - (2.2.5)
R
where K. = w/c = angular frequency/sound velocity; and it satisfies

1

the wave equation since it is of the same form as Eg. 2.2.4.

Equivalently,

p(R,t) = s P(R,we E (2.2.6)

where s = acoustic source strength
P(R,w) = range dependent response
-jwt s
e = harmonic time dependence
If, instead of a point source with harmonic time dependence, a
more general source is used, the pressure field is found by
evaluating a Fourier transform over angular frequency w of the
product between the range dependent response of the medium and
the angular frequency response of this general source.
In the derivation that follows, omission of the time dependence
-jwt | .
e is made, and a point source of constant angular frequency w
and of strength s = 1 is assumed in Eq. 2.2.6. Thus,
JK.R

1

= (2.2.7)

P(R) = =

where Kl = natural wavenumber = w/C
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w = 2nf

+h
n

acoustic source frequency

Q
Il

sound velocity

2 2

R =x + y2 + (z—-zo)2 = r2

+ (z—zo)2

Reflection Coefficient <> Pressure Field Relationship

The study of spherical waves is often simplified by representing
them in terms of plane waves(l). In Eq. 2.2.7, we see that the
spherical wave representing the pressure field satisfies constant
phase at any point at the same radial distance from the source.

This corresponds to wavefronts of spherical shape. On the other
hand, plane waves hold constant phase at any point on a plane
perpendicular to the direction of propagation. Upon encountering

a boundary where there exists a change in sound speed and/or density,
a plane wave can be interpreted in terms of a ray incident at an
angle © (see Figure 2.1). The spatial rate of propagation of this

plane wave in the (x,y) plane is defined as the horizontal wave-—

number and it corresponds to

K = K _ sin 9 (2.2.8)

where K = horizontal wavenumber
Kl = natural wavenumber = w/cC
8 = angle of incidence
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The plane-wave reflection coefficient modulates each of the
plane waves incident at different angles or, equivalently, at
each horizontal wavenumber. If we model the horizontally stratified
ocean bottom as composed of a number of discrete layers, the plane-
wave reflection coefficient can be analytically calculated for
simple types of ocean bottoms by satisfying the boundary conditions
of continuity of normal stress and displacement at the water-
bottom interface. A more detailed discussion of some analytically
computed reflection coefficients is considered in Chapters 3 and 4.

An interpretation of spherical waves in terms of plane waves

is achieved by forming a superposition of cylindrical functions

(5)

constrained to satisfy the cylindrical wave equation . That is,
SK.R ®
3 S A 5 oo
P(r,z) = =t = F(K) T (Kr)ed &, 2-K? 1220l ax  (2.2.9)
R 0 1
0
where JO(Kr) = gzero-order Bessel function
‘z—zo! = vertical distance traveled by propagating
waves from source to receiver
F(K) = a function of horizontal wavenumber (X) to

satisfy the equality

and, from Eg. 2.2.6,

-jwt

plr,z,t) = s P(r,z) e (2.2.10)
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If this equation is substituted in the cylindrical wave equation,

2 2 2
3 plr,z,t) 1 9p(x,z,t) 3 plr,z,t) 1 3 plr,z,t)
+ + = — —— (2.2.11)
2 r or 2 2 2
ar 0z c ot
the result is
2
a Jo(Kr) 1 dJO(Kr) 5
+ = + = -2.
> - e K JO(Kr) 0 (2.2.12)
dr
, . .o S (17)
which is indeed satisfied .
F(K) can be calculated by interpreting Eqg. 2.2.9 as an
14
inverse Hankel transform type integral( ). Thus, at z = ZO'
o] 'K
F(K) _ e?™1" g (xkr)ar (2.2.13)
K 0

which corresponds to a Hankel transform, and it can be analytically

calculated by assuming Kl to have a small positive imaginary part(l7),
i.e., the medium is slightly absorbing. The result is
F(K) = § ——— (2.2.14)
v 2 2
K. -K
1
Substituting Eq. 2.2.14 into Eqg. 2.2.9,
3 -
KR ® eJIKlz—Kz |2 ZoI
= =3 —_— J,(Kr) K dK (2.2.15)
0 v 2 _2
K. -K
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which constitutes the interpretation of a spherical wave.in terms
of plane waves. The integrand, in the (x,v,2) coordinate system,
corresponds to plane waves, as will be iilustrated more explicitly
in Chapter 3. The left-hand side of the equation is the unreflected
field from a point source located in a homogeneous medium.

The reflected field can be similarly interpreted by recalling
that the plane-wave reflection coefficient modulates each of the
plane waves upon reflection from a boundary. If we assume a
horizontally stratified ocean bottom, the plane-wave reflection
coefficient would only be a function of horizontal wavenumber
when constant frequency is assumed(6). The reflected pressure

field is then

© ] 2
e” K .-K (z+zo)
P (r,z,z.) = 3 R(K) ——————— J (Kr) K dK (2.2.16)
R 0] 0
0 X 2—K2
1
where PR(r,z,zo) = bottom-reflected field
R(K) = plane-wave reflection coefficient
z+zo = total vertical distance traveled by a

reflected propagating plane wave

It is of interest to know R(K) since it contains information that
characterizes the assumed horizontally stratified ocean bottom.
In the following section, the details of the algorithm to compute

R(K) from the bottom-reflected field PR(r,z,zo) are presented.
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2.3 Evaluation of the Plane-Wave Reflection Coefficient.

In the previous section, we indicated that the bottom-reflected
field can be interpreted in terms of plane waves modulated by the

plane-wave reflection coefficient R(K); that is,
*® J
e” K. =K (z+zo)
P (r,z,z.) =3 R(K) ——————— J (Kr) K dK (2.3.1)
R 0 0 0

This equation can be reduced to be of the form of a Hankel trans-

form by redefining the integrand. Define,

iV 2
e” K. -K (z+zo)
G(K,z,zo) = j R(K) ———— (2.3.2)

as the reflection process Green's function, then Eg. 2.3.1 reduces

to
] [e o]
PR(r,z,zo) = JO G(K,z,zo) JO(Kr) K dKk (2.3.3)

If we assume the source and receivers to be at a constant height

from the bottom, z and zO become constant parameters, and Eq. 2.3.3

simplifies to
P_(x) = J G(K) J.(Kr) K dK (2.3.4)
R 0 0

Eg. 2.3.4 constitutes a zero-order inverse Hankel transform. The
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plane-wave reflection coefficient R(K) can be represented in terms
of the bottom-reflected field PR(r) by computing the Hankel trans-

form. Thus,
G(K) = Jo PR(r) Jo(Kr) rdr (2.3.5)

This transformation can be proved valid by substituting Eq. 2.3.5
in Eq. 2.3.4 and factoring the result using the orthogonality

(17)

property of Bessel functions

JO JO(Kr) JO(Kr) rdr = ——~ (2.3.6)

]

=
Il

=

where 8§ (K-K) = {

o
o>
S
~

Substituting Eqg. 2.3.2 in Eg. 2.3.5, the relationship between the

plane-wave reflection coefficient and the bottom-reflected field is

- +
R(K) = -k e I%5(7¥Z() p_(r) J.(Kr) rdr (2.3.7)
z R 0
0
where KZ = vertical wavenumber = VK 2—K2

1

The plane-wave reflection coefficient R(K) identifies a very
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general class of ocean bottom. The only constraint is that the
vocean bottom be horizontally stratified.

In computing R(K), the method exploits the circular symmetry
of the bottom-reflected field PR(r) in the (x,vy) plgne (r2 =
x2 + y2). It is this property that allows a Hankel transform to
be equivalently defined in the form of a two-~dimensional Fourier

transform.

From Figure 2.1,

x =1 cos §
(2.3.8)
y = r sin ¢

Similarly, R(K) is also circularly symmetric in the (KX,Ky) plane.

Thus,

K = K cos &

X
Ky = K sin a (2.3.9)
R(K) = R(VKx2+Ky2 )

(17)

An integral representation of Jo(Kr) is

27

_ 1 -jKr cos (a-§)
JO(Kr) = on e as (2.3.10)

valid for any angle a.
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Substituting Eq. 2.3.10 in Egq. 2.3.7,

® 27
. -jK + : - -
R(K) = _sz o IK, (z zo) g;_J b (r) x J o jKr cos (u 6)d6 ar
0 0

(2.3.11)
and with a change of variables, Eg. 2.3.11 becomes
oo
_ - -3K_(z+z_) 1 -JK x -JK vy
R(Kx,Ky) jKZ e Z 0 o JJ PR(x,y) e X e vy’ dx dy
(2.3.12)
which, from Eg. 2.3.5, implies
(o]
1 -JK x -JK y
K = — P .3.
G(Kx' y) > IJ R(X,y) e 7x e 7y’ dx dy (2.3.13)

= OO

The integral in Eq. 2.3.12 constitutes a two-dimensional
Fourier transform. Since the Fourier transform of a circularly
symmetric function is also circularly symmetric, PR(x,y) and
R(KX,Ky) are completely specified by their corresponding radial
slices. The technique in evaluating Eg. 2.3.12 is an application

(10 based

of a recent method by Oppenheim, Frisk, and Martinez
on the "projection=-slice" theorem. In essence, this theorem

states that a slice at any angle through a two-dimensional trans-
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form is the one-dimensional transform of a projection at the same
angle of the original two-dimensional function. In the case of
a circularly symmetric function R(K), the one-dimensional Fourier
transform of a projection of PR(x,y) specifies the entire two-
dimensional Fourier transform R(Kx'Ky)' Therefore,’Eq. 2.3.12

can be equivalently specified by

0
. -jK_(z+ -1
R(K ) = -5k e 155 (FZ() —}—J P (x) e Xy ax (2.3.14)
X z 2T ) _o y
where K =7V 2 2
Z K. -K
1 X
=

and Py(x) 2 JO PR(Vx2+y2 }y dy | (2.3.15)

is the projection of the circularly symmetric function PR(/;Z;;E)
onto the x-axis.

The sampling theorem(z) states that a band-limited function,
with zero spectral content for K Z'Kmax' is completely specified
by the values of its samples located at a distance Ax apart
provided Ax g_ﬂ/Kmax. That is, if PR(r) is a band-limited function,
i.e., G(K) = 0 for K z'Kmax' then Egs. 2.3.14 and 2.3.15 can be
computed by evaluating a one-dimensional discrete Fourier transform
and a simple summation, respectively. This can be shown by first

interpreting Egs. 2.3.14 and 2.3.15 as follows:
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_- + © -‘
R(K ) = -3k e X5 (#F2g) BX 5 5 (nax) e JKpbx 5 3.16)
b4 Z 2w ne—w Y
and
= v .3.
Py(nAx) 20y E PR( (nAx)2+(2Ay)2 ) (2.3.17)

2=0

2T

provided only that Ax i_KTT and Ay X .

max max

The plane-wave reflection coefficient in Eg. 2.3.16 can then

12
be efficiently calculated at N equally spaced values AK = E-ZE-,
using the one-dimensional FFT. Thus,

-3k (z+z ) Ax ® N1 -jnmAXAK
RmAR) = -5k e Fn(FZ) X5 5 o (ax(n+im) e’
m 27
== n=0
(2.3.18)
or
N-1 © .27
- + A . ——
R(mbK) = -JK_ e IK, (2420) 5%- 5 [ T P (Ax(n+in))] e W M

n=0 i=-w

{(2.3.19)

b1
where Km VKlz—(mAK)z
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If the samples Py(x) constitute a finite-length sequence of
length < NAx, the evaluation of the plane-wave reflection coefficient
reduces to
-1 2T

$ P (ndx) e TN % (2.3.20)
n=0 Y

. N
- +
iK (z zo) Ax

R{mAK) = —ij e on

and

P (nAx) = 20y % P_(V
Y =0

(nAx)2+(gAy)2 ) (2.3.21)

2.4 Circular Windows

The computation of the plane-wave reflection coefficient R(K)
from samples of the bottom-reflected field has reduced to a one-

dimensional FFT and a summation. That is,

—3K (z4z) bx ©
m(ZT2g) EX
27

-1 LI
I P (ndx) e N (2.4.1)

R(mAK) = -jK e
m
n=0

and
o0
= g v 4.
Py(nAx) 2Ay o PR( (nAx)2+(2Ay)2 ) (2.4.2)
W 2T
where Ax i'K ; Ay i-K
max max
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Kn T Klz— (mAK) 2

These equations are strictly satisfied when PR(r) is a band-
limited function, or equivalently G(X) = 0 for K z_Kmax. However,
in actual physical systems, a function is not band—iimited in the
strict sense. 1In most cases, on the other hand, there is some
range of wavenumber outside of which the wavenumber spectrum is
of sufficiently small magnitude to be assumed zero with negligible
error.

Another point of importance in the evaluation of Eq. 2.4.1
is the assumption that the projection Py(nAX) is a finite-length
sequence of length < NAx, which allows Eq. 2.3.16 to reduce to
the form of Eq. 2.4.1. However, a function with most of the
energy confined to a finite bandwidth in the wavenumber domain,
in the range or x-domain, is often of considerable magnitude for
an appreciable distance. This forces the algorithm to numerically
compute the slice of the two-dimensional Fourier transform of a
truncated function. This means that Eg. 2.4.1 represents the
reflection coefficient of a truncated pressure field PR(r).b The
result of this approximation can be better understood by inter-

preting the truncated field in the following form

N
PR(r) = PR(r) « w(r) (2.4.3)
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where w(r) = circularly symmetric window.

The circularly symmetric window w(r) is a function of range r
and it is of finite range; that is, ¥ SRk This causes the
pressure field, BR(r), to be a windowed version of the theoretical
pressure field PR(r).

Let us define:

g(K) = the plane-wave reflection coefficient resulting
from processing a windowed version of the
pressure field PR(r).

Then, from Eg. 2.3.12,

o]

n . -JK_ (z+z ) 1 v -JK x -JK vy
’ = —-9K —_— P
R(Kx Ky) K, e z o] o [J R(x,y) e X e v* dxdy

-0

(2.4.4)

Substituting Eg. 2.4.3 in Eg. 2.4.4,
(o)

v . 3 -jK (Z+Z ) _].'_ 3
R(Kx,Ky) = jKZ e z 0 on H PR(x,y) wix,y) e

-0

K .
J xx e JKyy dxdy

(2.4.5)

Convolution < Fourier Transform Property

If we take the two-dimensional inverse Fourier transform
of the two-dimensional convolution of two functions, the result

is proportional to the product of their individual two-dimensional
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Fourier transforms, that is,

(o]

Y(K ,K ) = H(X ,XK y * F(K ,K ) = JJ H(XIB) F(K "'>\rK -B) drdag
x'7y x"y x'y x %

e CO

(2.4.6)
The inverse two-dimensional Fourier transform is
[oo] 0
1 jJK x JK vy
= = X F(K -A,K -
y(x,y) om JJ H(A,B) JJ (Kx A, v B) e?"x ey dKx de ardR
-—00 -Q0
(2.4.7)
Changing variables,
~ A . . P .
YY) = o ” H(A,B) H ra,®) &% e asag I Y aras
EYe o] -0
(2.4.8)
= 2m h(x,y) * £(x,y) (2.4.9)
Thus,
2-D FT

21 hix,y) « £(x,y) <> H(Kx'Ky) * F(Kx,Ky) (2.4.10)
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Interpreting Eg. 2.4.5 in the form of Eq. 2.4.10,

- +
e sz(z zo) 1

R(K ,Ky) = -jK o G(Kx,Ky) * W(Kx,Ky) (2.4.11)
or
R(K_,K ) = —l—R(K K *F WK ,K ) (2.4.12)
Xy 2m Xy X'y
where W(Kx,Ky) = two-dimensional Fourier transform of w(x,y).

Eqg. 2.4.12 indicates that g(Kx’Ky) is proportional to the
exact plane-wave reflection coefficient R(Kx,Ky) convo}ved with
the two-dimensional transform of the window. ‘In the process of
convolution between the exact Fourier transform of a function
with the Fourier transform of the window, we try to choose a
window w(x,y) to minimize the effect of wavenumber leakage due
to the sidelobes and the degradation in resolution of the wave-
number components due to the main-lobe of the window.

In an attempt to predict the effects of the two-dimensional
window on the computation of the plane-wave reflection coefficient,
we will present the radial slice of the two-dimensional Fourier
transform of a circular pill-box window, a circular Hamming window,
and a circular Hanning window. Since the windows are circularly

symmetric, their radial slices completely specify the two-
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dimensional Fourier transforms. The numerical steps are indicated

in Appendix I.

CIRCULAR PILL-BOX WINDOW

The pill-box window is generated by circularly rotating a

rectangular window in one dimension. That is,

I
=
H

| A
=

w(r) =w(v 2 2) (2.4.13)
X +y

In Figure 2.2, we illustrate the radial slice of its two-
dimensional Fourier transform. The first zero-crossing, which

determines half of the width of the main-lobe, is at approximately

and the level of the first side-lobe is about
= -17.0
LS 4daB

from the main-lobe.



CIRCULAR HAMMING WINDOW
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Another window of interest is the circular Hamming window.

Its functional representation is

!

w(r)

0.54 + 0.46 cos (7x) r<1

(2.4.14)

The radial slice is shown in Figure 2.3. For this window, the

main-lobe is wider compared to the pill-box window.

X = 7.0

w/ 2

pbut the first side-lobe is of lower level,

L, = -48.0 dB

CIRCULAR HANNING WINDOW

This third example is illustrated in Figure 2.4.

That is,

It represents

the radial slice of the two-dimensional Fourier transform of a

circular Hanning window. The functional representation is

it

w(r)

0.5 + 0.5 cos (7mr) r <1

(2.4.15)
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It is similar to the previous circular Hamming window in Eq. 2.4.14.

The half-width of the main-lobe is approximately

K = 7.
w/2 1

and with a first side-lobe level of
L = -34 dB
S

but with a faster side-lobe falloff. These results are analogous

to their corresponding one-dimensional windows.

In terms of width of main-lobe and level of first side-lobe,
it is apparent that either the circular Hamming window or a
circular Hanning window would be preferable to the circular pill-
box window. This is indeed the case for this application.

In Chapters 3 and 4, we will compute the plane-wave reflection
coefficient
e—jKZ(z+z ) 1

0 =— G(K ,K ) * W(K ,K) (2.4.16)
Xy Xy

r\J .
R(Kx'Ky) - _]Kz 2m

for two simple models of the ocean bottom. We will use the circular
Hamming and Hanning windows in Egs. 2.4.14 and 2.4.15, respectively.

In this application, we will find that a window with fast
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asymptotic rate of falloff of the side-lobes improves the accuracy

of the results more than a window with lower first side-lobe level.

2.5 Scaling Property

In the computation of a Hankel transform, we might have the
need to evaluate the same function for different parameters. For
example, the accuracy of the algorithm in the computation of the
plane-wave reflection coefficient might be checked for different
source and receiver distances and,different acoustic frequencies.
In this section, we present the conditions or the necessary scaling
on the parameters and functions to keep the same accuracy.

A two-dimensional Fourier transform pair satisfies the following
relationship:

2-D FT
P (x,y) > G(K K ) (P.2.5.1)

2-D FT
P(x/A,y/b) < A G(AKX,AKy)

or, in terms of a Hankel transform,

HT
P(r) < G(K) (P.2.5.2)

HT )
P(x/A) <> A" G(AK)
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From Eq. 2.4.16, the computation of the plane-wave reflection
coefficient consists of
v , ————— =3V 2 2 2 +
Nk oK) = -3/ 2 2.2 e 3k 2k 2x 2 (22
x'y K, - 1 x vy

-K
1 Kx v

(2.5.1)

1
— K * ’
o G( X,Ky) W(Kx Ky)

Let us assume that an Experiment #1 was conducted where the pressure

field was
P(XIY)

with a source plus receiver height (z+zo), at an acoustic frequency

f, such that
k==Y (2.5.2)
C

and it was numerically processed with a circularly symmetric

window
W(XIY)

of radial aperture Rmax' If an Experiment #2 consists of source

plus receiver height at
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(Z+ZO)A=:A(Z+ZO) - (2.5.3)
where the pressure field is

P(x,y) = 5 2(x/D,7/8) | (2.5.4)
at an acoustic frequency %, such that

K
= A (2.5.5)

and numerically processed with a circularly symmetric window

wix,y) = w(x/bA,y/b) (2.5.6)
of radial aperture
R = AR (2.5.7)
max max

n
the calculated reflection coefficient RA(Kx'Ky) is equivalent to

n,
R(Kx'Ky) in Experiment #1.

The above statement can be proved by substituting Egs. 2.5.3 -

2.5.7 in Eg. 2.5.1. That is,
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R (k_,k) = -3/ e Mzrzg)  (5.5.8)
ATxy Ki2 22 2
(=) "=k =K
A Xy

2 2 2
) -K_ =K
X Y

13 * 0
o7 GK KD * WK LK)

The convolution in Eg. 2.5.8 is defined

G(K ,K ) * W(K_,K ) = [ (2.5.9)
X Y X Y

J G(a,8) W(K_—a,K ~B) dodB
X Y

From Property P.2.5.1, the two-dimensional Fourier transforms of

the pressure field (Eq. 2.5.4) and the window (Eg. 2.5.6) are

G(K ,K) = A G(AK_,0K ) (2.5.10)
X Y X Y
and
W(K ,K ) = A2 W(AK ,AK ) (2.5.11)
Xy x Y
respectively. Therefore,
B (K ,K) = 3/ 2 2 2 e_j/K 2-(AK )2—(AK )2 (z+z )
ATy T A Ky —(AKX) —(AKy) 1 X v 0

(2.5.12)

. A G(AK ,AK ) * W(AK ,AK )
2% X Yy p 4 Y
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or, equivalently,

N N

R, (K ,K ) = R(AK ,AK ) (2.5.13)
X Yy X Y

In summary,

Scaling Property

Experiment #1 Experiment #2
P(x,y) = acoustic pressure field P(x,y) = 1/A P{x/A,y/h)
(z+z0) = source plus receiver height (z+zo)A = A(z+z0)
Kl = w/c = natural wavenumber Kl = w/c = Kl/A
w(x,y) = circularly symmetric window w(x,y) = w(x/A,y/8)
R = radial aperture R = AR
max max max
" . N N
R(K ,K ) = plane-wave reflection R. (K ,K)=R(X , K)
b4 . Ay X 'y
coefficient

In Figure 2.5, we present the scaling property for two equivalent

examples, assuming the following relationship is satisfied
2 1
P(x,y) = K—P(X/A.y/A) (2.5.14)

where P(x,y) = pressure field for Experiment #1

P(x,Y) pressure field for Experiment #2

For a more general class of ocean models than the examples

presented in Chapters 3 and 4, the condition in Eg. 2.5.14 is not
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strictly satisfied. Some examples of analytically calculated
plane-wave reflection coefficients can be found in references (1)

and (7).
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CHAPTER 3

PERFECTLY REFLECTING OCEAN BOTTOM

3.1 Introduction

In the previous chapter, the algorithm for the computation
of the plane-wave reflection coefficient from samples of the
spherical pressure field was introduced. It was based on
evaluating the zero-order Hankel transform of the pressure field
or, equivalently, the Green's funqtion of the reflection process,
by numerically calculating the projection and its one-dimensional
Fourier transform. The plane-wave reflection coefficient was
then computed by simply multiplying the calculated Green's function
by a complex factor.

In the following sections, the algorithm is applied to the
computation of the plane-wave reflection coefficient for a
perféctly reflecting bottom. The plane-wave reflection coefficient

for this simple model is defined to be

R(K) =1 (3.1.1)

for all values of horizontal wavenumbers K. The pressure field
reflected off this impenetrable bottom can be analytically
calculated, and it is presented in Section 3.2. The exact
analytic calculation of the pressure field is what motivates

the use of this ideal model, since there is no approximation



49
in the values of the function as the input to the algorithm.
Section 3.3 discusses the evaluation of the Green's function
from samples of the reflected field. The numerically calculated

plane-wave reflection coefficient is then examined in Section 3.4.

3.2 Acoustic Pressure Field

A point source located in the ocean water column generates
spherical waves. For a continuous wave source, the total field
is the sum of a direct and a bottom-reflected arrival. That is,

~-jwt
e ] [PD(r,z,zO) + PR(r,z,zO)] (3.2.1)

If we assume the source height z_ and receiver height z to be

0

constant, then

ejKlR
. = = .2.2
PD(r,z,zO) PD(r) R (3 )
and
R xS %)
PR(r,z,zO = P r) =3 JO(Kr) KdxK
0 /2 2
K, =K
1

(3.2.3)

as derived in Egs. 2.2.15 and 2.2.16, respectively.
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In most cases the bottom-reflected field can be identified
alone, either by using a time-limited pulse or by subtracting
out the direct field. 1In Figure 3.1 the perfectly reflecting
bottom model is illustrated. The bottom-reflected field is
often interpreted as&the field emanating from an image source
located at (0,0,—zo).

The plane-wave reflection coefficient for a perfectly
reflecting bottom has magnitude of one and zero phase, as

defined in Fg. 3.1.1, for all horizontal wavenumber K, where

K, sin © (3.2.4)

e
1l

The bottom-reflected field can then be analytically calculated

by substituting Eg. 3.1.1 in Eg. 3.2.3. Thus,

j +
o o3V 22 (z+z)

P (r) =3 J 1 3, (Kr) KdK (3.2.5)
0 VPR
K. =K
1
(4)
oY
JK.R
P () = e Rl R (3.2.6)
R
where R = =

v 2
R /r2+(z+zo)2 x2+y2+(z+zo)

= natural wavenumber
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The expression in Eg. 3.2.6 represents a spherical wave propagating
away from the source at the natural wavenumber 2n/A, where A is the
source wavelength. If we follow the derivation presented on page 26
of Chapter 2, the reflected field can be equivalently interpreted

in terms of three-dimensional plane-waves. In general,

R(K ,K) . . .
_ 1 . X'y JK x JK vy JK (z+z))
PR(x,y) JJ e x ety ez 0 de de

(3.2.7)

where KX = horizontal wavenumber in the x-direction
Ky = horizontal wavenumber in the y-direction
K = vertical wavenumber = Y 2 2 v 2 2 2
Z K. -K = K, -K =K
1 1 X 'y

and for the perfectly reflecting bottom (R(Kx,Ky) = 1),
o0
. j + iK iK
e 1R_ Ly ” 1 K (zFzg) IKx IKY gx ek (3.2.8)
KZ X Y

The function

j + + +
plane~-wave - ej(KxX KyY KZ(Z zo))

in the general expression (Eg. 3.2.7) or, in the perfectly reflecting

model (Eq. 3.2.8), represents a three-dimensional plane-wave
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propagating in the coordinate system (x,y,z) with the corresponding
2 2

wavenumber (K ,XK ,K ) for (K "+K ) < K,, and it corresponds to

X'y 2z X Yy 1
a two-dimensional plane-wave propagating in the (x,y) plane and
decaying exponentially in the vertical direction away from the

2 2 .

. bottom for (KX +Ky ) Z-Kl' Thus, Eg. 3.2.7 is an expansion of
a spherical wave in terms of plane-waves.

This expansion in Eg. 3.2.7 is commonly referred to as an

inverse Fourier transform. The Fourier transform is

[}
-1 -jK . x -JKy
G(KX,Ky) = o JJ PR(X,Y) e ' x e Ty dxdy (3.2.9)
where
R(X ,K) .
G(K ,K) = j —=—3_ oK, (220) (3.2.10)
Xy Kz

is defined as the Green's function of the reflection process.

3.3 Green's Function

The bottom-reflected field in Eg. 3.2.3 is circularly symmetric,
since it is only a function of r2 = x2+y2. Similarly, the Green's
function in Eq. 3.2.10 is also circularly symmetric, since it is
only a function of K2 = KX2+Ky2. Circular symmetry allows the

two-dimensional Fourier transform to be completely specified by

its radial slice. It is important to note that the radial slice
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constitutes the Hankel transform. The plane-wave reflection
coefficient is, therefore, completely specified by its radial
slice.

For a perfectly reflecting bottom, a radial slice of the

Green's function is, from Eq. 3.2.10,

iV +
e:I K 2—K2 (z ZO)

G(K) = 3 : (3.3.1)
v 2 2
K. -K
1
where z4+z = total vertical distance traveled by the

propagating wave

It is a complex function of magnitude

.
v_ 2 .2
. Kl -K
magnitude - ﬁ
-V 2 2
ok _Kl (z+zo)
K| S K<
v_2 2
K -K
{ 1
and phase
{ ‘/ + ™
K12—K2 (z+z) + 5 0 <K<K

phase
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The inverse of the Green's function leads to the pressure
field, and it can be numerically calculated under the same
principles of the algorithm discussed in Chapter 2. However,
some caution must be taken for the integration to be exact.

The natural wavenumber must be assumed to have a small imaginary
component in order for the function F(K) to satisfy the equality
in Eq. 2.2.9. This constraint is physically interpreted as the

propagating medium being slightly absorbing. Thus, the function

é; = —— (3.3.2)
z 7
will still have a branch point, but instead of having infinite
magnitude at K=K if X, = Kl+ja (0o small), then

1 1

?}- " = - (3.3.3)
z |K = K v o2

wiil be finite, but of large magnitude. The branch point effect
(i.e., i_/;fa:;g.) can be avoided by preserving a positive
continuous ;unction, i.e., a positive radical for 0 < K < =;
this means that, in the process of computing the inverse Fourier
transform, there will not be a step discontinuity. On the other

hand, in evaluating Egs. 3.2.9 and 3.2.10, since the pressure

field is always an analytic function for all values of r = Vx2+y2 '
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~

the parameter o, in Kl = Kl+ju can be made zero without affecting
the results.
In Figures 3.2a and 3.2b, the magnitude and phase of the

analytic Green's function (Eg. 3.3.1) are shown, respectively.

The physical parameters are

z =10 m
zO = 10 m
£f = 50 Hz > Kl = 27f/c = 0.20944

c 1500 m/sec

Figure 3.2a shows the result of large amplitude of the Green's
function for values of K close to Kl; that is, plane waves
propagating almost at the natural wavenumber.

The region of the wavenumber domain for 0 < K < Kl corresponds
to propagating real plane waves. As mentioned before, they are
waves propagating in the three-dimensional coordinate system
(x,v,2) at wavenumbers (Kx'Ky'Kz) respectively. That is,

j (K x+K y+K +
plane wave - e]( X yy z(Z ZO))
or, equivalently, they are considered plane waves incident at

real angles of incidence € (Eg. 3.2.4). The section Kl <K<

is often interpreted as inhomogeneous propagating plane waves
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(1,7)

(evanescent waves) . In this region, the vertical wavenumber

becomes a complex function of the form

T e Y
z K, -K Kx +Ky —KlZ v (3.3.4)

thus

i (K x+K -Y_ 2 2 2 +
ej( xx yy) e K +K -K (z ZO)
X vy 1
which corresponds to plane waves propagating horizontally and
decaying exponentially as the source and receiver height from

the bottom is increased or as K becomes greater than X It

1

is this behavior that makes the Green's function almost band-

limited; that is, most of the source energy is confined to the

real plane wave region and part to the inhomogeneous region.
-From Eq. 2.4.11, the plane-wave reflection coefficient

resulting from a windowed pressure field is

—jKZ(z+z ) 1

00 — G(K ,K ) * W(K_,K ) (3.3.5)
X Y Xy

R(Kx,Ky) = -jK_ e o

where W(K ,X ) = two-dimensional Fourier transform of
the window w(x,Vy)

It is important to emphasize that the reflection coefficient
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is circularly symmetric and, therefore, it is completely specified
by a radial slice. Furthermore, the radial slice corresponds to
the Hankel transform. From Egs. 2.3.20 and 2.3.21, the discrete

plane-wave reflection coefficient resulting from a windowed pressure

field is
Nx—l 27
N -3 + A v —=—
¥maR) = -3k e K ? Zg) A% o ¥ (nax) e N MM (3.3.6)
m 27 Yy X
n=0
and
N
B (nAx) = 2oy I p_(/ 2 2 ) w(v/ 2 2 )
g P T A P TRY max) S (ay) T T T (nda) T+ (20y)
(3.3.7)
or, equivalently,
N - + n
R(mbx) = -3K_ e K, (2420) & (mak) (3.3.8)
and
N -1
n Ax X —52% o
G(mAK) = — z P (nAx) e °N (3.3.9)
27 n=0 vy X

'\J ]
where G (mAK) = numerically calculated Green's function
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and w(v ) = circularly symmetric window

(nAx)2+(£Ay)2

vided Ax < /K and Ay < 2mw/K £ =0 > .
provi x <7/ nax n y < 2n/ ax or G(K) when K -'Kmax
The pressure field for the perfectly reflecting bottom is almost
band-limited, as shown in Figure 3.2a. In terms of sampling, it
will be assumed that a value of Kmax > 0.6 will introduce a minor

(13
aliasing - effect and can be neglected. The corresponding

samplings for

K = 0.6 (3.3.10)
max
are Ax = n/0.6 (3.3.11a)
and . Ay = 7/0.3 (3.3.11b)

in the x-direction and y-direction, respectively.

In Figure 3.3, we present the results of calculating the
magnitude and phase of the Green's function for a perfectly
reflecting bottom by processing the pressure field (Eq. 3.2.6)

applying a circular Hamming window of the following form

v/ 2 2
T ) = 0.54 + 0.46 cos (—2ox) *(RAy) .

2 H
(nAx) "+ (24y) Rmax

w(/

/(nAx)2+(£Ay)2 < R (3.3.12)
— “max
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= 0 ; otherwise
N Ax
where R = (—5 - 1) Ax + —
max 2 2

Figure 3.4 shows the magnitude and phase of the Green's function
for a perfectly reflecting bottom, using a circular Hanning window

of the form

v 2 2
2) = 0.5+ 0.5 cos (.IT (ndx) +(24y)

(nAx)2+(2Ay) R
max

Yi

w(v

/(nAx)2+(1Ay)2 SRk (3.3.13)

=0 ; otherwise

The result for the phase clearly indicates that a more accurate
result is achieved by applying this circular Hanning window.

In the following section, we‘will discuss the improvement
in the magnitude and phase of the Green's function when using
a circular Hanning window instead of a circular Hamming window.

Also, we will examine the contribution, as K approaches K., of

1
the function l/KZ (Eg. 3.3.2), when evaluating the slice of the
two-dimensional convolution between the Green's function and the

window to calculate the plane-wave reflection coefficient in

Eg. 3.3.5.
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3.4 Reflection Coefficient

In the last section, we calculated the Green's function from
samples of the bottom-reflected field for a perfectly reflecting
bottom. Figure 3.3 illustrated the magnitude and phase using a
circular Hamming window. In Figure 3.4, the magnituée and phase
were shown for the case of a circular Hanning window.

The plane-wave reflection coefficient can then be simply
calculated by multiplying the Green's function by the complex
factor
e—ij(z+zO)

CF (mAK) = —ij (3.4.1)

where K =

2 2 < AK < 3.4.2
m ~ Tk, %= (mak) 0 <mik < K, )

= jv 2 2 < < o
I (mAx) “—x Ky < mb
1
as specified in Eq. 3.3.8. This complex factor corresponds to
the discrete inverse of G(K) in Eq. 3.3.1. Therefore, if we

multiply Eg. 3.4.1 times the Green's function, the result should

be
R(K) =1 (3.4.3)

for all regions of the wavenumber domain K.
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Figures 3.5 and 3.6 show the numerically calculated magnitude
and phase of the plane-wave reflection coefficient using a circular
Hamming and a circular Hanning window, respectively.

As mentioned in the last section, we can divide the wavenumber

domain into two regions. These regions are

(1) Real plane waves for 0 < K < Kl

(2) Inhomogeneous plane waves for Kl < K<

In Figure 3.5, the error for the real plane wave region is
small compared to the inhomogeneous region. In Figure 3.6, on
the other hand, there is a negligible error in the real plane
wave region for 0 < K < Kl = 0.2094, and there is a small deviation
from the theoretical answer (R(XK) = 1) for values of wavenumber K
in the range Kl < K < 0.36. These results indicate that a Hanning
windéw substantially improves the accuracy of the results, compared
to the results obtained using a Hamming window.

The discontinuity for values of K close to Kl is due to the

infinite magnitude of the function l/VK 2_K2 at K = K. (Eg. 3.3.1).

1
Thus, in the process of evaluating the two-dimensional convolution

1

between the Green's function and the transform of the window, the
result of the discontinuity is analogous to a one-dimensional
convolution when one is numerically calculating the spectrum of

a function with a pole at the resonant frequency. The effect of



69

090

*MOPUTM DUTWWRH
Tetnoxto e butA1dde wolj0q putqzoetrzeox KAr3zoozaad
® I0J JUSTOTIIOO0O UOTIDSTISI podjeIndied Jo apnayTubeR

(%) YIGWNNIAUM

‘ec g 2anbTg

ya'0 ey'o r'0 8¢t 0 0¢'0 Yo Q10 210 80'0 00'0

1 I 1 1 I ) ' L 5 o
3
o
. 3

pre)

x .

¥Z0T = N Imu.‘I.

Xeu m

w/T 9°0 = A 55

-

—

Q

=
o

Fo O

8 Q

m

m

3!

r—

o

S

em

=

—

U =X

_:__ ¢ w5, D

_ | | ﬂi_ ﬁ 0 e
%
! o

o¥



70

080 ¥9°0
}

*MOpUTM DuTumeH
TeTnoxTo e BurtATdde wo3llroq butjoeTyax AT3oezaed

e 10 JUSTOTIFOOO UOTIOS[ISA pojelnoTed FO 25TUd “qg g =anbtd

(M) HIGUNNIABM
o0 a0 9:0 06°0 V2o o0 aro 80°0 000

S, TR

1
LA~ 3831~ 6U° 08l

T

1L098-

v

e

e At
ot ———

TR Y

T

1L°83

(533¥930)358Hd

LA

£9°833

00°081



71

08°0

¥3'0

*MOPUTM DuTuueH
TeTnoxto e butdidde wojjoq butrjoelyex A1rosjaed
e I0J QUSTOTIIDO0D UOT3IO9TISI pojeIndleo 3Jo spnjrtubey

(M) Y3IGUNNIAUM

ay'0 3y 0 980 060 ¥2°0 81°0
1 5 [ 3

‘eg- ¢ oanbra.

210

800

00'e

1 ! ) | X 5
o
=)
L2
3
o)
X m
20T = N mm
o
- Xeu Y
u ° = i > [T
/T 2°0 AN
Il
—t
. Q
z
2
89
m
!
m
—
o)
o) —t
°m
=z
: —
- =
e D
IIJ ﬂl 33
A
S
a

o1



72

08°0

-MmoputmM buTuueH
TeTnoxTo e butdA1dde wojrjoq butiosTysl K13oezasd
® I0J JUSTOTFFO0D UOTIOD[FSI pojendIed JoO 9SBUd

(¥) Y3GUNNIAUM

‘q9-¢ °anb1d

ya'o 8r+o 0 96°0 0§"0 2 10 2o 80°0 00'0,
[N ) i 3 1 3 1 1 [N 1
3
&
oQ
L
~n
o
o
~3
1
B
=
0
) pu
A —Hu
lro (N
dm
u)
\ w)
i _ m
. 0]
PRy
Lo m
LM
il &)
Nt
~J
=3
-
L%
i »
&
-3
L

00° 081



73
this discontinuity on the accuracy of the results, for the real
and inhomogeneous plane wave regions, is assumed to be minimized

by the choice of window; a window of large side-lobe levels and

slow falloff contributes more to wavenumber leakage as it approaches

a region of infinite or of large magnitude.

In Section 2.4 on circular windows, we found that the main-
lobe for a circular Hamming and a circular Hanning window wefe
almost of the same width (Kw/Z = 7) with different side-lobe
levels. The Hankel transforms illustrated in Figures 2.3 and
2.4 were of the same radial aperture, R.max = 1, for a Hamming
and a Hanning window, respectively. 1In Figure 3.7, we present

the Hankel transform of a Hamming window (Eg. 3.3.12) used to

range-limit the pressure field, with a radial aperture

N

A
R o= (-1 ax+ =2 (3.4.4)
max 2 2
™ m
= —_—— e — .
511 0.6 1.2 2678.2

That is, the Hankel transform in Figure 3.7 is a scaled version
of the Hankel transform of Eg. 2.4.14 with A = 2678.2. 1In

Section 2.5, we presented the property

HT
P(r) <> G(K) (p.3.4.1)

HT
P(r/A) <> A7 G(AK)



74
applicable to the evaluation of a Hankel transform. From Property
P.3.4.1, we conclude that the first side-~lobe in Figure 3.7 must

be located at approximately

Kw/2 = R. = 2.6 « 10 (3.4.5)

This indicates that Figure 3.7, for the region 0 < K < 0.04, is
analogous to the Hankel transform of Eqg. 2.4.14 shown in Figure
2.3; i.e., this region corresponds to the main-lobe and first group
of side-lobes compressed together.

In Figufe 3.7, if we define the region 0 < K < 0.06 as main-
side-lobe region and K > 0.06 as last-sidelobe region, the width
of the main-sidelobe region and the level of the last-sidelobe

region for a circular Hamming window are, respectively,

CIRCULAR HAMMING WINDOW

main-sidelobe width = 0.06 (3.4.6)

level of last-sidelobe region = -90 dB

On the other hand, as shown in Figure 3.8 for a circular
Hanning window, the main-sidelobe width and the level of the

last-sidelobe region are,
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CIRCULAR HANNING WINDOW

main-sidelobe width = 0.04 (3.4.7)

level of last-sidelocbe region = -130 dB

The circular Hanning window minimizes the waveﬁumber leakage,
since it has the fastest side-lobe falleoff or, equivalently, the
shortest main-sidelobe width, and with the lowest level of last-
sidelobe region. It is this difference in main-lobe width and
level of last-sidelobe region between the two windows that causes
the improvement in the accuracy of the results (Figure 3.6) for
the magnitude and phase of the plane-wave reflection coefficient.

The %esults in Figure 3.6 show that the inhomogeneous plane-
wave region for K > 0.36 becomes very oscillatory as K increases.
This region corresponds to small values in the magnitude of the
exact Green's function illustrated in Figure 3.2 or the calculated
function in Figure 3.4. Thus, the oscillations in the calculated
phase are expected since, in the limit, as the magnitude of the
complex vector approaches zero, the phase can hold any value.
Similarly, the oscillations in the magnitude of the inhomogeneous
region are suspected to be caused by some numerical problem.
Recall from Eg. 3.3.8 that the calculated plane-wave reflection
coefficient is proportional to the numerically calculated Green's

function; that is,
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R(mdK) = ~3K_ e X (7720) ¥ (max) (3.4.8)

where the proportional factor is (Eg. 3.4.1)

-3 +
e JKm(z zo)

CF(mAK) = ~3K_ (3.4.9)
and
Kn T ‘Klz—'(mAK)2 0 < mAK <K (3.4.10)

The factor in Eg. 3.4.9 corresponds to the discrete inverse of
the exact Green's function, for the plane-wave reflection
coefficient of a perfectly reflecting bottom, such that when
multiplied by the numerically calculated Green's function the

expected result would be

R(K) = 1.0 (3.4.11)

for all wavenumbers K. This indicates, since the Green's
function is of small mangitude for K > 0.36, that the product
involves large numbers times small numbers which can only be

carried out very accurately by performing double precision
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arithmetic (approximately 13 significant figures). Similarly,
the oscillations in the phase, as concluded from the previous
discussion, are caused by small values in the magnitude, which
are also expected to be improved by using double precision.

Figure 3.9 presents the results of using double precision
in the evaluation of the plane-wave reflection coefficient for
a perfectly reflecting bottom. The magnitude in Figure 3.9
illustrates accurate résults for both the real plane-wave region
and the inhomogeneous plane-wave region. As discussed in the
early part of this section, the discontinuity for values of the
horizontal wavenumber K close to the natural wavenumber Kl is
a result of convolving through a point of infinite amplitude
(1//;—5:;5-). For values of K > 0.54, there is a need of even
more iccuracy than double precision. The phase, on the other
hand, holds almost a constant value of zero for both regions
of the wavenumber domain, except close to the infinite amplitude
section.

In this chapter, we have studied the application of the
algorithm to the computation of the plane-wave reflection
coefficient for a perfectly reflecting bottom. It was of interest
to analyze this simple model, since there was no approximation
in the discrete samples of the pressure field input to the
algorithm. In Chapter 4, we discuss an isovelocity-low speed

bottom model. TFor this more general model, the discrete samples
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of the pressure field as the input to the algorithm must be

analytically approximated.

82
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CHAPTER 4

ISOVELOCITY-LOW SPEED OCEAN BOTTOM

4,1 Introduction

In the previous chapter, we have studied the application of
the algorithm presented in Chapter 2 to the numerical evaluation
of the plane-wave reflection coefficient for a perfectly reflecting
ocean bottom. An analytical expression was calculated for the
pressure field, which led to exact discrete samples as the input
to the algorithm. The plane-wave reflection coefficient was then
calculated from the Hankel transform of the pressure field,
indicating accurate results for both the real plane wave and
inhomogeneous plane wave regions.

This chapter discusses the application of the algorithm
to the computation of the plane-wave reflection coefficient for
an iéovelocity—low speed ocean bottom. It represents a more
general model. For most ocean bottoms, the sound velocity in
the surficial sediments is of smaller magnitude than the sound
velocity in the overlying homogeneous half-space. It is also
of interest since we can analytically calculate an approximate
expression to the discrete samples of the acoustic pressure field
as the input to the algorithm; an exact analytic expression for
the pressure field can only be calculated for the perfectly
reflecting bottom model. Section 4.2 discusses the approximation

to the acoustic pressure field. The Green's function calculated
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from samples of the pressure field is presented in Section 4.3.
The plane-wave reflection coefficient is then analyzed in

Section 4.4.

4.2 Acoustic Pressure Field

The acoustic pressure field represented by a spherical wave
emanating from a point source was derived in Chapter 2. We found
that a spherical wave can be equivalently expanded into plane
waves. For a continuous source located at a constant height ZO'
the reflected field recorded at the hydrophone at a height =z from
jwt

the bottom (omitting the time factor e and assuming the source

strength Sp = 1) is

iV, 2 +
ej K —K2 (z ZO)

o
P (1) = j R(K) L J_(Kr) KdK  (4.2.1)
R 2z 0
0 K, -K
1
wheré K. = w/c.and R(K) is the plane-wave reflection coefficient

1

l

that modulates each of the reflected plane waves.

The plane-wave reflection coefficient can be similarly
defined as the ratio of the reflected wave to the incident plane
wave evaluated at the boundary. For different types of ocean
bottoms it is found by satisfying the boundary conditions of
continuity of normal stress and displacement at the water-bottom
interface. An outline of the derivation of the plane—wéve

reflection coefficient for a two-layer medium homogeneous
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water column - isovelocity bottom is presented. A more complete

discussion can be found in reference (1).

Homogeneous Water Column - Isovelocity Bottom Reflection Coefficient

This model is illustrated in Figure 4.1. The incident plane

wave is of the form

. + _
Pi(x,y,z) = ej(KxX Kyy Kzz) (4.2.2)
and the reflected plane wave can be written
j +K_y+K
P (%,7,2) = R(K) o (R xHE y+K 2) (4.2.3)

R(K) can be equivalently expressed in terms of the incident angle

® since K = Kl sin 6. The total field in the water column is then

PT(XIYIZ) = Pi(XIYIZ) + PR(X,Y,Z) (4.2.4)

or

-jK z

PT(x,y,z) = [e 727 + R(K) eszz] ej[KXX+KYY] (4.2.5)

Similarly, the refracted wave is
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-jK j +
P_(x,7,2) = WK) e K, g2 J (K px + K g¥) (4.2.6)

where KxB = KB sin B cos o
KyB = KB sin B sin o
KzB = KB cos B
KB = w/cB
cg = sound velocity in the bottom
c% = density in the bottom

w(K)= transmission coefficient

The boundary conditions at the water-bottom interface (z = 0) are

Continuity of Pressure PT = PB (4.2.7a)
9P 3P
N y . 1 1 4.2.7
Continuity of Normal w = wB -+ -5 —5?T = —p—— —5-5- ( b)
Component of Particle B
Velocity

Substituting Egs. 4.2.5 and 4.2.6 into Eq. 4.2.7a with z = 0,

we have

' - + -K
LR() = W) oI [ Ky Ex + (7K )y] (4.2.8)
but since the left hand side is independent of x and y, the right

hand side must also be independent of x and y. Thus,
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=K = i = ]
KxB . KB sin B cos o Kl sin 6 cos a (4.2.9a)
and
KyB = Ky % KB sin B sin a = Kl sin 6 sin a (4.2.9b)
or, equivalently,
Refraction Law (Snell's Law) KB sin 8 = Kl sin 0 (4.2.10)
Define
KB C
n=z—=-c—' ' (4.2.11a)
1 B
and
P
m = = (4.2.11b)
p
the, Eg. 4.2.8 reduces to
W(K) = (1 + R(K)) (4.2.12)

Now, substituting Egs. 4.2.5 and 4.2.6 in the second boundary

condition (Eg. 4.2.7b), the result is

g+

Kz(l - R(K)) = KzB W(K) (4.2.13)
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or

cos € (1 - R(K)) =

=R k=]

cos B W(K) (4.2.14)

From Egs. 4.2.12 and 4.2.14, the plane-wave reflection

coefficient is

BV 2 2-V/ 2 2
—g' Kl -K -K
R(K) = > (4.2.15)
__13_/;2_K2+/K2 2
p 1 B
where Kl = w/c

K =

5 w/cB )

¢ = sound velocity in the water column

cp = sound velocity in the bottom

p = density in the water column

p. = density in the bottom

The pressure field reflected off this two homogeneous half-
spaces model can then be expressed in terms of the reflection

coefficient by substituting Eg. 4.2.15 in Eg. 4.2.1. That is,

e - v +
. B /Klz_Kz /KB2_K2 oJ Kl2_K2(z z)
P (x) =3 [ -2 ] 3, (Kr) XK
%YV 2 2+ 2 2 2 2
0o — 'k K KK K, “K

(4.2.16)
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The integral in Eg. 4.2.16 cannot be solved to determine an
exact analytic expression. However, it is possible to treat the
integral by the method of steepest descents and obtain an
asymptotic expression. Brekhovskikh (reference (1)) derives this
expansion in detail by interpreting the integral inAEq. 4.2.16

in the form
I = J JLE®T pigy a (4.2.17)
C

where C is the path of integration in the g-plane. The path of
integration can be deformed such that the value of the integral
is principally determined by a more simplified expression. From
the general properties of analytic functions, the path of steepest
descent corresponds to the region where the integrand decreases
most rapidly as the variable of integration moves away from this
saddie point. It is this property that leads to the asymptotic
expansion.

From Brekhovskikh (Eq. 19.36) the approximate expression for

the pressure field is

JK.R ’
p_(x) = 9—%—5 [R(8) - j-;j—-] (4.2.18)
R R

where RR = r2+(z+zo)2

=~
Il

K1 sin ©



21
R(8) = plane-wave reflection coefficient in terms
of angle of incidence 6
2
3 R(9) + OR(6)

cot 9 ]
502 36

N =1/2 |

The first order approximation to Eq. 4.2.16 is, therefore,

iK_ R
e:l 1 R

PR(r) = R(D) RR (4.2.19)

The discrete samples of the pressure field as the input to the

algorithm can then be calculated from Eqg. 4.2.19.

4.3 Green's Function

The Green's function is defined (Eg. 2.3.2)

R(K) esz(z+zo)
Kz

G(K) = 3 (4.3.1)

where K =+vV_2 2

Thus, the Green's function is proportional to the plane-wave
reflection coefficient. It is related to the reflected pressure
field through the zero-order Hankel transform

G(K) = J PR(r) JO(Kr) rdr (4.3.2)
0

The algortihm studied in Chapter 2 evaluates Eq. 4.3.2 by



92

calculating the projection of the pressure field onto the x-axis

and consequently computing a one-dimensional FFT. That is,

N -1
n Ax X 4 —j—2-TL nm
SmAak) = 22 1 B (nax) e N (4.3.3)
27 X
n=0 :
and
N
n b4 / .
- 2 .3.4)
P, (ndx) = 2hy xio P 2 aayy 2 ) Y (g 2 aapy 2 4034

provided Ax < /K and Ay < 2w/K , for G(K) = 0 when K > K .
- max - max — "max

Substituting Eq. 4.2.15 in Eg. 4.3.1, the analytic Green's

function for an isovelocity-low speed bottom model is

f - 4 +
? /klz_ 2 /%Bz ERS Kl2_K2(z z,)
G(K) = j (4.3.5)
8 /’ 2_ 2+ /' 2_2 V2 2
— -K K. -K
o N1 %5 1

and it is illustrated in Figure 4.2. The physical parameters are

z =10 m
= 10

zO m

f = 50 Hz

c¢ = 1700 m/sec

c_ = 1500 m/sec

B
p = 1.0
p. = 1.5
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It is interesting to note the behavior of the Green's function
when the numerator of the reflection coefficient is zero. At
this point, the value of the wavenumber identifies what is
commonly referred to as the Brewster's angle, or angle of intro-
mission, and it is physically interpreted as all the energy being
refracted into the bottom. For the above physical parameters,

it corresponds to

/ 2 Ei._ 2 w2
B 2 e RE
K = 2 (4.3.6a)
v 2 2
% p
or at a Brewster's angle
o = sin-l(és-) = 62° (4.3.6b)

and fefracted into the bottom at an angle (Eqg. 4.2.10},

K
8 = sin 1] E%-sin 6 1 =51° (4.3.6¢)

B
The pressure field for this model has a more band-limited
pehavior than for the perfectly reflecting bottom, as illustrated
in Figure 4.2. This is expected since the magnitude of the plane-
wave reflection coefficient is always bounded by 1 for these

examples of ocean bottom models. That is,
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IR(x)]| <1 (4.3.7)

The calculated Green's function from approximated samples of the
pressure field (Eg. 4.2.19) is shown in Figure 4.3; for a Hanning

window of the form

ﬂ/(nAx)2+(2Ay)2

W(‘/(nAx)2+(sz,Ay)2 ) = 0.5+0.5 cos ( Yi

max

/(nAx)2+(£Ay)2 iRmax

=0 ; otherwise . (4.3.8)
Nx 1
= — - 4+ — = . .3
where R o ¢ 5 1) > ] Ax = 2678.2 (4.3.9)
and a sampling (for K = 0.6)
max
Ax = w/0.6 (4.3.10a)
Ay = 2Ax (4.3.10b)

The effect of a first order approximation of the pressure field
is obvious. The calculated Green's function tends to follow the

exact analytical answer shown in Figure 4.2. At the Brewster's
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angle or, equivalently, K = .1624 1/m, the magnitude of the function
does not quite reach a value of zero. The oscillations for K > 0,36
is a result of small values in the magnitude of the complex vector.
As discussed in Chapter 3, these oscillations can be improved by
using double precision arithmetic. The plane-wave reflection
coefficient with single and double precision is presented in the

next section.

4.4 Reflection Coefficient

The plane-wave reflection coefficient, as discussed in
Chapter 2, is proportional to the Green's function. The pro-

portional factor is

- +
e JKm(z zo)

CF(mAK) = —ij (4.4.1)
: =V 2 < mAK < K
where Km Kl —(mAK)2 0 < mAK < 1
(4.4.2)
= jv¥ 2 K. < mAK < o
J (mA1<)2—Kl 1 ="

From Eq. 4.2.15, the exact analytic plane-wave reflection coefficient

is given by

(4.4.3)
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It is shown in Figure 4.4 for the same parameters used to calculate

the Green's function in the preceding section; i.e.,

p = 1.0
= 1.5
QB 1

_2mnf _ 2m 50 Hz _
Kl T "¢ 1700 m/sec -1848

2% 21 50 Hz
Kg = cy ~ 1500 m/sec -2094

The calculated plane-wave reflection coefficient, from

Eg. 4.4.1, can be expressed as
R(mAK) = -3K_ e 3% (2%20) & (maxy (4.4.4)

wheré g(mAK) represents the calculated Green's function in Eg. 4.3.3.
The calculated plane-wave reflection coefficient is shown in
Figure 4.5; it corresponds to the product of the calculated Green's
function and the complex factor, as specified in Eq. 4.4.4. The
double precision eguivalent of Figure 4.5 is illustrated in
Figure 4.6. These results indicate that the oscillatory effect
due to small values in the magnitude of the Green's function is
improved by using double precision. This improvement is consistent

with the results found in Chapter 3. Also, these figures illustrate
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the result of approximating the pressure field by a first order
approximation in Eq. 4.2.19.

The examples in Chapters 3 and 4 have illustrated the
applicability of the algorithm presented in Chapter 2 to the
computation of the plane-wave reflection coefficient from samples
of the reflected acoustic pressure field. The results in Chapter 3
showed favorable agreement with the exact analytic values; the
discrete samples of the pressure field as the input to the algorithm
were calculated from an exact derived expression. For the iso-
velocity-low speed bottom model, however, an exact analytic
expression for the reflected acoustic field was not possible;

a first order asymptotic expansion as an approximation.to the
pressure field was used to calculate the samples. The resultant
computed plane-wave reflection coefficient was, therefore, a first
order approximation. For further reading on the topic presented,
we suggest references (11, 12).

We can conclude, potentially, that the algorithm serves as
a technique to calculate the plane-wave reflection coefficient
from experimental data. Furthermore, the algorithm could also
be implemented to evaluate the reflected pressure field from the
plane-wave reflection coefficient. Favorably, the samples as
the input to the algorithm would be exact since the plane-wave
reflection coefficient can be analytically calculated for a

number of general ocean bottom models.
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APPENDIX I
In a number of applications there exists the need to calculate

a zero-order Hankel transform of the form
G(K) = J P(r) JO(Kr) rdr (A.1.1)
0

For a circularly symmetric function P(r), the Hankel transform
G(K) is also circularly symmetric and, therefore, is completely
specified by a radial slice of the two-dimensional Fourier trans-
form of the function P(/;EZ;E-). Thus, the numerical evaluation
of Eg. A.I.l can be implemented simply by a summation to calculate
the projection of the function P(r) and a one—dimensional FFT,

provided P(r) can be assumed to be band-limited; i.e.,

N
y

Y
P (i) = 2oy T P_(V
Y g=0 X

(Ax/2 + ihx)2 + (Ay/2 + 4y)°

NX
i=20,1, ..., 7?'— 1

: w(/(Ax/2 + idx)2 & (By/2 + my)2 ‘
(A.I.2)

and

n ny __1
G(m) = — X P (n) e "N (A.TI.3)
y X
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provided Ax < m/K and Ay < 27/K ; for G(XK) = O when K > K
- max - max — max

n
The function Py(i) is defined as the projection of

P (ax/2 + 100)2 + (by/2 + 2ay) 2 )

onto the x-axis.
A circularly symmetric Hanning window is used to improve

the results of processing a finite-length sequence. This window

is given by

W(‘/(AX/Z + iAx)2 + (Ay/2 + QAY)2 )=0.5 + 0.5

cos (

17

ﬂ/}Ax/Z + iAx)2 + (Ay/2 + Q,Ay)2

R
max

(Ax/2 + idx/2)2 + (Dy/2 + sz)z

< R (A.1.4)
— "max
=0 ; otherwise
Nx 1
= [ E-1n+2]12 I
where R.max [(2 ) 5 ] Ax (A.1.5)

In order to preserve symmetry in the computation of the
v
projection Py(i), the two-dimensional grid has been sampled as

illustrated in Figure A.I.l. The operations explicit in Egs.
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y
A
7
|
|
?
i
Ta
v )" Ay
?A(///“7§'=Z§X
*~—— -—o . *———* . . +—3p X
| Ax 7T Ax |
| 2 |
I hjx 1 I
| | (F 1)+ | ax>]
|« (Nx-1)Dx
(N, discrete points)

Figure A.I.l, Two-dimensional grid

5y(n)A

1] L,

Figure A.I.2. Discrete sequence
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A.I.2 and A.I.3 indicate the following steps:
(1) calculate the projection onto the x-axis,

{2) the first sample in the x-direction is spaced by Ax/2

and Ax every sample after that,

(3) the first sample in the y-direction is spaced by Ay/2

and Ay every sample after that.

Note that only the first quadrant must be sampled since the function
is circularly symmetric. Similarly, in the evaluation of the
projection, by summing all the samples at each location on the
positive x-axis, the result is doubled to account for the values of
the function in the fourth quadrant. The projection samples onto
the hegative x-axis are found simply by forming the image of the
posifive x-axis projection samples. These equally spaced samples
are then used as the inpﬁt to a one-dimensional FFT.

The one-dimensional FFT calculates the discrete Fourier
transform of an equally spaced sequence starting at the origin,
as shown in Figure A.I.2. Therefore, a correction must be made
on the phase of the samples. The shift in the range domain is
given by Eg. A.I.5, which implies that one-half of the samples

resulting from the one-dimensional FFT must be multiplied by
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‘R .
ej max[mAh] (A.I.6)

the other half are the image of the first half,

27 N
where mAX = m ??

N Ax m=0, 1, ...,

and it corresponds to the spacing of the Hankel transform samples.

Let us consider the following examples:

CIRCULAR CONSTANT

P(xr)

i
=
H

A
et

= 0 ; otherwise

(14)

vHankel transform

Jl(K)

G(K) =
(x) X

The real and imaginary parts of the exact and calculated
Hankel transforms are illustrated in Figures A.I.3 and A.I.4,

respectively.
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CIRCULAR Jl(r)/r

J_ (x)

P{r) =

(14)

Hankel transform

Il
-
~
A
-

G(K)

=0 ; otherwise

The exact and calculated Hankel transforms are illustrated

in Figures A.I.5 and A.I.6.

CIRCULAR sin (Ko'r)/r

sin(K_+*x)

P - — =0.
(x) - KO 0.2

(4)

Hankel transform

G(R) = ———— i

il
o
[ A
~
| A
O
N

The results are shown in Figures A.I.7 and A.I.8.

117
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CIRCULAR KO . J0 (KO * 1)

P(r) = KO . J0 (KO > x) ; K. =0.2

Hankel transform:

G(K) = §(K-0.2)

The results are shown in Figure A.I.9. We can interpret the
examples in Chapter 3 and 4 as proportional to the superposition
in the wavenumber domain of the result in Figure A.I.9 for
different values of KO.

The Fortran program on page 129 has been implemented in a

Xerox Sigma 7 and an HP 2100A computer at the Woods Hole

Oceanographic Institution.
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