OBSERVATIONS OF THE ANTARCTIC POLAR FRONT DURING FDRAKE 76: A CRUISE REPORT
by

T. Joyce, J. Dean, M. McCartney, R. Millard, D. MoIler, A. Voorhis (Woods Hole Oceanographic Institution), C. Dahm (Oregon State University), D. Georgi (Lamont-Doherty Geological Observatory), G. Kullenberg (University of Copenhagen), J. Role (WHOI/MIT Joint Program) and W. Zenk (Institute fur Meereskunde).
WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

November 1976

TECHNICAL REPORT
Prepared for the National Science Foundation, Office for the International Decade of Ocean Exploration, under Grant OCE75-14056 and the International Southern Ocean Studies (ISOS) Program.

Reproduction in whole or in part is permitted for any purpose of the United States Government. In citing this manuscript in a bibliography, the reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT.

Approved for Distribution:

Valentine Worthington, Chairman Department of Physical Oceanography

TABLE OF CONTENTS

Page
LIST OF FIGURES 4
LIST OF TABLES 9
ABSTRACT 10
I. INTRODUCTION 11
II. NAVIGATION AND MOORING OPERATIONS 17
A. Navigation. 17
B. Mooring Operations 17
III. XBT 25
A. XBT Survey and Section Work 25
B. EXBT System 29
C. EXBT Experiments 35
D. EXBT/CTD Intercomparisons 36
E. XBTs $\left(T_{7}\right.$ and T_{4} Probes - Trials and Tribulations) 39
IV. CTD 46
A. Instrument Servicing. 46
B. Data Editing. 46
C. Data Quality 51
D. Sample Traces from Representative CTD Stations. 58
V. PROFILING CURRENT METER (PCM) 77
A. Introduction. 77
B. Instrument Description. 77
C. Operation 79
D. Preliminary Data Analysis 83
E. Discussion 84
VI. OPTICAL MEASUREMENTS 89
A. Objectives 89
B. Data Set Description. 90
C. Sample Stations 95
VII. CHEMISTRY 101

TABLE OF CONTENTS (Contd.)

Page
VIII. VCM PROGRAM 104
A. Vertical Current Meters (VCM) 104
B. Float Program Narrative. 108
C. Sample VCM Time Series 114
D. Float Visit Log. 117
E. Float Creep. 119
IX. OTHER OBSERVATIONS 120
A. Meteorological Observations 120

1. Instrumentation and Data Reduction 120
2. Data Discussion. 122
B. Report of an Amateur Birdwatcher (Jon B. Jolly) 123
X. SUMMARY 127
XI. ACKNOWLEDGMENTS AND PARTICIPANTS 128
REFERENCES 130
APPENDIX 131

List of Figures

No. Title Page

1. N-S section through the polar frontal zone contoured in $0.5^{\circ} \mathrm{C}$ intervals. The polar front defined by the $2^{\circ} \mathrm{C}$ isotherm at 200 m was encountered at XBT \#42.13
2. Three synoptic structures of the polar front showing the evolution of the cold water eddy according to the XBT observations of the Chilean vessel YELCHO14
_1300,28II76 - 2330,7III76
........... 2330,24III76 - 1730,28III76

- - - - 2130,28III76 - 1330,5IV76

3. Continuous profiles of potential temperature and salinity from two CTD stations (54 and 57) taken inside and outside the cold water ring. Note that the eddy can be identified to a depth of 2500
meters. 15
4. The R/V THOMPSON's cruise track during leg III of FDRAKE 76 in the Drake Passage. The polar frontal zone was encountered in the vicinity of $58^{\circ} \mathrm{S}$. Heavy lines denote CTD sections made while open circles mark locations of CTD time series 18
5. Schematic fiew of the top of the O.S.U. long term mooring "A". The independent upper mooring was equipped with three VACMs from PMEL, Seattle, and two Aanderaa thermistor chains from IfM, Kiel. This upper part, shown here, recorded temperature and current fluctuations in the interleaving regime north of the polar front. The mooring was set on 18 February 1976 and the top was recovered on 17 March 1976. 20
6. Schematic diagram of the navagation moorings. For precise navigational purposes two plank-onedge (Poe) buoys, nicknamed "Edgar" and "Allan", were moored in the circumpolar current for periods of 5 and 3 days respectively 22
7. A comparison of a regular and an expended scale XBT profile. 300 of the total 450 expendable bathythermograph traces were recorded on an expanded scale. The oceanographic variables of depth and temperature are displayed as well as the engineering units of elapsed time and electrical resistance . 30

Iist of Figures (Contd.)

No. Title Page
8. Details of a regular XBT system: probe (a), canister(b), and resistances network (c)31
9. Block diagram of the EXBT system. For details see
Fig. \#10. 33
10. Electric circuit diagram of the EXBT-system 34
11. Graphical display of an EXTBT/CTD intercomparison:

\qquad
EXBT - \#314, CTD - \#69,
The EXBT has not been adjusted for bucket temperature 38
12. Histogram of the differences between rosette temperature readings and CTD measured temperature 52
13. Histogram of differences between rosette salinity values and calculated CTD-salinity 53
14. Time histogram of differences between rosette salinity values and calculated CTD-salinity 54
15. Potential temperature/salinity relationship for the deep water $\left(\theta \leq 2.5^{\circ} \mathrm{C}\right)$ rosette samples 55
16. Time histogram of dissolved oxygen differences between rosette O_{2}-values and CTD O_{2}-probe data 57
17a. Continuous temperature, salinity, and oxygen profiles of CTD station \#38 59
b. Potential temperature/salinity diagram of CTD station \#38 • . 60
c. Potential temperature/oxygen diagram of CTD station \#38 61
18a. Continuous temperature, salinity, and oxygen profiles of 62CTD station \#83
b. Potential temperature/salinity diagram of CTD station \#83 . . 63
c. Potential temperature/oxygen diagram of CTD station \#83 64
19. Potential temperature/salinity relationship of CTDstations \#20 and \#23. Lines of constant σ_{θ}-units areincluded to illustrate that most of the temperature/salinity variations in the interleaving region arecompensating in density66

List of Figures (Contd.)

No. Title Page
20a. Continuous temperature, salinity, and oxygen pro- files of CTD station \#88. 67
b. Potential temperature/salinity diagram of CTD station \#88 6821a. Continuous temperature, salinity, and oxygen pro-files of CTD station \#91. 69
b. Potential temperature/salinity diagram of CTDstation \#9170
22a. Continuous temperature, salinity, and oxygen pro-files of CTD station \#9771
b. Potential temperature/salinity diagram of CTD station \#97 72
23. The sinking of the profiling current meter (PCM) on station \#6. The instrument slides down the CTD cable and is halted by a cable mounted stopper approximately 3 meters above the CTD fish. The averaged sinking rate was less than $37 \mathrm{~cm} / \mathrm{s}$ which implies a mean vertical resolution of less than 7.8 m81
24a-c. Vertical distribution of relative speed (s), direction (θ), and temperature (T) on station \#6. Values for p less than 20 dbar should be ignored85
24d,e. Vertical distribution of velocity components as indicated in the insert. The ship's drift has been compensated for. Under the given assumption of $\alpha=40^{\circ}$ there was minimal cross frontal flow (U_{C}). The front parallel component (V_{p}) shows negligible depth dependence to $600 \mathrm{~m} .$. 86
25a-c. Vertical distribution of relative speed (s), direction (θ), and temperature (T) on station \#8. The current shears in an anticlockwise direction. 87

List of Figures (Contd.)

No.

25d,e. Vertical distribution of corrected velocity components as shown in Fig. 24 d ,e. For $\alpha \simeq 20^{\circ} \mathrm{U}_{\mathrm{C}}$ shows minimal cross frontal flow 88
26. Qunata meter profiles \#Q5/Q6 showing the percentage of incoming surface irradiance as a function of depth. The input at the surface is measured by a separate quanta meter mounted on the deck of the ship 96
27. Combined temperature (from CTD station \#84) and light scattering (station \#30) profiles at a fixed angle of $\theta=27^{\circ}$97
28. Combined temperature (from CTD station \#86) and light scattering (station \#32) profiles at a fixed angle of $\theta=27^{\circ}$98
29. Combined temperature (from CTD station \#89) and light scattering (station \#35) profiles at a fixed angle of $\theta=27^{\circ}$99
30. Scattering of green light as a function of scattering angle θ and depth on station \#19.
31. Scaled side view of the vertical current meter (VCM) showing its orientation when neutrally buoyant. The length of the instrument from recovery bail (top) to the transducer (bottom) is 1.2 meters. Vertical motion is sensed by 8 inclined vanes shown at the mid-point of the cylinder . 105
32. Float tracks of the VCMs during Phases 1 and 2. Note that VCMs 4 and 5 were entrained in the cold water ring described in the introduction 109
33. Cross frontal CTD section with the locations of VCMs 1, 2, 4, and 5 during phase 1 of VCM program. 111
34. Cross frontal XBT section with VCMs 1 and 2 during phase 2 of VCM program. Due to a ballasting error VCM \#2 sank deeper than planned and its location with respect to local temperature cannot be determined from the $T-4$ XBT probe data. 113

List of Figures (Contd.)

No.
35. Time series of pressure, temperature, and absolute vertical displacement as recorded by VCM \#l during phase l. The pressure record shows an instrument creep of 20 m over the record length. Large vertical excursions are visable near the buoyancy period ($\sim 1.5 \mathrm{~h}$) and the semi-diurnal period. 116
36. Meteorological observations, during leg III of T. G. THOMPSON, cruise 107. Time axis is given in CUT. The continuous data were obtained by an Aanderaa system mounted on the ship's observation deck approximately 7 m above the sea surface. Above the air temperature trace, crossings of the polar front and the cold water ring are shown by arrows. When passing from Antarctic into sub-Antarctic water masses the arrow is darkened on its right side and vice versa. The continuous wind speed and direction curves have not been corrected against ship's speed. For comparison the absolute wind values according to the ship's 6-hourly routine observations (dots) have been added. A continuous barometer record is shown on top of the graph 121
37. Station network of R / V THOMPSON cruise 107, FDRAKE 76 , leg III. Due to irregular ship motions during float tracking the cruise track during this time has been deleted for clarity SInside 38. Station positions within the expanded operating area . . $\left\{\begin{array}{l}\text { back } \\ \text { Cover }\end{array}\right.$
39. SOPOFROZONEX (Southern Ocean Polar Frontal Zone Experiment) participants. 129

List of Tables

No.

1. XBT/activity table. 26
2. EXBT experiments 28
3. CTD/EXBT intercomparison. 37
4. XBT station log 40
5. CTD/activity table. 47
6. CTD servicing log 48
7. CTD station log 73
8. Specifications on PCM \#776. 78
9. Sampling rate of PCM. 80
10. PCM station log 82
11. Quanta meter station log. 91
12. Scattering meter station log. 92
13. VCM summary log 107

Abstract

During March/April 1976 the small-scale structure of the Antarctic Polar Front was observed in the Drake Passage. The observations were part of the International Southern Ocean Studies (ISOS) program called FDRAKE 76. The purpose of the program was to obtain densely sampled measurements of temperature, salinity, dissolved oxygen, and chemical nutrients in the Polar Front Zone (PFZ) and pilot measurements of horizontal and vertical velocities in order to explain the above scalar variability. The PFZ is a region where Antarctic and subAntarctic waters intermingle and presumably mix to affect the properties of Antarctic Intermediate Water. A report on the third leg of Cruise 107 of the R. V. THOMPSON is presented as well as a description of the measurements and a preliminary report of the data. A feature of interest is the pinching off of a northward meander of the circumpolar current system into a cyclonic ring of Antarctic Waters.

I. INTRODUCTION

The purpose of the polar front field program during FDRAKE 76 was to obtain measurements of the various scalar fields in the polar front with vertical and horizontal resolution surpassing previous studies and to obtain some direct measurements of vertical and horizontal velocities which might point out various dynamical processes related to the scalar variability.

The velocity data were obtained with 1) Vertical current meters (VCM's): neutrally buoyant floats equipped with vanes to sense vertical motion of the water. Five VCM's were built and prepared at W.H.O.I. and recorded 15 float days of good data during the experiment. 2) Profiling current meter (PCM) : an Aanderaa current meter which slid down the CTD cable at 30 meters/min and recorded pressure, current speed, and direction. Walter Zenk from IFM, Kiel, West Germany provided this instrument. Using one of two reference buoys for relative navigation, 19 profiles were obtained.

Various scalar fields were measured with the following instrumentation: 1) CTD: A W.H.O.I./Brown CTD microprofiler was equipped with a sensor for continuous measurement of dissolved oxygen. A total of 101 stations were occupied. 2) XBT: 450 XBT 's were collected for mapping of the thermal structure of the front and for statistical study of temperature interleaving in the frontal zone. An expanded scale system brought from Lamont by Dan Georgi was used for 300 of the stations. 3) Light Scattering: Gunnar Kullenberg from the University of Copenhagen obtained 48 stations in which the light scattering as a function of scattering angle was measured at discrete depths and continuous scattering at a fixed angle for depths between 0 and 1000 meters. 4) Quanta Meter: Kullenberg also made 11 quanta meter stations. The quanta meter is essentially an electronic secchi disk. 5) Over 950 samples were processed for nutrients using an autoanalyzer operated by Cliff Dahm of Oregon State. Of these, 240 were surface samples collected by the Chilean naval vessel A.G.S. YELCHO. 6) Isotope analysis: 28 samples were drawn for Tritium/Helium ${ }^{3}$
and 78 for $0^{16} / 0^{18}$ analysis. The former will be done by Bill Jenkins at W.H.O.I. and the latter through Lou Gordon at Oregon State.

In addition to the above, a subsurface mooring was recovered containing instruments belonging to Pacific Marine Environmental Lab (NOAA) and Institut für Meereskunde, Kiel. During the course of the four-week THOMPSON Leg III study, YELCHO assisted in defining the mesoscale structure of the polar front. A meander in the circumpolar current/polar front was observed to pinch off forming an eddy of cold antarctic water which then drifted to the northeast in the circumpolar current.

This rapid evolution of the polar front needs to be studied using the combined data sets of the R/V THOMPSON and AGS YELCHO. Several references to the frontal eddy (FREDDY) appear in various places of this report. With the permission of S. Patterson and H. Sievers we present the synoptic structure of the polar front from the two two-week cruises of the Chilian vessel YELCHO. The operational definition of the polar front used is approximately $2^{\circ} \mathrm{C}$ isotherm at 200 meters depth. Figure 1 shows the detailed two dimensional section of the thermal structure. The "front" is located at XBT \#42. The polar front is in fact a zone of transition between antarctic and subantarctic waters. This zone is lo-20 $n m$ wide in Figure 1 and includes much of the interleaving regime. A more complete discussion is given by A. Gordon (1976 manuscript on FDRAKE 75). Our term polar front really denotes the southern edge of the frontal zone.

As Figure 2 shows, a northward meander of the polar front occurred between periods 1,2. This is further documented in the time series from the thermister chains (not discussed here) on the upper portion of mooring A (see next section). Figure 2 shows the configuration of the front when THOMPSON was in the area during Leg III and in the process of deploying the VACM's (Section VIII). In less than a week the meander pinched off and formed a cold ring of approximately 50 km diameter which subsequently drifted to the northeast at $10 \mathrm{~cm} / \mathrm{sec}$. The THOMPSON was able to pass through FREDDY making deep CTD stations upon its return to Punta Arenas. The depth extent and water mass properties (anomalously cold and fresh antarctic waters) (Figure 3) identify the eddy to a depth of 2500 meters.

0	18.5	37.1	Km.
1	1.		
0	10	20	NM.

Figure 1. N-S section through the polar frontal zone contoured in $0.5^{\circ} \mathrm{C}$ intervals. The polar front defined by the $2^{\circ} \mathrm{C}$ isotherm at 200 m was encountered at XBT \#42

Figure 3. Continuous profiles of potential temperature and salinity from two CTD stations (54 and 57) taken inside and outside the cold water ring. Note that the eddy can be identified to a depth of 2500 meters

A discussion of measurements taken aboard the THOMPSON during Leg III follows. Although not as comprehensive as a data report, this report will provide the only overview of all activities during the Southern Ocean Polar Frontal Zone Experiment (SOPOFROZONEX).

The data collected during FDRAKE 76 should give, upon further analysis, a much clearer picture of the transfer processes at the polar front.

II. NAVIGATION AND MOORING OPERATIONS

A. Navigation

Navigation on Leg III was done by the scientific party with the assistance and advice of the deck watch officers. The navigation was primarily a task of record keeping and of quality control of satellite navigation fixes, Three means of geographically positioning the vessel were anticipated at the outset of the cruise: satellite navigation, radar navigation utilizing surface moorings and Omega. Satellite and radar navigation proved adequate for the scientific requirements. Use of the Omega system was never possible as the station located in Argentina, which was critical for the area we were working, was not available for navigation. Also, the shipboard Omega receiver had an electronic failure which could not be corrected.

The Magnavox 706 satellite navigation receiver provided consistently reliable and accurate geographical positioning of the vessel. Approximately 20 fixes per day were obtained with the interval between fixes varying between 15 minutes and 2 hours. Accuracies were generally better than $0.25 \mathrm{n} . \mathrm{m}$. if course and speed were maintained during the pass. A relatively high incidence of abortive fixes occurred. This was due to the coincidence or overlapping of satellites during Doppler counting sequence. The use of tabulated satellite alerts and the manual aborting of lock-on was instrumental in reducing this type of failure which is inherent to the system when operating in high latitudes.

A plot of the ship's track during Leg III is shown in Fig. 4. Shown are the paths of unbroken runs, positions of float deployments, CTD sections and time series, and mooring positions. Ship's track while tracking floats is confused and is omitted for clarity.

B. Mooring Operations

Two mooring operations were performed on this cruise: 1.) the recovery of the instrumented upper-section of an O.S.U. intermediate mooring, and 2.) the deployment/recovery of two surface navigation buoys. These locations are indicated in Fig. 4.

18

Figure 4. The R/V THOMPSON'S cruise track during leg III of FDRAKE 76 in the Drake Passage. The polar frontal zone was encountered in the vicinity of $58^{\circ} \mathrm{S}$. Heavy lines denote CTD sections made while open circles mark locations of CTD time series

1. It had been requested that, if weather and time permitted, the upper section of O.S.U. mooring "A" be retrieved. This section was instrumented with current meters (3) of PMEL/NOAA (Hayes) and thermistor chains (2) of I.F.M., Kiel (Zenk). An acoustic release was placed at the 500 meter depth level which would permit this section to be detached for an early recovery (see Fig. 5).

On the morning of 17 March, the vessel arrived in the general vicinity of the mooring. Attempts to interrogate the AMF transponding release on the bottom were unsuccessful.* However, the lower Aanderaa thermistor chain had an acoustic data telemetry capability, the signals of which were received on a lowered hydrophone. As the telemetry had a very limited range, we were certain to be in close proximity to the mooring. At 1300 Z the release was successfully fired. The OAR radio signal was heard 3 minutes later indicating the time of surfacing. The mooring was sighted at 1308 Z at a range of approximately 600 meters. The mooring was recovered without incident from 1338 to 1420.

The mooring was in excellent condition. The following were noted about the instrumentation:
a. All 3 current meter rotors were out of their bearings on recovery. The lower bearing lock nut was missing in each case.
b. The test shackle on $V-144$ was in excellent condition with no sign of corrosion or wear.
c. The clamps holding the thermistor chain to the mooring line were slightly corroded.
d. Rotor events (spins) were placed on each of the current meters:

$$
\begin{array}{lll}
\mathrm{V}-144 & 14: 51: 09 \mathrm{Z} & 17-\mathrm{III}-76 \\
\mathrm{~V}-143 & 15: 00: 07 \mathrm{Z} & 17-\mathrm{III}-76 \\
\mathrm{~V}-140 & 15: 06: 58 \mathrm{Z} & 17-\mathrm{III}-76
\end{array}
$$

[^0]
O.S.U. MOORING "A"

Figure 5. Schematic view of the top of the O.S.U. long term mooring "A". The independent upper mooring was equipped with three VACM's from PMEL, Seattle, and two Aanderaa thermistor chains from IfM, Kiel. This upper part, shown here, recorded temperature and current fluctuations in the interleaving regime north of the polar front. The mooring was set on 18 February 1976 and the top was recovered on 17 March 1976
e. The current meters were rinsed with fresh water and stored in their cases unopened. The thermistor chains were opened by Zenk and the data tapes read.
2. Two surface moorings, each equipped with a radar transponder, were deployed and later recovered during the cruise. Their purpose was to provide a means for high resolution, accurate and continuous relative navigation of the vessel while conducting a CTD, profiling current meter (PCM) time series and a dense CTD survey of the front.

The moorings were composed of a Plank-On-Edge (POE) surface float, an auxiliary (700 lb buoyancy) polyurathane flotation package, 3/8" plaited polypropelene mooring line and a 1500 lb anchor of 3 railroad wheels (see Fig. 6). All but the float were expendable. The POE was tethered to the mooring by a 2.2 meter length of shock cord secured at the nose. A 4 meter length of $3 / 8^{\prime \prime}$ chain was fastened at the keel as a safety line. The POE would ride on the shock cord with the auxiliary float suporting the mooring. However, if the auxiliary float should tow under or the shock cord should fail the load would transfer to the keel of the POE.

Each POE had a Motorola radar transponder mounted in a tower 10 ft above the water line. Power was supplied by 5 lead-acid "truck" batteries mounted in a well in the body of the float. With judicious use of the radar a useful life of 10 days could be obtained. Each POE also contained a light and an OAR radio.

The first mooring was deployed without incident in 90 min on the morning of 18 March. It was designated as "Edgar". The procedure for launch was to deploy the floats.first, pay out the mooring line, attach the end to the anchor and then drop the anchor. The mooring line was cut to a length equal to the water depth of 4150 meters giving a l:1 scope.

The second mooring was deployed during the evening of 20 March in the same manner as the first. It was designated as "Allan". During the process of paying out the mooring line, wind and current

Figure 6. Schematic diagram of the navigation moorings. For precise navigational purposes two plank-on-edge (Poe) buoys, nicknamed "Edgar" and "Allan", were moored in the circumpolar current for periods of 5 and 3 days, respectively
set the vessel over an uncharted seamount. It was necessary to tow the mooring to a position of favorable topography and approximately 25 km southeast of "Edgar". This required 4 hours.

The positions of the moorings were continually monitored when in radar range at the time of "NAVSAT" fixes. Nominal positions thus obtained were:

$$
\begin{array}{lll}
\text { EDGAR: } & 57^{\circ}-28.35^{\prime} \mathrm{S} & 64^{\circ}-38.35^{\prime} \mathrm{W} \\
\text { ALIAN: } & 57^{\circ}-35.0^{\prime} \mathrm{S} & 64^{\circ}-20.5^{\prime} \mathrm{W}
\end{array}
$$

Their position relative to each other was a range of 21.6 km at a bearing of $125^{\circ} / 305^{\circ}$. It is estimated that excursions of the buoys around the nominal positions did not exceed ± 500 meters.*

The floats were recovered at the completion of the dense CTD program, on the morning of 23 March. Sometime during the early morning hours of 23 March "Allan" went adrift. The float was readily located and recovered during the morning of 23 March. Failure occurred at the keel of the buoy where the shackle pulled through the metal. Moderate to heavy swells and moderate sea and wind conditions on the 22 March are assumed to have precipated the failure.

The mooring "Edgar" survived intact and the float was recovered on the afternoon of 23 March. The float was pulled from the water to rail height by the ship's crane, the 4 meter shot of chain was stopped

[^1]off, the float disconnected and the chain then allowed to drop overboard and sink. The auxiliary float had towed under in the current and remained submerged during the recovery operation and was subsequently lost.

Both floats were in excellent condition at recovery and both radios worked. The light on "Edgar" had failed.
III. XBT

Two recording systems were used aboard the T. G. THOMPSON during the third leg of FDRAKE-76. A standard Sippican Co. Expendable Bathythermograph (XBT) recorder was used to record approximately 150 traces. An expanded scale XBT recorder (EXBT), similar to one used on R. D. CONRAD during FDRAKE-75, recorded an additional 300 XBT shots.

The XBT work aboard the THOMPSON was carried out with the following objectives:

Temperature section work, polar front location
Temperature survey work in preparation for float launching (VCMs)
Monitoring of vertical temperature structure around deployed VCMs Small scale, time and space, XBT experiments.

To facilitate organization of the XBT data, we show in Tables 1,2 the XBT number versus activity related to the above four scientific goals.

A. XBT Survey and Section Work

Of the total number of 472 XBTs taken, approximately 300 standard and expanded XBTs were taken for section work. Isotherm depths (for $0.5 \mathrm{C}^{\circ}$ increments of temperature) were routinely recorded and working plots made. These were used to steer the ship. During the course of the cruise, the polar front and frontal eddy (FREDDY) were crossed sixteen times by the THOMPSON. The positions of the front and FREDDY need to be combined with those taken by the AGS YELCHO before a complete time evolving picture of the polar front can be drawn. One of the XBT sections from the THOMPSON is shown in Fig. l. This section is typical showing clearly the abrupt subsurface transition between cold, antarctic, and warm subantarctic waters. The $2^{\circ} \mathrm{C}$ isotherms at 200 meters was taken as the operational southern boundary of the frontal zone. "North" of this one enters a zone where interleaving and mixing of the two water masses occurs.

Table 1

XBT/Activity Table

No.	
8-51	CRS 150°, Section 1 , lst southward venture across PF
52	CTD \#4, "A"
62-70	CRS 100°
70-74	CRS 180°, Section 2
75-84	CRS 300°
85-89	CRS 135 ${ }^{\circ}$, Section \#2b, cross PF start CTD section (\#25,39)
90-93	CRS 170° in route to CTD \#140, start down stream front survey
94-95	between CTD 41,42 and 42,43 part of down stream front survey
96-100	prior to float (VCM) launching
101-107	launch VCM's 4 and 5
108-112	over VCM's 4 and 5
115-127	CRS 150°, Section 3, speed 6 knots, across float trajectory
	VCM 1, 4, 5, end pt. CTD 4
131-139	CRS 045° \} Section 4, additional survey
139-148	CRS 330° for float \#1
149,150-164	CRS 180 ${ }^{\circ}$, Section \#5, parallel to front
168	close to \#5
169-180	searching for float \#5 in the vicinity of eddy Freddy
180-199	CRS 180°, Section \#6, re-establish PF position
199-221	CRS $340^{\circ}-360^{\circ}$

Table 1 (Contd.)
XBT/Activity Table

No.

223-227

228-230

231-237
223,224,245-254
254-270

271-274
279-435

436-440

442-457

458-472

CRS 90°, Section \#7, CTD 54, jaunt to Freddy

CRS 180°, Section \#7b, random venture in search of Freddy's rim

CRS 350° heading for VCM \#2
CRS 130°, CTD 57) Section \#8, across Freddy CRS 180°, CTD 58$\} \begin{aligned} & \text { and south to re-establish } \\ & \text { position }\end{aligned}$

CRS 330°, CTD 59, another crossing of PF
EXBT experiments $1,2,3$, and 4
CRS 160°, heading south looking for PF
CRS 350°, North-South section in conjunction with CTD section CRS $300^{\circ} \int$ (CTD \#77-101)

Table 2

EXBT Experiments

Experiment

1

> Yo-Yo \#l: over float \#l, EXBT's \#279-306
> 3 at $10 \mathrm{~min}, 24$ at 5 min intervals
> Lost ranging after $\sim 1 \mathrm{hr}$
> Yo-Yo \#2: over float \#l, EXBT's \#309-334
> 25 at 5 min intervals, 1.5 hrs of data at nominal slant range 800 m
> 3 "Box": float \#1 at center; EXBT's \#335-356 ship speed 4 knots, 20 min on a side, XBT's every 5 min

2

4
"Cross": float \#l at center; EXBT's \#360-435
ship speed 5 knots, XBT's every 5 min
Total number of EXBT ~150.

For most of the survey stations, water samples were drawn for surface salinities and silicates and bucket temperatures taken for calibration of the XBTs. Most of our work was in the vicinity of the sub-surface expression of the polar front; the surface expression occurs some 40-60 nm south of this (see Section VII, Chemistry). Therefore the surface variables do not show any profound change in most of our data.

B. EXBT System

The standard Sippican Co. Expendable Bathythermograph (XBT) bridge and recording system has an indicated temperature scale of $-2^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$, approximately $5^{\circ} \mathrm{C} /$ inch and a depth scale of 100 meters/inch. These fixed scales are somewhat awkward when one is working in regions of the ocean where the temperature of the entire water column varies by as little as $2^{\circ} \mathrm{C}$. To overcome these limitations we replaced the Sippican XBT bridge and recorder with a simple and inexpensive bridge. We utilized an Hewlett Packard strip chart recorder (model 7100B) to plot the output from the bridge. Figure 7 illustrates the difference between the EXBT scales and the standard Sippican XBT recorder scales.

Theory of Operation

The Sippican XBT probe consists of a molded projectile with a thermistor recessed in the nose, which falls through the water column at an approximately constant rate. The resistance of the thermister is sensed through a copper wire which unwinds from a spool contained within the projectile (see Fig. 8a) and from a second spool remaining in the launcher.

The thermistor's resistance, R_{T}, decreases about 5% per degree centigrade temperature increase. In addition to the resistance change of interest, the resistance of the copper wire, R_{c}, and the sea water to ship's ground, $R_{s w}$, vary continuously. Figures $8 a$ and 8c detail the resistance involved in the primary and secondary measurement loops. The secondary loop is identical to the primary loop except that it does not contain a thermistor.

Figure 7. A comparison of a regular and an expended scale XBT profile. 300 of the total 450 expendable bathythermograph traces were recorded on an expanded scale. The oceanographic variables of depth and temperature are displayed as well as the engineering units of elapsed time and electrical resistance

SIPPICAN XBT PROBE

a

Figure 8. Details of a regular XBT system: probe (a), canister (b), and resistances network (c)

The expanded scale $X B T$ recording system is comprised of the new bridge and analog recorder (Fig. 9). The bridge consists of a precision voltage source, a dual constant current source, and a differential amplifier (Fig. 10). The constant current source supplies two identical currents which flow through the primary and secondary loops of the XBT probe and sea-water-ship ground path (Fig. 8c). The constant current I flowing in the primary loop results in potential V_{1} :

$$
V_{1}=I \cdot\left(R_{s w}+R_{c}+R_{t}\right)
$$

The current I in the secondary loop results in a potential V_{2} :

$$
V_{2}=I \cdot\left(R_{s w}+R_{c}\right)
$$

The resistance variation R_{t} can be isolated by monitoring the differential voltage $\mathrm{V}_{1}-\mathrm{V}_{2}$.

$$
R_{t}=\left(V_{1}-V_{2}\right) / I .
$$

The analog recorder is then used to record an output from the bridge proportional to R_{t}.

Below are given the resistance and temperature values supplied by Sippican Co. (Sippican Manual R-467B, Table 5-1) used to obtain $R(T)$ and $T(R)$ for interpretation of EXBT data. Also given below is the relationship between elapsed time and depth of the XBT probe.

Temperature ${ }^{\circ} \mathrm{C}$	Resistance $\mathrm{k} \Omega$		Temperature ${ }^{\circ} \mathrm{C}$
			Resistance $\mathrm{k} \Omega$
-2.2	18.308	5.6	12.357
-2.0	18.094	6.0	12.085
-1.1	17.287	6.7	11.699
-1.0	17.186	7.0	11.506
0.0	16.329	7.8	11.080
1.0	15.518	8.0	10.958
1.1	15.433	8.9	10.496
2.0	14.752	9.0	10.439
2.2	14.591	10.0	9.948
3.0	14.028	11.0	9.483
3.3	13.800	11.1	9.434
4.0	13.344	12.0	9.043
4.4	13.057	12.2	8.950
5.0	12.697		

Figure 10. Electric circuit diagram of the EXBT-system

Least-square minimization was used to obtain 4 th order polynomials for $R(T)$ and $T(R)$.

$$
\begin{aligned}
& A_{0}=16.32902 \\
& B_{0}=51.08125 \\
& A_{1}=-.8336822 \\
& \mathrm{~B}_{1}=-7.256200 \\
& A_{2}=.2395431 \cdot 10^{-1} \\
& B_{2}=.4455120 \\
& A_{3}=-.524036 \cdot 10^{-3} \\
& B_{3}=-.153488 \cdot 10^{-1} \\
& A_{4}=.844554 \cdot 10^{-5} \\
& \mathrm{~B}_{4}=.217192 \cdot 10^{-3} \\
& T(R)=B_{0}+B_{1} R+B_{2} R^{2}+B_{3} R^{3}+B_{4} R^{4} \\
& R(T)=A_{0}+A_{1} T+A_{2} T^{2}+A_{3} T^{3}+A_{4} T^{4} \\
& { }^{D} D(t)=6.472 t-0.00216 t^{2} \\
& \mathrm{~T}=\text { Temperature }\left[{ }^{\circ} \mathrm{C}\right] \\
& \mathrm{R}=\text { Resistance }[k \Omega] \\
& \mathrm{D}=\text { Depth [m] } \\
& \mathrm{t}=\text { Time [secs] }
\end{aligned}
$$

*From Sippican (1970) Ocean Engineering Bulletin No. 1.

C. EXBT Experiments

Four EXBT experiments (Table 2) were carried out during Phase II of VCM Float tracking. The experiments were designed to elucidate space and time scales of the vertical temperature structure in the Polar Front Zone. By positioning the ship relative to the floats it was hoped that space and time variability of the finestructure, interleaving, would be separated. The first two experiments were carried out with the ship
attempting to hold position relative to VCM float \#l. (Nominal float depth 400 m.$)$ The ship then steamed patterns relative to float \#l while XBT's were shot every 5 minutes.

The first 2 EXBT experiments (Yo-Yo \#1 and Yo-Yo \#2) were carried out on the 30 and 31 st of March. Approximately 50 XBTs were shot at 5 min intervals. However, during Yo-Yo \#l an on-deck equipment failure in the TRACS system (see Section VIII, VCM) precludes the exact determination of slant range during the 2 nd hour of the Yo-Yo. From slant range differences for floats \#l and \#2 we estimate our position to have been $1.5 \mathrm{~km}-1.8 \mathrm{~km}$. During Yo-Yo \#2 all equipment functioned properly. We were able to position the ship relative to float \#l for 2 hours. About 1.5 hours of data was obtained while the ship held a slant range of 800 m .

Two additional experiments were carried out while the ship was underway. In experiment 3 the ship steamed a box pattern ($20 \mathrm{~min} / \mathrm{side}$ at 5 knots) centered on float \#l. XBTs were shot every 5 min and slant ranges are available for the entire experiment. For the 4 th experiment a cross pattern was steamed (approximately 6 km by 6 km). The ship speed was 5 knots and XBTs were shot every 5 min.

D. EXBT/CTD Intercomparisons

An attempt was also made to collect XBT and EXBT data during CTD casts (Table 3). The CTD data will be used to verify observed temperature fine structure in EXBT records. We hope to critically evaluate the temperature and depth resolution of the XBT probes.

Approximately 15 EXBT/CTD intercomparisons were attempted during this cruise. In Fig. 11 the CTD lowering \#69 and EXBT \#314 are presented. The temperature and pressure axis of the CTD trace have been adjusted to approximately match those of the EXBT. The EXBT trace has been digitized and the non-linearity in the temperature/depth trace removed.

Table 3

CTD/EXBT Intercomparison

	EXBT \#	CTD
1	2	1
2	4	3
3	52	4
4	62	23
5	100	44
6	114	46
7	127	47
8	130	50
9	131	51
10	144	52
11	149	53
12	228	55
13	236/237	56
14	250	57
15	314	69

The EXBT has not been adjusted
for bucket temperature

Figure 11. Graphical display of an EXBT/CTD intercomparison
E. XBTS $\left(\mathrm{T}_{7}{ }^{\text {and }} \mathrm{T}_{4}\right.$ Probes - Trials and Tribulations)

Of the three cases of $\mathrm{T}_{7}(700 \mathrm{~m}$ XBT) aboard the THOMPSON, only one was used. A second case $12 \mathrm{~T}_{7}$'s was opened, of which there now remain 5. The first case of T_{7} 's functioned properly, however, the 7 XBTs from the second case proved to be duds. Six of the 7 traces can be found on the third of 3 rolls of Sippican XBT paper: The T_{7}-XBT shots were
\#458
\#456
\#455
\#450A
\#447
\#445A

The above T_{7} 's all showed a similar mode of failure: excessive spiking towards high temperature. In addition it was necessary to rewind wire onto the canister wire spool.

Approximately $42-1 / 2$ cases of T_{4} 's (400 m XBT) were shot during Leg III of FDRAKE 76. The overall success rate ran around 10 good XBTs per case of 12. Many of the T_{4} 's were rewound prior to launching. The special handling appears to insure successful XBT shots! A summary of XBT station data is given in Table 4.

TYPE	NQ.	tIME	date	LAT.		LONG.		DEPTH	B.T.	SALT	SIL
EXBT	1	1115	15/3/76	0	$0 \cdot 05$	0	$0 \cdot 0 \mathrm{~W}$	0	6.58	0.000	$0 \cdot 0$
EXBT	2	1318	15/3/76	0	0.05	0	O.OW	0	0.00	0.000	0.0
XBT	3	025	16/3/76	0	0.05		0.0W	0	0.00	0.000	0.0
EXBT	4	- 30	16/3/76	55	24.65	65	35.9W	0	6.50	34.103	$0 \cdot 0$
EXBT	5	135	16/3/76	55	24.65	65	35.9W	0	$6 \cdot 70$	34.091	1.6
XBT	6	00	16/03/76	0	0.05	0	0.0W	0	0.00	0.000	0.0
XBT	7	0	16/03/76	0	0.05	0	O.0W	0	0.00	0.000	$0 \cdot 0$
$\times{ }^{\text {P }}$	8	230	16/3/76	55	30.05	65	42.0 W	0	6.00	34.097	$1 \cdot 3$
EXBT	9	315	16/3/76	55	37.05	65	54.0 W	1410	0.00	0.000	$0 \cdot 0$
EXBT	10	324	15/3/76	55	38.05	65	54.0 W	0	0.00	0.000	$0 \cdot 0$
EXBT	11	345	16/3/76	55	41.05	65	59.0W	10^{50}	6.90	$34 \cdot 004$	1.6
EXBT	12	458	$16 / 3 / 76$	55	48.95	66	10.8W	490	6.70	34.069	1.7
X ${ }^{\text {T }}$	13	00	16/03/76	0	0.05	0	0.0w	0	0.00	0.000	$0 \cdot 0$
XBT	14	0 0	16/03/76	0	$0 \cdot 05$	0	0.0 W	0	$0 \cdot 00$	0.000	0.0
EXBT	15	58	$16 / 3 / 76$	55	58.55	66	21.1W	480	$7 \cdot 30$	33.961	1.0
EXBT	16	60	16/3/76	56	$6 \cdot 35$	66	14.8W	295	6.50	34.109	1-1
XBT	17	00	16/03/76	0	0.05	0	0.0 W	0	0.00	0.000	0.0
XBT	18	00	16/03/76	0	0.05	0	0.0 W	0	0.00	0.000	0.0
ExBT	19	820	16/3/76	56	13.75	66	4.5 W	1005	6.90	34.021	1.0
EXBT	20	90	16/3/76	56	18.95	66	0.3 W	1385	7.10	33.976	$2 \cdot 3$
XBT	21	00	16/03/76	0	$0 \cdot 05$	0	0.0 W	0	$0 \cdot 00$	0.000	$0 \cdot 0$
XBT	22	00	$16 / 03 / 76$	0	0.05	0	0.0 W	0	0.00	0.000	0.0
$\times B^{\top}$	23	1015	16/3/76	56	29.85	65	48.9W	2000	$0 \cdot 00$	34.037	1.6
$\times \mathrm{BT}$	24	112	16/3/76	56	37.15	65	41.5 W	2035	5.90	34.085	1.7
XBT	25	120	16/3/76	56	43.65	65	31.2W	2005	0.00	00.000	0.0
$\times{ }^{\text {X }}{ }^{\text {T }}$	26	1210	16/3/76	56	44.85	65	30.4W	2040	5.90	$34 \cdot 075$	1.4
XBT	27	130	16, 3/76	56	51.05	65	23.0W	2145	$5 \cdot 60$	33.961	1.6
$\times 8 T$	28	140	16/3/76	57	0.05	65	12.7W	2155	5.70	$34 \cdot 082$	1.3
XBT	29	150	16/3/76	57	8.55	65	5.6 W	2190	$5 \cdot 70$	34.053	$1 \cdot 1$
XBT	30	1555	16/3/76	57	17.75	64	57.4 W	$22^{8} 0$	$5 \cdot 30$	34.035	$1 \cdot 4$
XBT	31	0	16/03/76	7	0.05		0.0W	0	0.00	0.000	0.0
$\times{ }^{1}{ }^{\text {P }}$	32	175	16,3/76	57	24.45	64	50.5 W	2260	5.00	33.980	1.4
EXBT	33	1723	16/3/76	57	$28 \cdot 15$	64	46.5W	2260°	$0 \cdot 00$	0.000	$0 \cdot 0$
EXBT	34	1740	$16 / 3 / 76$	57	31.45	64	43.0 W	2250	0.00	0.000	0.0
ExBT	35	180	16/3/76	57	34.55	64	40.0 W	2260	5.00	33.984	1.6
EXBT	36	1820	16,3,76	57	37.85	64	36.0 W	2290	5.05	33.995	$1 \cdot 4$
EXBT	37	1825	$16 / 3 / 76$	57	38.55	64	35-3 ${ }^{\text {W }}$	2300	0.00	33.983	$1 \cdot 4$
$\times B^{\top}$	38	1850	16/3/76	57	42.05	64	31.0W	2330	4.90	33.997	1.6
EXBT	39	1850	16, 3,76	57	42.05	64	$31^{\circ} \mathrm{OW}$	2330	4.90	33.997	1.6
EXBT	40	196	$16 / 3 / 76$	57	39.25	64	28.3W	2330	5.00	33.993	1.4
$X^{\prime}{ }^{\text {P }}$	41	2005	16/03/76	57	48.15	64	17.4 W	2345	$0 \cdot 00$	0.000	$0 \cdot 0$
XBT	42	2030	16/03/76	57	$52 \cdot 25$	64	12.9W	2005	0.00	0.000	$0 \cdot 0$
XBT	43	2100	16/03/76	57	56.45	64	08.4 W	2020	0.00	0.000	$0 \cdot 0$
XBT	44	2125	16/3/76	57	58.15	64	$7 \cdot 8 \mathrm{~W}$	1840	$4 \cdot 10$	0.000	1.6
$\times B^{\top}$	45	226	16/3/76	58	6.15	63	58.0 W	1750	4.00	0.000	1.6
XBT	46	23	16/3/76	58	13.85	63	49.0W	1640	3.70	33.872	$2 \cdot 3$
XBT	47	0	$17 / 3 / 76$	58	23.15	63	41.2W	1965	$3 \cdot 75$	33.893	1.9
X ${ }^{\text {T }}$	48	1	$17 / 3 / 76$	58	33.05	63	31.5 W	2130	3.70	33.904	2.1
XBT	49	2	17/3/76	58	$43 \cdot 35$	63	23.0W	2020	$3 \cdot 60$	0.000	$2 \cdot 6$
XBT	50	30	17/3/76	58	$52 \cdot 55$	63	12.9 W	2140	$3 \cdot 60$	33.849	$3 \cdot 9$

XBT	51	4	0	17/3/76	59	1.95	63	5 W			33.925	
EXBT	52	16	50	171 3/76	59	4.35	63	55.2 W	2050	3.38	33.820	2.1
XBT	53	03	00	$17103 / 76$	58	14.65	63	58.3W	0	0.00	$0.0 \cap 0$. 0
XBT	54	3	5	18/3/76	58	$42 \cdot 05$	64	O.OW	2055	$3 \cdot 45$	33.845	3.4
XBT	55	4	0	$18 / 3 / 76$	58	35.0 S	64	3.4 W	2000	$3 \cdot 25$	$33 \cdot 821$	6.6
XBT	56	5	0	18/3/76	58	23.85	64	10.1 W	1950	$3 \cdot 10$	0.000	5.0
XBT	57	6	0	18/3/76	58	15.45	64	15.6 W	2000	$3 \cdot 95$	33.947	1.7
XBT	58	7	0	$18 / 3 / 76$	58	5.75	64	21.8 W	1500	$4 \cdot 20$	33.989	2.7
$\times{ }^{\text {X }}$,	59	8	0	$18 / 3 / 76$	57	56.15	64	27.5w	1980	4.90	34.019	$1 \cdot 3$
XBT	60	8	30	$18 / 3 / 76$	57	50.85	64	30.6W	1900	4.80	34.009	$2 \cdot 1$
XBT	61	7	3	$1813 / 76$	57	45.55	64	35.6 W	1940	4.80	34.001	$1 \cdot 4$
EXBT	62	7	0	201 3/76	57	$26 \cdot 25$	64	34.8 W	2190	5.00	0.000	$0 \cdot 0$
EXBT	63	8	0	20/3/76	57	27.35	64	27.5W	2190	5.00	33.824	1.7
EXBT	64	8	30	20/ 3/76	57	28.65	64	20.9W	2250	4.85	33.822	1.6
EXBT	65	9	0	20/ 3/76	57	30.05	64	11.5 W	1700	4.90	34.021	0.0
EXBT	66	9	30	201 3/76	57	31.75	64	3.7 W	2220	4.60	34.017	1.7
EXBT	67	10	0 36	$2013 / 76$ $201 / 3 / 76$	57	33.45	63	54.7W	2330	4.70	34.014	$1 \cdot 7$
EXBT	68	10	36	$20 / 3 / 76$ $2013 / 76$	57 57	34.85	63	44.3W	2110	4.30	33.987	$2 \cdot 3$
EXBT	70	11	34	201 3/76	57	38.05	63	27.3W	2030	4.40	33.982	1.7 1.7
ExBT	71	12	0	2013176	57	41.95	63	27.3W	1980	4.70	34.017	1.7
EXBT	72	12	30	$2013 / 76$	57	47.75	63	25.0W	1990	$4 \cdot 27$	33.971	1.4
EXBT	73	13	0	201 3/76	57	52.55	63	25.0 W	2090	$4 \cdot 18$	33.942	$2 \cdot 0$
EXBT	74	13	15 45	20/ 3/76	57	56.55	63	25.0 W	2250	$4 \cdot 18$	33.950	$1 \cdot 7$
EXBT	75	13	45	2013176	57	55.7 S	63	30.7W	2240	$3 \cdot 95$	33.934	1.7
ExBT	76	14	15	2013176	57	51.85	63	38.5W	2190	3.97	33.924	$1 \cdot 9$
EXBY		14	45	20'3/76	57	48.95	63	46.4W	2185	$4 \cdot 05$	$33 \cdot 940$	1.6
ExB ${ }^{\text {P }}$	79	15	45	$20 / 3 / 76$ $20 / 3 / 76$	57	S	63	56.5 W	2250	3.98	33.985	1.6
ExB?	80	16	15	20/3176	57	39.75	64	$1 \cdot 7 \mathrm{~W}$	2300	$3 \cdot 95$	33.916	1.9
XBT	81	0	0	20/03/76	0	0.05	0	9.0W	2210	$4 \cdot 22$	34.012	1.6
Exat	82	16	45	20/3/76	57	$36 \cdot 65$	64	15.5w	2270	4.50	34.005	. 17
EXBT	83	17	15	$2013 / 76$	57	35.65	64	17.5W		$4 \cdot 80$	34.091	$2 \cdot 3$
EXAT	84	19	45	20/ 3/76	57	33.15	64	24.7W	0	4.60	34.004	$2 \cdot 1$
Exat	85	5	50	21/3/76	57	35.35	64	25.2W	0	4.60	33.945	$2 \cdot 6$
ExbT	86	5	15	21/ 3/76	57	36.85	64	21.9W	2150	4.50	34.011	2.1
Exb ${ }^{\text {T }}$	87	5	45	21/3/76	57	39.55	64	8.8 W	0	$4 \cdot 25$	33.976	1.6
EXBT	88	6	15	21/ 3/76	57	$42 \cdot 35$	64	1.7 W	2190	$4 \cdot 10$	$34 \cdot 025$	2.1
EXBT	89	6	45	21/3/76	57	45.25	63	54.3 W	2180	3.70	33.878	3.0
EXB' ${ }^{\text {E }}$	90	4	0	23/3/76	57	29.15	64	29.8 W	2210	4.90	0.050	1.7
EXBT	91	4	30	23/3,76	57	33.05	64	26.0W	2350	$4 \cdot 90$	$0 \cdot 000$	1.7
EXBT	92 93	5	0 15	$23 / 3 / 76$ $23 / 3 / 76$	57 57	37.95 37.95	64	23.1W	2360	4.50	0.000	1.0
EXBT	94	8	56	$23 / 3 / 76$ $23 / 3 / 76$	57	35.55	64	18.5 W	0	$4 \cdot 70$	0.000	$2 \cdot 9$
EXBT	95	10	40	23/ 3/76	57	31.45	64	$13 \cdot 5 \mathrm{~W}$	2250	$4 \cdot 50$	$0 \cdot 000$	0.0
ExBT	96	19	5	2313176	57	28.75	64	36.6 W	0	4.70 5.60	0.000	1.7
ExbT	97	19	15	23/3/76	57	29.25	64	$34 \cdot 3 \mathrm{w}$	0	5.60	0.000	0.0
EXBT	98	19	44	23/3/76	57	$30 \cdot 05$	64	30.6 W	0	$5 \cdot 25$	0.000	
EXBT	99	20	16	23/ 3/76	57	31.15	64	25.4W	0	$5 \cdot 00$	0.000	0.0
EXBT	100	21	10	23/3176	57	31.65	64	18.7 W	0	4.83	0.000	$0 \cdot 0$
EXBT	101	0	50	24/3/76	57	29.05	64	16.1W	2010	4.70	0.000	1.9
EXBT	102	1	20	$24 / 3 / 76$	57	28.65	64	11.4 W	2010	$4 \cdot 70$	0.000	1.7
X ${ }^{\text {X }}$	103	0	0	24/03/76	7	$0 \cdot 05$	0	0.0 W	0	0.00	0.000	$0 \cdot 0$
EX8T	104	1	55	24/3/76	57	28.65	64	7.6 W	0	4.85	0.000	1.7
EXBT	105	2	25	24/3/76	57	29.75	64	5.5W	0	$4 \cdot 70$	0.000	1.6
EXBT	106	2	55	24/3176	57	31.95	64	$5 \cdot 6 \mathrm{~W}$	0	4.70	0.000	2.9
EXBT	107		20	24/3/76	57	$34 \cdot 05$	64	$5 \cdot 4 \mathrm{~W}$	0	4.40	0.000	$0 \cdot 0$
EXBT	108	5	35	24/3/75	57	$31 \cdot 35$	64	4.7w	0	$4 \cdot 45$	0.000	$0 \cdot 0$
$\times 8{ }^{81}$	109	7	45	24/3/76	57	29.25	64	$3 \cdot 3 \mathrm{~W}$	0	4.52	0.000	$0 \cdot 0$
EXBT	110	9	10	24/3/76	57	28.45	64	2.9W	0	$0 \cdot 00$	$0 \cdot 000$	$0 \cdot 0$

EXBT	111	12	-	24/3/76	57	20.15	64	$4 \cdot 1 \mathrm{~W}$	0	4.80	0.000	0.0
EXBT	112	16	25	24/3176	57	25.95	65	$52.5 w$	0	4.90	0.000	0.0
EXB ${ }^{\text {P }}$	113	18	15	25/3/76	57	24.25	63	50.2w	0	4.90	0.000	0.0
EXBT	114	23	3	24/3/76	57	14.15	63	57.2W	0	4.90	0.000	$0 \cdot$
EXBY	115	2	40	25/3/76	57	7.25	63	59.8W	0	4.90	0.000	1.
XBT	116		10	25/3/76	57	9.4S	63	57.7 W	0	4.90	0.000	1.9
EXBT	117	3	40	25/3/76	57	11.65	63	54.9 W	0	4.90	0.000	1.9
EXBT	118	4	10	25/3/76	57	14.25	63	51.2W	0	4.90	0.000	0.0
Exb ${ }^{\text {T }}$	119	4	40	25/3/76	57	16.65	63	48.2w	0	5.10	0.000	0.0
EXBT	120	5	10	25/3/76	57	18.85	63	$45 \cdot \mathrm{OW}$	0	$4 \cdot 75$	0.000	$0 \cdot$
EXBT	121	5	40	25/3/76	57	21.25	63	42.0 W	0	$4 \cdot 50$	0.000	0.0
ExB ${ }^{\text {T }}$	122	6	10	25/3/76	57	23.45	63	38.8 W	0	4.20	0.000	- 0
XBT	123	0	0	25/03/76	0	0.05	0	0.0 W	0	$0 \cdot 00$	0.000	0.
EXBT	124	6	43	25/3/76	57	25.85	63	35.5 W	0	4.20	0.000	0.
XBT	125	0	0	25/03/76	0	$0 \cdot 05$	0	O.OW	0	0.00	0.000	$0 \cdot$
EXBT	126	7	10	25/3/76	57	28.95	63	32.8 W	0	4.40	0.000	0
EXBT	127	7	40	25/3/76	57	31.65	63	30.5 h	-	4.35	0.000	0.
Exa'	12^{8}	17	28	25/3/76	57	26.95	63	23.8 W	1970	$4 \cdot 40$	0.000	$0 \cdot$
EXBT	129	8	45	26/3/76	57	26.35	63	19.5 W	1950	$4 \cdot 50$	0.000	$0 \cdot$
ExBT	130	12	55	26/3/76	57	41.05	63	22.9	1980	4.10	$0 \cdot 000$	$0 \cdot 0$
EXBT	131	18	25	26/3/76	57	55.95	63	34.7 w	0	$4 \cdot 35$	0.000	$0 \cdot 0$
EXBT	132	19	30	26/3/76	57	52.6S	63	31.5W	0	$4 \cdot 30$	0.000	0.
ExbT	133	20	0	26/3/76	57	50.05	63	26.0 W	2030	$4 \cdot 25$	0.000	$0 \cdot 0$
EXBT	134	20	30	26/3/76	57	$47 \cdot 25$	63	20.4 W	1960	4.90	0.000	$0 \cdot 0$
EXBT	135	21	0	26/3/76	57	44.35	63	14.5 h	0	$4 \cdot 90$	0.000	0.0
EXP'	136	21	30	26/ 3/76	57	41.05	63	7.6 w	0	4.82	0.000	$0 \cdot 0$
EXBT	137	22	0	26/3/76	57	$38 \cdot 05$	63	1.0 W	0	4.90	0.000	$0 \cdot 0$
ExBT.	138	22	30	26/3/76	57	34.95	62	54.5 W	-	$5 \cdot 10$	0.000	0.
EXRT	139	23	0	26/ 3176	57	$32 \cdot 05$	62	48.2w	2090	5.15	0.000	$0 \cdot 0$
EXBT	140	23	30	26, 3,76	57	28.55	62	51.1 w	20^{75}	$5 \cdot 00$	0.000	$0 \cdot 0$
EXBT	141	0	2	27, 3/76	57	24.75	62	55.0 W	20^{60}	$5 \cdot 05$	0.000	$0 \cdot 0$
EXBT	142	0	30	271 3/76	57	21.15	62	$58 \cdot 3 \mathrm{~W}$	0	$4 \cdot 80$	0.000	0.0
EXB ${ }^{\top}$	143	1	0	27/3176	57	16.65	63	3.9 w	1980	4.80	0.000	$0 \cdot 0$
EXBT	144	1	30	27, 3/76	57	$13 \cdot 25$	63	7.36	2025	4.90	0.000	$0 \cdot 0$
ExBT	145	2	0	27/ 3/76	57	9.5S	63	11.6 W	-	$4 \cdot 90$	0.000	0.
ExB ${ }^{\text {T }}$	146	2	30	27/3/76	57	5.75	63	15.7	2100	4.95	0.000	0
EXBT	147	3	0	27, 3/76	57	1.95	63	$20.0{ }^{\circ}$	2040	$4 \cdot 80$	$0 \cdot 000$	$0 \cdot$
EXBT	148	3	30	27/ 3/76	56	58.85	62	22.6 W	2040	$4 \cdot 80$	0.000	0.
ExB ${ }^{\text {T }}$	149	6	47	27/3/76	56	$45 \cdot 2 S$	63	20.1 W	2125	4.90	0.000	$0 \cdot 0$
ExBT	150	10	0	27, 3/76	56	$45 \cdot 25$	63	17.2 h	2120	4.90	0.000	$0 \cdot$
EXBT	151	10	30	27/ 3/76	56	47.15	63	16.4 W	0	$4 \cdot 85$	0.000	0.
EXBT	152	11	0	$27 / 3 / 76$	56	50.85	63	15.7W	0	4.80	0.000	0.0
$\times B^{+}$	153	11	30	27103/76	0	0.05	0	$0 \cdot 0 \mathrm{~W}$	0	$0 \cdot 00$	0.000	$0 \cdot$
EXBT	154	11	30	27, 3/76	56	$56 \cdot 25$	63	15.7w	0	$4 \cdot 90$	0.000	-
EXBT	155	12	0	$27 / 3 / 76$	57	0.85	63	15.8 W	0	$5 \cdot 10$	0.000	0.
ExB ${ }^{\top}$	156	12	30	$27 / 3 / 76$	57	$5 \cdot 95$	63	15.9	0	$4 \cdot 90$	0.000	$0 \cdot$
EXBT	157	13	0	27, 3,76	57	9.65	63	15.9w	2090	4.70	0.000	$0 \cdot$
EXBT	158	13	30	27/ 3/76	57	14.85	63	16.0 W	2045	$4 \cdot 60$	0.000	.
ExBT	159	14	0	27, 3/76	57	$20 \cdot 15$	63	16.0 w	2000	4.50	0.000	$0 \cdot 0$
EXBT	160	14	30	27, 3,76	57	25.95	63	16.2^{W}		$4 \cdot 40$	0.000	0.0
EXBT	160 B	14	45	27/ 3/76	57	28.05	63	$16.3{ }^{\text {k }}$	1930	$4 \cdot 40$	0.000	0.0
EXB ${ }^{\text {T }}$	161	15	0	27, 3/76	57	$30 \cdot 15$	63	16.5	1930	4.40	0.000	0.
$\times \mathrm{BT}$	162	17	30	27/3/76	57	48.15	63	25.1w	1980	4.40	0.000	
$\times \mathrm{BT}$	163	18	00	27/03/76	. 57	50.85	63	26.5 w	0	0.00	$0 \cdot 000$	$0 \cdot 0$
XBT	164	18	10	27/3/76	57	51.5 s	63	27.0W	2070	4.30	0.000	0.
$\times{ }^{+1}$	165	0	0	27/03/76	0	0.05	0	$0 \cdot \mathrm{OW}$	0	0.00	0.000	$0 \cdot$
$\times \mathrm{BT}$	166		0	27103/76	0	$0 \cdot 05$	0	$0.0{ }^{\text {W }}$	0	0.00	0.000	$0 \cdot$
XBT	167	19	14	27/03/76	57	$53 \cdot 45$	63	$36 \cdot 3^{h}$	0	0.00	0.000	0.0
$\times B^{\top}$	168	19	25	27, 3/76	57	53.45	63	38.3w	2170	4.45	0.000	
XBT	159	21	30	27, 3/76	57	59.95	63	8.9 w	2240	$0 \cdot 00$	0.000	

XBT	170	23	35
XBT	171	0	0
$\times{ }^{\text {P }}$	172	0	30
$\times{ }^{1}{ }^{\top}$	173	1	0
XBF	174	1	30
XBT	175	02	04
$\times{ }^{+1}$	176	2	5
$\times \mathrm{BT}$	177	02	35
XBT	178	3	0
SURF	179	3	30
X $\mathrm{BT}^{\text {T }}$	180	3	45
$\times 8 \mathrm{~T}$	181	5	0
$\times 8{ }^{1}$	182	5	30
$\times 87$	183	19	50
$\times{ }^{\times 1}$	184	6	0
$\times 8 \mathrm{~T}$	185	6	30
$\times B^{\top}$	186	7	0
XBT	187	7	30
XBT	189	8	5
$\times B^{\top}$	190	8	35
XBT	191	9	5
\times BT	192	9	35
$\times B^{\top}$	193	10	0
$\times 87$	194	10	31
XBT	195	11	0
XBT	197	11	35
$\times B^{\top}$	198	12	0
$\times B T$	199	12	30
$\times \mathrm{BT}$	200	14	30
$\times{ }^{1}$	201	15	0
XBT	202	15	30
$\times \mathrm{BT}$	203	16	0
$\times \mathrm{BF}^{7}$	204	20	30
$\times \mathrm{BT}$	205	16	32
XBT	206	17	0
$S_{U}{ }^{R}{ }^{\text {F }}$	207	17	30
$\times{ }^{+1}$	208	18	0
$\times \mathrm{BT}$	20^{9}	18	30
XBT	210	21	30
$\times{ }^{+1}$	211	19	0
$\times{ }^{\times 1}$	212	19	30
XBT	213	20	0
$\times B^{\top}$	214	20	30
$\times \mathrm{BT}$	215	21	-
$\times{ }^{1}$	2164	21	24
$\times B^{\top}{ }^{\top}$	216	21	30
$\times \mathrm{BT}$	217	22	2
$\times \mathrm{BT}$	218	22	30
XBT	219	23	40
$\times B^{\top}$	220	23	0
$\times \mathrm{BT}$	221	23	25
X日 ${ }^{\text {¢ }}$	222	0	0
$\times{ }^{1+1}$	223	0	8
$\times \mathrm{BT}$	224	0	30
XBT	225	1	0
$\times \mathrm{P}^{7}$	226	1	30
$\times{ }^{1+}$	227	2	0
ExBT	228	7	50
EXBT	229	10	15
$\times{ }^{8 T}$	230	10	47

27/ 3/76 28/3/76 28/3/76 28/3/76 28/ 3/76 27/03/76 28/3/76 27/03/76
28/ 3/76 28/ 3/76 28, 3/76 28/3/76 28/3/76 28/03,76 28/3/76 28/ 3/76 28/ 3/76 28/3/76
28/ 3/76
28/ 3/76
28/ 3/76
28/3/76
28/3/76
28, 3/76
28/3/76
28/3/76
28/ 3/76
28/3/76
28/ 3/76
28/3/76
28, 3/76
28/3/76
28/03/76
28, 3,76
28/ 3/76
28/3/76
28/3/76
28, 3,76
28/03/76
28/3/76
28, 3/76
28/ 3/76
28/3/76
$28 / 3 / 76$
$28 / 3 / 76$
28/ 3176
28/3/76
28/03/76
28/3/76
28/3/76
28/03/76
29/3/76
29/ 3/76
29/ 3/76
29/3/76
29/3/76
29/ 3/76
29/ 3/76
29/3/76

58	7.85	63	44.2W	0	4.50	0.000	0.0
58	8.35	63	49.0 W	0	4.65	0.000	0.0
58	8.65	63	53.7 W	0	4.70	0.000	$0 \cdot 0$
58	8.05	63	58.8W	0	$4 \cdot 70$	0.000	$0 \cdot 0$
58	4.85	64	$3 \cdot 7 \mathrm{~W}$	0	$4 \cdot 70$	0.000	$0 \cdot 0$
58	02.05	64	07.6W	0	0.00	0.000	0.0
58	1.25	64	8.7W	0	4.65	0.000	$0 \cdot 0$
57	59.35	64	05.8W	0	$0 \cdot 00$	0.000	$0 \cdot 0$
57	57.95	63	$59 \cdot 3 \mathrm{~W}$	0	$4 \cdot 30$	0.000	0.0
57	55.9 S	63	$54 \cdot 0 \mathrm{~W}$	0	$4 \cdot 30$	0.000	$0 \cdot 0$
57	$55 \cdot 2 \mathrm{~S}$	63	52.7W	0	$4 \cdot 30$	0.000	$0 \cdot 0$
57	$56 \cdot 65$	63	$53 \cdot 3$ w	2360	$4 \cdot 60$	0.000	0.0
5	59.05	63	54.0 W	1950	$4 \cdot 20$	0.000	0.0
58	$03 \cdot 35$	63	55.5 W	0	0.00	0.000	$0 \cdot 0$
58	$3 \cdot 35$	63	$55 \cdot 5 \mathrm{~W}$	1950	4.60	0.000	$0 \cdot 0$
58	6.95	63	56.5 W	1760	4.60	0.000	0.0
58	$10 \cdot 35$	63	57.7 w	1470	4.70	0.000	$0 \cdot 0$
58	$15 \cdot 4 \mathrm{~S}$	63	57.4 k	2020	4.60	0.000	$0 \cdot 0$
58	19.35	63	57.0 W	2000	4.80	0.000	0.0
58	24.05	63	57.0 w	2000	$5 \cdot 20$	0.000	0.0
58	29.85	63	56.9w	1950	5.00	0.000	$0 \cdot 0$
58	32.85	63	56.8 W	1960	$4 \cdot 90$	0.000	0.0
58	37.45	63	56.3W	2040	4.80	0.090	$0 \cdot 0$
58	41.95	63	53.6 W	2040	4.60	0.000	$0 \cdot 0$
58	46.05	63	54.5 W	2050	0.00	0.000	0.0
58	50.5 s	63	53.4 W	0	0.00	0.000	0.0
58	55.4 S	63	52.4 W	2105	$4 \cdot 30$	0.000	$0 \cdot 0$
59	0.45	63	51.1W	2110	3.70	0.000	0.0
58	59.3 s	63	49.8 W	2140	3.70	0.000	0.0
58	$53 \cdot 85$	63	52.2w	2100	4.40	$0 \cdot 000$	$0 \cdot 0$
58	44.35	63	57.0 W	$20^{7} 0$	4.60	0.000	$0 \cdot 0$
58	44.3S	63	$57 \cdot 0 \mathrm{~W}$	2070	$4 \cdot 80$	0.000	0.0
58	39.65	63	59.2w	0	0.00	0.000	0.0
58	39.65	63	59.2W	2030	4.80	0.000	$0 \cdot 0$
58	34.8S	69	1.9W	1990	$4 \cdot 90$	0.000	0.0
58	29.75	64	$3 \cdot 5 \mathrm{w}$	0	5.40	0.000	$0 \cdot 0$
58	26.05	64	8.5 W	1930	5.50	0.000	$0 \cdot 0$
58	2199	64	13.8 W	1800	$5 \cdot 50$	0.000	$0 \cdot 0$
58	17.85	64	18.5 W	0	0.00	0.000	0.0
58	17.85	64	18.5W	2130	$5 \cdot 40$	0.000	- 0
58	13.55	64	23.4 W	20^{70}	$0 \cdot 00$	$0 \cdot 000$	$0 \cdot 0$
58	8.65	64	29.3W	1930	$5 \cdot 45$	0.000	-
58	6.75	64	$33 \cdot 2 \mathrm{~W}$	2100	5.02	0.000	$0 \cdot 0$
58	1.75	64	$34 \cdot 6 \mathrm{~W}$	1800	$5 \cdot 55$	$0 \cdot 000$	$0 \cdot 0$
0	0.05	0	0.0 W	0	$5 \cdot 50$	0.000	0.0
57	56.05	64	$34 \cdot 7 \mathrm{~W}$	1440	$5 \cdot 55$	0.000	0.0
57	50.55	64	$34 \cdot 4 \mathrm{~W}$	0	$5 \cdot 45$	$0 \cdot 000$	$0 \cdot 0$
7	44.85	64	35.0 W	1700	5.50	0.000	0.0
57	39.25	64	35.1 w	0	0.00	0.000	0.0
57	$39 \cdot 25$	64	35-1 W	2340	$5 \cdot 50$	0.000	$0 \cdot 0$
57	33.55	64	34.6 W	2340	5.75	$0 \cdot 000$	- 0
0	0.05	-	0.0 W	0	0.00	0.000	0.0
57	33.05	64	23.7 w	0	5.00	$0 \cdot 000$	$0 \cdot 0$
57	33.25	64	16.3 W	0	4.70	$0 \cdot 000$	$0 \cdot 0$
57	34.15	64	8.0 W	0	4.20	0.000	0.0
57	37-35	63	57.7w	0	$3 \cdot 70$	0.000	$0 \cdot 0$
57	$39 \cdot 45$	63	51.9W	0	3.90	0.000	$0 \cdot 0$
57	$42 \cdot 25$	64	9.6 W	0	$4 \cdot 20$	0.000	0.0
57	42.45	64	9.8W	0	$4 \cdot 10$	0.000	$0 \cdot 0$
57	44.9S	64	9.7 W	0	$4 \cdot 20$	0.000	- 0

EXBT $231 \quad 1155$ 29/ 3/76 $\begin{array}{llllll}\text { EXBT } & 232 & 12 & 30 & 29 / 3 / 76\end{array}$ $\begin{array}{lllll}X B T & 233 & 13 & 0 & 29 / 3 / 76\end{array}$ EXBT $234 \quad 13 \quad 5 \quad 29 / 3 / 76$ $\begin{array}{lllll}\text { EXAP } 235 & 13 & 45 & 291 & 3 / 76\end{array}$ $\begin{array}{lllll}\text { EXBT } & 236 & 14 & 28 & 29, \\ \text { EXI }\end{array}$ EXBT $23715 \quad 2 \quad 29 / 3 / 76$ $\begin{array}{llll}\times 8 T & 238 & 17 & 30 \\ \text { 29/ 3/76 }\end{array}$ $\begin{array}{lllll}\text { XBT } & 239 & 18 & 30 & 29 / 03 / 76\end{array}$ $\begin{array}{lllll}X B T & 240 \quad 18 \quad 30 & 2913 / 76\end{array}$ $\begin{array}{llll}\text { XBT } & 241 \quad 4 \quad 0 \quad 29 / 3 / 76\end{array}$ XBY $2421390 \quad 29103 / 76$ $\begin{array}{lllll}\text { XBT } & 243 & 14 & 20 & 29 / 03 / 76 \\ \text { XBT } & 244 & 19 & 25 & 29,3 / 76\end{array}$ $\begin{array}{lllll}\text { XBT } & 245 & 20 & 15 & 29 / 3 / 76\end{array}$ $\begin{array}{lllll}X B T & 46 & 20 & 45 & 29 / 3 / 76\end{array}$ $\begin{array}{llll} \\ X B T & 247 & 21 & 15 \\ X A T & 29 / 76\end{array}$ X 248 21 45 29/ 3/76 XBT $249 \quad 2215$ 29/ 3/76 $\begin{array}{llll}\text { XBT } 250 & 2145 & 29,3,76\end{array}$ XBT $251 \quad 2320$ 29/3/76 $\times B^{\top} 252 \quad 2345$ 29/3/76 $\begin{array}{llllll}\text { XBT } & 253 & 0 & 15 & 30 / 3 / 76\end{array}$ $\begin{array}{lllll}\text { XBT } 254 & 1 & 0 & 30 / 3 / 76\end{array}$ $\begin{array}{lrrrr}X B T & 255 & 3 & 45 & 30 / 3 / 76 \\ X B T & 256 & 19 & 75 & 30 / 03 / 76\end{array}$ $\begin{array}{llllll}X B T & 257 & 4 & 0 & 30 / 3 / 76\end{array}$ $\begin{array}{llll} \\ X B^{\top} & 258 & 4 & 30 \\ X & 30 / 3 / 76\end{array}$ $\begin{array}{lrrrr}\text { XBT } 259 & 5 & 0 & 30 / 3 / 76\end{array}$ $X B^{T} 261 \quad 530$ 30/3/76 $\begin{array}{lll}\times B T & 6626 & 0 \\ X 0 / 3 / 76\end{array}$ $\begin{array}{llll}X B T & 263 \quad 6 \quad 30 & 30 / 3,76\end{array}$ $\begin{array}{llll}\times 8 T & 264 & 18 & 00 \\ \times 18 & 30103 / 76\end{array}$ $\begin{array}{lllll}X_{B E}{ }^{\top} & 265 & 18 & 00 & 30 / 03 / 76 \\ X B T & 266 & 7 & 20 & 30 / 3 / 76\end{array}$ $\begin{array}{rlllll}\text { SURF } & 267 & 7 & 28 & 301 & 3 / 75 \\ \times B T & 268 & 7 & 30 & 30 / 3 / 76\end{array}$ XBT 269 \& $1 \quad 30,3,76$ $\begin{array}{lllllll}X B T & 270 & 80 & 30 / 3 / 76\end{array}$ XBT 2711142 30/ 3/76 $\begin{array}{llllll}\mathrm{XBT} & 272 & 12 & 5 & 30,3,76\end{array}$ $\begin{array}{llllll}X B T & 273 & 12 & 30 & 301 & 3176\end{array}$ $\begin{array}{lllllll}X B Y & 274 & 13 & 0 & 301 & 3 / 76\end{array}$ $X^{X T} \quad 275 \quad 13 \quad 30 \quad 3013 / 76$
EXET $276 \quad 16 \quad 25 \quad 30 / 3,76$
$\begin{array}{lllllllll}\text { EXBT } & 277 & 17 & 15 & 30 / 3 / 76\end{array}$ $X B^{T} 436 \quad 10 \quad 2 / 4 / 76$ XBT 43725 2, 2,76 $\begin{array}{llll}\text { XBT } & 438 & 3 & 0 \\ \text { OBT }\end{array}$ 2/76 $\begin{array}{llll}X B^{\top} & 439 & 4.00 & 02104 / 76\end{array}$ XBT $440 \quad 4 \quad 3 \quad 2,4 / 76$ XBT $441 \quad 5 \quad 0 \quad 2 \prime 4 / 76$ XBT $442 \quad 6 \quad 0 \quad 2 / 4 / 76$ $\begin{array}{lllll} & B^{\top} 443 & 10 & 0 & 2 / 4 / 76\end{array}$ XBT $444 \quad 10 \quad 30 \quad 2,4,76$ XBT $445 \quad 1410 \quad 2^{\prime} \quad 4 / 76$ $\begin{array}{llll}X B^{\top} 446 & 17 & 25 & 2 / 4 / 76\end{array}$ XBT $447 \quad 2110 \quad 2,4,76$ $\begin{array}{llll}X B T & 448 & 1 & 15\end{array} 3^{\prime} 4 / 76$

57	41:15	64		0	$4 \cdot 20$	0.0	
7	37.65	64	4.76	0	4.20	0.000	0.0
57	34.25	64	$5.0 W$	0	$3 \cdot 70$	$0 \cdot 000$	0.
57	$30 \cdot 35$	64	7.5 W	0	$3 \cdot 70$	0.000	$0 \cdot 0$
57	30.35	64	7.5 W	0	3.80	0.000	0.0
57	25.4S	64	10.4 W	0	$4 \cdot 20$	0.000	0
57	25.2S	64	11.0	229^{9}	$4 \cdot 32$	0.000	$0 \cdot$
57	27.05	64	11.9 W	2300	4.25	0.000	0.
57	29.55	64	$10 \cdot 7$	0	$0 \cdot 00$	0.000	$0 \cdot$
57	32.15	64	11.3 W	1600	4.40	0.000	0.
57	32.55	64	12.0 W	0	4.10	0.000	$0 \cdot 0$
57	32.55	64	12.0 W	0	0.00	0.000	0.
57	$32 \cdot 05$	64	11.7	0	0.00	0.000	0.0
57	32.05	64	11.2 w	0	$4 \cdot 30$	0.000	0
57	31.25	64	9.2 w	0	$4 \cdot 40$	0.000	0.0
57	33.05	64	$3 \cdot 7$	0	3.75	0.000	0.0
57	35-4S	64	57.6 W	0	3.60	0.000	
57	38.55	63	51.2W	0	$3 \cdot 60$	0.000	0.0
57	41.55	64	44.5 W	0	3.70	0.000	$0 \cdot 0$
57	44.05	63	38.0	0	$4 \cdot 20$	$0 \cdot 000$	$0 \cdot 0$
57	47.35	63	30.1 W	0	4.45	0.000	0.0
57	49.75	63	24.1	0	$4 \cdot 60$	0.000	$0 \cdot 0$
57	$53 \cdot 8 \mathrm{~S}$	63	18.1	$20^{6} 0$	4.80	0.000	$0 \cdot 0$
7	58.25	63	9.4 W	2140	4.70	0.000	0.0
58	3.0S	62	58.4 W	0	4.70	. 0.00	$0 \cdot 0$
58	05.8S	62	58.7	0	0.00	- 000	$0 \cdot 0$
58	$5 \cdot 8 \mathrm{~S}$	62	58.76	1970	$4 \cdot 70$	0.000	.
58	$10 \cdot 45$	62	58.8	2200	4.70	0.000	0
58	14.85	62	59.0	$22^{7} 0$	4.60	$0 \cdot 000$	$0 \cdot 0$
58	19.35	62	59.2W	0	0.00	0.000	. 0
58	$19 \cdot 35$	62	59.2	2250	4.05	0.000	0.0
58	$23 \cdot 35$	62	59.5 w	1560	$4 \cdot 30$	0.000	$0 \cdot 0$
58	27.95	62	59.7W	$20^{7} 0$	$4 \cdot 10$	0.000	$0 \cdot 0$
58	33.05	63	00.0 W		0.00	0.000	0.0
58	$33 \cdot 05$	63	$00 \cdot 0 \mathrm{~W}$	0	$0 \cdot 00$. 000	0.0
58	$33 \cdot 0$ S	63	$0 \cdot 0$	1860	$4 \cdot 00$	$0 \cdot 000$	0.0
58	38.45	63	4.0 W	1850	3.70	0.000	0.0
58	38.4S	63	$0 \cdot 4$	1850	3.70	0.000	0.0
58	44.05	62	59.5 W	1850	$3 \cdot 50$	$0 \cdot 000$	$0 \cdot 0$
58	$47 \cdot 45$	62	59.0 W	2070	$3 \cdot 30$	0.000	0.0
58	44.25	63	$0 \cdot 0 \mathrm{~W}$	0	3.50	. 000	0.0
58	$41 \cdot 35$	63	3.0	2020	$3 \cdot 90$	0.000	0.0
58	38.05	63	6.4 W	2000	4.10	0.000	$0 \cdot 0$
58	33.45	63	9.96	1980	4.40	0.000	0.0
58	28.55	63	14.0 W	0	4.50	0.000	0.0
58	29.35	63	$13 \cdot 2 \mathrm{k}$	1900	$4 \cdot 50$	$0 \cdot 000$	
58	29.45	63	14.0 O	1930	$4 \cdot 30$	0.000	0.0
58	22.65	62	58.0 W	1900	4.40	0.000	$0 \cdot 0$
58	32.55	62	$51 \cdot 2 w$	1990	$3 \cdot 80$	$0 \cdot 000$	$0 \cdot 0$
58	40.58	62	$43 \cdot 5 \mathrm{~W}$	2030	$3 \cdot 50$. 0.000	0.0
58	48.85	62	$35.3 w$	0	$0 \cdot 00$. 000	0.0
58	49.45	62	$35 \cdot 1 \mathrm{w}$	1980	$3 \cdot 10$	0.000	$0 \cdot 0$
58	$54 \cdot 55$	62	$41.5{ }^{\text {W }}$	0	2.55	0.000	0.0
58	56.25	32	54.6 W	2140	2.85	0.000	0.0
58	51.95	63	$0 \cdot 6 \mathrm{~W}$	0	$2 \cdot 92$	0.000	$0 \cdot 0$
58	48.05	63	$2 \cdot 0$	2100	$3 \cdot 32$	33.901	$4 \cdot 7$
8	39.05	63	- ${ }^{\text {W }}$		$4 \cdot 50$	0.000	0.0
58	$30 \cdot 55$	63	8.5 w	1840	$5 \cdot 20$	34.034	$3 \cdot 2$
58	19.65	63	17.3W	1710	4.60	34.029	2.8
58	10.55	63	$18.5{ }^{\text {W }}$	0	$4 \cdot 50$	0.000	2.0

$\times B^{\top}$	449	5	35	$3 / 4 / 76$	58 57	0.55 51.35	63	26.0 W	2360	4.85 4.90	34.033 34.060	$2 \cdot 3$
$\times{ }^{\times T}$	450	9	45	3/4/76	57	$51 \cdot 35$	63	$28.5 W$	0	4.90	$34 \cdot 060$	$2 \cdot 5$
XBT	451	13	50	3/4/76	57	41.55	63	$33 \cdot 0 \mathrm{~W}$	0	$3 \cdot 90$	33.895	3-9
XBT	452	17	40	3/4/76	57	31.95	63	$36.2 W$	0	4.15	33.827	5.9
$\times \mathrm{BT}$	453	21	5	3/4/76	57	$23 \cdot 35$	63	41.0 W	2060	$3 \cdot 70$	33.831	$5 \cdot 4$
$\times 89$	454	1	40	4/4/76	57	9.45	63	42.8 W	2100	$3 \cdot 40$	$34 \cdot 101$	3-0
XBT	455	0	0	04/04/76	0	$0 \cdot 05$	0	O.OW	0	0.00	0.000	$0 \cdot 0$
XBT	456	0	0	04/04/76	0	0.05	0	0.0 W	0	0.00	0.000	0.0
$\times B^{+}$	457	5	55	4/4/76	57	1.05	63	46.0 W	0	$4 \cdot 25$	34.019	$2 \cdot 3$
XBT	459	9	40	4/4/76	56	$55 \cdot 05$	63	52.0 W	2230	4.60	0.000	$0 \cdot 0$
	460	14	20	4/4/76	56	51.15	64	$5 \cdot 3 W$	0	4.60	0.000	0.0
$\times{ }^{\text {P }}$	461	14	30	4/4/76	56	50.5S	64	$8 \cdot 6 W$	2110	5-30	$34 \cdot 099$	$2 \cdot 3$
XBT	462	0	0	04/04/76	56	47.45	64	$30 \cdot 6$	0	$0 \cdot 00$	0.000	$0 \cdot 0$
XBT	463	20	70	04/04/76	56	47.45	64	30.6	0	0.00	0.000	0.0
XBT	464	0	0	04/04/76	0	O.OS	0	O.0W	$7{ }^{\circ}$	0.00	0.000	0.0
$\times 8{ }^{+1}$	465	19	50	4/4/76	56	47.45	64	30.6 W	2070	$5 \cdot 75$	0.000	$0 \cdot 0$
XBT	466	0	30	$5 / 4 / 76$	56	41.55	64	47.2w	2030	$6 \cdot 00$	34.096	$3 \cdot 0$
X日T	467	4	37	5/4/76	56	37.55	65	1.0W	2000	6.20	34.074	2.8
$\times{ }^{\text {P }}$	468	8	35	$5 / 4 / 76$	56	34.55	65	20.3W	0	$6 \cdot 10$	34.116	$2 \cdot 0$
$\times B T$	469	13	30	5/4/76	56	$2^{9 \cdot 05}$	65	35.6 W	1950	$6 \cdot 20$	34.113	$2 \cdot 0$
$\times B T$	470	17	10	5/ 4/76	56	25.5S	65	51.0W	0	$6 \cdot 90$	34.118	$2 \cdot 0$
$\times B^{T}$	471	21	5	5/4/76	56	23.05	66	6.6 W	1600	$6 \cdot 60$	0.000	$2 \cdot 5$
$\times \mathrm{BT}^{\top}$	472	6	30	6/4/76	56	$14 \cdot 15$	66	$43 \cdot 3 W$	145	7.40	0.000	$0 \cdot 0$

IV. CTD

During Leg III, a total of 101 CTD stations were taken in the Drake Passage.* All but three of these included continuous measurement of dissolved oxygen with a Beckman MINOS probe borrowed from the University of Rhode Island. Because of limitations imposed by the oxygen probe, CTD stations were limited to pressures less than 3000 decibars.

Stations with the CTD were reference points for a number of other measurements (e.g., XBT, light scattering, nutrients) and were grouped into different types of activities (e.g., spatial survey of front, Yo-Yo's, over vertical current meters (VCMs)). Before discussion of instrument performance and of sample traces, we show in Table 5 a breakdown of CTD stations versus scientific activity.

A. Instrument Servicing

Two CTD fish (instruments \#3 and \#4) were taken on Leg 3 of R/V THOMPSON Cruise 107. The first three stations were used to evaluate the performance of each instrument and revealed the following problems. The temperature sensor of CTD \#3 read cold by between .03 and $.04^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C}$ compared to reversing thermometers. The fast response temperature circuit did not appear to be functioning properly. The temperature circuit had $\pm 2 \mathrm{~m}^{\circ} \mathrm{C}$ noise. The batteries on CTD \#4 would not hold a charge and a power failure occurred half way through its test station. Three dead cells were replaced in CTD \#4's battery pack but it still failed to hold a charge. Since CTD \#4 was giving better performance, the battery pack, power supply, and oxygen interface boards were swapped from CTD \#3 to CTD \#4. CTD \#4 was used for the remainder of the cruise. A summary of instrument servicing is given in Table 6 .

B. Data Editing

The CTD stations were edited using CTDED with first difference criterion of $\Delta \mathrm{P}=1 \mathrm{dbar} ; \Delta \mathrm{T}=.06^{\circ} \mathrm{C}$ and $\Delta \mathrm{C}=.12 \mathrm{mmho} / \mathrm{cm}$ above 800 dbars and $\Delta T=.015^{\circ} \mathrm{C}$ and $\Delta \mathrm{C}=.03 \mathrm{mmho} / \mathrm{cm}$ below 800 dbars . The stations were

[^2]Table 5

CTD/Activity Table

Start	End	Activity
1	3	Test stations - compare performance CTD fish \#3 and \#4
4		Recovery of "A" upper section
5	6	Locate frontal interleaving region to set P.O.E. buoys
7	18	28 hr time series to 1500 m relative to P.O.E. buoy with PCM profiles \#3-15 to 600 m
19		5 cycle Yo-Yo $50-1500 \mathrm{~m}$ over 1.3 km to describe along front small scales
20	24	Across front small scale variations at . 9 km spacing
25	39	Across front survey at 3 km spacing (60 km total) position relative to buoys. PCM profiles at CTD stations 30, 34, 39
40	43	Downstream front survey at 6 km spacing, buoy loose poor navigation
44	56	Float ballasting and tracking over several days (Station CTD 46 - PCM relative to VCM \#1)
54	\& 57	Geostrophic eddy velocity - center eddy and outside
58		South of front
59	74	28 hr time series to 1500 m relative to $\mathrm{VCM} \# 1$ at 400 decibars
75	76	Normal to front at 5 km from VCM \#l at float recoveries
77	97	Large scale section at 15 km spacing across Drake Passage through eddy - all stations to 3000 m
98	101	Bottom stations on continental shelf and slope off Cape Horn. 2 cast stations - separate oxygen and bottom finder

Table 6

Summary Table of Instrument Servicing

Table 6 (Contd.)

Table 6 (Contd.)

Date		$\begin{gathered} \text { Opened } \\ \text { CTD } \end{gathered}$	
6 April			Replaced + battery charger lead Fixed 9 track mag. tape
	99-2		No O_{2} probe
	99-1		O_{2} probe
	100-1		O_{2} probe
	100-2		No O_{2} probe
	101-1		O_{2} probe Sensor guards on
	101-2		O_{2} probe
7 April			Checked calibration of oxygen probe

relatively error-free at this criterion except for occasional conductivity spikes towards lower values. The conductivity errors are attributed to biological fouling of the cell and on stations 10, 27, $48,51,60,67,77$, and 79 the low conductivities persisted over significant intervals (>3 decibars). On station 48 the conductivity shift appeared to persist over the up trace and the cell was flushed with .l N HCL. The temperature sign bit was disabled in order to record oxygen. The following stations encountered temperatures below $0^{\circ} \mathrm{C}$; stations $4,54,77,86$, and 87 . The acquisition program created some editing problems by occasionally writing data buffers out to magnetic tape in the opposite order and dropping up to 2 decibars of data. The editor was used to reorder the tape records.

C. Data Quality

A Rosette sampler was mounted on the CTD fish with up to 11 bottles to obtain temperature, salinity, and oxygen calibration data for the CTD and also supplemental nutrient data. The reversing thermometers indicate that the CTD \#4 thermometer was reading cold by . $009^{\circ} \mathrm{C}$ in the temperature range of 1 to $2^{\circ} \mathrm{C}$. A histogram of thermometer-CTD temperature comparisons is shown in Fig. 12. A recalibration of the CTD \#4 fully immerged in the bath is necessary after the cruise as a prerequisite to establishing final temperature and conductivity calibrations.

A nominal conductivity correction (.99913) obtained from the end of the previous cruise was applied to all conductivity data. The comparisons with Rosette salinities show little systematic drift over the cruise. A histogram of salinity differences and the time history of salinity differences in the deep water ($\theta \leq 2.5^{\circ} \mathrm{C}$) are shown in Figures 13 and 14 respectively. The CTD salinities average low by $.001 \%$. The Rosette salinities in the deep water were quality controlled by plotting a θ / S shown in Fig. 15. This θ / s may be used to establish a final conductivity calibration in conjunction with salinity difference time plot.

Figure 12. Histogram of the differences between rosette temperature readings and CTD measured temperature
TT 107 Rosette-CTD Salinity Comparisions

Figure 14. Time histogram of differences between rosette salinity values and calculated CTD-salinity

Figure 15. Potential temperature/salinity relationship for the deep water ($\theta \leq 2.5^{\circ} \mathrm{C}$) rosette samples

The oxygen probe behaved very well through most of the cruise (station l: O-ring failure; station 2: no O_{2} probe mounted; stations 5 and 6: failure of CTD power supply on uptrace; station 53: very noisy data due to seawater in power supply connector; station 54: slightly noisy data similar to 53 ; station 94 : very noisy data due to corroded connector on CTD; stations 3, 4, 5, 6, and 7 have about twice the normal noise, apparently due to low batteries in CTD affecting the data digitalization. The least count of the data digitization corresponds to $.04 \mathrm{ml} / \ell$, thus the deep water $\theta-\mathrm{O}_{2}$ for each station is a band of that width.

The raw data set includes the internally applied temperature and pressure compensation of the Beckman MINOS DOM system, but does not yet include the residue temperature, salinity, and pressure corfections described in the system manual. The final data set ultimately will include these corrections, and other systematic corrections indicated by the bottle data, including possibly a linear pressure correction, and a time lag of the oxygen data relative to the CTD T and S, to take into account the response time of the DOM membrane (about 15 seconds). These final corrections show promise of yielding a very high quality data set: the raw data set itself is already quite good: in Fig . 16 the residue $\Delta_{u p}=$ (bottle O_{2} - probe O_{2}) is shown as a function of station number. The probe value is that recorded by the operator just before firing the Niskin bottle; in general the "real" value should lie within $\pm .04 \mathrm{ml} / \mathrm{l}$ of this value. Station earlier than 12 should be discontinued. due to: 1) the higher probe noise level for stations earlier than 8, and 2) somewhat poorer bottle data due to poor sample drawing techniques. In the rest of the stations, the probe can be seen, in the mean, to read low - about . 05 to .10 for stations 25 to 60 drifting to . 1 to .2 towards end of cruise. Quite often the near surface bottle $\Delta_{u p}$ (labeled s) is quite large, for unknown reasons, perhaps the pressure transducer zero pressure offset is not very repeatible. Also quite often the smallest values of $\Delta_{u p}$ are at the bottom bottle,

Figure 16. Time histogram of dissolved oxygen differences between rosette O_{2}-values and CTD O_{2}-probe data
the largest towards the top, suggesting a linear pressure correction may be appropriate. If this is true, then the stations will be split into two groups, the nominal 3000 db , and the nominal 1500 db . tt is likely that to some degree the transducer "remembers" what pressure level it reaches, and would behave differently for the two groups.

D. Sample Traces from Representative CTD Stations

In the following figures we show sample CTD traces which were selected as representative of the data set. Final calibrations and lag corrections have not been applied, therefore these data should be viewed as preliminary. However, as has been mentioned, the data quality is quite good. Only down traces are shown.

Station 38 (Fig.17a) was made in the interleaving region during our small scale survey of the northward meander prior to its pinching off (see Section I). Note the deep $T_{\text {min }}$ of $2.5^{\circ} \mathrm{C}$ at about 775 meters depth. The structure above this points consists of cold, fresh leaves of high dissolved oxygen intermingled with warm salty layers of low oxygen. Due to a time lag of 15 sec for the oxygen probe, oxygen will delay temperature by about 20 meters on the down traces. The oxygen data show "interleaving" of high and low oxygen water between 1400 and 2200 meters. This interesting structure of circumpolar deep water was seen on several stations, on others the intermediate maximum is absent. On some (station 97, Fig. 22) the sharp O_{2} gradient occurs only on the deep side of the minimum. This structure also shows up, although not as clearly, in a θ / S diagram (Fig.17b). The interleaving above the $T_{\text {min }}$ is clearly evident in this figure and also in 17 c , a θ / O_{2} diagram for station 38 .

Another station made in the interleaving zone at the polar front after Freddy was formed (station 83, Fig. 18a,b,c) shows somewhat broader leaves. Note the negative correlation between temperature and oxygen as well as the continual decrease in O_{2} at each of the temperature minima: $6.3,6.0,5.6$, and $5.2 \mathrm{ml} / \mathrm{l}$.

Figure 17a. Continuous temperature, salinity, and oxygen profiles of CTD station \#38

Figure 17b. Potential temperature/salinity diagram of CTD station \#38

Figure 17c. Potential temperature/oxygen diagram of CTD station \#38

Figure 18a. Continuous temperature, salinity, and oxygen profiles of CTD station \#83

Figure 18b. Potential temperature/salinity diagram of CTD station \#83

Figure l8c. Potential temperature/oxygen diagram of CTD
station $\# 83$ station \#83

In Fig. 19 two stations (Nos. 21, 23), part of a closely spaced cross frontal survey, are displayed on a θ / S diagram. Lines of constant σ_{θ} are drawn to illustrate that much of the temperature/salinity variability in the interleaving zone has little density associated with it. The two stations shown are separated by only 2.7 kilometers.

The contrast between inside and outside Freddy was documented in the introduction. Here (Fig.20) we show station 88 , which was located on the northern flank of the cold ring. The $T_{\text {min }}$ at $1.5^{\circ} \mathrm{C}$ is broad and fractured by several cool and warm leaves of 50 meter vertical thickness.

As the subantarctic zone is approached, a subsurface salinity minimum appears (station 91, Fig.21). Several knees in the oxygen appear, but no extrema. The $S_{\min }\left(34.16 \%, 3.8^{\circ} \mathrm{C}\right)$ persists at subsequent stations, though with slightly different T / S properties, up to the subantarctic zone (station 97, Fig.22). This shows a deep, weak $S_{\min }$ below a pycnostad of nearly constant dissolved oxygen concentration. Shallow interleaving is gone, however the oxygen structure in the circumpolar deep water is again present with a high oxygen gradient at 2600 decibars.

A summary of CTD station information appears in Table 7.

Figure 19. Potential temperature/salinity relationship of CTD stations \#20 and \#23. Lines of constant σ_{θ}-units are included to illustrate that most of the temperature/ salinity variations in the interleaving region are compensating in density

Figure 20a. Continuous temperature, salinity, and oxygen profiles of CTD station \#88

Figure 20b. Potential temperature/salinity diagram of CTD station \#88

Figure 2la. Continuous temperature, salinity, and oxygen profiles of CTD station \#91

Figure 21b. Potential temperature/salinity diagram of CTD
station \#91

Figure 22a. Continuous temperature, salinity, and oxygen profiles of CTD station \#97

Figure 22b. Potential temperature/salinity diagram of CTD
station \#97

Table 7

	CTD Station Log										
			台	$\begin{aligned} & \text { 0i } \\ & \text { Qun } \end{aligned}$	$\begin{aligned} & \text { 置 } \\ & \text { 䓢 } \end{aligned}$			${ }^{\circ}$	$\stackrel{y}{2}$	$\begin{aligned} & \text { U } \\ & \text { H } \\ & \text { H } \\ & \text { Hive } \end{aligned}$	界
	圖	$\sum_{\substack{\text { M } \\ \in=1}}$	$\begin{aligned} & \text { 易 } \\ & \text { 舀 } \end{aligned}$	$\begin{aligned} & \text { 曷 } \\ & \text { 兒 } \end{aligned}$	$\begin{aligned} & \text { 䍖 } \\ & \text { 等 } \end{aligned}$	\sum_{M}^{Z}	$\begin{aligned} & x_{i}^{x} \\ & \sum_{a} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { 思 } \end{aligned}$	会	$\begin{aligned} & \text { 品 } \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 易 } \end{aligned}$
1	76－3－15	1301	$55^{\circ} 30.7$	$65^{\circ} 44.6$	1792	1，9	1553	$55^{\circ} 30.3$	$65^{\circ} 43.7$	10	1400
2	15	1826	$55^{\circ} 29.1$	$65^{\circ} 41.9$	－	0	1500	$55^{\circ} 29.0$	$65^{\circ} 40.8$	0	？
3	76－3－16	0011	$55^{\circ} 24.0$	$65^{\circ} 35.9$	2537	3.3	2016	$55^{\circ} 24.5$	$65^{\circ} 33.0$	6	0128
4	76－3－17	1700	$59^{\circ} 04.3$	$63^{\circ} 55.2$	3790	4.0	3020	$59^{\circ} 04.3$	$63^{\circ} 55.2$	11	1807
5	76－3－18	0015	$58^{\circ} 54.8$	$63^{\circ} 54.0$	3913	3.8	2999	$58^{\circ} 54.3$	$63^{\circ} 52.7$	11	0142
6	18	1000	$57^{\circ} 36.2$	$64^{\circ} 38.9$	4247	－	2976	$57^{\circ} 31.2$	$64^{\circ} 36.3$	11	1218
7	18	2022	$57^{\circ} 25.0$	$64^{\circ} 38.1$	4115	3.5	3009	$57^{\circ} 23.2$	$64^{\circ} 36.8$	11	2254
8	18	2359	$57^{\circ} 24.85$	$64^{\circ} 37.6$	4115	3.1	1001	$57^{\circ} 23.9$	$64^{\circ} 36.8$	5	0113
9	76－3－19	0159	$57^{\circ} 25.6$	$64^{\circ} 38.1$	4115	4.3	1509	$57^{\circ} 24.8$	$64^{\circ} 37.7$	5	0341
10	19	0420	$57^{\circ} 25.1$	$64^{\circ} 37.8$	4108	4.2	1515	$57^{\circ} 24.7$	$64^{\circ} 38.0$	4	0608
I1	19	0648	$57^{\circ} 25.9$	$64^{\circ} 38.6$	4105	2.0	1506	$57^{\circ} 25.5$	$64^{\circ} 38.0$	6	0820
12	19	0947	$57^{\circ} 25.1$	$64^{\circ} 36.7$	4100	－	1512	$57^{\circ} 23.7$	$64^{\circ} 36.2$	6	1121
13	19	1212	$57^{\circ} 24.9$	$64^{\circ} 37.2$	4105	2.9	1511	$57^{\circ} 23.6$	$64{ }^{\circ} 37.8$	6	1402
14	19	1443	$57^{\circ} 25.1$	$64^{\circ} 37.6$	4115	1.7	1542	$57^{\circ} 24.1$	$64^{\circ} 37.7$	6	1616
15	19	1653	$57^{\circ} 25.2$	$64^{\circ} 37.3$	4105	4.1	1515	$57^{\circ} 24.8$	$64^{\circ} 36.3$	6	1826
16	19	1854	$57^{\circ} 25.3$	$64^{\circ} 36.7$	4096	3.3	1502	$57^{\circ} 24.2$	$64^{\circ} 35.9$	6	2027
17	19	2105	$57^{\circ} 25.4$	$64^{\circ} 37.8$	4105	~ 3.0	1517	$57^{\circ} 24.3$	$64^{\circ} 37.0$	6	2243
18	19	2318	$57^{\circ} 25.3$	$64^{\circ} 37.2$	4105	24.0	1514	$57^{\circ} 23.5$	$64^{\circ} 36.7$	6	0046
19	76－3－20	0130	$57^{\circ} 25.2$	$64^{\circ} 36.8$	4096	60＊	1000	$57^{\circ} 23.0$	$64^{\circ} 37.0$	0	0325
20	20	0418	$57^{\circ} 25.3$	$64^{\circ} 37.1$	4105	2.2	1006	$57^{\circ} 25.3$	$64^{\circ} 37.1$	0	0445
21	20	0503	$57^{\circ} 25.6$	$64^{\circ} 36.4$	4096	2.6	1008	$57^{\circ} 25.7$	$64^{\circ} 36.5$	0	0529
22	20	0539	$57^{\circ} 26.0$	$64^{\circ} 35.6$	4096	1.3	1045	$57^{\circ} 25.9$	$64^{\circ} 35.5$	0	0609
23	20	0623	$57^{\circ} 26.4$	$64^{\circ} 35.2$	4096	1.5	1011	$57^{\circ} 26.2$	$64^{\circ} 34.8$	0	0657
24	20	0709	$57^{\circ} 26.4$	$64^{\circ} 34.1$	4096	38	1011	$57^{\circ} 26.1$	$64^{\circ} 33.9$	0	0735
25	76－3－21	0705	$57^{\circ} 45.5$	$63^{\circ} 53.6$	4057	3.3	3001	$57^{\circ} 45.0$	$63^{\circ} 52.3$	11	0851
26	21	1115	$57^{\circ} 41.3$	$63^{\circ} 55.1$	4105	~ 5.0	2999	$57^{\circ} 40.9$	$63^{\circ} 56.7$	11	1246
27	21	1342	$57^{\circ} 40.2$	$63^{\circ} 57.0$	4209	4.8	3019	$57^{\circ} 39.9$	$63^{\circ} 57.1$	11	1457
28	21	1643	$57^{\circ} 40.1$	$64^{\circ} 02.8$	4096	2.9	3001	$57^{\circ} 39.9$	$64^{\circ} 01.9$	11	1817
29	21	2024	$57^{\circ} 38.1$	$64^{\circ} 08.0$	4303	3.6	2995	57037.1	$64^{\circ} 06.4$	11	2204
30	76－3－22	0005	$57^{\circ} 35.9$	$64^{\circ} 12.6$	3409	2.7	1521	$57^{\circ} 35.1$	$64^{\circ} 11.9$	6	0142
31	22	0250	$57^{\circ} 34.0$	$64^{\circ} 16.9$	3184	1.5	2795	$57^{\circ} 32.9$	$64^{\circ} 16.7$	11	0422
32	22	0550	$57^{\circ} 32.8$	$64^{\circ} 20.1$	3904	2.1	3044	57.32 .4	$64^{\circ} 20.0$	6	0629
33	22	0810	$57^{\circ} 31.8$	$64{ }^{\circ} 23.4$	4378	1.6	1507	$57^{\circ} 31.8$	$64^{\circ} 23.4$	6	0908

[^3]Table 7 （Contd．）

$\begin{aligned} & \dot{8} \\ & \text { 足 } \\ & \text { Z } \\ & 0 \\ & \text { B } \\ & \text { 日i } \end{aligned}$		$\sum_{i=1}^{1}$	$\begin{aligned} & \text { 曷 } \\ & \text { 曷 } \\ & \text { 念 } \end{aligned}$		$\begin{aligned} & \text { 思 } \\ & \text { 思 } \\ & \text { 吕 } \\ & \text { 舄 } \\ & \text { K } \end{aligned}$	录	齐	$\begin{aligned} & \text { 曷 } \\ & \text { 曷 } \end{aligned}$			$\begin{aligned} & \text { 罢 } \\ & \text { 1 } \\ & \text { 掏 } \end{aligned}$
34	76－3－22	1030	$57^{\circ} 30,1$	$64^{\circ} 26.0$	4378	－	3012	$57^{\circ} 28.6$	$64^{\circ} 22.6$	11	1302
35	22	1408	$57^{\circ} 29.8$	$64^{\circ} 30.4$	4256	3.7	1503	$57^{\circ} 29.0$	$64^{\circ} 29.0$	6	1458
36	22	1610	$57^{\circ} 28.8$	$64^{\circ} 32.9$	4143	2.9	3034	$57^{\circ} 27.6$	$64^{\circ} 32.5$	11	1733
37	22	1810	$57^{\circ} 27.2$	$64^{\circ} 35.2$	4105	－	1518	$57^{\circ} 26.4$	$64^{\circ} 35.3$	6	1910
38	22	2030	$57^{\circ} 25.9$	$64^{\circ} 38.7$	41.15	2.9	3004	$57^{\circ} 24.6$	64.38 .6	11	2242
39	22	2325	$57^{\circ} 24.1$	$64^{\circ} 43.5$	4190	2.8	3025	$57^{\circ} 23.5$	$64^{\circ} 43.2$	6	0147
40	76－3－23	0520	$57^{\circ} 39.1$	$64^{\circ} 21.2$	4397	3.1	1504	$57^{\circ} 38.3$	$64^{\circ} 21.4$	6	0625
41	23	0730	$57^{\circ} 37.9$	$64^{\circ} 16.0$	4171	1.3	1506	$57^{\circ} 36.3$	$64^{\circ} 05.8$	6	0840
42	23	0915	$57^{\circ} 34.4$	$64^{\circ} 09.3$	3933	3.0	1495	$57^{\circ} 34.1$	$64^{\circ} 05.8$	4	1015
43	23	1100	$57^{\circ} 29.4$	$64^{\circ} 02.6$	4124	5.1	1513	$57^{\circ} 28.6$	$64^{\circ} 02.0$	6	1210
44	23	2105	$57^{\circ} 31.7$	$64^{\circ} 18.8$	－	0	2000	$57^{\circ} 30.9$	$64^{\circ} 18.2$	0	2155
45	76－3－24	0305	$57^{\circ} 33.1$	$64^{\circ} 05.8$	－	3.8	2002	$57^{\circ} 32.0$	$64^{\circ} 05.1$	1	0451
46	24	2300	$57^{\circ} 14.1$	$63^{\circ} 57.3$	－	3.8	2989	$57^{\circ} 12.8$	$63^{\circ} 51.9$	11	0130
47	76－3－25	0805	$57^{\circ} 32.9$	$63^{\circ} 28.9$	－	4.3	1991	$57^{\circ} 34.3$	$63^{\circ} 28.5$	2	0906
48	25	1925	$57^{\circ} 24.8$	$63^{\circ} 28.1$	4105	3.6	3001	$57^{\circ} 25.5$	$63^{\circ} 27.0$	11	2055
49	76－3－26	0325	$56^{\circ} 57.3$	$63^{\circ} 38.0$	4162	3.0	1983	$56^{\circ} 57.6$	$63^{\circ} 35.3$	6	0425
50	26	1246	$57^{\circ} 41.0$	$63^{\circ} 22.9$	3676	3.4	2536	$57^{\circ} 41.5$	$63^{\circ} 22.3$	11	1463
51	26	1725	$57^{\circ} 55.9$	$63^{\circ} 34.7$	－	2.9	2005	$57^{\circ} 55.3$	$63^{\circ} 36.0$	6	1824
52	76－3－27	0637	$56^{\circ} 45.5$	$63^{\circ} 20.5$	3952	2.2	2015	$56^{\circ} 45.0$	$63^{\circ} 19.0$	6	0745
53	76－3－28	1238	$59^{\circ} 00.8$	$63^{\circ} 51.0$	3923	4.1	3010	$59^{\circ} 00.3$	$63^{\circ} 49.2$	6	1422
54	76－3－29	0220	$57^{\circ} 39.9$	$63^{\circ} 51.0$	3981	3.3	3050	$57^{\circ} 40.2$	$63^{\circ} 53.2$	11	0350
55	29	0740	$57^{\circ} 42.2$	$64^{\circ} 09.6$	4190	3.2	2955	$57^{\circ} 40.2$	$64^{\circ} 09.5$	11	0935
56	29	1438	$57^{\circ} 25.1$	$64^{\circ} 10.4$	4275	2.7	3079	$59^{\circ} 24.6$	$64^{\circ} 12.2$	11	1630
57	76－3－30	0140	$57^{\circ} 59.9$	$62^{\circ} 59.8$	3790	2.2	2973	$58^{\circ} 01.2$	62.58 .3	11	0329
58	30	0900	$58^{\circ} 48.5$	$62^{\circ} 58.5$	3885	2.1	3001	$58^{\circ} 48.7$	$62^{\circ} 55.7$	9	1045
59	30	1405	$58^{\circ} 28.7$	$63^{\circ} 14.0$	3259	－	2014	$58^{\circ} 28.7$	$63^{\circ} 13.0$	6	1516
60	30	1910	$58^{\circ} 27.7$	$63^{\circ} 11.2$	3714	2.6	1505	$58^{\circ} 28.1$	$63^{\circ} 12.2$	2	2030
61	76－3－31	0320	$58^{\circ} 27.8$	$63^{\circ} 13.3$	3847	2.6	1478	$58^{\circ} 27.5$	$63^{\circ} 12.8$	2	0410
62	31	0538	$58^{\circ} 27.2$	$63^{\circ} 12.2$	3856	2.9	1515	$58^{\circ} 27.0$	$63^{\circ} 11.6$	2	0621
63	31	0727	$58^{\circ} 26.0$	$63^{\circ} 09.0$	3505	2.2	1510	$58^{\circ} 26.0$	$63^{\circ} 09.0$	2	0847
64	31	0945	$58^{\circ} 25.5$	$63^{\circ} 09.0$	3447	－	1521	$58^{\circ} 25.5$	$63^{\circ} 09.6$	2	1025
65	31	1144	$58^{\circ} 25.0$	$63^{\circ} 09.9$	3221	5.0	1509	$58^{\circ} 25.3$	$63^{\circ} 10.1$	2	1236
66	31	1412	$58^{\circ} 24.6$	$63^{\circ} 09.9$	3034	－2．4	1481	$58^{\circ} 25.4$	$63^{\circ} 08.8$	2	1520

THOMPSON 107

Table 7 （Contd											
$\begin{aligned} & \dot{0} \\ & \text { B } \\ & \text { z } \\ & \text { H } \\ & \text { A } \\ & \text { 荗 } \end{aligned}$				$\begin{aligned} & \text { 足 } \\ & \text { O } \\ & \text { 念 } \\ & \text { A } \end{aligned}$		$\underset{A}{Z}$		$\begin{aligned} & \text { E } \\ & \text { G } \\ & \text { 㽞 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { M } \\ & \text { H } \\ & \text { H } \\ & 0 \\ & \text { O } \\ & \dot{8} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { 罢 } \\ & \text { 1 } \\ & \text { 曷 } \end{aligned}$
		\sum_{E}^{2}					\sum_{a}^{x}				
99／2	76－4－6	0310	$56^{\circ} 15.3$	$66^{\circ} 35.6$	920	2.4	907	$56^{\circ} 15.3$	$66^{\circ} 36.0$	6	0400
99／1	6	0431	$56^{\circ} 15.4$	$66^{\circ} 36.5$	827	2.4	821	$56^{\circ} 15.7$	$66^{\circ} 37.3$	6	0507
100／1	6	0643	$56^{\circ} 14.5$	$66^{\circ} 43.3$	256	2.5	258	$56^{\circ} 13.6$	$66^{\circ} 45.0$	3	0657
100／2	6	0730	$56^{\circ} 13.4$	$66^{\circ} 45.4$	218	2.8	223	$56^{\circ} 13.1$	$66^{\circ} 46.0$	3	0750
101／1	6	0840	$56^{\circ} 10.5$	$66^{\circ} 52.5$	106	3.5	104	$56^{\circ} 10.3$	$66^{\circ} 52.0$	3	0850
101／2	6	0900	$56^{\circ} 10.2$	$66^{\circ} 51.1$	106	3.9	－	$56^{\circ} 10.2$	$65^{\circ} 51.0$	－	0915

V. PROFILING CURRENT METER (PCM)

A. Introduction

One of the major objectives of this cruise was the investigation of possible Antarctic Intermediate Water (AAIW) formation in the Polar Front zone. The AAIW originates from the convergence of water masses with polar characteristics and those of subpolar properties. Its origin is associated with the presence of the Antarctic Circumpolar Current System whose cross-frontal velocity component yields a northward meridional transport of antarctic near surface water masses. This water sinks down on isopycnal surfaces and like in other comparable cases in the world ocean (i.e., Mediterranean outflow, Norwegian Sea overflow) can be clearly verified by its interleaving in the vertical distribution of temperature, salinity, and dissolved oxygen. The goal of using a vertical profiling current meter (PCM) was to estimate the correlation between the cross-frontal current component and other characteristic properties of the sinking AAIW such as low temperature and salinity values, together with high dissolved oxygen content.

B. Instrument Description

The vertically profiling current meter used is derived from a moored type Bergen meter (Aanderaa). Basically it consists of the recording unit, mounted up-side-down, and a nearly buoyant vane assembly sinking slowly down on the cable of the temperature-conductivitypressure microprofiler (CTD). Consequently the PCM records the water motion relative to the drifting ship. This current profile may be transferred into an absolute vertical distribution of horizontal current by a vector addition of the ship's drift, if this is known. The instrument used (serial \#776) is equipped with a Savonius-like rotor, thermistor, inductive conductivity cell, pressure sensor, and a magnetic compass. For specifications see Table 8. The data are recorded internally in 10-bit words on 1/4" magnetic tape and are telemetered acoustically. In order to obtain highest possible vertical resolution the instrument was run in the 'continuous' mode rather than by clock derived trigger pulses.

Table 8

Specifications on PCM \#776

	Measuring Ranges	Accuracy	Resolution	Miscellaneous
Temperature	-2.46 to $+21.40^{\circ} \mathrm{C}$	$> \pm 0.1^{\circ} \mathrm{C}$	$\pm 0.023^{\circ} \mathrm{C}$	time const. 63% in 2.5 sec
Conductivity	0 to 60 mmho	Not known (see right)	$\pm 0.059 \mathrm{mmho}$	for overall information due to insufficient flushing
Pressure	0 to $1000 \mathrm{psi}(750 \mathrm{dbar})$	$> \pm 1 \% \mathrm{FS}$	$\pm 0.73 \mathrm{dbar}$	hysteresis 0.5%

The actual sampling interval was controlled several times during the experiment (Table 9). The overall averaged sampling rate was 20.8 ± 3.1 sec/cycle. The sinking rate was adjusted to the region under investigation by means of a test station at the beginning of the cruise. A typical pressure vs. time diagram is shown in Fig. 23. With the obtained falling speed of $<37 \mathrm{~cm} / \mathrm{s}$ the averaged vertical sampling rate for a single sensor was $<7.8 \mathrm{~m}$, For an accurate analysis the time shift between scanned data channels (5 sensors + reference channel) has to be taken into account. Two accessories (both supplied by D. Pillsbury, OSU) were of great help in performing the measurements. An acoustic receiver was used to monitor the acoustic telemetry of the PCM in the near surface layers and during the stand-by periods. Acoustic telemetry was used as well for the display of the sampling rate on a recorder. A tape reader (suitcase translator) enabled the final check-out of the instrument after reloading and permitted an early look at the PCM data.
C. Operation

All operational data are sumarized in Table 10. At the beginning of the cruise a necessary test station was occupied for the instrument's adjustment. Particular emphasis was given to a two-inertial period time series station in the polar front zone. The polar front at this site later was split off from the main front and became a cold water eddy. The sampling interval for 12 stations (\#7 was repeated as \#8) was $2 \mathrm{~h} 24 \mathrm{~min} \pm 26 \mathrm{~min}$. The transformation of the obtained relative velocity data into absolute current profiles will be possible due to distance and range observation relative to a moored buoy, "Edgar". This measurement was performed every five minutes during the descent of the PCM (see section II). A second data set consisting of three PCM stations roughly with the same tidal/inertial phase (12-13 hours apart) was obtained during the first CTD section through the polar front. Again buoy navigation enabled the calculation of absolute current profiles.

A further single PCM station was obtained over VCM \#l. This time no reference buoy was available. An adjustment of the relative velocity

Table 9
Sampling Rate of PCM

Test No.	Date (1976)	Time Z	Battery Cap.	Sampling Rate avgd 12 cycles sec/cycle
1	18 March	$19: 00$	$1 / 1$	20.3
2	19 March	$15: 15$	$1 / 2$	21.1
3	19 March	$20: 38$	$10 w$	21.0
4	19 March	$22: 50$	$1 / 1$	20.9
5	22 March	$08: 19$	$1 / 2$	20.9

Table 10

$\begin{gathered} \text { PCM } \\ \text { Profile } \\ \text { No. } \\ \hline \end{gathered}$	Date	$\begin{array}{r} \text { CUT } \\ \text { Start } \end{array}$	Time End	$\begin{gathered} \text { Pos } \\ \hline(\mathrm{S}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { ition } \\ & \lambda(\mathrm{W}) \end{aligned}$	Water Depth m		Corresp. CTD Sta. No.	\qquad	Remarks
TT107-1	15 March	14:00	$14: 45$ $20: 55$	$\begin{aligned} & 55^{\circ} 30.0 \\ & 55^{\circ} 26.0 \end{aligned}$	$\begin{aligned} & 65^{\circ} 44.0 \\ & 65^{\circ} 38.4 \end{aligned}$	$\begin{aligned} & 1935 \\ & 1950 \end{aligned}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		Test Station
3	18 March	21:25	22:48	$57^{\circ} 24.2$	$64^{\circ} 27.4$	4143	600	7		
5	19 March	00:23	01:13 03:33	$57^{\circ} 24.4$ $57^{\circ} 25.4$	$64^{\circ} 37.6$ $64^{\circ} 37.9$	4115	600 600	8	178	CTD/PCM Time Series
6	"	05:03	08:03	$57^{\circ} 25.0$	$64^{\circ} 37.8$	4115	600	10	149	
7*	"	07:34	08:00	$57^{\circ} 25.1$	$64^{\circ} 37.2$	4105	100	11	$198{ }^{\text {® }}$	
8	"	08:21	09:05	$57^{\circ} 24.5$	$64^{\circ} 36.7$	4105	600	11/2	198	
9	"	10:23	11:22	$57^{\circ} 24.5$	$64^{\circ} 36.4$	4096	600	12	122	*No speed data
10	"	12:58	14:04	$57^{\circ} 24.3$	$64^{\circ} 37.9$	4105	600	13	155	*No speed data
11	"	15:15	16:15	$57^{\circ} 24.6$	$64^{\circ} 37.7$	4115	600	14	137	
12	"	17:30	18:10	$57^{\circ} 25.1$	$64^{\circ} 37.0$	4105	600	15	135	Between 6 and 8
13	"	19:28	20:05	$57^{\circ} 24.8$	$64^{\circ} 36.3$	4096	600	16	118	
14	"	21:20	22:40	$57^{\circ} 24.8$	$64^{\circ} 37.0$	4105	600	17	2	
15	19/20 "	23:50	00:50	$57^{\circ} 24.7$	$64^{\circ} 36.9$	4105	600	18	150	
16	22 March	00:43	02:10	$57^{\circ} 35.7$	$64^{\circ} 12.1$	3180	600	30		
17		11:50	13:05	$57^{\circ} 29.6$	$64^{\circ} 24.3$	4369	700	34	$\begin{aligned} & 667 \\ & 770 \end{aligned}$	Cross frontal section
18	23 March	00:40	01:50	$57^{\circ} 23.7$	$64^{\circ} 43.2$	4190	700	39		
19	25 March	00:20	01:26	$57^{\circ} 13.5$	$63^{\circ} 54.4$	3961	600	46		Over Float No. 1

profile may be possible by means of the float trajectory at a single depth.

D. Preliminary Data Analysis

All data tapes were decoded with the OSU reader. The counts for temperature, pressure, compass, and speed were punched on cards. By means of the ship's computer, IBM 1130, the preliminary data have been calibrated, edited, and plotted. The following calibration equations were used for a quick-look analysis:

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Pressure: } & \\
\text { (dbar) }
\end{array} & \mathrm{p}=-32 .+0.7568 * \mathrm{~N}_{\mathrm{P}} \\
\text { Temperature: } & \mathrm{T}=-2.7677+2.33993 \mathrm{E}-2 * \mathrm{~N}_{\mathrm{T}} \\
\left({ }^{\circ} \mathrm{C}\right) & \\
\begin{array}{ll}
\text { Compass }: & \\
\left({ }^{\circ} \mathrm{T}\right)
\end{array} & \Theta=.351906 * \mathrm{~N}_{\Theta}+\delta \\
\begin{array}{l}
\text { Speed: } \\
(\mathrm{cm} / \mathrm{s})
\end{array} & \mathrm{s}=(\mathrm{G} / 1024) *(\Delta \mathrm{t})^{-1} *\left(\mathrm{R} * \Delta \mathrm{~N}_{\mathrm{S}}\right)+\mathrm{T}_{0}
\end{array}
$$

with

$$
\begin{aligned}
\mathrm{N}_{\mathrm{i}} & =\text { parameter reading in counts } \\
\delta & =\text { magnetic variation }=+14^{\circ} \\
\mathrm{G} & =\text { gear ratio }=240 \\
\mathrm{R} & =\text { rotor constant }=43.5 \mathrm{~cm} / \mathrm{rev} \\
\Delta \mathrm{t} & =\text { sampling interval }=21 \mathrm{sec} \\
\mathrm{~T}_{\mathrm{O}} & =\text { threshold speed }=1.5 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

The obtained velocity data were decomposed into rectangular, North oriented components ($u_{V} v_{r}$) and superimposed with the ship's drift velocity components (u_{D}, v_{D}): Yielding true components of the current $\left(u_{T} V_{T}\right):$

$$
\begin{aligned}
& u_{r}=s \sin \theta \rightarrow u_{T}=u_{r}+u_{D} \\
& v_{r}=s \cos \theta \rightarrow v_{T}=v_{r}+v_{D} .
\end{aligned}
$$

Finally the coordinate axes were rotated an angle α to obtain a cross frontal (u_{c}) and a front parallel (u_{p}) component.

$$
\begin{aligned}
& u_{C}=u_{T} \cos \alpha-v_{T} \sin \alpha \\
& v_{p}=u_{T} \sin \alpha+v_{T} \cos \alpha
\end{aligned}
$$

The computer program plots the following quantities: $s, \theta, u_{T}, v_{T}, u_{c}$, v_{p} vs. p and p vs. time. Samples are shown in Figs. 24,25.
E. Discussion

At this moment only a limited statement can be made on the significance of the two displayed sample stations \#6 and \#8 (Figs. 24,25). The speed profiles of both stations indicate vertical scales of variability of $0(20-100 \mathrm{~m})$ and magnitudes of $0(20-40 \mathrm{~cm} / \mathrm{s})$ after correction for the ship's drift. Vertical current shear is found to be off $O\left(10^{-3}-10^{-2} \mathrm{sec}^{-1}\right)$. In the direction profiles, while station \#6 shows a fairly unidirectional current, station \#8 displays an anticlockwise turning of the current with increasing depth associated with a cross-frontal flow ($u_{c}<0$) below 380 dbar. The actual front direction as well as the drift corrections have to be applied carefully to the data for a more precise analysis. For this and any correlations with temperature and oxygen fluctuations, the complete CTD/PCM/XBT data set first has to be compiled.

> d
> e
> Figure 24d,e. Vertical distribution of velocity components as indicated in the insert. The ship's drift has been compensated for. Under the given assumption of $\alpha=40^{\circ}$ there was minimal cross frontal flow (U_{C}). The front parallel component. $\left(V_{p}\right)$ shows negligible depth dependence to 600 m

VI. OPTICAL MEASUREMENTS
A. Objectives

The objectives were to study certain aspects of the optical properties of the water masses with a view to

1. obtain an optical classification of the water,
2. observe the color index of the surface water, and
3. obtain information on the distribution and properties of the suspended matter.

For this purpose the following instruments were used:

1. A quanta meter which is an irradiance meter integrating over the spectral range 350 to 700 nm with the spectral response adjusted and calibrated so that the total number of quanta in that range is obtained. The detector is a photocell. The instrument is suspended from its cable and lowered to about the depth of 1% level of the incoming surface irradiance, taking measurements at discrete depths. The signal is integrated over 10 seconds and 3-5 measurements are made at each depth. The incoming surface irradiance is monitored by means of a separate quanta meter mounted at a suitable place on deck.
2. A color meter essentially consisting of two photocells measuring simultaneously the upwelling irradiance in the blue (465 nm) and the green (520 nm), the measurement is made about 1 m beneath the surface. The ratio of the signals blue/green defines an ocean color index: a large index is typical of very clear, low-productive waters whereas a low index indicates productive waters.
3. An instrument measuring the scattering function $\beta(\theta)$ defined as

$$
\beta(\theta)=\frac{d \boldsymbol{I}(\theta)}{E \cdot d V}
$$

where $d J(\theta)$ is the intensity of the light scattered by the volume element $d V$ in the direction θ from the incoming beam irradiating the volume element with the irradiance E. The scattering function is
observed over the angular interval $\theta=8^{\circ}$ to $\theta=160^{\circ}$, with the resolution of 1°. The direct beam as well as the cut-off at $\theta=180^{\circ}$ are also observed, yielding the necessary reference points and calibration data. The light source is a 10 watt halogen lamp and the detector is a photomultiplier tube (RCA 8644, spectral response S20). By means of optical filters mounted on the detector the scattering in different parts of the spectrum can be observed. However, the filter has to be changed on deck. In the present case a red glass filter, nominal wavelength 650 nm and a green glass filter, nominal wavelength 520 nm were used.

The optical system gives a parallel beam of light with a diameter of 8 mm . Part of the detector system can be rotated by means of a motor in a circular path around the scattering volume. The angular position of the detector is recorded with a resolution of 1°, counting from the direction of the direct beam. The aligning of the optical system is checked at intervals. An automatic control of the system is obtained through the measurement of the direct beam intensity. In addition to the scattering the relative temperature distribution is obtained by means of a thermistor.

The instrument is operated from a separate winch with 1200 m 7-conductor wire cable. When lowering the instrument the scattering at a fixed angle is observed, usually about 20°, and when hauling back the scattering function is observed at discrete levels. The signals are recorded on an analog recorder only.

All the instruments functioned very well during the cruise. The winch motor had to be replaced by a motor made for the voltage of the ship. This operation was carried out by members of the engine room crew under the supervision of the chief, and we are extremely grateful for this.

B. Data Set Description

In all, 11 quanta meter stations (Tablell), with 7 including color measurement, and 48 (2 lost stations) scattering meter stations (Table 12) were obtained. Stations 4-11 constitute Section A where the scattering meter was used at every 2nd CTD station, and stations 23-48 form

Table 11
Quanta Meter Station Log

Day		No.	Time Local	Sun Height	Position		Color
					S	W	
March	15	1	1130-1150	- -	$55^{\circ} 29.5$	$65^{\circ} 41.7$	+
	15	2	1500-1530	-	$55^{\circ} 26.0$	$65^{\circ} 38.4$	+
	17	3	1105-1120	25	$59^{\circ} 09.0$	$63^{\circ} 53.9$	-
	18	4	1330-1400	30	$57^{\circ} 26.0$	$64^{\circ} 41.0$	+
	19	5	1215-1230	33	$57^{\circ} 24.0$	$64^{\circ} 38.4$	+
	23	6	1310-1325	30	$57^{\circ} 28$	$64^{\circ} 38$	-
	24	7	1450-1505	22	$57^{\circ} 24$	$63^{\circ} 50$	+
	27	8	1555-1620	16	$57^{\circ} 53$	$64^{\circ} 42$	-
	31	9	1300-1320	27	$58^{\circ} 24.5$	$63^{\circ} 09.6$	+
April	1	10	1520-1535	16	$58^{\circ} 18.9$	$63^{\circ} 10.6$	+
	2	11	1145-1200	26	$58^{\circ} 35.5$	$63^{\circ} 06.8$	+

Table 12
Scattering Meter Station Log

		Time			CTD		ion
Day		Local	No.	Filter	No.	S	W
March	21	0000	3	Red	-	$57{ }^{\circ} 36$	$64^{\circ} 23$
	21	0900	4	Red	25	$57^{\circ} 45$	$64^{\circ} 52$
	21	1130	5	Red	27	$57{ }^{\circ} 40$	$63^{\circ} 57$
	21	1900	6	Red	29	$57^{\circ} 37$	$64^{\circ} 06$
	22	0100	7	Red	31	$57^{\circ} 33$	$64{ }^{\circ} 17$
	22	0530	8	Red	33	$57^{\circ} 31$	$64^{\circ} 24$
	22	1130	9	Red	35	$57^{\circ} 29$	$64^{\circ} 29$
	22	1530	10	Red	37	$57^{\circ} 26$	$64{ }^{\circ} 35$
	22	2200	11	Red	39	$57^{\circ} 24$	$64{ }^{\circ} 43$
	23	0230	12	Red	40	$57^{\circ} 38$	$64{ }^{\circ} 22$
	25	0530	13	Green	47	$57^{\circ} 35$	$63^{\circ} 29$
	25	1730	14	Green	48	$57^{\circ} 25$	$63^{\circ} 28$
	26	1050	15	Green	50	$57^{\circ} 41$	$63^{\circ} 23$
	26	1430	16	Green	51	$57^{\circ} 55$	$63^{\circ} 36$
	27	0430	17	Green	52	$56^{\circ} 45$	$63^{\circ} 20$
	29	0030	18	Green	54	$57^{\circ} 39$	$63^{\circ} 52$
	29	0330	19	Green	55	$57^{\circ} 44$	$64^{\circ} 05$
	30	1200	20	Red	59	$58^{\circ} 29$	$63^{\circ} 13$
	31	1400	21	Red	67/68	$58^{\circ} 24$	$63^{\circ} 10$
April	1	0300	22	Red	73/74	$58^{\circ} 23$	$63^{\circ} 09$
	2	0500	23	Red	77	$58^{\circ} 56$	$63^{\circ} 03$
	2	0900	24	Red	78	$58^{\circ} 45$	$63^{\circ} 00$
	2	1230	25	Red	79	$58^{\circ} 35$	$63^{\circ} 07$
	2	1610	26	Red	80	$58^{\circ} 24$	$63^{\circ} 13$
	2	2000	27	Red	81	$58^{\circ} 15$	$63^{\circ} 16$
	3	0030	28	Red	82	$58^{\circ} 05$	$63^{\circ} 22$
	3	0430	29	Red	83	$57^{\circ} 56$	$63^{\circ} 28$
	3	0830	30	Red	84	$57^{\circ} 47$	$63^{\circ} 33$
	3	1230	31	Red	85	$57^{\circ} 37$	$63^{\circ} 33$

Table 12 (Contd.)

	Time		CTD		Position	
Day	Local	No.	Filter	No.	S	W
April 3	1430	32	Red	86	$57^{\circ} 28$	$63^{\circ} 38$
3	1830	33	Red	87	$57^{\circ} 16$	$63^{\circ} 39$
4	0030	34	Red	88	$57^{\circ} 07$	$63^{\circ} 38$
4	0430	35	Red	89	$56^{\circ} 56$	$63^{\circ} 46$
4	0930	36	Red	90	$56^{\circ} 52$	$64^{\circ} 01$
4	1430	37	Red	91	$56^{\circ} 50$	$64^{\circ} 24$
4	1900	38	Red	92	$56^{\circ} 45$	$64^{\circ} 38$
4	2330	39	Red	93	$56^{\circ} 38$	$64^{\circ} 54$
5	0315	40	Red	94	$56^{\circ} 37$	$65^{\circ} 14$
5	0810	41	Red	95	$56^{\circ} 32$	$65^{\circ} 28$
5	1010	42	Red	96	$56^{\circ} 27$	$65^{\circ} 42$
5	1600	43	Red	97	$56^{\circ} 24$	$66^{\circ} 04$
5	2000	44	Red	98	$56^{\circ} 20$	$66^{\circ} 20$
6	0000	45,46	Red	$99 / 1,2$	$56^{\circ} 16$	$66^{\circ} 37$
6	0330	47	Red	$100 / 1,2$	$56^{\circ} 13$	$66^{\circ} 45$
6	0450	48	Red	$101 / 1,2$	$56^{\circ} 10$	$66^{\circ} 52$

Section B where the scattering observations were made at every CTD station. The other scattering stations were made in connection with the float tracking. The quanta meter lowerings were, with 2 exceptions, made around local noon, whenever they could be fitted into this schedule and during suitable weather conditions.

A considerable quantity of what appears to be good quality data has been obtained. These data will yield new basic information since optical measurements of this kind have not been made in these waters before. The scattering data in particular are unique. In situ measurements of the scattering function over such a considerable angular interval to such depths have never been made before. The scattering functions will yield much more information about the suspended particulate matter than observations at one angle only. The in situ observations are not hampered by the contamination problem which always has an influence on in vitro scattering measurements. This is, of course, especially the case when the water is very clear. It is doubtful that the small relative variations in the scattering properties found in the present observations would have been detected by in vitro techniques.

The quanta meter was lowered to $60-80 \mathrm{~m}$. The 1% level was around 70 m in most cases. This shows that the water is very clear, and the color index is also high. Optically the surface water north of the front is similar to the water found in the western Mediterranean, and it is almost as clear as Sargasso Sea water. Unfortunately we could not go far enough south of the front to find the nutrient rich water at the surface and determine its optical properties.

The scattering meter was generally lowered to a depth slightly beneath the level of the internal temperature maximum. We did not go deeper than about 1000 m . Scattering functions were usually obtained at 5-10 levels, so as to cover the different water layers as indicated by the temperature distribution. In areas where interleaving was found, scattering functions were observed in water layers as thin as about 20 m . The results suggest that the cold water originating from south of the front contains more suspended matter than the warm water of northern
origin. The interleaving displayed in the CTD records seems to appear also in the scattering records.

C. Sample Stations

A preliminary analysis of the data from a number of stations has been carried out.

Figure 26 shows two examples of quanta profiles, in the form of percentage of incoming surface irradiance as a function of depth. These profiles are representative of all observed, and the form is in general agreement with what is normally found.

Figures 27-29 show three profiles of light scattering (relative units) at a fixed angle together with the corresponding CTD profiles. No. 30 (CTD 84) was obtained in the southern part of the frontal zone, No. 32 (CTD 86) in the center of the eddy, and No. 35 (CTD 89) north of the eddy. These examples show the range of variation of the scattering and the structure vs. depth. This is especially interesting in the interleaving zones, and the correspondence with the T, S distribution is obvious.

Figure 30 shows examples of the scattering function at four different depths at station 19, where the green filter was used. The general shape of these functions is very characteristic, showing that the scattering is dominated by particles larger than the wavelength of the scattered light. The variation from 230 to 700 m is quite large. Note that the warm water of 455 m scatters less than the cold water at 485 m . It should be emphasized that these results are preliminary:

Acknowledgment

The research is financially supported by the Danish Natural Science Council and the Marine Science Panel of the NATO Science Committee.

Figure 27. Combined temperature (from CTD station \#84) and light scattering (station \#30) profiles at a fixed angle of $\theta=27^{\circ}$

Figure 28. Combined temperature (from CTD station \#86) and light scattering (station \#32) profiles at a fixed angle of $\theta=27^{\circ}$

Figure 29. Combined temperature (from CTD station \#89) and light scattering (station \#35) profiles at a fixed angle of $\theta=27^{\circ}$

Figure 30. Scattering of green light as a function of scattering angle θ and depth on station \#19

VII. CHEMISTRY

As a component of the ISOS polar front study, the chemical nutrients (phosphate, nitrate, and silicate) and certain isotopes $\left(0^{18} / 0^{16}\right.$, tritium, helium, and deuterium) were sampled. The nutrients were sampled routinely from all Niskin bottles tripped on the CTD rosette. The isotopes were sampled at four stations across the polar front and associated eddy seen during the cruise.

The nutrient samples were run as soon as possible after sampling on an Autoanalyzer II. In addition, continuous underway analysis of surface seawater was performed during the early stages of the cruise to help delineate the surface silicate signature. Also, surface samples collected by the Chilean ship, YELCHO, were analyzed during the first few days out of port to help determine the location of the polar front:

The first phase of the chemical participation in the polar front study involved processing 240 surface samples from the YELCHO for silicate concentration. This data (not included) indicated that the strong silica gradient associated with the southern extent of the polar front zone closely parallels the surface $4.0^{\circ} \mathrm{C}$ isotherm. Also, there appeared during the first survey a detached surface region of high silicate concentration north of the $4.0^{\circ} \mathrm{C}$ isotherm which disappeared from the area during a later survey. The high surface silicate levels indicate either a more southerly origin for this water parcel or an upwelling phenomena from below of richer nutrient water.

During the cruise, nutrient samples were drawn from 68 stations. These were analyzed for phosphate $\left(\mathrm{PO}_{4}\right)$, nitrate $\left(\mathrm{NO}_{3}\right)$, and silicate ($\mathrm{S}_{\mathrm{i}} \mathrm{O}_{4}$). It is hoped that this data will provide additional parameters for studying the dynamic processes in the frontal region. A complete data list follows this report in the appendix.

Finally, the Autoanalyzer was configured to run continuous flow underway surface nutrients to help in the location of the frontal zone. The high silicate gradient appeared somewhat south of the main study area but was crossed twice during the cruise. The eddy which was encountered showed little manifestation of high surface silicate.

During the cruise, approximately 900-1000 samples were processed on the mini-computer interfaced Autoanalyzer II. The system performance was generally very good. The major chemical problem dealt with the silicate analysis. Periods of increased sensitivity variations were likely tied to a batch of a deteriorating reagent. This problem makes the silicate data at CTD stations $38,39,40,42$, and 43 of doubtful quality. Also, stations $59,79,80$, and 100 may be affected slightly by this problem, but are still usable. Precision was consistently better than 1% probably near 0.5\%, comparable to ISOS 1975 data (Gordon, et al. 1976). The computer functioned reliably up until the last two days of the cruise when a hardware failure necessitated manual calculation of seven stations. A more complete system description is given in Gordon et al. (1975).

Isotope samples were also collected during leg III of ISOS '76 for shore analysis of hydrogen, helium, and oxygen isotopes. The tritium and helium analyses are to be performed by Bill Jenkins at W.H.O.I. while the $0^{18} / 0^{16}$ and deuterium analyses will be coordinated by Lou Gordon at OSU. Results from these analyses will hopefully yield information on the relative age of the interleaving cold water fingers found in the polar front and give some information as to the sources of the composition of the water types. Tritium, with a half life of 12,6 years, can potentially yield information on mixing rates and water age while fractionation processes associated with sea ice formation, glaciation, and rainwater may be of value in studying the cold relatively fresh water minimum layers in the polar front.

Four stations (77, 81, 91, and 95) were sampled for isotopes. A total of 78 ampules were sealed for the $0^{18} / 0^{16}$ deuterium work and 29 copper sampling units were taken for the tritrium/helium studies. The stations were designed to provide a full north-south distribtuion from antarctic, frontal zone, antarctic intermediate, and subantarctic waters to separate the various components as fully as possible.

Continued data processing, plotting, and analysis will continue on the chemical data at OSU during 1976. Attempts will be made to integrate the chemical data with information provided by CTD, XBT, optical, and current profiling measurement in the frontal zone. This analysis will take the form of section plots, regression analysis, and various variable-variable analyses.

VIII. VCM PROGRAM

A. Vertical Current Meters (VCM)

The VCMs are neutrally buoyant-free floating instruments which are ballasted to predetermined depths and tracked acoustically. Time synchronized deck equipment provides float range data to 18 km or more depending on conditions. During this cruise, "hearing" was very good, and on occasion we tracked floats for nearly 24 km . The instrument is equipped with quartz crystal oscillator to provide a stable time base sufficiently accurate for tracking over periods of weeks.

The VCM measures relative vertical current, water pressure, and water temperature. Relative vertical current is sensed by an array of vanes mounted axially around the float, Fig. 31. Because the float compressibility is less (about $1 / 2$) than that of the water, vertical motions in the water generate relative vertical flow past the vanes causing the entire float to rotate. This rotation is sensed relative to an internal compass. The sum of the pressure change (float vertical motion) and the rotation of the float (flow relative to the float) is a measure of total vertical water displacement; with a resolution of about 2 cm . The temperature measurement is accurate to about . $010^{\circ} \mathrm{C}$.

These data are recorded each 112.5 seconds on a digital data cassette recorder as average temperature and pressure for the record interval; accumulated turns at the time of recording; and total number of record intervals since a reference time zero. The pressure is telemetered to the ship each $7-1 / 2$ minutes to confirm ballasting accuracy and permit calculation of horizontal range from depth and slant range measurements. The telemetry is a 20 -bit digital word including 16 bits of pressure data, 3 bits for float identification, and a release confirm bit.

Preliminary data processing aboard ship consists of reading the data cassette and producing a computer compatible 9-track data record. Data from the $9 T$ tape could be listed and plotted on the Calcomp in engineering units for an early check on quality and a preliminary scientific evaluation.

Figure 31. Scaled side view of the vertical current meter (VCM) showing its orientation when neutrally buoyant. The length of the instrument from recovery bail (top) to the transducer (bottom) is 1.2 meters. Vertical motion is sensed by 8 inclined vanes shown at the mid-point of the cylinder

The VCM includes an AMF acoustic release receiver and a release of W.H.O.I. design. On command from the ship, or on preset command from an internal timer, the float drops a 900 m weight and returns to the surface for recovery. A flashing light turns on at release time, and the "ping" rate doubles (every 2 seconds) to confirm release. The acoustic tracking capability and the light simplify finding the float on the surface in spite of its low profile in the water. Seven recoveries were made with ease under a variety of weather and light conditions during this cruise.

Two floats built in 1973 were modified and tested for use on the cruise; and three additional instruments were built in 1975 for ISOS. On these 5 VCMs, 4 were deployed and one served as spare parts and backup time base for the deck gear. At one time for a short period all four were in the water.

There were several malfunctions detected during preliminary testing and one instrument (VCM \#4) sank at the rate of about 4 meters per hour due to a leak. The same instrument had an intermittent compass/ turns counter and the usefulness of the data is questionable.

The longest deployment was VCM \#5 for 5 days, 16 hours, but no data record was made because of failure to properly seat the tape head and capstan on the recorder prior to deployment.

Table 13 summarizes VCM performance. There 12 days, 1 hour of good data records and an additional 2 days, 4 hours of questionable data from 19 days, 21 hours of total float time. For further reference to VCM hardware. see Burt et al. (1974) and Dorson (1974):

VCM Ballasting

The VCM floats used in ISOS were weighed in a fresh water tank at Woods Hole and ballasted to be neutrally buoyant at a selected surface temperature and salinity standard of $8^{\circ} \mathrm{C}$ and 34.40%. The ballast was then adjusted for depth based on in situ temperature and salinity at the desired depth. The float constants are approximately

Table 13
VERTICAL CURRENT METER (VCM) SUMMARY - FDRAKE 76 III

VCM Number	$\begin{gathered} \text { Data } \\ \text { Record } \end{gathered}$	Depth m Design	Depth Actual	Total Time	Data Recorded	Remarks
1 (1)	VCM TT 107/2	400	400	3d 10h	good	
1 (2)	VCM TT 107/6	370	400	2d 4h	good	
2 (1)	VCM TT 107/4	400	360	4d 4h	good	
2 (2)	VCM TT 107/5	500	640	2d 7 h	good	
4	VCM TT 107/3	560	560	2d 4h	questionable	Turns counter suspect
5	None	400	400	5d 16h	none	Tape head not seated
19d 21h Total float time 12d 1 h Good data						

Note: $d=$ days
$\mathrm{h}=$ hours
Analysis of data quality preliminary
VCM 4 sank at about 4 meters/hr while deployed

$0.0804 \mathrm{gm} /$ meter	ballast for depth,
$0.332 \mathrm{gm} /{ }^{\circ} \mathrm{C}$	temperature correction,
$27 \mathrm{gm} / \% 0$	salinity correction.

The largest unknown for a new design is compressibility; and an adjustment was made in the ballasting equations based on an actual test drop (VCM \#4, 17 March 1976).

A summary of desired depths and actual depths is included in Table 13.

B. Float Program Narrative

Two sea trials were made prior to full scale float work. The first was done on 15 March on our way out, in the lee of Cape Horn. All five vertical current meters, hereafter referred to as VCMs, were secured to the hydrographic conducting cable and lowered to depth to test their pressure telemetry and weight release (recovery) systems. From the telemetry we determined the thermal correction to their pressure calibration. - The second trial was made during the afternoon of 17 March, approximately 10 miles north of the recovery site of the University of Oregon current meter and thermistor array. VCM \#4 was launched for free drift at a depth of 290 m after the vertical temperature and salinity structure had been determined from a CTD sounding. The instrument sank to a depth of 332 m (in 80 min). After a drift of about an hour its weight was released and the instrument was recovered. The discrepancy between intended and true depth was used to determine a second order correction to the float compressibility.

The subsequent float work was done in two phases, from 23 to 29
March and from 30 March to 2 April, which are described below. Detailed float trajectories are shown in Fig. 32. The northern trajectories occurred in phase one and the southern in phase two. Float depths, drift times, and comments concerning float performance and the quality of the recorded data is given in Table 13. Float positions and times for these positions are listed in the accompanying VCM log (Section D). Also noted
*) LAUNCH
*) LAUNCH

* RECOVERY
* RECOVERY
\odot VISIT POSITIONS
\odot VISIT POSITIONS
| I2 HR.DR TIME MARKS
| I2 HR.DR TIME MARKS
STARTING *1,0000/24 MAR }7
STARTING *1,0000/24 MAR }7

PHASE 2

Figure 32. Float tracks of the VCM's during Phases 1 and 2. Note that VCM's 4 and 5 were entrained in the cold water ring described in the introduction
in this log are special events and the station numbers of CTD and XBT soundings made over the floats. In addition, XBT sections were usually made while running between floats to monitor the thermal structure of the front. These are described in Section III.

Phase 1

The first phase started after CTD Section A had been made across the front along the line shown in Fig. 4 during the period 20 to 23 March. VCM's 1, 4, and 5 were launched late on the $23 r d$ and early on the 24 th of March. Their location relative to the thermal structure of the front is shown in Fig. 33. VCM 1 was in the interleaving region to the north of the front, VCM 4 was in the T min layer along the frontal edge, and VCM 5 was above 4.* The synoptic horizontal structure of the front at the time of launch, inferred from the YELCHO survey is shown in Figure 2 after launch tracking began. Early on 25 March VCM 2 was launched south of the front, as shown in Fig. 33, after the necessity of exchanging this instrument's projector with that of VCM 3 which caused some ballasting difficulties. By the next day it had become evident from the pressure telemetry of VCM 4 that this float was slowly sinking (approximately $4 \mathrm{~m} / \mathrm{hr}$) and it was recovered during the morning of 26 March. Approximately $16 \mathrm{~cm}^{3}$ of water were found in the float from a small leak in the lower end cap.

By 27 March the divergence between VCM 1, which was drifting northeast at a speed of 30 to $35 \mathrm{~km} /$ day (Fig. 32), and VCMs 2 and 5, which were both curving to the south at a similar speed, had become so great ($\simeq 100 \mathrm{~km}$) that travel time between the three floats was becoming excessive. Therefore, VCM 1 was recovered on the morning of 27 March in order to devote full time to tracking VCMs 2 and 5.

By 28 March it appeared that the front was changing its configuration rapidly and that the portion of the front tracked by VCMs 2 and 5 was becoming a cul-de-sac with a large tongue of warm water sweeping

[^4]
to the south of the floats. We decided to make a rapid XBT section to the south to determine the extent of this warm water and to re-establish the position of the polar front on its southern edge. The front was found by the afternoon of 28 March about 100 km to the south of the floats. On returning northward, late on the $28 t h$, warm water was found to the west of the floats as well. This and the still curving trajectory of the floats made it highly likely that both VCMs were entrapped along the edge of a cold cyclonic eddy which had been formed by the large scale deformation of the front.* This eddy can be seen in the subsequent YELCHO survey shown in Fig. 2. It was decided to recover both floats and shift our operations to the new front re-established to the south. Both were recovered by late 29 March and phase one had ended.

Phase 2

After an XBT section across the front to the south VCMs 1 and 2 were launched in the early afternoon of 30 March . In order to economize on time spent in float tracking and to devote more effort in studying the interleaving process both floats were launched for different depths at the same location north of the front. Their position relative to the frontal thermal structure is shown in the XBT section of Fig. 34. VCM 1 was located in the interleaving zone at a depth of 400 m and VCM 2, although intended for a depth of 500 m , equilibrated at a depth of 640 m . The latter was our only major discrepancy in float ballasting (Table l3) and its cause is at this point still undetermined.

The weather had begun to deteriorate before the float launch and continued to do so (20-30 knot winds from the southwest with building seas). Starting in the afternoon of 30 March and continuing for the next 28 hours we made repetitive CTD lowerings every 2 to $2-1 / 2$ hours, to a depth of 1500 m , over the drifting VCM 1 in order to measure the evolution of the interleaving relative to the float.** The distance to the float was

[^5]
monitored during the lowerings and was usually kept by good ship handing to less than 1200 m although this was difficult in the building seas. During this CTD series two XBT experiments were conducted (described in Section III) consisting of repeated soundings every 3 to 5 minutes to determine the time scales of layers in the vicinity of the float. During the first XBT series over VCM \#l the deck tracking equipment failed but was repaired and resynchronized with the floats in about 3 hours.

The CTD series terminated in the early morning of 1 April. The sea and weather having moderated considerably it was decided to carry out two experiments (also described in Section III) with XBT soundings to investigate the spatial coherence of the interleaving relative to the float. In the first experiment the ship maneuvered around the float in a box pattern, steaming on each side for 20 minutes at 4 knots. XBT soundings were made every 5 minutes.

In the second experiment $X B T$ soundings were made every 5 minutes at 5 knots along two tracks, one north-south and the other east-west. Each track was 6 km in length and they intersected over the float. These experiments terminated around noon on 1 April. After making final CTD stations over each, VCMs 1 and 2 were recovered by late in the evening of 1 April. They had moved towards the north and northeast at a relatively low speed of 3 to $5 \mathrm{~km} /$ day during their entire drift (Fig. 32). At this point the float program was terminated, with no equipment losses.

C. Sample VCM Time Series

The VCM data tapes were read and preliminary analysis was begun while at sea using a modified version of CTD program 3. VCM number 1 produced one of the longer data records recovered. Float 1 was deployed north of the front at a depth of 415 meters. During this period of three and one-half days the float maintained a fairly steady velocity of 30 $\mathrm{m} / \mathrm{sec}$ to the northeast, away from the front. Its track can be seen in Fig. 32 .

The calibration of float rotation to vertical displacement was done using a plot of relative displacement, proportional to float turns, vs. pressure as the instrument sank during deployment. From the slope of this curve the calibration constant was determined.

Figure 35 gives time series of pressure, temperature, and calculated vertical water displacement for float 1 , drop'l. The float's pressure record shows that the instrument oscillated with an amplitude of upwards of 50 meters. Also evident in the plot is that the instrument slowly sank about 20 meters over the record length. This sinking was not attributed to a leak since the interior of the instrument case was dry upon recovery. The exact cause, though, has not yet been determined.

The absolute displacement, computed from pressure and turn data, shows a steady sinking of water, much greater than the instrument drift. The mean vertical velocity from the plot is almost .4 meters/hour downward. Large periodic vertical excursions of the water at the buoyancy period (1.5 hrs approximately) are also visible. Since there was large relative motion of water past the float the instrument operated away from velocity threshold most of the time. Although no spectral analysis has been done on the records as of yet, there is clearly seen a large signal due to the semi-diurnal tide.

A strong bimodal structure was observed in the temperature record caused by vertical advection of warm and cold layers by the float. There are two distinct regions of structure in the temperature plot. Initially, while the float was near the front, the temperature excursions were large, about $.4^{\circ} \mathrm{C}$, but later when the float had moved away, the temperature jumps declined to $.13^{\circ} \mathrm{C}$.

Eyeball temperature-displacement correlations were attempted from the data plots but the complicated structure changes with time. During some periods the float was sitting in warm water above a cold layer such that upward fluid displacement caused the temperature to jump to its lower level. At other times, after the float had been advected to a new area the opposite is often true. It is too early at this time to make any statements about layer displacements and vertical heat fluxes.

Figure 35. Time series of pressure, temperature, and absolute vertical displacement as recorded by VCM \#l during phase 1 . The pressure record shows an instrument creep of 20 m over the record length. Large vertical excursions are visible near the buoyancy period ($\sim 1.5 \mathrm{~h}$) and the semidiurnal period

D. Float Visit Log

Date	Time	Latitude	Longitude	VCM	Notes
VCM Log - 1					
2311176	2105	$57^{\circ} 31.7 \mathrm{~S}$	$64^{\circ} 18.8{ }^{\text {W }}$	1	CTD \#44 (DR)
	2225	$57^{\circ} 29.9 \mathrm{~S}$	$64^{\circ} 17.4{ }^{W}$	1	Launch \#1
24III	1230	$57^{\circ} 20.0^{S}$	$64^{\circ} 03.1{ }^{W}$	1	XBT 111
	2238	$57^{\circ} 14.4$	$63^{\circ} 57.9{ }^{\text {W }}$	1	CTD \#46; XBT 114
26III	0402	$56^{\circ} 57.4$	$63^{\circ} 36.5$	1	CTD \#49
27III	0642	$56^{\circ} 45.3^{S}$	$63^{\circ} 20.2^{W}$	1	CTD \#52
	0940	$56^{\circ} 43.7$	$63^{\circ} 18.0$	1	Release \#l and recover
3011176	1335	$58^{\circ} 28.5$	$63^{\circ} 14.1{ }^{\text {W }}$	1	CTD \#59
30111	1630	$58^{\circ} 29.2^{\text {S }}$	$63^{\circ} 13.3$	1	Launch \#1
	1924	$58^{\circ} 27.8$	$63^{\circ} 11.4$	1	CTD \#60
	1935	27.8	11.4	1	XBT Time Series \#1
31 III	0257	$58^{\circ} 28.0$	$63^{\circ} 13.5$	1	CTD \#61-74 Yo-Yo
	1018	$58^{\circ} 25.7$	$63^{\circ} 09.6$	1	YO-YO
	1142	$58^{\circ} 25.0$	$63^{\circ} 09.9$	1	Yo-YO
	1945	$58^{\circ} 24.0$	$63^{\circ} 08.3$	1	XBT Time Series \#2 begin
1IV76	0058	$58^{\circ} 22.9$	$63^{\circ} 06.9$	1	YO-YO
	0426	$58^{\circ} 23.0$	$63^{\circ} 09.2$	1	Yo-Yo
	0720	$58^{\circ} 22.6$	$63^{\circ} 09.0$	1	XBT Box; cross
	2030	$58^{\circ} 20.5$	$63^{\circ} 08.3$	1	CTP \#75, Release \#l and recover
VCM $\log -2$					
25 III76	1245	$57^{\circ} 38.3^{\text {S }}$	$63^{\circ} 24.7 \mathrm{~W}$	2	CTD \#47, Launch \#2
26III	1715	$57^{\circ} 55.8$	$63^{\circ} 34.2^{W}$	2	(DR) float location
	1725	$57^{\circ} 55.9$	$63^{\circ} 34.7{ }^{\text {W }}$	2	CTD \#51
28III	0346	$57^{\circ} 55.2^{\text {S }}$	$63^{\circ} 52.7{ }^{\text {W }}$	2	XBT 180
29III	1438	$57^{\circ} 25.1{ }^{\text {S }}$	$64^{\circ} 10.4{ }^{\text {W }}$	2	CTD \#56
	1630	$57^{\circ} 25.3{ }^{\text {S }}$	$64^{\circ} 10.4$	2	Release \#2 and recover

Date	Time	Latitude	Longitude	VCM	Notes
VCM Log - 2 (Contd.)					
3011176	1335	$58^{\circ} 28.5^{\text {S }}$	$63^{\circ} 14.1{ }^{\text {W }}$		CTD \#59
	1620	$58^{\circ} 29.2{ }^{\text {S }}$	$63^{\circ} 13.3$	2	Launch \#2
	1924	27.8	11.4	2	CTD \#61-74 Yo-Yo
	1935	27.8	11.4		XBT Times Series \#l
3111176	0257	$58^{\circ} 28.5$	$63^{\circ} 11.8$	2	1300 m east of float
1 IV76	2300	$58^{\circ} 23.0^{\text {S }}$	$63^{\circ} 01.0^{W}$	2	Release \#2 and recover
	2355	$58^{\circ} 22.2{ }^{\text {S }}$	$62^{\circ} 59.3{ }^{\text {W }}$	2	CTD \#76
VCM Log - 4					
24 III76	0345	$57^{\circ} 32.9$	$64^{\circ} 05.7$		CTD \#45
	0558	$57^{\circ} 31.6^{\text {S }}$	$64^{\circ} 05.0^{W}$	4	Launch \#4
	1624	$57^{\circ} 25.2 \mathrm{~S}$	$63^{\circ} 52.5{ }^{\text {W }}$	4	XBT 112
25 III76	0610	$57^{\circ} 23.4{ }^{\text {S }}$	$63^{\circ} 38.8^{W}$	4	XBT 122 (DR)
	1929	$57^{\circ} 24.8^{\text {S }}$	$63^{\circ} 28.1^{W}$	4	CTD \#48
26IV76	1000	$57^{\circ} 29.7^{\text {S }}$	$63^{\circ} 21.3{ }^{\text {W }}$	4	Release \#4 and recover
VCM Log - 5					
24III	0345	$57^{\circ} 32.9{ }^{\text {S }}$	$64^{\circ} 05.7{ }^{\text {W }}$		CTD \#45
	0517	$57^{\circ} 30.6{ }^{\text {S }}$	$64^{\circ} 04.7{ }^{\text {W }}$	5	Launch \# 5, XBT 107,109
	1810	$57^{\circ} 24.2^{\text {S }}$	$63^{\circ} 50.0^{W}$	5	XBT 113
25III	0630	$57^{\circ} 25.8{ }^{\text {S }}$	$63^{\circ} 35.5{ }^{\text {W }}$	5	XBT 124 (DR)
	1728	$57^{\circ} 26.8^{\text {S }}$	$63^{\circ} 24.0^{W}$	5	XBT 128
26 III76	1240	$57^{\circ} 40.9^{\text {S }}$	$63^{\circ} 22.7{ }^{\text {W }}$		CTD \#50, XBT 130
$27 \mathrm{III76}$	2004	$57^{\circ} 53.3{ }^{\text {S }}$	$63^{\circ} 42.5{ }^{\text {W }}$	5	Float located
2911176	0800	$57^{\circ} 41.9{ }^{\text {S }}$	$64^{\circ} 09.5^{\mathrm{W}}$	5	CTD \#55, XBT \#228
	1850	$57^{\circ} 33.0^{\text {S }}$	$64^{\circ} 12.5{ }^{\text {W }}$		Release \#5 and recover

E. Float Creep

Estimates of sinking rate of a vertical current meter (VCM) used in the Polar Front studies in March and April 1976 have been made based on the work of Paul Sullivan and reported in his thesis dated January 1975 :

Creep Buckling of Shells of Revolution
Loaded under Uniform External Pressure.
His work describes estimates for creep in SOFAR floats which are made of aluminum tubes of the same alloy ($60.61-T 6$) as the VCMs; and have a radius to wall thickness ratio of 7.5 as compared to 8.5 for the VCMs.

The strain rate due to creep is the sum of the dominant term, $\stackrel{\bullet}{e}_{\theta}$, and a perturbation term \dot{e}_{θ}.

The calculated strain rates for the VCM are

$$
\dot{\mathrm{e}}_{\theta}=2.77 \times 10^{-7} \text { inches/inch/hour },
$$

and

$$
\dot{e}_{\theta}^{\prime}=0.84 \times 10^{-7} \text { inches/inch/hour }
$$

which total

$$
3.61 \times 10^{-7} \text { inches/inch/hour }
$$

The change in radius $=1.15 \times 10^{-6}$ inches/inch/hour, and the total change in volume of the 48 -inch long cylinder

$$
=1.105 \times 10^{-3} \mathrm{in}^{3} / \text { hour }
$$

or

$$
\Delta v=1.81 \times 10^{-2} \mathrm{~cm}^{3} / \text { hour }
$$

The VCM buoyancy constant is 12.43 meters $/ \mathrm{cm}^{3}$, so the sinking due to creep

$$
\begin{aligned}
& =1.81 \times 10^{-2} \times 12.43 \\
& =0.225 \text { meters } / \text { hour }
\end{aligned}
$$

This agrees with the slow sinking seen in Figure 35.
IX. OTHER OBSERVATIONS

A. Meteorological Observations

1. Instrumentation and Data Reduction

During the cruise a small meteorological package was mounted approximately 7 m above sea level on the observation deck of the R/V THOMPSON. It consisted of the following sensors: wind vane, anemometer, compass, screened thermometer, and barometer. These sensors were installed in a line on an aluminum bar pointing fore and aft. The data were recorded on an Aanderaa data logger. The sampling rate of 10 min was controlled by a crystal clock. During the sampling interval the wind speed was integrated while all other sensors yielded instantaneous readings.

The instrument was set up in Punta Arenas and was dismounted after all hydrographic observations had been finished. The obtained meteorological data cover the time interval 11 March to 7 April 1976. Data decoding has been performed at computer facilities of the Rosenthiel School of Marine and Atmospheric Science, Miami. The following manufacturers' suggested calibration equations have been used:

```
wind vane (degrees) \(\quad \alpha=.35191 * N_{\alpha}\)
anemometer ( \(\mathrm{m} / \mathrm{s}\) ) \(\quad \mathrm{S}=\mathrm{K} / \Delta \mathrm{t}^{*} \mathrm{~N}_{\mathrm{S}}\)
compass ( \({ }^{\circ} \mathrm{T}\) )
temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
barometer (mbar) \(\quad P=6.99243 E+2+.3826 *_{N_{P}}\)
wind direction ( \({ }^{\circ}\) T) \(\beta=\alpha+\theta\); modulo (360)
```

with

```
\(N_{i}=\) parameter readings in counts
    \(\mathrm{K}=\) rotor constant \(=38.2 \mathrm{~m} / \mathrm{rev}\)
\(\Delta t=\) sampling interval \(=10 \mathrm{~min}\)
    \(\zeta=\) magnetic variation \(=+14^{\circ}\)
```

The automatically recorded data have been compared with the 6-hourly routine weather observations and found to be in reasonable agreement. Wind speed and direction from both sources together with barometric pressure and air temperature are shown in Fig. 36. Wind speed and

direction from the Aanderaa recorder represent relative quantities because they have not been corrected against the ship's speed. The influence of the ship's speed (usually <10 knots) on the anemometer and wind vane readings may be seen from a comparison of the two shown curves. The 6-hourly speed is always smaller than the Aanderaa speed which at least partly may have been caused by different instrument calibration. Another uninvestigated effect on the wind sensors is caused by the ship's pitch and roll motion which amplifies the anemometer values. This contaminating effect is kept smaller by using propeller-shaped sensors as they were used for the 6-hourly data. The reason for the speed gap between 2 and 4 April is not known.

2. Data Discussion

The highest air temperatures, up to $15^{\circ} \mathrm{C}$, were recorded during our passage through the Beagle Channel. After consideration of a phase shift of 4 hours against CUT the diurnal temperature variations are obvious in the beginning of the record. Most of the time, however, they are covered by other effects like cloudiness and sea surface temperature changes. After leaving the site of the initial test station on 16 March we encountered temperatures typically in the range $1-5^{\circ} \mathrm{C}$. During the cruise the ship crossed at least 16 times the polar front or the rim of the cold water ring. The subsurface criterion of these frontal crossings ($2^{\circ} \mathrm{C}$ at 200 m depth), was used to indicate the transitions in the air temperature trace. The direction of the horizontal temperature gradient is indicated by the darkened half of the arrows. A dark right half indicates a crossing from warm into cold water masses. In most cases the crossings are reflected in the air temperature curves. Changes are typically of $O\left(1-2^{\circ} \mathrm{C}\right)$ and often coincide with the subsurface expression. See for instance 16 March 2000 Z and 30 March 1205 Z when the polar front was crossed the first and last time during the cruise. The final crossing of the cold water ring between 3 April 0945Z and 4 April $0555 z$ seems to be indicated in the air temperature curve approximately 8 hours earlier and later, respectively, which is of $O(30 \mathrm{~km})$ South and Northwest of the rim. A general increase of air temperature was observed when the ship approached the Cape Horn area during 5 and 6 April. The record was finished by re-entering the Beagle Channel on 7 April.

During the first half of the cruise wind speed in the Drake Passage was unusually low ($<10 \mathrm{~m} / \mathrm{s}$) . Winds coming from all directions were observed. Always when the speed increased the prevailing direction was found to be SW to NW. This wind direction is consistent with the predominent easterly surface current system. During the second half of the expedition, an increase of the mean wind speed was recorded, but seldom exceeding values $>15 \mathrm{~m} / \mathrm{s}$. The maximum occurred during 5 April when strong winds from the west reached values of approximately $18 \mathrm{~m} / \mathrm{s}$.

Air pressure values were found in the range of 980-1024 mbar. There seemed to be a periodicity on the order of 3-5 days. Gradients usually were low with exception of a series of three perturbations between 3 and 4 April. In all three cases these atmospheric fronts were correlated with a 90° counterclockwise turning of the wind.
B. Report of an Amateur Birdwatcher (Jon B. Jolly)

Albatross

1. Wandering - These birds were always present from one to four or five and no particular increase in numbers was noted at the polar front.
2. Sooty - One Sooty was seen near the front.
3. Yellow-nosed - Two were seen at the front. Initially it was felt that this was a positive identification as the birds flew close aboard a long period - just a few feet away from the ship's side - and the nose coloring was clearly visible. I must enter some doubt here because subsequently, in looking through Edward Wilson's book, "Birds of the Antarctic," 1968, Humanities Press Inc., New York, it was noted that the grey-headed albatross is colored similarly - at least in that book. On the other hand, Watson's "Birds of the Antarctic," Antarctic Research Series, published by AGU, Washington, D. C., 1975, does not show this feature nearly so prominently for the grey-headed. Some question remains on this identification.
4. Other albatross - A rather stark and bizarre marking occurred on a number of Wandering Albatross - a pink-orange vertical mark on the head or perhaps upper nape. No reference to this could be found in the literature anywhere. This mark was ragged in some and smooth in others. The marking was about 5 cm long (high) and about 1 cm wide. It occurred on both sides of the head. It remained in the vertical position when the bird was either sitting in the water or in flight. At one time four birds near the ship had this marking. Could this be some sort of tagging activity by some agency or group? Many were seen without it.

Fulmars

All Fulmars listed in the main portion (illustrated) of Watson were seen. The Giant Fulmars in numbers of two or three were nearly always with the ship. The Southern and one Snow Petrel were seen just south of the frontal zone. One Antarctic Petrel was seen just north of the zone.

Cape Pigeons

Flocks on the order of 25 were with the ship at the frontal zone. The rump markings seemed to vary somewhat, and this feature, along with the somewhat darker wings than shown in Watson's illustration, leads one to believe that most of them were of the species D.c. australe. ever, no size differences could be seen, so it is presumed that they were of the D.c. capense variety because that's what the charts say. Many hours went into this identification effort with no satisfactory conclusion arrived at.

Prions

A lot of time was spent in trying for positive identification with no success. Definitely two sizes were seen and that is about all. The flitting of the bird makes tail identification all but impossible at a distance.

Gadfly Petrels

In the convergent zone at least two Blue Petrels flew at night into the ship's superstructure and were identified in the hand before releasing them.

Soft-plumaged Petrel - This bird was first sighted by Ms. Susan Pacla of Scripps on Leg II of ISOS and subsequently was seen by us. This was two birds just north of the convergent zone. From the references it appears this bird is not normally seen in this area.

Shearwaters

White-chinned Petrel - Three were seen at the frontal zone on an overcast day.

Storm Petrels

In the open ocean Wilson's Storm Petrels were always in evidence. These tiny birds were always with the ship in about the same numbers both at and away from the front.

Diving Petrels

Ms. Pacla had reported two species without differentiation. Fortunately for us, a South Georgia flew into the ship's superstructure and was identified in the hand. This occurred late at night during a steady drizzle of rain just north of the front. It was the only Diving Petrel seen by us on this cruise.

Specifics of Interesting Sightings

The Soft-plumaged Petrel was seen at 1l00, 20 March at Lat. 5800 S , Long. 6410 W . Sky overcast, the bird was at a range of about 35 meters.

The Yellow-nosed Albatross was seen at Lat. 5735 S , Long. 6345 W , sky overcast, temperature about $7^{\circ} \mathrm{C}$, range 2 meters. They were much more curious and unafraid than the Wandering. This occurred on 26 March.

The Wandering Albatross with the peculiar neck markings were seen in a group of 4 on 28 March at the frontal zone. Several were seen earlier just south of Cape Horn on about 18 March.

No exact position available for the South Georgia Diving Petrel.
Mammals
At 1300, 4 April saw pod of about 40-50 long-finned pilot whales. They came close aboard and remained about $1-1 / 2$ hours. In comparing their
length with the Albatross overhead, they appeared in some instances to be well over 20 feet in length - which is what the literature says (ANTARCTIC RESEARCH FOLIO SERIES).

A small school of larger whales were seen at a distance early in the cruise - only the spouts were seen.

On Leg II just preceding this one a pod of Sei whales were seen close aboard - no further details except fairly positive identification.

Dolphins were seen near the ship in the Straits of Magellan on departure - no further identification.
X. SUMMARY

All stations occupied on Leg III are summarized in Figs. 37 and 38 (in folder). The area represents only a fraction of the Drake Passage. The dense sampling on Leg III contrasts to more areal measurements on Legs I, II, and during FDRAKE 75. Many of the features observed and noted in this cruise report have analogs in the other data sets. Our data, however, represent the densest sampling of the three dimensional scalar fields in the passage and the most extensive continuous measurements of dissolved oxygen (some earlier GEOSECS stations were taken in the Scotia Sea). The vertical current meter float tracks proved to be instrumental in identifying the existence of a ring of cold water cast off from the circumpolar current. The combined data sets of the YELCHO and THOMPSON will be used to discuss the frontal eddy formation in a forthcoming note.

All data presented are preliminary and will be subject to change during the next several months. No single general publication of all SOPOFROZONEX results is planned, hence this cruise/preliminary data report has been prepared with some care so as to be a useful working document for the various participants in the experiment, as well as a general source of information for others within and without the ISOS program.

XI. ACKNOWLEDGMENTS AND PARTICIPANTS

The scientific personnel and affiliations of Leg III TTl07 are listed below. The chief scientist (Joyce) wishes to thank each member of the scientific party for their contributions to a successful cruise.

We would also thank the University of Washington, the captain and crew of the THOMPSON for their very able assistance. We especially acknowledge the chief engineer, Ben Hartman and his assistants without whose aid none of the light scattering stations of Kullenberg would have been made.

We thank Doris Haight and Mary Raymer for their typing and drafting skills in preparing this report.

Without the support of the International Decade of Ocean Exploration (IDOE) and the International Southern Ocean Studies (ISOS) program and participants this work would not have been possible. The bulk of this work was supported under grant OCE75-14056.

Participants on Leg III were:
T. Joyce
N. Bauchmann
J. Dean
M. McCartney
R. Millard (Woods Hole Oceanographic Institution)
D. Moller
A. Voorhis
H. Whittemore
J. Toole (MIT/WHOI Joint Program)
W. Zenk (Institut für Meereskunde)
G. Kullenberg (University of Copenhagen)
H. Hundahl
J. Gallo
N. Zuleta
(Instituto Antartico Argentino)
D. Georgi (Lamont-Doherty Geological Observatory)
C. Dahm (Oregon State University)
J. Jolly (Seattle, Washington)

Figure 39. SOPOFROZONEX (Southern Ocean Polar Frontal Zone Experiment) participants

References

(1) A. L. Gordon, D. T. Georgi, and H. W. Taylor (1976). Antarctic Polar Front Zone in the Western Scotia Sea - Summer 1975. (Submitted to Journal of Physical Oceanography).
(2) Louis I. Gordon, Clifford N. Dahm, Wayne H. Dickinson, P. Kilho Park, David R. Standley (1975). A Precision Oceanographic Nutrient Data Acquisition System. Proceedings Working Conference on Oceanographic Data Systems, Woods Hole Oceanographic Institution, November 12-14, 1975.
(3) L. I. Gordon, Y. Cohen, C. Dahm, W. H. Dickinson, D. Standley (1976). ISOS Nutrient Studies--FDRAKE 1975 Results (in preparation).
(4) K. Burt, D. C. Webb, D. L. Dorson, A. J. Williams, III (1974). Telemetry Receiver and Acoustic Command System; IEEE International Conference on Engineering in the Ocean Environment Record. IEEE Publication \#74-CHO873-0 OCC 1974, Vol. I, pp. 53-56.
(5) Donald Dorson (1974). A Low Power Ocean Data Recorder; IEEE International Conference on Engineering in the Ocean Environment Record, IEEE Publication \#74-CHO873-0 OCC 1974, Vol. II, pp. 51, 52.

APPENDIX

Pres, Temp, and Sal-C are pressure, temperature and salinity data taken from the CTD at the time of collection of water sample with the Rosette. Bottle salinity (conductivity) was measured with a University of Washington Bridge. Latitude and longitude are ending positions for each of the CTD stations.

NA.	LAT.	LANG.
1	5530.3	6543.7

PRES	TEMH	$S A L-C$	$\mu A 4$	$N G 3$	SIL	$\forall X Y$	$S A L-B$
39	6.306	34.316	1.38	19.6	1.3	7.00	34.111
39	6.306	34.315	1.38	19.5	1.3	7.01	34.115
397	4.610	34.319	1.54	24.0	11.1	6.81	34.230
397	4.611	34.319	1.66	24.0	11.1	6.83	34.230
643	3.827	34.271	1.78	25.7	15.0	6.68	34.179
64.3	3.827	34.271	1.81	26.0	15.7	6.65	34.230
977	3.153	34.391	2.25	32.4	40.1	6.12	34.209
978	3.177	34.391	.00	.0	.0	5.31	34.284
1556	2.538	34.642	2.48	35.8	80.4	4.18	34.545
1556	2.538	34.642	2.47	35.8	80.4	4.11	34.532

| NE. LAT. | LGNG. |
| ---: | :--- | :--- |
| 3 | $5524.5 \quad 6533.0$ |

PRES	TEMP	SAL-C	$\mathrm{P}^{2} 4$	NP_{3}	SIL	$\theta X Y$	SAL=B
30	6.329	34.093	1.49	19.7	$1 \cdot 5$	6.93	. 000
296	$4 \cdot 756$	$34 \cdot 211$	$1 \cdot 64$	2300	$10 \cdot 6$	6.77	34.961
575	4.019	$34 \cdot 175$	- 00	- 0	- 0	- 00	- 000
1229	2.790	$34 \cdot 430$	2.43	$35 \cdot 1$	65.1	$4 \cdot 34$	34.438
1734	$2 \cdot 383$	$34 \cdot 584$	2.48	$35 \cdot 8$	91.7	3.76	34.597
2017	2.268	$34 \cdot 61^{3}$	2•43	$35 \cdot 1$	93.9	3.90	$34 \cdot 528$

$\begin{array}{r} \text { PRES } \\ 37 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 3.020 \end{aligned}$	$\begin{aligned} & 5 A L-C \\ & 33 \cdot 913 \end{aligned}$	$\begin{aligned} & 104 \\ & 1.59 \end{aligned}$	NQ_{3} $24 \cdot 5$
140	- 213	33.568	$2 \cdot 09$	38.7
250	1.569	$34 \cdot 317$	$2 \cdot 28$	33.3
393	2.100	$34 \cdot 462$	2.42	$35 \cdot 3$
645	$2 \cdot 242$	$34 \cdot 619$	2.44	35-3
898	2.128	34.715	- 00	- 0
10^{97}	$2 \cdot 070$	34-754	$2 \cdot 34$	$33 \cdot 5$
1395	$1 \cdot 878$	34.792	$2 \cdot 27$	32•7
1699	1.658	$34 \cdot 904$	$2 \cdot 26$	$32 \cdot 5$
2151	$1 \cdot 372$	$34 \cdot 69^{9}$	2.25	$32 \cdot 2$
3021	. 852	$34 \cdot 797$	$2 \cdot 28$	$32 \cdot 6$

SIL	$\theta X Y$	SAL-B
$5 \cdot ?$	7.56	. 000
23.1	7.78	- 000
$45 \cdot 2$	5.96	.000
$62 \cdot 1$	$4 \cdot 77$	34.400
$75 \cdot 4$	4-21	34.543
- 0	4.74	. 000
$89 \cdot 2$	$4 \cdot 49$	34.683
94.9	4-46	34.710
$102 \cdot 0$	4.57	$34 \cdot 726$
$10^{8 \cdot 6}$	$4 \cdot 67$	$34 \cdot 744$
$125 \cdot 6$	$4 \cdot 85$	$34 \cdot 716$

NE.	LAT.	LHNG.
5	$5354 \cdot 3$	$6352 \cdot 7$

PRES	TEMP	SAL-C	${ }^{2} 84$	N03	SIL	$\theta X Y$	SAL-E
11	- 000	. 000	1.70	23.7	$4 \cdot 1$	7.49	. 000
101	- 524	$34 \cdot 055$	1.99	26.8	$18 \cdot 0$	6.91	. 000
203	.849	$34 \cdot 097$	2.15	30.6	$32 \cdot 0$	$7 \cdot 00$	$34 \cdot 064$
398	2.171	$34 \cdot 355$	- 00	- 0	- 0	- 00	- 000
651	2.398	$34 \cdot 519$	- 00	- 0	-)	- 00	.000
900	2.223	$34 \cdot 623$	$2 \cdot 39$	33.9	$83 \cdot 7$	4.23	34.304
1197	2.040	34.676	$2 \cdot 38$	$33 \cdot 6$	97.1	4.09	33.849
2077	1.516	$34 \cdot 724$	2.27	$32 \cdot 3$	107.9	$4 \cdot 70$	33.961
3004	. 945	$34 \cdot 715$	2.30	72.5	124.6	$3 \cdot 92$	34. 353

NA.	LAT.	LGNG
7	$5723 \cdot 2$	6436.8

PRES	TEMD	SAL-C	Heq_{4}	N93	SIL	$\theta X Y$	$S A L-B$
38	4.953	34.129	1.55	21.5	1.4	$7 \cdot 20$	34.027
96	3.299	$34 \cdot 1 \geq 1$	1-80	25.0	$11 \cdot 2$	7•71	34.080
196	3.363	$34 \cdot 163$	$1 \cdot 80$	25.7	$14 \cdot 1$	6.99	. 000
297	3.056	$34 \cdot 158$	1.88	$27 \cdot 2$	$18 \cdot 2$	$6 \cdot 75$	- 000
398	2.805	$34 \cdot 1 \times 4$	$2 \cdot 05$	29.3	25•8	$6 \cdot 30$	$34 \cdot 159$
497	2.610	$34 \cdot 234$	-00	- 0	-1)	$7 \cdot 08$	34.043
597	$2 \cdot 412$	$34 \cdot 285$	2.? 7	$32 \cdot 7$	$43 \cdot 7$	$5 \cdot 38$	34.282
796	$2 \cdot 723$	34.46n	2.29	$32 \cdot 7$	$44 \cdot 4$	$5 \cdot 58$	$34 \cdot 282$
996	2.498	34.522	2.43	$34 \cdot 7$	$70 \cdot 8$	4.19	34.506
1199	2.386	$34 \cdot 598$	2.4?	74.1	79.1	4.11	34.590
3018	1.257	$34 \cdot 675$	$2 \cdot 26$	31.9	$113 \cdot 5$	4.69	34.724

NO.	LAT.	LGNG.
9	5724.8	6437.7

PRES	TEMP	SAL-C	PQ4	NQ3	SIL	日XY	SAL.B
19	4.975	34.017	1.58	22.2	1.4	6.96	34.122
208	3.310	34.114	1.86	27.4	15.4	6.94	34.086
411	2.755	34.179	.00	.0	.0	.00	.000
612	2.651	34.256	2.38	33.6	42.1	5.51	34.262
1017	2.445	34.491	2.47	36.2	72.1	4.31	34.508
1508	2.191	34.657	2.42	34.8	93.6	4.12	34.658

| NQ. LAT. | LANG. |
| ---: | :--- | :--- |
| 11 | $5725.5 \quad 6438.0$ |

PRES	TEMP	SAL-C	HE4	NG	SIL	OXY	SAL.B
16	4.966	34.018	1.57	26.8	1.5	7.13	34.023
207	3.189	34.095	1.83	26.8	15.2	7.03	34.101
407	2.832	34.165	1.88	27.6	17.5	6.94	34.112
611	2.493	34.260	2.28	33.6	43.3	5.49	34.264
1010	2.418	34.507	.00	.0	.0	.00	.000
1506	2.130	34.663	2.46	75.7	98.8	4.02	34.644

NO.	LAT.	LGNG.
12	5723.7	6436.2

PRES	TEMP	SAL-C	P64	NO 3	SIL	Exy	SAL-8
15	4.942	34.016	$1 \cdot 57$	22.0	1.6	$7 \cdot 0^{8}$	$34 \cdot 022$
207	$3 \cdot 314$	$34 \cdot 118$	1.34	26.8	$15 \cdot 6$	6.83	34.121
410	2.768	34.169	$1 \cdot 91$	27.9	$19 \cdot 0$	6.65	34.136
608	2.441	$34 \cdot 263$	$2 \cdot 29$	33.8	44.4	$5 \cdot 38$	$34 \cdot 264$
1010	2.448	34.493	$2 \cdot 43$	$36 \cdot 4$	$72 \cdot 1$	4.15	- 100
1511	2.136	$34 \cdot 660$	$2 \cdot 44$	35.9	99.7	3.95	34.657

NA.	LAT.	LQNG.
13	5723.6	6437.8

PRES	TEMP	$S A L \cdot C$	$P Q 4$	NA3
16	4.489	$34 \cdot 019$	1.54	22.2
207	3.284	23.108	1.78	26.1
410	2.829	34.167	2.00	29.0
610	2.484	34.263	2.23	32.0
1010	2.521	34.482	2.42	.0
1510	2.207	34.649	2.36	.0

	$\theta X Y$	SAL-B
.0	6.19	34.022
.0	6.15	34.114
.0	5.93	34.167
.0	5.53	34.265
.0	4.26	34.426
.0	3.96	34.652

NO. LAT.	LHNG.	
15	5740.8	6436.3

PRES	TEMP	$S A L=C$	PO_{4}	N93
17	5.018	$34 \cdot 023$	1.57	$22 \cdot 3$
209	$3 \cdot 280$	$34 \cdot 10^{3}$	$1 \cdot 83$	$26 \cdot 6$
411	$2 \cdot 908$	$34 \cdot 177$	2.02	29.6
611	2.740	$34 \cdot 248$	$2 \cdot 26$	$33 \cdot 2$
1010	2.547	34.475	2.46	$35 \cdot 9$
1515	2•157	$34 \cdot 663$	2. 41	$35 \cdot 1$

SIL	EXY	SAL.B
2.0	7.08	34.040
$15 \cdot 0$	6.91	34.111
24.3	6.33	34.149
40.3	4.43	34.252
69.3	4.20	34.481
95.5	3.93	34.664

NA.	LAT.	LHNG.
16	$5724 \cdot 2$	$64 \quad 35.9$

PRES	TEMD	$S A L=C$	PE 4	NQ3
1^{6}	$5 \cdot 0^{42}$	$34 \cdot 021$	1.56	21.4
20^{7}	3.384	$34 \cdot 111$	$1 \cdot 82$	$25 \cdot 4$
410	2.911	$34 \cdot 157$	$2 \cdot 05$	29.5
613	2.596	$34 \cdot 255$	$2 \cdot 23$	32.8
999	2.485	$34 \cdot 501$	$2 \cdot 45$	$35 \cdot 4$
1504	$2 \cdot 132$	$34 \cdot 657$	$2 \cdot 46$	35.1

SIL	$\theta X Y$	$S A L-B$
$1 \cdot 9$	$7 \cdot 0^{8}$	$34 \cdot 030$
$14 \cdot 6$	$6 \cdot 88$	$34 \cdot 122$
$26 \cdot 3$	$6 \cdot 19$	$34 \cdot 162$
$41 \cdot 9$	$5 \cdot 31$	$34 \cdot 264$
$72 \cdot 3$	$4 \cdot 19$	$34 \cdot 504$
$101 \cdot 2$	$3 \cdot 74$	$34 \cdot 658$

NE.	LAT.	L日NG.	134
17	$5724 \cdot 3$	6437.0	

PRES	TEMP	SAL.C	PE4	NE3	SIL	OXY	SAL.B
17	5.177	34.032	1.54	21.7	1.6	7.05	34.034
208	3.241	34.108	1.84	26.7	15.5	6.84	34.114
410	3.040	34.179	2.04	29.8	25.7	5.99	34.171
609	2.689	34.273	2.98	31.5	36.9	5.26	34.270
1003	2.432	34.501	2.46	35.4	71.9	4.12	34.501
1516	2.155	34.662	2.43	34.7	97.0	3.99	34.661

NA.	LAT.	LANG.
18	57	23.5

PRES	TEMP	SAL-C	PQ4	N93	SIL	日XY	SAL-B
17	5.388	34.065	1.52	20.6	1.6	7.00	.000
195	3.350	34.112	1.82	25.7	14.8	6.93	.000
392	2.879	34.141	2.02	28.7	24.2	6.33	34.063
608	2.691	34.286	2.29	32.3	45.0	5.27	34.023
603	2.703	34.286	2.29	33.2	45.2	5.17	34.146
1513	2.165	34.657	2.47	34.6	97.2	3.92	.000

NE. LAT.	LANG.	
25	57.45 .0	5352.3

PRES	TEMP	SAL-C	Pr_{4}	NO3	SIL	EXY	SAL-B
35	3.571	33.880	1.66	$23 \cdot 7$	$3 \cdot 1$	7.35	33.852
106	1.5 .37	$34 \cdot 006$	$1 \cdot 97$	27.6	19.2	$7 \cdot 35$	34.016
208	1.633	34.08?	- 00	- 0	- 0	- 00	. 000
358	1.644	34.171	. 00	- 0	- 0	- 00	. 000
411	1.691	34.2)1	2. 31	72.0	40.5	5.64	34.332
598	$2 \cdot 362$	34.777	$2 \cdot 37$	$34 \cdot 3$	$56 \cdot 7$	4.99	$34 \cdot 355$
1996	1.700	$34 \cdot 720$	2.? 9	32.9	$106 \cdot 8$	4.35	34.720
2195	1.617	34.730	$2 \cdot 34$	32•1	104.4	4.54	34.733
2591	1.374	$34 \cdot 727$	$2 \cdot 25$	$32 \cdot 4$	112.7	4.64	. 000
2735	$1 \cdot 252$	$34 \cdot 727$	$2 \cdot 25$	$32 \cdot 3$	$115 \cdot 1$	$4 \cdot 73$. 000
3002	1.080	34.722	2.28	$32 \cdot 8$	121.3	$4 \cdot 77$	$34 \cdot 725$

NE. LAT.	LENG.	
26	5740.9	6350.7

PRES	TEMP	SAL-C	Pe_{4}	N93	SIL	GXY	SAL-B
24	3.636	$33 \cdot 881$	1.66	$23 \cdot 9$	$3 \cdot 8$	7.40	33.888
108	2.003	$34 \cdot 035$	1.94	27.8	18.4	7.20	34.049
209	$1 \cdot 235$	34.025	1.99	28.8	$22 \cdot 7$	7-31	34.025
412	2.021	$34 \cdot 233$	$2 \cdot 24$	$32 \cdot 8$	$42 \cdot 4$	5.79	34.237
615	2.327	$34 \cdot 392$	2.38	35.0	$60 \cdot 2$	4.78	34.385
820	$2 \cdot 337$	$34 \cdot 483$	$2 \cdot 43$	$35 \cdot 6$	71.5	4.25	34.487
1022	2.301	34.549	$2 \cdot 41$	$35 \cdot 3$	79.0	4.13	34.574
1529	$2 \cdot 050$	34.693	$2 \cdot 28$	$33 \cdot 2$	90.5	$4 \cdot 29$	34.698
2029	1.724	34.720	2.38	$33 \cdot 0$	$105 \cdot 7$	$4 \cdot 38$	34.719
2503	1.430	34.731	$2 \cdot 24$	32.5	109.9	4.61	34.732
zañ	$1 \cdot \cap 72$	34.724	2.26	$32 \cdot 8$	121.4	4.68	34.719

NQ.	LAT.	L甘NGe
27	5739.9	6357.1

PRES	TEMP	SAL-C	Pe4	N03	SIL	EXY	$S A L-B$
31	4.110	33.891	- 00	- 0	- 0	- 00	. 000
103	3.733	33.909	1.69	$23 \cdot 4$	$3 \cdot 5$	7-34	33.971
251	1.210	$33 \cdot 965$	- 00	- 0	- 0	7.31	34.021
396	1.847	$34 \cdot 117$	- 20	- 0	- 0	6.23	$34 \cdot 175$
595	2.315	$34 \cdot 281$	$2 \cdot 36$	$34 \cdot 5$	$56 \cdot 3$	4.98	$34 \cdot 354$
787	2.337	$34 \cdot 423$	$2 \cdot 42$	$35 \cdot 5$	$72 \cdot 0$	$4 \cdot 33$	34.490
991	$2 \cdot 353$	$34 \cdot 505$	$2 \cdot 40$	$35 \cdot 0$	$79 \cdot 7$	4-18	34.568
1481	2.076	$34 \cdot 634$	$2 \cdot 27$	$33 \cdot 2$	$90 \cdot 0$	$4 \cdot 34$	34.700
1999	$1 \cdot 722$	$34 \cdot 655$	2-28	33•1	107.5	$4 \cdot 36$	34.717
2508	1.466	34.670	$2 \cdot 23$	32•4	109.5	$4 \cdot 68$	34.730
3019	1.095	$34 \cdot 664$	2.24	32•6	121.0	$4 \cdot 81$	$34 \cdot 720$

NO.	LAT.	LQNG.
28	5739.9	64
	1.9	

PRES	TEMP	$S A L=C$	PH4	NO3	SIL	Exy	SAL-B
23	4.360	33.987	1.61	22.6	$2 \cdot 6$	$7 \cdot 17$	33.995
110	4.124	34.012	1.64	23.0	$4 \cdot 4$	7.18	34.041
212	2.144	$34 \cdot 067$	1.94	28.4	21.9	6.98	34.078
412	1.592	$34 \cdot 151$	2.15	31.5	$36 \cdot 2$	$6 \cdot 16$	$34 \cdot 170$
601	2.389	$34 \cdot 345$	2.23	$32 \cdot 7$	$44 \cdot 5$	$5 \cdot 71$	34.249
794	$2 \cdot 335$	$34 \cdot 451$	2.41	$35 \cdot 4$	68.9	4.43	34.453
997	2.373	$34 \cdot 555$	2.40	$35 \cdot 1$	$78 \cdot 8$	- 00	$34 \cdot 568$
1491	2.086	$34 \cdot 683$	2.38	$33 \cdot 3$	88.4	$4 \cdot 32$	34.682
1997	1.715	34.730	2.21	72.4	101.4	$4 \cdot 46$	34.730
2489	1.392	$34 \cdot 729$	2. 24	32.4	111.4	4-13	34.729
3004	$1 \cdot 075$	34.72?	$2 \cdot 25$	$32 \cdot 7$	121.3	4.79	- 000

NQ.	LAT.	LANG.
29	5737.1	$64 \quad 6.4$

PRES	TEMP	SAL-C	Pe_{4}	N93
24	$4 \cdot 321$	33.987	1.62	22•8
110	2.930	34.077	- 00	-
209	2.425	$34 \cdot 091$	$1 \cdot 94$	$8 \cdot 2$
40^{8}	$2 \cdot 225$	$34 \cdot 198$	$2 \cdot 18$	31-9
612	2.203	$34 \cdot 323$	$2 \cdot 33$	$34 \cdot 4$
811	$2 \cdot 257$	34.435	$2 \cdot 42$	35-4
100^{7}	2.372	$34 \cdot 558$	$2 \cdot 40$	$5 \cdot 2$
1498	2.091	34-686	- 0	- 0
1987	1.717	$34 \cdot 727$	$2 \cdot 24$	$32 \cdot 7$
2481	$1 \cdot 387$	$34 \cdot 72^{3}$	2.23	$32 \cdot 6$
2995	.993	34-721	$2 \cdot 26$	$32 \cdot 9$

SIL	$\theta X Y$	SAL-E
$2 \cdot 7$	$7 \cdot 25$	- 000
- 0	- 00	. 000
$20 \cdot 9$	6.82	$34 \cdot 095$
$36 \cdot 9$	$5 \cdot 85$	$34 \cdot 20^{9}$
$53 \cdot 4$	5.12	$34 \cdot 326$
66.7	$4 \cdot 47$	$34 \cdot 438$
$77 \cdot 7$	$4 \cdot 0^{8}$	$34 \cdot 558$
- 0	- 00	.000 34.725
101.3 110.9	4.52 4.60	34.725 $34.671-$
122.6	4.86	34.715

NA. LAT.	LANG.	
30	$57 \quad 35.1$	6411.9

PRES	TEMP	SAL-C	P日4	N83	SIL	OXY	SAL.B
29	4.417	$34 \cdot 001$	1.60	22.4	2.6	7.19	34.009
105	3.046	34.081	1.92	25.7	13.1	7.09	34.086
408	2.622	$34 \cdot 211$	2.15	31.5	35.6	5.77	34.214
612	2.115	34.282	2.30	33.6	49.1	5.33	34.292
1017	2.355	34.561	2.40	35.0	77.9	4.20	34.560
1521	2.086	34.695	2.28	33.1	88.5	4.25	34.696

NA.	LAT.	LUNG.
31	57	32.9
6416.7		

pres	TEMP	SAL-C	${ }^{184}$	Ne3	SIL	$\theta X Y$	SAL-B
22	4.592	34.008	1.60	22.4	$2 \cdot 5$	7.17	34.019
109	3.221	34.030	- 00	- 0	- 0	. 00	. 000
209	2.774	34.0×9	1.89	27.4	18.0	6.92	34.092
411	2.461	34.170	$2 \cdot 13$	31.0	$32 \cdot 0$	6.11	34.166
613	$2 \cdot 435$	$34 \cdot 306$	$2 \cdot 33$	33.8	49.9	$5 \cdot 21$	34.307
816	$2 \cdot 429$	34.423	$2 \cdot 43$	35.3	65.7	$4 \cdot 24$	34.430
1013	$2 \cdot 406$	34.551	$2 \cdot 43$	$35 \cdot 3$	7\%.6	4.06	34.551
1522	$2 \cdot 145$	34.674	$2 \cdot 33$	$33 \cdot 9$	90.4	4.11	34.683
2380	1.569	34.727	$2 \cdot 36$	$32 \cdot 8$	108.5	4.47	34.655-Q
2735	$1 \cdot 214$	$34 \cdot 725$	$2 \cdot 27$	$32 \cdot 8$	118.4	4.67	34.719

NA.	LAT.	LHNG.
32	5732.4	6420.0

PRES	TEMP	SAL-C	P84	N日3	SIL	OXY	SAL-E
26	4.867	34.015	1.56	21.8	1.6	7.12	34.024
157	3.092	34.089	1.33	26.3	14.4	7.06	34.098
511	2.510	34.204	2.18	31.9	36.4	5.82	34.207
1022	2.481	34.526	2.44	35.5	75.9	4.08	34.533
1526	2.156	34.671	2.33	34.0	91.4	4.08	34.674
3043	1.184	34.724	2.27	33.1	120.5	4.63	34.728

NE.	LAT.	Leng.
33	5731.	6423.

RES	TEMP	$S A L=C$	$1 \mathrm{HO}_{4}$	Ne3
202	3-002	34.094	$1 \cdot 83$	26.6
439	2.777	34.184	2.10	$30 \cdot 8$
502	$2 \cdot 504$	$34 \cdot 203$	$2 \cdot 15$	31.5
770	$2 \cdot 371$	$34 \cdot 354$	$2 \cdot 37$	$34 \cdot 5$
1005	$2 \cdot 501$	34.515	$2 \cdot 42$	$35 \cdot 4$
1507	2.134	34.679	$2 \cdot 3$	

SIL	$\theta \times y$	SAL
16.0	6.99	34.102
31.4	5.89	34.191
$34 \cdot 7$	$5 \cdot 90$	34.198
$55 \cdot 8$	$4 \cdot 86$	$34 \cdot 351$
$73 \cdot 7$	$4 \cdot 11$	34.519
92.	4.0	34

| N日. LAT. | LQNG. |
| :--- | :--- | :--- |
| 34 | $5728.6 \quad 6422.6$ |

PRES	TEMH	$S A L=C$	$H \theta 4$	$N Q 3$
19	4.870	34.018	1.55	21.6
208	2.945	34.093	.00	.0
354	2.968	34.194	2.10	30.7
400	2.751	34.199	2.13	31.0
688	2.504	34.341	2.31	34.1
810	2.544	34.432	2.41	35.2
1012	2.484	34.532	2.43	35.2
1510	2.145	34.673	2.34	34.0
2014	1.831	34.764	2.31	33.6
2529	1.472	34.729	.00	.0
3015	1.191	34.724	2.26	32.7

SIL	日XY	SAL.B
1.6	7.12	34.052
.0	.00	.000
30.7	5.86	34.202
32.1	5.89	34.193
53.7	4.90	34.346
64.7	4.45	34.436
75.8	4.13	34.535
92.7	4.13	34.677
105.8	$4 \cdot 22$	34.713
.0	.00	.000
118.5	4.72	34.720

| NG. LAT. | LHNS. |
| :--- | :--- | :--- |
| 35 | $5729.0 \quad 6429.0$ |

PRES	TEM	SAL-C	PQ_{4}	NH3	SIL	QXY	SAL-B
19	5.038	$34 \cdot 037$	1.53	$21 \cdot 3$	1.6	7.09	34.040
205	3.480	$34 \cdot 127$	1.78	$25 \cdot 9$	14.6	6.88	34.133
401	3.161	$34 \cdot 179$	$2 \cdot 04$	29.7	26.6	6.02	34.185
638	2.531	$34 \cdot 280$	2.36	33-1	45.1	$5 \cdot 31$	34.289
993	$2 \cdot 600$	$34 \cdot 500$	$2 \cdot 43$	75.4	$73 \cdot 3$	4.01	34.624-0
1507	2.125	$34 \cdot 663$	$2 \cdot 40$	34-9	9900	3.90	34.664

| NG. LAT. | LGNG. |
| :--- | :--- | :--- |
| 36 | $5727.6 \quad 6432.5$ |

PQES	TEMP	SAL-C	1204	Ne 3	SIL	$\theta X Y$	SAL-B
30	5.078	$34 \cdot 043$	1.54	$21 \cdot 3$	$1 \cdot 6$	7.09	34.046
108	4.115	34-134	- 00	- 0	- 0	. 00	. 000
20^{7}	$3 \cdot 530$	$34 \cdot 126$	1.79	$25 \cdot 6$	$13 \cdot 5$	6.95	34.132
409	3.212	$34 \cdot 179$	$2 \cdot 0^{4}$	29.5	$25 \cdot 2$	6.06	34.182
615	2.964	$34 \cdot 276$	$2 \cdot 25$	32.7	$40 \cdot 6$	5.19	34.280
816	2.649	$34 \cdot 405$	$2 \cdot 40$	$34 \cdot 9$	59•1	4.53	34.410
1015	2.565	$34 \cdot 514$	$2 \cdot 44$	$35 \cdot 4$	$72 \cdot 4$	4.06	$34 \cdot 159$
1520	2.192	$34 \cdot 655$	2.39	$34 \cdot 6$	$91 \cdot 2$	3.96	34.656
2020	1.901	$34 \cdot 717$	- 00	- 0	- 0	. 00	- 000
2522	1.547	$34 \cdot 7 \cdot 3$	2.27	$32 \cdot 8$	$106 \cdot 4$	4.48	$34 \cdot 726$
3033	1-213	$34 \cdot 7.25$	$2 \cdot 26$	$32 \cdot 6$	114.8	$4 \cdot 65$	34.720

NQ.	LAT.	LANG.
37	$5726.4 \quad 6435.3$	

PRES	TEMP	SAL-C	Heq_{4}	Ne3
30	$5 \cdot 208$	$34 \cdot 061$	1.52	$21 \cdot 2$
111	$3 \cdot 952$	$34 \cdot 128$	1.77	$24 \cdot 1$
414	3.368	$34 \cdot 175$	1.98	$28 \cdot 8$
716	2.929	$34 \cdot 305$	2.28	$33 \cdot 2$
1014	2.659	$34 \cdot 482$	2.41	35.4
1520	$2 \cdot 244$	$34 \cdot 642$	$2 \cdot 42$	$35 \cdot 0$

SIL	$\theta X Y$	SAL.B
1.7	7.08	34.066
9.7	7.01	34.135
22.6	6.21	34.186
44.3	5.03	34.311
68.7	4.08	.000
91.2	3.91	34.639

NA.	LAT.	LQNG.
38	5724.6	$64 \quad 38.6$

PRES	TEMP	$S A L . C$	PQ4	N日3
29	5.051	34.030	1.55	21.7
158	3.890	34.146	.00	.0
204	3.731	34.152	1.76	25.5
350	3.406	34.153	1.91	27.9
677	2.800	34.279	2.26	33.5
801	2.522	34.323	2.37	34.6
1021	2.651	34.482	2.48	36.0
1516	2.232	34.632	2.51	36.2
2022	1.883	34.694	2.42	35.1
2523	1.594	34.725	2.29	33.1
3002	1.278	34.725	2.28	33.2

SIL	$\theta X Y$	SAL.E
.0	$7 \cdot 12$	34.037
.0	.00	.000
.0	6.95	34.152
.0	6.66	34.152
.0	5.25	34.280
.0	4.99	34.328
.0	4.13	34.424
.0	3.68	34.635
.0	3.55	34.697
.0	.00	34.724
100.0	4.53	34.725

NO.	LAT.	LHNG.
39	5723.5	6443.2

PRES	TEMP	SAL-C	HE4	NQ3
29	5.430	34.082	1.56	21.8
393	3.418	34.160	1.86	25.5
685	3.037	34.323	2.16	31.5
1009	2.615	34.483	2.45	35.8
2535	1.631	34.724	2.37	33.8
3028	1.286	34.725	2.31	33.7

SIL | | EXY | SAL-B |
| :--- | :--- | :--- |
| $\cdot 0$ | $7 \cdot 01$ | $34 \cdot 093$ |
| $\cdot 0$ | 6.35 | 34.165 |
| $\cdot 0$ | 4.85 | 34.332 |
| $\cdot 0$ | 4.21 | 34.490 |
| $\cdot 0$ | .00 | .000 |
| $\cdot 0$ | 4.63 | 34.725 |

NE.	LAT.	LNNG.
40	5738.3	6421.4

PRES	TEMP	$S A L-C$	$P Q 4$	N83
27	4.750	34.027	1.51	21.1
108	3.260	34.088	.00	.0
412	2.845	34.207	1.94	28.3
610	2.386	34.284	2.33	33.8
1009	2.378	34.527	2.47	36.0
1507	2.125	34.684	2.26	$33 \cdot 1$

	$\theta X Y$	$S A L-B$
$\bullet 0$	7.12	34.035
$\cdot 0$	7.13	34.094
$\cdot 0$	5.73	34.311
$\cdot 0$	5.29	34.284
$\cdot 0$	4.11	34.531
$\cdot 0$	4.14	34.686

| NQ. | LAT. | LQMG. |
| :--- | :--- | :--- | :--- |
| 42 | 5734.1 | $64 \quad 5.8$ |

PRES	TEMH	SAL.C	PQ4	NQ 3	SIL	EXY	SAL-B
28	4.647	34.014	.00	.0	.0	.00	.000
103	3.010	34.099	1.83	26.3	.0	7.03	34.090
404	2.564	34.213	2.19	31.8	.0	5.73	34.219
603	2.457	34.303	.00	.0	.0	.00	.000
965	2.341	34.529	2.42	35.3	.0	4.11	34.529
1491	2.095	34.679	2.28	33.4	.0	4.22	34.681

NO.	LAT.	LUNG
43	$5728.6 \quad 64 \quad 2.0$	

PRES	TEMP	$S A L-C$	$H 64$	NQ3
150	2.697	$34 \cdot 273$	1.89	$27 \cdot 2$
331	2.337	$34 \cdot 211$	2.15	31.5
412	2.565	$34 \cdot 224$	2.22	$32 \cdot 1$
613	2.539	$34 \cdot 357$	2.38	34.6
1005	2.312	34.541	2.44	35.7
1512	2.034	34.702	2.29	33.4

SIL.	$8 \times Y$	$S A L=A$
$\cdot 0$	$7 \cdot 05$	$34 \cdot 080$
$\cdot 0$	$5 \cdot 78$	34.214
$\cdot 0$	5.66	$34 \cdot 230$
$\cdot 0$	4.79	34.364
$\cdot 0$	$4 \cdot 13$	34.557
$\cdot 0$	4.24	34.705

| NA. LAT. | LQNG. |
| ---: | :--- | :--- |
| 46 | $5712.8 \quad 6351.9$ |

PRES 30	$\begin{aligned} & \text { TEMP } \\ & 4.769 \end{aligned}$	$\begin{aligned} & S A L=C \\ & 34 \cdot 033 \end{aligned}$	$\begin{aligned} & \text { PE4 } \\ & 1.52 \end{aligned}$	$\begin{aligned} & \mathrm{NQ}_{3} \\ & 22.0 \end{aligned}$	$S I L_{2.0}$	$\begin{aligned} & \forall X Y \\ & 7.16 \end{aligned}$	$\begin{aligned} & S A L=B \\ & 34 \cdot 035 \end{aligned}$
109	3.258	$34 \cdot 094$	1.76	25.8	$12 \cdot 9$	7-10	34.100
212	$2 \cdot 987$	$34 \cdot 094$	1.79	26.7	$15 \cdot 6$	$7 \cdot 09$	34.094
414	$2 \cdot 879$	$34 \cdot 183$	$2 \cdot 06$	$30 \cdot 9$	$30 \cdot 8$	5.93	$34 \cdot 179$
614	2.388	$34 \cdot 272$	2.18	$33 \cdot 5$	45.3	$5 \cdot 41$	$34 \cdot 272$
1017	$2 \cdot 356$	$34 \cdot 519$	$2 \cdot 40$	35.6	$74 \cdot 0$	4-17	34.511
1607	2.089	$34 \cdot 693$	2.27	33•3	$83 \cdot 9$	4-28	34.626
2109	1.686	$34 \cdot 727$	2.26	33•1	10400	4.45	34.722
2534	1.420	$34 \cdot 727$	-00	- 0	-0	. 00	. 000
2990	1-207	$34 \cdot 725$	2-21	$33 \cdot 2$	$11^{8 \cdot 1}$	$4 \cdot 65$	34.720

NG.	LAT.	LQNG.
48	$5725.5 \quad 6327.0$	

PRES	TEMP	SAL=C	PE_{4}	N03	SIL	$\theta x y$	SALme
29	3.869	$33 \cdot 930$	1.63	$23 \cdot 5$	$3 \cdot 3$	7-36	33.933
207	1.662	$34 \cdot 049$	- 00	- 0	- 0	- 00	. 000
302	$2 \cdot 079$	34.140	$2 \cdot 09$	$30 \cdot 6$	$31 \cdot 3$	6.29	$34 \cdot 145$
376	2.150	$34 \cdot 193$	2-16	31.8	37.2	5.96	$34 \cdot 196$
507	1.557	$34 \cdot 224$	$2 \cdot 70$	32.9	43.8	5.91	34.219
615	2.557	$34 \cdot 4$	2.44	35.0	61.5	4.48	$34 \cdot 407$
954	$2 \cdot 353$	$34 \cdot 568$	$2 \cdot 44$	$35 \cdot 0$	$79 \cdot 3$	4.03	34.569
1381	2.091	$34 \cdot 692$	2•35	$33 \cdot 5$	$88 \cdot 3$	4.19	34.679
1892	1.786	$34 \cdot 721$	$2 \cdot 26$	$33 \cdot 0$	101.3	4.32	34.720
2469	1.412	$34 \cdot 730$	2.? 0	32.9	111.3	$4 \cdot 53$	34.721
3002	$1 \cdot 062$	$34 \cdot 727$	2•28	32.9	$120 \cdot 4$	4.69	34.711

NO.	LAT.	LHNG.
50	5741.5	$63 \mathrm{Z2.3}$

PRES	TEMP	$S A L=C$	Pe_{4}	N03	SIL	$\Delta x y$	SAL-B
31	3.958	$33 \cdot 936$	1.64	$23 \cdot 4$	$3 \cdot 3$	7.32	33.940
110	$2 \cdot 702$	34.059	- 00	- 0	- 0	. 00	. 000
210	1.822	$34 \cdot 053$	1.99	$28 \cdot 7$	22.7	$7 \cdot 00$. 000
434	1.759	$34 \cdot 217$	$2 \cdot 24$	$32 \cdot 5$	$41 \cdot 3$	5.94	34.210
513	$2 \cdot 506$	$34 \cdot 353$	$2 \cdot 38$	$34 \cdot 5$	54.1	4.83	34.349
615	2.540	$34 \cdot 428$	$2 \cdot 4 ?$	35-1	$62 \cdot 9$	$4 \cdot 45$	$34 \cdot 428$
817	2.394	$34 \cdot 525$	$2 \cdot 44$	$35 \cdot 3$	74.0	4.38	34.526
1019	2.254	$34 \cdot 602$	$2 \cdot 40$	34.9	$80 \cdot 7$	4.20	34.597
1525	1.986	$34 \cdot 765$	$2 \cdot 30$	33-1	92.5	4.26	34.699
2027	1.659	$34 \cdot 721$	$2 \cdot 28$	$33 \cdot 2$	$105 \cdot 6$	$4 \cdot 46$	34.711
2536	1.331	34.729	-00	- 0	- 0	- 00	. 000

NA.	LAT.	LANG.
51	5755.3	$63 \quad 36.0$

PRES	TEMP	SAL-C	$P 64$	N93
17	4.310	33.962	1.61	22.9
249	1.400	34.056	2.05	30.0
613	2.456	34.399	2.42	35.0
1007	2.270	34.597	2.41	34.8
1510	1.945	34.690	2.34	33.8
2006	1.676	34.7 .4	2.28	33.0

SIL	$\theta X Y$	$S A L-B$
2.6	$7 \cdot 26$	33.977
$25 \cdot 5$	6.98	34.064
$60 \cdot 8$	$4 \cdot 53$	34.414
$81 \cdot 1$	$4 \cdot 04$	34.609
99.8	$4 \cdot 11$.000
104.3	$4 \cdot 33$	34.725

| $N A$ | LAT. | LHNG. |
| :--- | :--- | :--- | :--- |
| 52 | 5645.0 | 6319.0 |

PRES	TEMP	SAL-C	PU4	NG3	SIL	EXY	SAL.B
22	4.842	34.026	1.56	22.0	2.3	7.17	34.037
405	2.864	34.157	2.04	30.5	26.9	6.17	34.164
567	2.607	34.217	2.20	32.4	37.4	5.73	34.223
1019	2.537	34.501	2.43	35.8	71.8	4.13	34.509
1525	2.232	34.637	2.34	34.7	83.8	4.10	34.639
2014	1.958	34.713	2.28	33.7	95.1	4.24	34.715

NA. LAT.	LGNG.	
53	59	63

PRES	TEMP	SAL-C	144	193
20	3.645	33.897	1.66	23.9
176	.908	34.027	1.98	29.2
514	2.219	34.393	2.40	35.4
1019	2.165	34.649	2.31	34.3
2016	1.518	34.727	.00	32.0
2994	.885	34.715	.00	32.8

SIL	$\theta X Y$	$S A L \cdot B$
$4 \cdot 1$	$7 \cdot 43$	$33 \cdot 909$
$24 \cdot 0$	$7 \cdot 31$	$34 \cdot 031$
$62 \cdot 2$	$4 \cdot 65$	$34 \cdot 398$
$83 \cdot 5$	$4 \cdot 15$	$34 \cdot 647$
$104 \cdot 3$	$4 \cdot 57$	34.734
$124 \cdot 9$	$4 \cdot 82$	34.714

NO.	LAT.	LENG.
54	5740.2	6353.2

PRES	TEM	SAL-C	PQ4	N63	SIL	$4 X Y$	SAL-E
19	3.592	$33 \cdot 817$	1.67	24.8	$6 \cdot 5$	7.49	33.830
121	-816	33.899	. 00	- 0	- 0	- 00	. 000
201	- 559	$34 \cdot 036$	2-07	29.9	26.9	7.24	34.015
372	1.336	$34 \cdot 215$	2.?9	$33 \cdot 7$	45.4	6.00	34.220
658	2.443	$34 \cdot 505$	2.44	35.9	$72 \cdot 9$	4.17	$34 \cdot 524$
754	2.319	$34 \cdot 535$	2.44	36.1	76.8	4.13	- 000
990	$2 \cdot 232$	$34 \cdot 6.6$	$2 \cdot 36$	$35 \cdot 4$	$82 \cdot 6$	$4 \cdot 08$	34.628
1227	2.117	34.660	$2 \cdot 29$	34.3	$86 \cdot 0$	4.21	34.666
1755	1.850	$34 \cdot 715$	2-27	33.3	$98 \cdot 5$	4.31	34.722
2024	1.656	34.717	2.29	33.5	106.2	4.42	34.727
3054	1.087	34.717	2.27	$33 \cdot 3$	119.9	4.71	34.718

| NB. | LAT. | LQNG. |
| :--- | :--- | :--- | :--- |
| 55 | 5740.2 | $64 \quad 9.5$ |

PRES	TEMP	SAL-C	PE4	NG3	SIL	UXY	SAL. B
27	4.145	33.942	1.58	23.3	3.0	7.43	33.954
239	1.511	34.049	.00	.0	.0	.00	.000
307	2.331	34.176	2.14	31.6	34.7	6.00	34.193
493	1.528	34.190	2.21	32.8	40.4	6.15	34.199
600	2.536	34.359	2.33	74.9	55.5	4.78	34.365
805	2.364	34.474	2.47	35.9	70.5	4.33	34.471
1006	2.315	34.577	.00	.0	.0	4.05	34.584
1500	2.042	34.680	2.31	34.2	94.1	4.12	34.683
1980	1.787	34.717	2.27	33.2	102.3	4.33	34.723
2443	1.511	34.725	2.25	32.9	106.6	4.52	34.731
2956	1.128	34.720	2.26	32.9	119.2	4.72	34.726

NE. LAT.	LHNG.	
56	5724.6	6412.2

$\begin{array}{r} \text { PRES } \\ 29 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 4.300 \end{aligned}$	$\begin{aligned} & S A L-C \\ & 33.948 \end{aligned}$	$\begin{aligned} & P \& 4 \\ & 1.61 \end{aligned}$	$\begin{aligned} & \text { N93 } \\ & 23.0 \end{aligned}$
259	1.659	$34 \cdot 080$	2.03	29.6
413	1.876	$34 \cdot 185$	2.20	32•3
615	$2 \cdot 500$	$34 \cdot 373$	$2 \cdot 36$	$35 \cdot 0$
817	2.359	$34 \cdot 476$	$2 \cdot 42$	35.9
1015	$2 \cdot 292$	$34 \cdot 574$	$2 \cdot 39$	35.3
1493	2.069	$34 \cdot 687$	2.30	33•7
1985	1.786	$34 \cdot 717$	$2 \cdot 24$	33.1
2504	1.490	$34 \cdot 729$	2-21	32•8
$30^{8} 0$	$1 \cdot 076$	$34 \cdot 719$	$2 \cdot 27$	$33^{\circ} 0$

$\text { SIL } \frac{1}{2.7}$	$\begin{aligned} & 9 x y \\ & 7 \cdot 23 \end{aligned}$	$\begin{aligned} & S A L B \\ & 33.951 \end{aligned}$
26.1	6.75	$34 \cdot 0^{82}$
$38 \cdot 0$	6.00	$34 \cdot 192$
$57 \cdot 8$	4.69	34.378
$70 \cdot 2$	4.24	34.48 ?
79•1	$4 \cdot 06$	34.579
91.7	4-17	34.690
$101 \cdot 5$	4*29	$34 \cdot 721$
$10^{7 \cdot 6}$	4-55	34.730
120•2	$4 \cdot 69$	34.720

NH.	LAT.	LHVG.	
57	53	$1 \cdot 2$	$6258 \cdot 3$

$\begin{array}{r} \text { PRES } \\ 26 \end{array}$	$\begin{aligned} & T F_{M P} \\ & 4.770 \end{aligned}$	$\begin{aligned} & S A L-C \\ & 33.998 \end{aligned}$	PQ_{4} .00	$\begin{array}{r} 193 \\ \cdot 0 \end{array}$	SIL.)	$\begin{aligned} & \text { EXY } \\ & .00 \end{aligned}$	$\begin{aligned} & \text { SAL-E } \\ & .000 \end{aligned}$
198	2.1?3	$34 \cdot 0 \times 2$	$1 \cdot 41$	27.7	18.0	$6 \cdot 50$	$34 \cdot 087$
395	2.720	$34 \cdot 156$	-30	- 0	-0	. 00	. 000
599	$2 \cdot 472$	$34 \cdot 3.15$	- 20	- 0	- 0	. 00	. 700
797	2.550	34.417	C. 45	35.1	63.2	4.47	34.424
1001	$2 \cdot 393$	$34 \cdot 555$	2.46	75.6	77.4	4-11	34.566
1449 1943	2.149	$34 \cdot 6$ at +	- 30	- 0	- .	. 00	. 100
1993	1.339	34.711	$2 \cdot 32$	74.0	$10 \cdot 2 \cdot 1$	$4 \cdot 27$	34.713
2474	1.471	$34 \cdot 724$	ᄃ.2x	33.1	10803	4.50	34.724
2974	$1 \cdot 157$	34.7?2	2.22	$33 \cdot 1$	114.5	$4 \cdot 67$	34.722

```
\becauseN. LAT. LNVG.
    5% 5* 48.7 6250.7
```

PRES	TFMH	SAL-C	PH4	NO3	SIL	GXY	$S A L-E$
152	1.597	33.979	. 00	. 0	S.0	- 00	SAL-E .000
285	1.651	$74 \cdot 145$	2.11	31.7	34.4	6.35	34.152
352	1-436	$34 \cdot 108$	2.11	31.4	37.4	$6 \cdot 3$?	34.169
6\% 4	2.365	$34 \cdot 5 \sim 2$	$2 \cdot 47$	35.7	74.2	4.12	34.527
973 1479	2.198	34.414	$2 \cdot 40$	$35 \cdot 0$	82.0	4.08	34.617
1497	1.896	34.714	$2 \cdot 25$	73.1	91.7	$4 \cdot 35$	34.719
1939	1.518	34.727	2. 23	$32 \cdot 9$	106.4	4.46	34.729
2448	1.210	$34 \cdot 7=3$	-07	- 0	- 0	. 00	. 200
3003	- $\times 73$	34•71	$2 \cdot 28$	$33 \cdot 5$	$125 \cdot 2$	4.76	34.719

AH. LAT.	LHESQ	
59	$53 \geqslant 8.7$	6313.0

PLES	TEMP	SAL-C	HFH_{4}	193	SJL	$\theta \times Y$	
307	2.229	$34 \cdot 1.2$	1.34	$30 \cdot 3$	24.5	6.49	$34 \cdot 115$
590	2.494	$34 \cdot 34.9$	$2 \cdot 37$	$34 \cdot 8$	48.8	4.86	
734	2.480	$34 \cdot 467$	$2 \cdot 46$	36.0	63.1	4.29	34.470
960	2.429	$34 \cdot 559$	2.42	75.8	$72 \cdot 1$	4.03	34.470 34.563
1474	2.171	34.676	2.37	24.6	86.2	4.06	34.583
2012	1.744	34-72?	$2 \cdot 29$	$33 \cdot 5$	$94 \cdot 2$	$4 \cdot 32$	34.725

NA.	LAT.	LNA.
77	5×56.2	53
	3.1	

FRES	TEMP	SAL-C	rfH_{4}	v93	SIL	Exy	SAL-B
18	2.172	33.749	- 20	24.7	10.3	7.64	33.758
120	. 570	32.6×9	- 10	28.7	23.3	. 00	33.944
121	- 567	32.694	- 20	29.7	23.9	7.77	33.937
147	- 005	34.033	00	$30 \cdot 5$	29.2	7.30	34.035
235	- 862	34.205	- 0	$33 \cdot 3$	$45 \cdot 6$	6. 15	34.196
795	$2 \cdot 072$	$34 \cdot 6$ c?	- 70	34.9	$82 \cdot 2$	4.19	34.640
996	$2 \cdot 004$	34.581	- 00	33.8	86.8	$4 \cdot 21$	34.684
1497	1.688	$34 \cdot 723$	- 0	33.0	$101 \cdot x$	4.36	34.722
2000	1-397	34•7ご	-00	32.9	10x.1	4.54	34.729
3003	. 794	34.716	- 20	$33 \cdot 4$	127.5	- 00	34.718
3001	-807	$34 \cdot 715$	- 20	$33 \cdot 4$	126.3	4.77	34.713

NO.	LAT.	L甘NG.
78	5856.2	63.9

PRES	TEMP	SAL-C	PQ4	N83	SIL	exy	SAL
17	3.585	33.941	1.71	$24 \cdot 1$	4.6	$7 \cdot 29$	33.957
96	$2 \cdot 732$	34.071	1.76	$27 \cdot 3$	16.5	7.02	34.090
189	2.111	$34 \cdot 079$	1.99	$29 \cdot 3$	23.0	6.78	34.086
397	$2 \cdot 424$	$34 \cdot 296$	2.27	33.7	47.1	$5 \cdot 23$	34.301
595	$2 \cdot 527$	$34 \cdot 456$	$2 \cdot 41$	35.7	66.3	$4 \cdot 32$	34.459
796	$2 \cdot 352$	34.559	$2 \cdot 42$	$35 \cdot 3$	$75 \cdot 8$	4.11	34.559
958	2.267	$34 \cdot 604$	2.37	35.1	81.4	4.08	34.610
1501	1.980	34.712	$2 \cdot 27$	$33 \cdot 4$	86.8	$4 \cdot 26$	34.685
1998	1.636	34.731	2-28	$32 \cdot 8$	$101 \cdot 3$	4.49	34.741
2496	$1 \cdot 150$	$34 \cdot 724$	$2 \cdot 23$	32•9	$115 \cdot 2$	$4 \cdot 70$	34.738
3016	. 870	$34 \cdot 717$	$2 \cdot 24$	$33 \cdot 3$	$124 \cdot 3$	$4 \cdot 64$	34.72

NA.	LAT.	LGNig.	
79	5835.2	63	6.7

$\begin{array}{r} \text { PRES } \\ 16 \end{array}$	TEMP 4.472	$\begin{aligned} & S A L-C \\ & 34 \cdot 023 \end{aligned}$	$\begin{aligned} & P \oplus 4 \\ & 1.65 \end{aligned}$	Ne 3 $22 \cdot 6$	$\text { SIL } L_{2.9}$	$\begin{aligned} & 8 X Y \\ & 7.13 \end{aligned}$	$\begin{aligned} & S A L-B \\ & 34.028 \end{aligned}$
100	3.221	$34 \cdot 085$	1.83	$25 \cdot 9$	$12 \cdot 7$	$7 \cdot 06$	34.093
203	2.721	34.088	1.84	$27 \cdot 5$	$17 \cdot 5$	6.92	34.094
398	$2 \cdot 643$	$34 \cdot 204$	2.19	31.9	$34 \cdot 5$	5.79	$34 \cdot 207$
594	2.548	$34 \cdot 340$	2.37	34-7	$52 \cdot 6$	$4 \cdot 87$	$34 \cdot 345$
798	2.546	$34 \cdot 467$	$2 \cdot 39$	35.4	67.8	$4 \cdot 24$	34.471
984	2.372	$34 \cdot 576$	2.43	$35 \cdot 5$	79.9	$4 \cdot 04$	34.578
1498	2.053	$34 \cdot 696$	2•39	$34 \cdot 9$	$83 \cdot 2$	4.09	34.615
1894	1.777	$34 \cdot 707$	2.35	$34 \cdot 2$	$107 \cdot 4$	4.14	34.711
2500	1.399	$34 \cdot 72^{3}$	2. 26	$33 \cdot 0$	$110 \cdot 1$	4.56	34.729
3007	$1 \cdot 030$	34-720	2.29	$33 \cdot 5$	121.7	4.79	34.721

NQ. LAT.	LONG.	
80	5824.2	6315.0

PRES	TEMP	SAL-C	PQ4	N83	SIL	EXY	SAL-B
15	4.455	$34 \cdot 025$	1.6?	22.5	$3 \cdot 1$	$7 \cdot 13$	34.033
141	$2 \cdot 891$	$34 \cdot 063$	1.86	$26 \cdot 2$	$13 \cdot 1$	$7 \cdot 00$	34.080
304	$2 \cdot 472$	$34 \cdot 112$	2.00	29.2	$23 \cdot 4$	6.57	$34 \cdot 112$
445	2.548	$34 \cdot 21^{3}$	2.22	32.3	37.3	$5 \cdot 71$	$34 \cdot 224$
583	2.491	$34 \cdot 298$	2*31	33.8	47•1	5.19	34.299
779	$2 \cdot 522$	$34 \cdot 443$	$2 \cdot 43$	35:6	$64 \cdot 5$	4*37	$34 \cdot 441$
988	2.421	$34 \cdot 558$	2.4?	$35 \cdot 4$	79.6	4.06	$34 \cdot 564$
1465	2*141	$34 \cdot 67$?	$2 \cdot 32$	$34 \cdot 1$	85.9	4.15	34.632
1962	1.816	$34 \cdot 718$	2.29	$33 \cdot 4$	$100 \cdot 5$	4.29	34.716
2473	1.496	$34 \cdot 72^{2}$	$2 \cdot 26$	$33 \cdot 0$	$10^{7 \cdot 5}$	4-53	34.727
2984	$1 \cdot 0^{46}$	34-722	2-30	$33 \cdot 3$	119.8	4-69	34.719

NO.	LAT. LGNG.			LANG.			
81	5814	631					
PRES	TEMP	SAL-C	P04	N0 3	SIL	日XY	SAL-B
33	4.400	34.024	1.67	22.4	3.0	7.13	34.038
186	2.959	34.093	1.75	25:1	$14 \cdot 7$	6.99	$34 \cdot 104$
398	2.331	$34 \cdot 153$	- 00	$30 \cdot 6$	29.8	6.24	.000
409	2.465	34.175	. 00	- 0	- 0	$6 \cdot 27$	34.148
413	2.476	$34 \cdot 180$	2.19	31-1	31.9	5.99	$34 \cdot 181$
637	2.393	$34 \cdot 325$	2.40	$34 \cdot 1$	$51 \cdot 6$	5.02	34.336
720	2.558	$34 \cdot 398$	- 00	- 0	- 0	$4 \cdot 54$	34.410
1507	2.141	$34 \cdot 674$	2.27	$32 \cdot 9$	$83 \cdot 5$	4.24	34.668
2010	1.798	34.717	2.29	33.0	$101 \cdot 4$	4.28	34.720
2529	1.482	34.726	2.27	32.8	108.5	4.52	34.727
3001	1.169	34.721	2-28	32.9	117.9	4.68	34.722

NH. LAT.	LQNG.	
و2	$58 \quad 5.0$	6322.0

PRES	TEMP	SAL.C	104	NO3	SIL	日XY	SAL.B
32	4.373	$34 \cdot 008$	1.61	22.3	3.0	7.17	34.017
110	3.178	34.067	1.85	25.4	11.7	7.08	34.082
210	2.663	34.086	1.92	27.4	18.2	6.85	34.097
401	2.124	34.140	2.14	30.6	30.1	6.31	34.145
604	2.008	34.242	2.28	32.8	42.8	5.69	34.241
810	2.480	34.424	2.44	35.1	63.0	4.46	34.416
1013	2.394	34.522	2.44	35.4	74.1	4.11	34.522
1514	2.138	34.664	2.39	34.3	93.1	4.01	34.664
2000	1.858	34.712	2.32	33.2	101.5	4.23	34.713
2490	1.572	34.726	2.28	32.8	107.2	4.45	34.726
3025	1.215	34.722	2.25	32.7	116.1	4.68	34.720

NO.	LAT.	LANG.
83	$5756.5 \quad 6328.4$	

$\begin{array}{r} \text { PRES } \\ 30 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 4.785 \end{aligned}$	$\begin{aligned} & S A L-C \\ & 34.028 \end{aligned}$	$\begin{aligned} & P \theta_{4} \\ & 1 \cdot 61 \end{aligned}$	$\begin{aligned} & \text { NO3 } \\ & 21.8 \end{aligned}$	SIL	$\begin{aligned} & 0 X Y \\ & 7.09 \end{aligned}$	$\begin{aligned} & S A L=B \\ & 34 \cdot 033 \end{aligned}$
112	3.279	34.089	1.85	$25 \cdot 6$	$12 \cdot 2$	7.03	. 000
211	3.069	$34 \cdot 111$	1.86	27-1	$17 \cdot 4$	$6 \cdot 74$	34.122
415	2.922	34-230	$2 \cdot 20$	31.8	$35 \cdot 3$	$5 \cdot 53$	34.236
616	2.480	$34 \cdot 315$	2.35	33.8	49.0	$5 \cdot 07$	34.325
815	2.653	$34 \cdot 445$	2.43	35-1	64•1	4.30	34.448
1000	2.514	$34 \cdot 524$	$2 \cdot 45$	$35 \cdot 3$	$74 \cdot 1$	4.09	34.526
1524	2.124	$34 \cdot 667$	2.37	34*4	93.9	4.03	34.669
1999	1.875	$34 \cdot 712$	2.31	$33 \cdot 3$	99.8	$4 \cdot 23$	34.717
2458	1.575	34.726	$2 \cdot 28$	32.9	$106 \cdot 5$	4.47	34.726
2956	1.232	$34 \cdot 724$	2.27	32.9	114.7	$4 \cdot 64$	34.717

NA.	LAT.	LQNG.
84	5746.7	6333.0

PRES	TEMP	SAL-C	PQ4	NE3	SIL	OXY	SAL.B
37	4.262	33.966	1.66	23.0	3.9	7.19	34.039
116	2.904	34.082	1.27	26.8	19.7	7.02	34.099
218	2.444	34.089	1.97	29.3	21.0	6.78	34.122
413	2.373	34.232	2.24	32.4	40.5	5.66	34.234
513	2.564	34.311	.00	.0	.0	5.15	34.322
758	2.444	34.423	2.41	35.2	62.3	4.65	34.450
1000	2.375	34.547	2.42	35.6	76.4	4.13	34.527
1482	2.129	34.677	2.32	33.6	87.0	4.53	34.673
1973	1.792	34.713	2.30	33.2	99.9	4.31	34.714
2474	1.490	34.726	2.26	32.8	106.0	4.54	34.725
3015	1.063	34.718	2.27	32.8	119.1	4.74	34.721

NA.	LAT.	LGNG.
85	$5736.5 \quad 63 \quad 34.0$	

PRES	TEMP	SAL-C	P84	N03	SIL	$\theta X Y$	SAL-B
16	3.877	33.882	1.66	23.6	$5 \cdot 2$	7-19	33.890
100	2.447	$33 \cdot 967$	1.88	25.1	$10 \cdot 2$	$7 \cdot 30$	33.983
182	. 914	34.015	$2 \cdot 01$	$29 \cdot 2$	24•1	7-22	34.018
263	$1 \cdot 365$	$34 \cdot 141$	2•17	31•1	$34 \cdot 1$	6.50	34.136
322	-911	34.132	2•16	$31 \cdot 7$	$35 \cdot 4$	6.73	$34 \cdot 126$
730	2.350	$34 \cdot 482$	2.42	35.3	$70 \cdot 5$	$4 \cdot 24$	34.482
1001	2.253	$34 \cdot 590$	2.39	$35 \cdot 0$	$80 \cdot 4$	$4 \cdot 07$	34.596
1525	$2 \cdot 030$	$34 \cdot 697$	$2 \cdot 30$	33.1	$91 \cdot 3$	4.20	34.697
1999	1.714	$34 \cdot 724$	$2 \cdot 26$	$32 \cdot 6$	101.4	$4 \cdot 38$	34.725
2511	1.389	$34 \cdot 730$	$2 \cdot 25$	32.4	$10^{9 \cdot 1}$	4.58	34.728
3000	$1 \cdot 193$	$34 \cdot 723$	2•27	$33 \cdot 0$	118.8	$4 \cdot 70$	34.720

NE.	LAT.	LENG.
86	5726.9	6341.0

$\begin{array}{r} P R E S \\ 27 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 3.490 \end{aligned}$	$\begin{aligned} & S A L-C \\ & 33 \cdot x 20 \end{aligned}$	$\begin{aligned} & 104 \\ & 1.71 \end{aligned}$	$\begin{aligned} & \text { Ne } 3 \\ & 24 \cdot 2 \end{aligned}$	$5 I \frac{1}{6.3}$	$\begin{aligned} & 8 X Y \\ & 7 \cdot 39 \end{aligned}$	$\begin{aligned} & S A L-E \\ & 33.927 \end{aligned}$
106	1.898	33.937	1.88	$25 \cdot 5$	$10 \cdot 9$	$7 \cdot 50$	33.938
207	- 080	$34 \cdot 024$	$2 \cdot 08$	29.9	28.2	7-33	$34 \cdot 020$
402	1.878	$34 \cdot 307$	2.36	34-2	$54 \cdot 1$	5.19	$34 \cdot 314$
587	$2 \cdot 241$	$34 \cdot 454$	$2 \cdot 45$	$35 \cdot 6$	68.4	$4 \cdot 34$	$34 \cdot 455$
759	2.223	$34 \cdot 527$	$2 \cdot 43$	$35 \cdot 5$	74.9	4.15	34.523
941	2.172	$34 \cdot 602$	$2 \cdot 40$	34.7	80.8	$4 \cdot 09$	34.606
1489	1.987	$34 \cdot 709$	2•27	$32 \cdot 8$	87.9	$4 \cdot 29$	34.702
1970	1.672	$34 \cdot 729$	$2 \cdot 25$	32.4	99.9	$4 \cdot 44$	34.734
50^{8}	1.339	$34 \cdot 72^{7}$	$2 \cdot 35$	$32 \cdot 5$	112.0	4.60	34.730
2996	$1 \cdot 037$	$34 \cdot 722$	$2 \cdot 27$	$32 \cdot 7$	121.0	$4 \cdot 91$	34.718

NE．	LAT．	LENG．
87	5716.2	6337.2

PRES	TEMP	SAL．C	PB4	NQ．	SIL	OXY	SAL．B
34	3.903	33.883	1.67	23.5	3.7	7.28	33.892
114	.266	33.911	1.98	26.9	17.1	7.78	33.903
214	.272	34.028	2.06	29.6	26.8	7.21	34.031
414	1.808	34.301	2.36	34.5	53.3	5.28	34.306
619	2.231	34.455	2.45	35.5	67.9	4.39	34.457
821	2.240	34.564	2.42	35.5	77.4	4.16	34.569
1024	2.187	34.632	2.35	34.2	81.9	4.15	34.639
2028	1.612	34.723	2.27	32.8	105.3	4.42	34.723
2519	1.363	34.725	2.26	32.7	110.6	4.64	34.722
3007	1.075	34.720	2.27	32.9	118.6	4.75	34.715

NA．	LAT．	LQNG．	
88	57	6.8	6341.2

PRES	TEMP	SAL．C	P日4	N日3
18	3.811	33.901	1.70	23.9
110	1.486	34.008	2.02	27.6
211	1.504	34.071	2.09	29.7
412	1.911	34.261	.00	.0
612	2.210	34.387	2.44	35.3
812	2.314	34.517	.00	.0
1012	2.274	34.606	2.43	34.9
1513	1.958	34.699	2.35	33.7
1997	1.615	34.723	2.30	33.1
2509	1.377	34.729	2.29	32.6
3019	1.032	34.722	2.30	33.1

SIL	$\forall X Y$	SAL．E
3.7	7.29	33.912
18.3	7.34	34.015
25.8	6.87	34.071
45.9	5.56	34.319
60.5	4.68	34.387
73.5	4.13	34.522
80.9	4.05	34.0505
89.4	4.15	34.700
105.9	4.45	34.723
108.7	4.59	34.727
120.4	4.73	34.715

NQ．	LAT．	LANG．
89	5656.5	63 45．9

PRES	TEMP	SAL．C	P日4	N日3	SIL	OXY	SAL．B
26	4.265	33.972	1.65	22.9	2.9	7.10	33.977
108	3.043	34.095	1.85	26.6	14.9	7.00	34.094
208	2.529	34.098	1.96	28.3	20.5	6.76	34.093
410	2.352	34.208	2.17	32.1	36.5	5.81	.000
614	2.356	34.328	2.34	34.3	51.5	4.98	34.332
817	2.506	34.473	2.40	35.5	68.3	4.24	34.475
1015	2.342	34.567	2.44	35.4	77.8	4.06	34.564
1498	2.078	34.693	2.32	33.5	88.5	4.22	34.692
2015	1.697	34.723	2.29	33.1	103.7	4.36	34.720
2498	1.357	34.727	2.28	32.9	111.2	4.62	34.723
3040	1.125	34.722	2.29	33.0	118.6	4.72	34.719

NO. LAT.	LANG.	
90	5652.0	$64 \quad .5$

PRES	TEMP	SAL-C	He4	N03	SIL	$\theta X Y$	SALmb
30	4.537	$34 \cdot 021$	- 00	- 0	- 0	- 00	.000
109	3.526	$34 \cdot 101$	- 00	- 0	- 0	- 00	.000
209	3.120	34.099	- 00	- 0	- 0	- 00	. 000
412	2.491	34.096	- 00	- 0	- 0	- 00	. 000
614	2.858	34.288	. 00	- 0	- 0	- 00	. 000
819	2.090	$34 \cdot 312$	- 00	- 0	- 0	- 00	. 000
1019	$2 \cdot 405$	34.489	$2 \cdot 45$	25.8	70.9	$4 \cdot 25$	34.490
1506	2.143	34.672	2.35	$33 \cdot 8$	89.1	4.16	. 000
1982	1.844	34.710	-00	- 0	- 0	- 00	$34 \cdot 678$
2571	1.487	34.729	$2 \cdot 27$	$32 \cdot 8$	$104 \cdot 8$	$4 \cdot 59$	34.730
2997	1.233	$34 \cdot 724$	2•28	$32 \cdot 8$	$115 \cdot 3$	$4 \cdot 68$	34.720

NE.	LAT.	LANG.
91	5649.3	6425.5

$\begin{array}{r} \text { PRES } \\ 23 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 5.294 \end{aligned}$	$\begin{aligned} & S A L-C \\ & 34 \cdot 069 \end{aligned}$	$\begin{aligned} & \mathrm{Pe} \\ & 1.51 \end{aligned}$	Ne 3 20.9	$S I L_{2.0}$	$\begin{aligned} & \text { EXY } \\ & 7 \cdot 01 \end{aligned}$	$\begin{aligned} & S A L=B \\ & 34.072 \end{aligned}$
97	4.896	$34 \cdot 123$	$1 \cdot 60$	$22 \cdot 3$	$5 \cdot 0$	6.89	$34 \cdot 134$
201	4.115	$34 \cdot 166$	1.74	24.7	11.7	6.84	34.167
398	$3 \cdot 537$	$34 \cdot 139$	1.79	$26 \cdot 1$	$15 \cdot 0$	- 00	34.200
578	$3 \cdot 602$	$34 \cdot 252$	$2 \cdot 14$	$31 \cdot 0$	30.9	$5 \cdot 38$	$34 \cdot 257$
747	3.080	$34 \cdot 303$	$2 \cdot 28$	$33 \cdot 2$	$42 \cdot 8$	$5 \cdot 03$	34.311
1003	2.740	$34 \cdot 425$	2.41	$35 \cdot 0$	61.0	$4 \cdot 38$	34.430
1506	$2 \cdot 315$	$34 \cdot 620$	$2 \cdot 41$	$34 \cdot 7$	$82 \cdot 8$	4.05	34.528
1995	1.972	$34 \cdot 697$	$2 \cdot 35$	$33 \cdot 9$	$100 \cdot 3$	$4 \cdot 1 ?$	34.700
2456	1.645	$34 \cdot 7 ? 6$	2.28	$32 \cdot 8$	$104 \cdot 5$	$4 \cdot 47$	34.731
2990	$1 \cdot 298$	$34 \cdot 726$	2•27	32.8	$113 \cdot 9$	$4 \cdot 64$	34.715

NA.	LAT.	LENG.
92	5644.7	6437.0

PRES	TEMP	SAL-C	P64	NQ3	SIL	$\theta x y$	SAL-B
29	$5 \cdot 727$	34.091	1.45	$20 \cdot 2$	1.8	6.92	34.098
105	5.121	$34 \cdot 169$	1.45	$20 \cdot 2$	$1 \cdot 8$	6.94	34.099
205	4.663	34.27	1.65	23.6	10.3	6.74	34.208
407	4.058	$34 \cdot 198$	1.86	$26 \cdot 5$	16.8	6.32	$34 \cdot 202$
613	$3 \cdot 536$	34-255	2•15	31.3	32.2	$5 \cdot 35$	$34 \cdot 257$
813	3.075	$34 \cdot 345$	$2 \cdot 33$	33.9	$48 \cdot 5$	$4 \cdot 73$	$34 \cdot 348$
1022	$2 \cdot 749$	$34 \cdot 438$	$2 \cdot 43$	$35 \cdot 0$	63.0	4.29	$34 \cdot 442$
1526	$2 \cdot 371$	$34 \cdot 6 \cdot 4$	2.41	35.0	$83 \cdot 9$	3.99	34.607
2033	$1 \cdot 991$	$34 \cdot 686$	2•41	34-7	$100 \cdot 3$	3.97	34.688
2540	1.775	$34 \cdot 796$	$2 \cdot 27$	32.9	$10^{5} \cdot 0$	$4 \cdot 42$	34.724
3049	$1 \cdot 356$	$34 \cdot 725$	$2 \cdot 27$	$32 \cdot 8$	11? 3	4-59	$34 \cdot 725$

NQ．	LAT．	LQNG．
93	$56 \quad 35.5$	6453.6

PRES	TEMP	SAL－C	H_{24}	N83	SIL	Exy	SAL．${ }^{\text {B }}$
28	6.103	34.070	1.43	19.9	2.0	6.82	34.075
106	$5 \cdot 306$	34．145	1.67	$22 \cdot 7$	$7 \cdot 6$	6.59	$34 \cdot 154$
207	4.891	$34 \cdot 204$	－ 00	－	$9 \cdot 4$	6.65	34．211
40^{7}	4.459	$34 \cdot 204$	1.76	25．1	$12 \cdot 2$	6.63	$34 \cdot 218$
614	3．794	$34 \cdot 202$	1.98	28.6	$20 \cdot 7$	6.07	$34 \cdot 207$
807	$3 \cdot 380$	$34 \cdot 273$	2•23	$32 \cdot 4$	$35 \cdot 9$	$5 \cdot 2^{9}$	$34 \cdot 38$ ？
997	2.931	$34 \cdot 378$	－ 00	0	－ 0	4.72	34.279
1483	$2 \cdot 443$	34.582	$2 \cdot 46$	$35 \cdot 7$	81.4	4．18	34．587
1989	$2 \cdot 0^{8} 2$	34.676	$2 \cdot 41$	34．6	98.0	3．96	34.685
2480	1.887	34.714	2．31	33.5	99.2	4．32	34．719
3002	1.439	34．729	2．28	$32 \cdot 8$	108．1	4.57	34.733

NO．LAT．LANG．
$94 \quad 56 \quad 36.8 \quad 65 \quad 12.2$

PRES	TEMP	SAL．C	P日4	N日3
17	6.375	34.043	1.46	19.0
105	5.703	34.144	.00	.0
207	4.986	34.219	1.61	22.7
399	4.622	34.214	1.68	24.3
600	3.973	$34 \cdot 182$	1.85	26.6
798	3.451	$34 \cdot 236$	2.15	31.3
1008	3.120	34.330	2.35	34.1
1500	2.503	34.558	.00	.0
2001	2.163	34.672	.00	.0
2558	1.838	$34 \cdot 718$.00	.0
2810	1.695	34.724	.00	.0

NA．	LAT．	LQNG．
95	5632.4	6527.6

PRES	TEMP	SAL．C	PQ4	NӨ3
30	6.040	$34 \cdot 107$	1.50	20.5
112	5.700	34.176	.00	.0
207	5.027	$34 \cdot 225$.00	.0
398	4.606	$34 \cdot 209$	1.67	23.6
585	4.035	34.184	1.83	26.3
801	3.574	$34 \cdot 238$	2.10	30.4
995	3.074	$34 \cdot 332$	2.32	33.7
1496	2.557	34.527	2.44	35.3
1994	2.213	34.664	2.36	34.2
2494	1.909	$34 \cdot 708$	2.33	33.5
2948	1.706	34.725	2.34	33.2

SIL	日XY	SAL－．
3.5	6.88	34.134
$\cdot 0$.00	.000
.0	6.68	.000
11.2	6.46	34.216
15.3	5.53	34.191
29.5	4.83	34.224
47.0	4.06	34.340
73.8	4.09	34.531
88.7	4.19	34.672
101.4	4.42	34.713
103.9	.00	34.730

NO.
LAT.
LONG•

PRES	TEMP	SAL-C	PQ4	NO3	SIL	OXY	SAL.B
15	6.189	34.105	.00	.0	.0	.00	.000
110	5.897	34.143	.00	.0	.0	.00	.000
208	4.970	34.220	1.48	20.3	3.0	6.84	34.151
296	4.837	34.224	1.61	23.0	9.0	6.69	34.226
531	4.081	34.177	1.77	25.4	13.0	6.69	34.181
721	3.714	34.208	2.01	29.3	22.8	5.87	34.214
972	3.287	34.307	2.26	32.9	40.0	4.98	34.313
1460	2.597	34.498	2.44	75.4	67.4	4.20	34.328
1989	2.250	34.657	.00	.0	.0	5.45	34.382
2475	1.934	34.714	2.30	33.4	94.2	4.26	34.714
2963	1.672	34.726	2.28	32.9	100.3	4.45	34.730

PRES	TEMP	$S A L=C$	1204	N83
16	6.157	34.091	$1 \cdot 35$	$19 \cdot 6$
88	5.814	$34 \cdot 124$	- 00	- 0
208	4.926	$34 \cdot 209$	1.51	22.8
319	4.763	$34 \cdot 218$	1.65	$23 \cdot 4$
492	4.471	34.205	1.71	$24 \cdot 6$
744	3.797	34.201	1.96	28.4
985	3.369	$34 \cdot 292$	$2 \cdot 23$	32-4
1504	2.552	$34 \cdot 541$	$2 \cdot 41$	$35 \cdot 4$
1992	2.253	$34 \cdot 645$	$2 \cdot 43$	35-1
2486	2.018	$34 \cdot 708$	2.31	$33 \cdot 3$
3006	1.733	$34 \cdot 725$	2-2x	$73 \cdot 0$

SIL	$\theta X Y$	$S A L-B$
1.6	6.91	33.978
8.0	.00	.000
8.7	6.71	34.270
9.8	6.69	34.221
11.5	6.66	34.209
20.4	6.07	34.208
36.8	5.20	34.295
72.6	4.02	34.592
90.6	3.89	34.650
91.5	4.23	$34.764-2$
99.6	4.40	34.719

| NE. | LAT. | LENG. |
| :--- | :--- | :--- | :--- |
| 98 | 5619.5 G6 19.6 | |

$\begin{array}{r} \text { PRES } \\ 29 \end{array}$	$\begin{aligned} & \text { TEMP } \\ & 6.972 \end{aligned}$	$\begin{aligned} & S A L=C \\ & 34 \cdot 004 \end{aligned}$	$\begin{aligned} & \text { P84 } \\ & 1 \cdot 33 \end{aligned}$	$\begin{aligned} & N 63 \\ & 17.9 \end{aligned}$
109	$5 \cdot 810$	$34 \cdot 171$	1.58	$22 \cdot 0$
209	$5 \cdot 183$	$34 \cdot 213$	1.60	$22 \cdot 7$
306	4.891	34.244	$1 \cdot 63$	23.2
399	$4 \cdot 753$	$34 \cdot 256$	1.65	$23 \cdot 6$
498	4.583	$34 \cdot 259$	1.68	24.1
596	4.486	$34 \cdot 255$	$1 \cdot 7$?	$24 \cdot 6$
700	$4 \cdot 334$	$34 \cdot 250$	1.75	25.1
793	4.003	$34 \cdot 248$	1.87	27•0
990	3.421	$34 \cdot 313$	- 00	- 0
1541	$2 \cdot 437$	$34 \cdot 632$	$2 \cdot 48$	$35 \cdot 8$
15	6.989	$34 \cdot 001$	1-32	$17 \cdot 9$
461	4.671	$34 \cdot 258$	1.66	$23 \cdot 4$
760	$4 \cdot 063$	$34 \cdot 237$	1.78	$25 \cdot 5$
1703	$2 \cdot 344$	34.659	$2 \cdot 33$	33•4

SIL	$\theta X Y$	SAL-B
$1 \cdot 1$	6.98	33.964
$5 \cdot 3$	6.50	34.121
7-3	6.63	$34 \cdot 169$
$8 \cdot 8$	6.68	$34 \cdot 200$
9.7	6.67	$34 \cdot 204$
11.]	6.64	34.230
$11 \cdot 7$	6.61	34.211
$12 \cdot 6$	6.55	34.201
16. ${ }^{\text {¢ }}$	6.31	$34 \cdot 200$
- 0	- 00	- 000
$8_{1} \cdot 1$	3.87	34.578
$1 \cdot 7$	6.77	33.961
$10^{\circ} 2$	$6 \cdot 66$	34.200
$13 \cdot 8$	6.49	34.190
$73 \cdot 2$	$3 \cdot 91$	34.608

NO.	LAT.	LENG.
99	$56 \quad 15.5$	$66 \quad 36.6$

PRES	TEMp	SAL-C	PO_{4}	Ne3	SIL	Oxy	SAL
1^{4}	7.447	$33 \cdot 90^{9}$	$1 \cdot 31$	17.0	1.9	6.65	34.222
$3^{88} 2$	$4 \cdot 922$	$34^{\circ} \cdot 25$?	1.62	22.8	$8 \cdot 8$	$6 \cdot 71$	$34 \cdot 20^{9}$
534	4.765	$34 \cdot 265$	1.76	$25 \cdot 1$	$13^{\circ} 0$	6.68	$34 \cdot 218$
693	$4 \cdot 257$	$34 \cdot 247$	1.65	$23 \cdot 4$	9.9	6.56	$34 \cdot 203$
805	3.870	$34 \cdot 253$	$1 \cdot 92$	$27 \cdot 7$	19.4	$6 \cdot 04$	$34 \cdot 217$
907	3.423	$34 \cdot 323$	2.17	31.3	34.1	$5 \cdot 71$	34.248
0	. 000	- 000	$1 \cdot 34$	$17 \cdot 3$	1.6	6.67	000
0	- 000	- 000	1.50	$23 \cdot 5$	$8 \cdot 2$	6.71	33.866
398	4.889	$34 \cdot 254$	1.54	$23 \cdot 9$	$9 \cdot 3$	6.56	$34 \cdot 207$
548	4.756	34.263	1.78	$26 \cdot 3$	12.8	6.66	. 000
700	4.210	34.247	1.96	29.1	$20 \cdot 0$	6.18	34.219
730	3.795	$34 \cdot 258$	- 00	- 0	- 0	00	34.208
820	3.632	34.294	2.06	30.5	$25 \cdot 6$	$5 \cdot 32$	34.278

NE.	LAT.	LENG.
100	5613.6	$66 \quad 45.0$

PRES	TEMP	SAL-C	PO4	NO3	SIL	OXY	SAL.E
6	7.340	33.913	1.28	17.2	1.5	6.74	33.873
99	7.157	34.012	1.36	18.5	1.9	6.59	33.970
258	5.458	34.190	1.58	22.6	6.3	6.53	34.141

cohy 2	
64°	
+1	$63^{\circ} 3 \mathrm{C}$
	$-1!$

Fig. 38 Station positions within the expanded operating area:

$+58^{\circ} \mathrm{S}$
$63^{\circ} 30^{\prime} \mathrm{w}$

[^0]: *The release at 500 m was unable to transpond.

[^1]: *The distance between the buoys was determined by the working range of the radar transponders, which was about 25% less than what was anticipated. "Edgar" was placed in a region of deep interleaving after two XBT crossings of the Polar Front had been made. "Allan" was deployed after two more front crossings. It was placed on a line normal to the Polar Front but on the warm side of its subsurface expression.

[^2]: *With the WHOI/Brown CTD.

[^3]: ＊YO－YO

[^4]: *The beginning of the VCM deployment nearly coincided with the arrival of the Chilean vessel AGS YELCHO for its second leg of polar front mapping.

[^5]: *The YELCHO was contacted during its continued survey of the front to the east and requested to return and verify that the northward meander of cold water had pinched off into a separate ring.
 **An earlier CTD,PCM time series had been taken relative to a fixed geographical position.

