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Abstract 

 

The advent of the epigenetic era has sparked a new frontier in molecular research and the 

understanding of how development can be regulated beyond direct alterations of the 

genome. Thus far, the focal point of epigenetic regulation during development has been 

chromatin modifications that control differential gene expression by DNA methylation 

and histone alterations. But what of events that alter gene expression without direct 

influence on the DNA itself? This review focuses on epigenetic pathways regulating 

development from oogenesis to organogenesis and back that do not involve methylation 

of cytosine in DNA. We discuss target components of epigenetic modification such as 

organelle development, compartmentalization of maternal factors and molecular 

mediators in the oocyte and how these factors acting during oogenesis impact on later 

development. Epigenetic regulation of development, be it via cytosine methylation or not, 

has wide ranging effects on the subsequent success of a pregnancy and the intrinsic health 

of offspring. Perturbations in epigenetic regulation have been clearly associated with 

disease states in adult offspring including type II diabetes, hypertension, cancers and 

infertility. A clear understanding of all epigenetic mechanisms is paramount when 

considering the increased utilization of assisted reproductive techniques and the risks 

associated with their use. 

 

Introduction 

(The notion that the fertilized egg and its subsequent development rely upon the 

imposition of competencies during oogenesis has been emphasized. At the genetic level, 

a host of genes and their protein products have been implicated in post-fertilization 

success of mammalian embryos. In some cases, these gene products are either stored as 

mRNAs, microRNAs, or as proteins that  linger zygotically for varying amounts of time 

only to be called into action at a specific developmental transition  to sustain embryonic 

progression. Such products are often referred to as those of maternal effector genes as 

they represent female germ line entities that are critical for embryogenesis. In addition to 

the ever growing list of oocyte genes that are involved in development of oocytes, 

follicles or embryos, a number of epigenetic factors have been identified that play 
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perhaps even more central roles in establishing and maintaining pregnancies resulting in 

the birth of healthy offspring. 

 

Epigenetics has emerged as a fascinating field within developmental biology as 

evidenced when the absence of a specific gene or its protein product cannot adequately 

address frank embryonic/fetal loss or functional impairments apparent in neonates or 

adults. In 1942 Conrad Waddington first coined the term epigenetics as “the branch of 

biology which studies the casual interactions between genes and their products.” 

(Waddington, 1942) Simply stated for the purposes of this review, epigenetics involves 

molecular and cellular modifications required during early development that are truly 

independent of detectable changes in a gene’s structure or function, a phenotypic change 

in the absence of a genotypic change. Thus, the networks of cell behaviors elicited during 

normal development, including metabolic, signaling, and protein interactive events must 

reflect patterns of cell organization laid down in the egg during oogenesis. There can be 

little doubt that the epigenetic factors elaborated during oogenesis operate and carry out 

their functions in collaboration with activities and entities that result from activation of 

the zygotic genome. But for the purposes of this review, we will focus on true oogenetic 

determinants whose functions have been primarily gleaned from studies on mice. For this 

reason, only generally accepted parallels in domesticated species and in humans will be 

drawn upon. Additionally, our emphasis will be on the periods of greatest sensitivity 

during oogenesis where impairment of epigenetics will have dire consequences on either 

pregnancy success or offspring health status. Thus, the notion that perturbation of events 

at critical junctures during oogenesis impact in lethal or non-lethal ways on the embryo, 

fetus, or neonate will be offered to provide new direction for understanding the causes of 

maternal aging on fecundity as well as possible mechanisms whereby the epigenetic 

competence of an embryo can be traced back to intraovarian events at various stages of 

the life cycle. This latter topic is especially relevant to mounting concerns in the arena of 

assisted reproductive technology (ART).  

 

The epigenetic egg – thinking beyond oogenesis 
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While the emphasis of this review is focused toward understanding the epigenetic 

mechanisms that may be occurring during oogenesis and ultimately impacting on embryo 

development and post-natal health, a concise review of these mechanisms would not be 

complete without consideration to the research focused on epigenetic mechanisms 

affecting the zygote during the post-fertilization period. 

 

The earliest of studies defining post-fertilization effects on post-natal development 

focused on a cohort of individuals who underwent gestation during the Dutch famine 

during World War II. Extensive medical records during this time allowed researchers 

some fifty years later to identify individuals whose mothers suffered caloric restriction 

during one of the three trimesters of pregnancy (Elias et al. 2004; Elias et al. 2005; Elias 

et al. 2005; Roseboom et al. 2001). Many of these retrospective studies have been able to 

demonstrate a link between these periods of caloric restriction and specific 

predispositions to disease states during adulthood, particularly, but not restricted to, those 

of a metabolic nature including type II diabetes, hypertension and obesity (Roseboom et 

al. 2001). The majority of these studies did not specifically identify epigenetic 

modifications as a cause of the phenotypes witnessed in many of these individuals, but it 

is difficult to perceive another mechanism that could be responsible. Predominately these 

effects have been associated with a programming of the fetuses own metabolic pathways 

in response to the environment to which it’s mother is being exposed, to ready the fetus 

for the ensuing environment in which it must survive (Hales and Barker 2001). Since 

these earlier studies, many groups have undertaken research strategies to identify 

particular pathways in which this programming may occur in a post-fertilization setting 

(Table 1). Many groups have persisted with using various models of caloric restriction in 

animal models, altering the nutritional value of the maternal diet (high caloric, low 

protein/isocaloric), and of greater interest, the time and duration in which these actions 

occur. It has been demonstrated that a isocaloric/low protein diet during the peri-

implantation or peri-ovulatory period can drive the development of obesity and early 

onset hypertension in subsequent offspring, the latter (peri-ovulatory) implicating that 

even the final stages of meiotic maturation may be affected by as little as an 8% reduction 
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maternal protein consumption for only three days prior to ovulation (Kwong et al. 2000; 

Watkins et al. 2007).  

 

Since the 1960’s dietary folate intake during and prior to pregnancy has been associated 

with establishing and maintaining a healthy pregnancy (Lowenstein et al. 1966). More 

recently Van Engeland et al. have demonstrated that enzymes involved in methylation 

and demethylation of the genome during epigenetic imprinting are regulated by folate 

intake and availability, suggesting that maternal diet may directly influence epigenetic 

programming of the conceptus during development (van Engeland et al. 2003). In 

addition, it has been shown that in mice methyl dietary supplements can alter methylation 

of specific imprinted genes (Cooney et al. 2002). Although these dietary and nutritional 

restriction models are invaluable for understanding the development of adult disease, they 

are yet to lead to elucidation of the epigenetic pathways leading to these and other 

etiologies.  

 

The advent of the epigenetic era in conjunction with available molecular and microscopy 

technologies has allowed researchers to begin to determine some of the biochemical and 

cellular pathways leading to anomalous epigenetic modifications during development. It 

is believed that any manipulation or adverse effect to the oocyte or zygote will drive 

compensatory cellular responses, ultimately leading to alterations in gene expression 

during early development. Alterations in gene expression may arise from either changes 

in direct epigenetic programming of the egg, or alternatively through changes in 

transcriptional activity. These observations have clearly been demonstrated using in vitro 

produced embryos where culture conditions lead to altered patterns of  gene expression 

(Niemann and Wrenzycki 2000). Differential methylation of the genome has also been 

demonstrated as a result of in vitro embryo culture, showing a clear susceptibility of the 

conceptus to epigenetic reprogramming at this time (Khosla et al. 2001; Young et al. 

2001). Embryo promoting factors, including growth factors or buffering agents have also 

been used in in vitro culture to aid in embryonic development and survival. Rinaudo and 

Schultz, using a micro array approach, demonstrated that even alteration in culture media 

composition can change global gene expression patterns in the embryo (Rinaudo and 
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Schultz 2004; Rinaudo et al. 2006). This work has aided in the development of culture 

media supplemented with exogenous embryo promoting factors and buffering agents to 

support embryonic development under conditions that better reflect the in vivo 

developmental environment. This reinforces the notion of a more Lamarckian 

evolutionary principle since environmental conditions lead to marked changes in gene 

expression during mammalian development. 

 

Any stressor affecting the embryo during development may influence gene expression 

and therefore alter the developmental competence of the embryo. Changes in intracellular 

REDOX state have been shown to alter expression of oxygen sensitive genes (Harvey et 

al. 2007), while environmental toxin exposure has been shown to alter gene expression 

and embryonic developmental competence (Susiarjo et al. 2007). Ammonia accumulation 

within in vitro culture media can again lead to perturbed embryonic developmental 

competence via altered gene expression (Lane and Gardner 2003). Changes in organelle 

number and distribution have been associated with stressors during development. 

Mitochondrial DNA is derived solely from the maternal genome and is replicated for 

only a very short period following fertilization, suggesting a very short period when 

external factors can influence mitochondrial number. Mitochondrial number and function 

have been shown to be altered in embryos following either altered maternal protein 

consumption or in vitro embryo culture and are maintained beyond post-natal 

development (McConnell and Petrie 2004; Taylor et al. 2005). Perturbations to 

embryonic development due to in vitro culture have demonstrated imbalances in the 

allocation of blastomeres between inner cell mass and trophectoderm cell lineages (Lee et 

al. 2004). In this light, embryo culture has been shown to alter placental morphology and 

function (Sjoblom et al. 2005). In addition, placental insufficiencies adversely affect fetal 

development, including the on-set of adult disease (Anderson et al. 2006; Hayashi and 

Dorko 1988). Early alterations in gene expression, particularly of imprinted genes may be 

a key driving force in perturbing placental development and function, resulting in altered 

fetal development, and may impact blastomere fate allocation during earlier development. 

A number of imprinted genes have now been identified, many of which have direct roles 

in placental development (Coan et al. 2005). 
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Children arising from in vitro embryo culture have been shown to have altered birth 

weights, which have been the most historical epidemiological link in the onset of adult 

metabolic diseases (reviewed in Barker (Barker 1998)). Approximately 2-3% of the 

national birth rate of many western countries is comprised of babies born from assisted 

reproductive techniques (ART), resulting in babies of an increased incidence of pre-term 

birth, lower birth weight for gestational age and some suggestion of increased birth 

defects. Imprinting disorders such as Angelman and Beckwith-Wiedemann syndromes 

have also been closely associated with babies derived from ART, suggesting that 

improper imprinting which occurs to the embryo as  result of in vitro culture may be the 

penultimate cause for the disposition to these syndromes (Cox et al. 2002; DeBaun et al. 

2003; Maher et al. 2003; Orstavik et al. 2003).  

 

The links between the pre- and post-fertilization events which impact the epigenetic 

programming responsible for altered development post-natally have yet to be clearly 

defined. However, the accumulation of evidence from epidemiological, in vitro and ex 

vivo culture in addition to many observational studies defining actions resulting in 

perturbations at any stage of development are now beginning to demonstrate a process of 

epigenetic re-programming throughout development from oogenesis, organogenesis and 

back. The recent demonstration of the trans-generational effects of environmental 

stressors (Skinner 2007) is evidence of the continuum of susceptibility from oogenesis 

throughout development; this is of particular relevance when considering the foundation 

for the next generation and its establishment in the oocyte during gestation. 

 

Epigenetic principles governing oocyte development. 

 

There are many generally acknowledged features of the mammalian oocyte that link basic 

architectural aspects of egg design to the more immediate consequences apparent in the 

pre-implantation embryo. Before reviewing these, it is important to point out that the 

production of epigenetically competent oocytes is a by-product of the germ cell’s life 

history within the ovary. The coordination of folliculogenesis with oogenesis clearly 
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requires a balance of cellular interactions between the ovarian somatic components and 

the oocyte and the feedback interactions that are mediated by hormones and growth 

factors within the hypothalamic-pituitary-gonadal axis (Combelles et al. 2004). How 

circadian rhythms participate in this complex multicellular dialogue is only now being 

uncovered (Karman and Tischkau 2006) and is beyond the purview of this paper. Many 

elements of these feedback mechanisms are resolved, but suffice it to say that 

disturbances in somatic physiology are likely to impact the epigenetic quality of oocytes 

depending on the stages of oogenesis that are at risk during fetal, prepubertal, or adult 

phases of the life cycle. 

 

Amongst the hallmarks of oocytes that successfully complete oogenesis are those that 

relate to specific post-fertilization functions in the egg (Table 2). Thus, the elaboration of 

the zona pellucida illustrates one of the earliest structures that will ultimately present a 

substrate for interaction with sperm and cumulus cells. Similarly, the hypertrophic 

growth of the mammalian oocyte requires reduplication of most intracellular organelles 

such as mitochondria, Golgi complex, lysosomes and endoplasmic reticulum not only for 

sustaining adequate levels of protein synthesis but the sequestration of calcium within 

vesicles that are invoked at fertilization. That the germinal vesicle is modified at the level 

of chromatin patterning has been studied in many mammals, and generally these 

alterations in the location and extent of heterochromatization are linked to timely changes 

in transcription that assure large scale repression prior to fertilization. Interestingly, it is 

at the later stages of oocyte growth that heterochromatization is initiated, a time when 

both oocyte imprints are established (Obata and Kono 2002) and hormone regulated 

oocyte-granulosa interactions are diminished (Combelles et al. 2004). Finally, while 

often overlooked, a large degree of cortical differentiation is required in the oocyte for its 

successful transition into embryogenesis. Multiple Golgi complexes mediate the synthesis 

and packaging of the cortical granule contents and the cortical granules themselves must 

adopt a subplasmalemmal position in spatial compliance with the calcium sequestering 

vesicles alluded to earlier. When combined with the deployment of microvilli, and the 

dynamic web of actin filaments that will mediate cytokinesis during both polar body 

extrusion as well as blastomere cleavage, this complex network is likely to be central to 
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protein localization for prolonging the lifespan of maternal gene products well into 

embryogenesis (see example of dMNT1 or below). Thus careful positioning of both 

organellar components, including the germinal vesicle, and components of the 

cytoskeleton represents the macromolecular outcome of oogenesis. That additional 

cytoskeletal and extracellular signals modulate this cortical differentiation observed in 

mammalian oocytes has also been proposed (Albertini and Carabatsos 1998).  

 

On a more subtle level, but equally important in terms of epigenetic regulation, molecular 

mediators have been identified in many systems that function to render key catabolic, 

metabolic, or signaling pathways functional or not. A few examples relevant to oocyte 

epigenetics are listed in Table 3. As will be considered below, many factors that regulate 

key transition points in the cell cycle assume non-random localization in order to 

generate rapid and complete effects, assuring synchronization of kinase activation with 

timely ubiquitinization at, respectively, M-phase cell cycle entry or exit. Regulating 

cytoplasmic access is accomplished by nucleolar sequestration in yeast (Carmo-Fonseca 

et al. 2000). Centrosomes, in contrast, function to limit the diffusional capacity of the 

many components involved with cell cycle progression by complexing these factors to 

motor molecules that target and maintain their presence at microtubule organizing centers 

(MTOCs). Finally, the spindle itself serves to harbor and stabilize many factors that are 

involved in the timely degradation of cyclins that elicits the metaphase –anaphase 

transition during M phase. Collectively then, the emerging concept that through specific 

interactions with the cytoskeleton and other organelles, mRNAs and proteins can be 

localized, stabilized and/or rendered available for activating post-translational 

modification or gaining access to the nuclear compartment deserves consideration in the 

context of oocyte epigenetics. In fact, provocative findings suggest this to be an 

important element of egg design with immediate relevance to embryogenesis. 

 

One of the first examples of the importance of protein localization during mouse 

development came from the studies of Ratnam et al., (Ratnam et al. 2002). They 

characterized an oocyte-specific splicing variant of the dimethyltransferase 1 gene, 

known as Dmnt1o, and showed that knocking out this gene resulted in arrest of 
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development at the morula stage; a time that would coincide with the remethylation of 

male and female genomes. One possibility was that the mRNA for this protein was stored 

for regulated translation at this stage. Instead it was found that the mRNA was translated 

during the growth phase of oogenesis and the protein product was localized in the oocyte 

cortex where it remained until the 8 cell stage; at this point Dmnt1o moved into the 

nucleus where it affected its chromatin modifying activity. Interestingly, another variant 

of Dmnt1 was also translated during oogenesis and served to methylate maternal imprints 

but was degraded once this was accomplished (see Table 3). These elegant studies 

illustrate several important epigenetic principles: that protein localization ensures 

functional activity and protection from degradation and prevents premature nuclear 

localization. This mechanism for regulating nuclear access is also likely to underscore the 

regulation of the meiotic cell cycle in oocytes because , as mentioned earlier, catalytic 

events that must be coordinated temporally are often spatially segregated in order to limit 

spurious activation during meiotic resumption (Albertini and Carabatsos 1998; Mitra and 

Schultz 1996).          

 

There is a growing list of epigenetic regulators that impact the completion of meiosis, the 

transition into the embryonic mitotic cell cycle, and subsequent events related to 

morphogenesis and chromatin remodeling (Table 3). While this list is not comprehensive, 

it does serve to illustrate how the chronological readout of oocyte specific gene products 

dictates key transition points in early embryogenesis and the importance of mRNA or 

protein processing well after transcription has occurred. For example, cMOS has long 

been known to effect the block in the meiotic cell cycle at metaphase 2 in mammalian 

oocytes (Colledge et al. 1994). In mice, the relevant knockout phenotypes have 

documented and in the case of cMOS, its elimination results in the unregulated transition 

from meiosis to mitosis that causes parthenogenetic activation of the egg. Nucleoplasmin 

2 (NPM2) causes arrest at the 1-cell stage due to impairment of pronuclear apposition 

(Burns et al. 2003). Expectedly, some maternal effect genes disrupt compaction, the 

process during which inner cell mass and trophectoderm allocation takes place as outer 

cells acquire the properties of a polarized epithelium (Selwood and Johnson 2006). These 

include E-cadherin, a protein essential for altering blastomere adhesive properties that 
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result from the insertion of cytoplasmic protein into the blastomere plasma membrane 

(Selwood and Johnson 2006) and gamma tubulin. Gamma-tubulin is a key regulator of 

microtubule assembly due to its localization to the centrosome. GT1 is an ubiquitous 

variant that if deleted results in the arrest of embryos at the time of compaction (Yuba-

Kubo et al. 2005). While these embryos do proceed to compact, they are unable to 

progress through the cell cycle due to the role GT1 plays in the centrosome to harbor and 

regulate the activation of cdk1/cyclin complexes. The fact that zygotic gene activation 

coincides with the massive depletion of maternal mRNAs serves to emphasize what may 

be a general rule for epigenetic control of early development: oocyte gene products as 

proteins are better served to effect their regulatory activities than their respective mRNAs 

due to mechanisms that allow for their selective localization and protection from 

degradation. It will be interesting to determine if such mechanisms are operative in eggs 

of other mammalian species where current emphasis has been placed on mRNA displays 

rather than protein products. In this light, recent work on mouse oocytes has documented 

a role for tyrosine kinases in the regulation of the first embryonic cell cycle and here too, 

components of the signaling machinery for pathway exhibit distinct patterns of 

localization to both the spindle and the cell cortex (McGinnis et al. 2007). 

 

In summary, this section has illustrated the importance of spatial localization as 

documented in the experimentally tractable murine model system. The success of a 

zygote is contingent on the zygote’s ability to sequester and stabilize maternal effector 

genes as mRNAs, microRNAs or proteins, as well as, the zygote’s ability to recruit these 

effectors for embryonic progression at proper timepoints. Thus establishing and 

maintaining positional information is likely to be regulated by cytoskeletal elements 

within the zygote. Future studies will be needed to assess the relative roles of nuclear 

cytoplasmic transport, cortical binding, and cytoskeletal interactions that may dictate the 

properties of stability and spatial patterning relevant to the early stages of development in 

mammals.  

 

Future directions 

 

 11



The concept of an epigenetically competent oocyte has been introduced to explain how 

the design of the mammalian oocyte impacts directly on the post-fertilization 

development of the conceptus independent of zygotic gene regulation. How these 

regulatory principles are modified by environmental factors is not understood but two 

areas in reproductive biology seem to be likely targets for study in this vein. The 

widespread use of ARTs in animals and humans often draws attention to the epigenetic 

burdens that are placed on gametes and embryos that may affect the viability and health 

of offspring produced with these technologies. Chromatin remodeling, as noted earlier, is 

often cited as a cause for developmental failures, and in most cases defects in DNA 

methylation have been identified as a contributing factor. It remains, however, to be 

discriminately shown what mechanistic defects underlie inappropriate imprinting. 

Perhaps, with new technologies that would allow for an assessment of the dynamic nature 

of chromatin remodeling factors, new insights of relevance to improvements in ARTs 

will be obtained. 

 

A second area of active investigation is the problem of reproductive aging in the practice 

of human ARTs. Current models to explain defects in oocytes that underlie age-related 

pregnancy loss and congenital defects focus on the status of oocyte chromatin during 

oogenesis and the impact that chiasma or telomeres may  have on the processes of 

chromosome segregation prior to and after fertilization (Susiarjo et al. 2007). It seems 

equally relevant to consider that gradual changes in lifestyle, environmental exposure, 

and hormonal imbalance target aspects of the epigenetic regulation in the oocyte that bear 

directly on compromised developmental competence. These prospects are already being 

realized and are indicating that many steps during oogenesis may be at risk to 

modifications in epigenetic programming that will have long term consequences to 

offspring health. Realizing the imperative to expand research in this area will advance the 

quality of life in humans and animals for years to come. 
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Table 1. Post fertilization effectors of epigenetic regulation.   

Influencing factor Location Time Action Reference 
Maternal nutrition Ovary, 

oviduct, 
uterus 

Peri-ovulatory 
→ third trimester

Indirect - fetal 
programming 
of metabolic 
framework.  
Direct - DNA 
methylation 

(van Engeland et 
al. 2003) 
(Roseboom et al. 
2001) 
(Elias et al. 
2005) 

Organelle 
topography 

Oviduct Pre-implantation Mitochondrial 
number and 
distribution 

(McConnell and 
Petrie 2004) 
(Taylor et al. 
2005) 

Cellular 
allocation  

Fertilization Fertilization → 
blastocyst 

Changes in 
ICM: 
trophectoderm 
ratio 

(Kwong et al. 
2000) 

Embryonic 
promoting factors 

Oviduct, 
uterus 

Pre-implantation Growth factors 
and buffering 
agents to 
promote and 
protect 
embryonic 
development 

(Sjoblom et al. 
1999) 
(Schultz and 
Heyner 1993)  

Embryonic 
disrupting factors 

Oviduct, 
uterus 

Pre-implantation Environmental 
toxins, 
oxidative 
stress, 
ammonium 

(Susiarjo et al. 
2007) 
(Lane and 
Gardner 2003) 

Placental 
development 

 Implantation → 
term 

Fetal stress 
and 
undernutrition 

(Kind et al. 
1995) 
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Table 2. Hallmarks of oocyte epigenetic competence. 
Target component Developmental modification 
Organellar Composition/Number 

Positioning 
Nuclear Architecture 
Cortical Differentiation 

Cortical granules 
Microvilli 
Actin 
MTOCs 

Zona pellucida Sperm and cumulus interaction 
Molecular mediators (mRNA and protein) Cell cycle factors 

Spindle assembly 
Polar body extrusion 
Localization machinery 
Protein synthesis and degradation 
Calcium sequestering 
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 Table 3. Examples of molecular epigenetic regulators 
Gene Function Impact of loss KO phenotype 
cMos (r) Arrest meiosis (MII) Dysregulated first 

cell cycle 
Pathogenesis 
Large PB 

E-Cadherin (p) Compaction Impaired lineage 
allocation 

Arrested morula 

NMP2 (p) Pronuclear 
maturation 

Cell cycle delay Arrested one cell 

dMNT1o (p) Chromatin 
methylation 

Modified 
methylation 

Arrested morula 

Gamma tubulin (p) Embryonic mitosis Arrested cell cycle Arrested morula 
Specific maternal effect genes are designated based on storage as either mRNA (r) or 
protein (p). Polar body (PB), meiosis stage 2 (MII). 
 
 
 
 
 
 
 
 


