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Abstract 

 

This study demonstrates use of compound-specific radiocarbon analysis (CSRA) for dating 

Holocene lacustrine sediments from carbonate-hosted Ordy Pond, O‘ahu, Hawai‘i. Long-chain 

odd-numbered normal alkanes (n-alkanes), biomarkers characteristic of terrestrial higher plants, 

were ubiquitous in Ordy Pond sediments. The 13C of individual n-alkanes ranged from -29.9 to 

-25.5‰, within the expected range for n-alkanes synthesized by land plants using the C3 carbon 

fixation pathway. The 14C ages of n-alkanes determined by CSRA showed remarkably good 

agreement with 14C dates of rare plant macrofossils obtained from nearby sedimentary horizons. 

In general, CSRA of n-alkanes successfully refined the age-control of the sediments. The sum of 

n-alkanes in each sample produced 70 to 170 µg of carbon (C), however, greater age errors were 

confirmed for samples containing less than 80 µg of C. The 14C age of n-alkanes from one 

particular sedimentary horizon was 4,250 yr older than the value expected from the refined 

age-control, resulting in an apparent and arguable age discrepancy. Several lines of evidence 

suggest that this particular sample was contaminated by introduction of 14C-free C during 

preparative capillary gas chromatography (PCGC). This study simultaneously highlighted the 

promising potential of CSRA for paleo-applications and the risks of contamination associated 

with micro-scale 14C measurement of individual organic compounds.  
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Introduction 

 

Establishment of reliable sediment chronology is one of the most fundamental requirements for 

paleolimnological investigations on lacustrine sedimentary records; yet, sometimes it can be the 

most difficult task to accomplish. Until the late 1980’s, the majority of radiocarbon dating was 

conducted on bulk sediments in order to meet relatively large sample size requirements (> 100g 

of C) of the conventional radiometric β-counting methods (Bradley 1999; Walker et al. 2001). 

But it has been well characterized that, in many limnic systems, bulk sediments often record the 

dilution of 14C activities in the water column due to leaching of fossil calcareous bedrock and 

incorporation of soils, clays, mineral particles and relict terrestrial organic matter (OM) from 

watersheds (Björck et al. 1998; Vance and Telka, 1998; Turney et al. 2000; Lowe and Walker, 

2000; Walker et al. 2001). These local reservoir effects typically lead to anomalously old 14C 

ages of bulk sediments. Development of accelerator mass spectrometry (AMS) has greatly 

reduced the sample size requirements for accurate 14C dating. The use of AMS techniques on 

well-preserved macrofossils of terrestrial plants such as wood fragments and seeds is now 

recognized as the preferable strategy to construct reliable sediment chronology (Törnqvist et al. 

1992; Turney et al. 2000; Lowe and Walker 2000; Walker et al. 2001). Because terrestrial plants 

directly utilize atmospheric CO2, this method can circumvent the confusion caused by the 

intractable nature of local reservoir effects encountered in radiocarbon dating of lacustrine bulk 

sediment.  
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Modern high-precision AMS systems extend the possibility of 14C dating even further. 

Eglinton et al. (1996) demonstrated that 14C dating at the molecular-level, so-called 

compound-specific radiocarbon analysis (CSRA), using AMS in conjunction with automated 

preparative capillary gas chromatography (PCGC) is a reliable age-dating technique. PCGC 

allows isolation of ample quantities of target compounds at sufficient purity for AMS 14C 

measurements. Ideally, target compounds should produce approximately 100 µg of C for 

accurate CSRA (Eglinton et al. 1996), but CSRA is theoretically possible for samples as small as 

15-20 µg of C (von Reden et al. 1998; Pearson et al. 1998). Since the first application of CSRA 

on environmental samples by Eglinton et al. (1997), the method has been applied mainly to 

elucidate the sources and residence time of OM in sedimentary reservoirs (e.g. Pearson et al. 

2000; Pearson and Eglinton 2000; Pearson et al. 2001; Petsch et al. 2001; Mollenhauer et al. 

2005). More recent studies (e.g. Ohkouchi et al. 2003; Smittenberg et al. 2004; Uchida et al. 

2005), however, have attempted to directly utilize CSRA for establishment of marine sediment 

chronology. These studies have demonstrated the promising capability of CSRA with properly 

chosen target biomarkers as an alternative dating option for sediments. The greatest advantage 

of the CSRA enabled by the dual use of high-precision AMS and the PCGC is its extremely 

small sample size requirements. Accurate micro-scale 14C measurements on source-selective 

biomarkers can overcome the issues associated with dating of bulk sediments as well as the lack 

of suitable macrofossils for more conventional AMS approaches that are commonly practiced by 

many paleolimnologists.  
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In this study, we use CSRA of plant-derived long-chain normal alkanes (n-alkanes) to 

refine the age-control of lacustrine sediments from a tropical coastal pond on a Pleistocene 

carbonate platform in Hawai‘i. This is the first direct application of this novel method to 

develop sediment chronology in a lacustrine environment. Sediment cores collected from Ordy 

Pond on the island of O‘ahu (Fig. 1), Hawai‘i, appear to have recorded continuous paleoclimatic 

and paleoenvironmental histories of the area throughout the Holocene. This is the only known 

high-resolution, laminated, aquatic sedimentary record from the Central Pacific, and is thus 

valuable in the context of tropical/subtropical paleoclimatology. Interpretation of this 

Quaternary proxy, however, has been limited by lack of a rigorous sediment chronology due to 

the presence of 14C-depleted C in the system and the rareness of macroscopic substrates for 

AMS 14C dating. 

Use of land-derived biomarkers for chronological purposes is known to be problematic 

for marine sediments. Age-offsets between land-derived biomarkers and marine counterparts can 

be significant (e.g. Pearson and Eglinton 2000; Pearson et al. 2001; Smittenberg et al. 2004; 

Uchida et al. 2005) due to the long residence time of terrestrial biomarkers in other reservoirs on 

land and during physical transport before their incorporation into marine sediments. But the 

impact of aged biomarkers may be less significant in lacustrine systems. Due to tighter coupling 

between terrestrial and lacustrine environments, transfer of materials between these systems 

should be more rapid. Constant turnover of nearby vegetative communities should result in 

dominance of fresh materials in the overall inventory of terrestrial OM inputs. Additionally, the 
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use of land-plant biomarkers is particularly beneficial for construction of age-control for 

lacustrine sediments. Because n-alkanes are photosynthetically-fixed atmospheric CO2 

exclusively by terrestrial higher plants, these biomarkers do not require the consideration of a 

site-specific lake reservoir-effect.  

To improve age-control of Ordy Pond sediments, CSRA was conducted on 

plant-derived n-alkanes. In order to assess the reliability of CSRA, one sample was prepared 

from a depth close to a sedimentary horizon previously dated by AMS using plant seeds. This 

study is designed to test the applicability of CSRA using terrestrial biomarkers and to enhance 

the resolution of the age-control for lacustrine sediments where popularly used 14C dating 

methods are conceptually impractical. 

 

Study Site, Materials and Background 

 

Geological and environmental settings 

 

Ordy Pond occupies a roughly 22.5 m-deep karstic sinkhole in a Pleistocene limestone reef 

complex on the ‘Ewa Plain of O‘ahu (Fig. 1). This fossil-reef platform was established during 

the interglacial Waimanalo highstand, roughly 135 to 120 kya (Ku et al. 1974; Sherman et al. 

1993; Szabo et al. 1994). The pond was formed approximately 10 kya as groundwater inundated 

the sinkhole during the most recent post-glacial sea-level rise. The circular rim of the pond is 
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densely vegetated by American mangrove (Rhizophora mangle) within a mixed shrub of kiawe 

trees (Prosopis pallida) and sourbush (Pluchea symphytifolia) (Athens et al. 1999). 

Hydrological studies by Ogden (1999) indicate that the pond is largely isolated from the 

surrounding aquifer and there is neither surface inflow nor outflow. The system is fed only by 

very weak intrusion of groundwater and seasonal local rainfall events concentrated during 

winters. Thus, the pond can be considered as a hydrologically closed system. Today, the pond 

has a 5 m brackish water column that is eutrophic, highly productive, and supersaturated with 

respect to calcite and aragonite (Garrison 2002). The water column below ~1 m remains anoxic 

all year due to extensive primary production in the surface euphotic zone and remineralization 

of OM at depth.  

 

Description of the sediment core  

 

Sediments from Ordy Pond record the environmental history of the pond since its formation in 

the sinkhole. Athens et al. (1999; 2002) and Tribble et al. (1998) recovered multiple cores with a 

cumulative depth extending to 17.5 m. These individual cores were correlated stratigraphically 

based on the high-resolution laminations. Three distinct stratigraphic units were found in the 

core: a basal non-aquatic unit, and the middle and top aquatic units (see Fig. 2-c). The basal unit 

contains fossils of terrestrial snails and pebbles of reef rock in a carbonate-mud matrix. A thin 

layer of peat-type sediment that separates the basal non-aquatic unit from the overlying aquatic 
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units represents the terrestrial-aquatic transition of the sinkhole due to the initial intrusion of 

groundwater as sea-level rose. The middle aquatic unit possesses fine-scale (sub-mm to cm 

scale) laminations with alternating layers of carbonate and OM with variable amounts of 

diatomaceous material. The uppermost sedimentary unit, representing the most recent 120 years 

of depositional history, contains 5 m of organic-rich, subtly-banded sapropelic sediment. 

Although there is perhaps a hiatus at the transition from the bottom non-aquatic unit to the 

overlying aquatic units, there is no sedimentological evidence of any hiatus or unconformities in 

the middle and top limnic sediments. This suggests that the aquatic sediments have been 

continuously deposited throughout the Holocene epoch.   

 

Previous sediment chronology 

 

From the investigation of Athens et al. (1999; 2002), four reliable ages are available for the 

upper 8 m of Ordy Pond sediments (Fig. 2-a). The shallowest horizon (horizon A) was dated by 

the first appearance of pollen from historically introduced species to Hawai‘i. Ages of the 

remaining horizons (horizons B, C and D) were based on AMS 14C dating using rare plant 

macrofossils (wood fragments and seeds). The 14C age of the base of the aquatic sediments, 

horizon E, was determined by conventional radiometric 14C techniques using shells of terrestrial 

snails by Tribble et al. (1999).  

The chronology of Ordy Pond aquatic sediments based on these dates and linear 
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interpolation clearly indicates that the sediment accumulation rate in this pond has been variable 

(Fig. 2-a). The rate generally increased from 0.05 to 4.33 cm/yr over the course of pond history. 

This implies that simple point-to-point interpolation may over/underestimate the true sediment 

accumulation rate. Particularly problematic is the interpolation between horizon E and horizon 

D, where not a single reliable date is available for more than 5 m that are equivalent to more 

than 9,800 years of sedimentation history. In addition, validity of the age of horizon E is rather 

questionable due to the fact that snails from limestone areas often provide anomalous 14C ages 

(Goodfriend and Stipp 1983; Dye 1994; Goodfriend et al. 1999); this issue will be further 

addressed below.  

    The scarcity of 14C dates in Ordy Pond sediments is due to the lack of macroscopic datable 

materials. Attempts by Athens et al. (1999; 2002) to date bulk sediment, which is comprised 

mostly of algal materials, documented apparent stratigraphic reversals (Fig 2-b). It is most likely 

that the pond DIC incorporates 14C-depleted C liberated from the surrounding Pleistocene 

limestone. Consequently, any autochthnous material directly produced from the pond water, 

such as OM and carbonates, must be avoided for 14C dating. Thus terrestrial plants are the only 

option for accurate 14C dating. Unfortunately, macroscopic plant material such as those dated by 

Athens et al. (1999; 2002) are rarely found in the sediment column due to the 

hydrologically-closed nature of the pond system. 

 

Methods 
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Lipid extraction and separation 

 

Methods for extraction and separation of n-alkanes from bulk sediment samples were modified 

from Kenig et al. (2000) and Hoering and Freeman (1984). Sediment samples were taken from 

the core of Tribble et al. (1998). Oven-dried (60°C) and homogenized sediment samples were 

soxhlet-extracted with dichloromethane. Samples used for extraction ranged from 10 to 17 g, 

depending on the n-alkane contents. Elemental sulfur was removed from the extracts using an 

acid-activated copper granular column (20-30 mesh size). The hydrocarbon fraction in the 

extracts was separated by silica-gel (12 g, 70-230 mesh size, deactivated with 2 wt.% of H2O) 

column chromatography with 40 mL of petroleum ether. Silicalite molecular sieve was used to 

further purify n-alkanes. A small column of powdered silicalite was combusted at 325°C. The 

hydrocarbon fraction was slowly percolated through the column, and the column was flushed 

with 12 mL of clean pentane to collect a non-adduct fraction consisting of branched/cyclic 

hydrocarbons. Silicalite was digested with 3 mL of 49% hydrofluoric acid, which was extracted 

with pentane to recover adducted n-alkanes. Finally, as a final purification step, the n-alkane 

fraction was eluted through a pre-combusted silica-gel column with pentane. 

Extractions were repeated using new sediment until sufficient amounts of the 

compounds were collected. Samples from separate extracts were combined once their terrestrial 

origin was confirmed by compound-specific isotopic analysis (CSIA). Solvents used during the 
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sample preparations were not distilled; however, best available grade (HPLC quality or higher) 

was selected.  

 

GC and irm-GC/MS analysis  

 

Gas chromatography (GC) and isotope-ratio-monitoring gas chromatography/mass spectrometry 

(irm-GC/MS) analyses were conducted in the Stable Isotope Biogeochemistry Laboratories at 

the University of Hawai‘i. Samples were dissolved in cyclohexane for both GC and irm-GC/MS 

analyses.  

Identification and quantification of n-alkanes were conducted using a Varian 3400 GC 

equipped with an SPI on-column injector and flame ionization detector (FID). An HP-Ultra 1 

column (50 m length, 0.32 mm i.d., 0.17 µm film thickness) was used in the GC with helium as 

a carrier gas. Samples were injected at 50 °C and temperature was programmed to 320 °C at a 

rate of 4 °C/min and held for 20 min thereafter. Amounts of individual n-alkanes were quantified 

by comparing the integrated peak area of each compound to that of a co-injected internal 

standard (deuterated n-C36 hydrocarbon) of known concentration.  

In order to confirm the terrestrial origin of n-alkanes, CSIA was conducted using 

irm-GC/MS (Finnigan MAT252 connected to Finnigan GC/C-III interface). The temperature 

program of the GC (ThermoFinnigan Trace) was same as described above. The GC was 

equipped with a J&W DB-1 capillary column (60 m length, 0.32 mm i.d., 0.25 µm film 
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thickness). C isotopic compositions of individual n-alkanes (13CN-Alks) were standardized to the 

Vienna PDB standard (VPDB) and reported in the δ-notation. An internal standard containing a 

series of deuterated n-alkanes (n-C24, n-C36 and n-C40) was co-injected with each sample in 

order to identify the series of compounds and to assess the accuracy of the isotopic analysis 

(better than ±0.4‰).  

 

PCGC and CSRA by AMS 

 

Prepared n-alkane samples were sent to the National Ocean Sciences Accelerator Mass 

Spectrometry facility (NOSAMS) at the Woods Hole Oceanographic Institution for PCGC and 

CSRA.  

 Details on PCGC are described elsewhere (Eglinton et al. 1996; Reddy et al. 2002; 

2003). Briefly, samples were repeatedly injected on a PCGC system until sufficient amounts of 

target n-alkanes (∑ n-C27, n-C29, n-C31 and n-C33) were collected. Compounds were separated on 

a Chrompak CP-Sil 5 CB capillary column (50 m length, 0.53 mm i.d., 1 µm film thickness). 

About 1% of the eluate was diverted to the FID for signal monitoring. The rest of the material 

was collected in the glass U-tubes. The target n-alkanes were rinsed with solvent to vials. A 

fraction (about 5%) of the isolated biomarkers was taken for purity check in a high resolution 

GC. The rest of the target compounds were transferred to pre-baked quartz tubes and solvent 

was removed. After the addition of copper (II) oxide, the quartz tubes were sealed under vacuum 
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and combusted at 850 °C for 5 hours. 10% of the liberated CO2 was utilized for 13C analysis 

and the remainder was reduced to graphite for CSRA by AMS as described by Pearson et al. 

(1998). 14C analyses were conducted on the graphite placed in a designated AMS target. CSRA 

by AMS was conducted according to a method developed for the 14C dating of micro-scale 

samples (von Reden et al. 1998).  

 Two types of analytical error for each sample were determined at NOSAMS. The 

internal statistical error was calculated based on the total number of AMS 14C counts measured 

for samples, standards and instrument blanks, whereas the external error was derived as the 

standard deviations of multiple analyses on a AMS target over a certain time period (McNichol 

et al. 2001). The larger of the internal or external error was reported as the final sample error and 

was propagated to age/error calculations.  

 

Reporting of radiocarbon results 

 

Conversions of AMS data to radiocarbon ages (i.e. yrBP unit) are described in detail elsewhere 

(McNichol et al. 2001; Reddy et al. 2002; 2003; Smittenberg et al. 2004). The 14C contents of 

combined target n-alkanes are expressed in terms of “fraction modern (Fm)” as:  

                                                                          (1) 

where subscripts S, B and M denote sample, blank and modern reference material, respectively. 

Fm is a measure of the deviation of 14C activity of a sample from that of the “modern” value, 
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which is defined as 95% of the 14C concentration of contemporary reference material (NIST 

SRM 4990B Oxalic Acid with δ13CVPDB = -19‰) as in 1950 AD (Stuiver and Polach 1977). 

Then Fm is corrected for the isotopic fractionation by normalizing to a conventional value of 

δ13CVPDB = -25‰: 

 
    (2) 

 

Based on the 14C half-life of 5568 years, the 14C age (yrBP) of a sample is computed as: 

      14C Age = -8033 × ln ( FmCorrected )                       (3) 

Finally, 14C ages were calibrated to calendar years (cal.yrBP) using CALIB 5.0 program (Stuiver 

and Reimer 1993; Stuiver et al. 2005) with the IntCal 04 calibration dataset of Reimer et al. 

(2004).  

 During n-alkane preparations, a wood fragment was found from a horizon bracketed by 

two of the samples. This wood fragment was also sent to NOSAMS for 14C dating by AMS 

using a more conventional AMS method (McNichol et al. 1995; Pearson et al. 1998).  

 

Results 

 

Hydrocarbon fractions from Ordy Pond sediments consist of a series of well-resolved n-alkanes 

and minor amounts of branched/cyclic isomeric hydrocarbons. By co-eluting with target 

n-alkanes, these non-aliphatic compounds could affect subsequent CSIA and CSRA. The 
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silicalite treatment, however, was successful in separating n-alkanes from the non-aliphatic 

hydrocarbons. Resolved compounds are almost exclusively dominated by a long-chain 

homologous (C > 25) series up to n-C35 with a maximum at either n-C29 or n-C31. In addition, 

resolved n-alkanes show strong odd-over-even C-number predominance.  

13CN-Alks values range from -30 to -25‰ (Table 1). In most samples, n-C27 n-alkanes 

are more enriched in 13C relative to the rest of the n-alkanes. Reproducibility determined from 

each compound in the internal standard (deuterated n-C24, n-C36 and n-C40) are ±0.34‰, 

±0.36‰ and ±0.64‰ (n=14), respectively. Slightly lower reproducibility observed for the n-C40 

internal standard can be explained by elevated background level due to minor column bleed of 

the GC stationary phase at high oven temperature and broader and lower peak shape.  

Results of CSRA of n-alkanes and AMS 14C dating of the wood fragment are 

summarized in Table 2. Generally, age errors are greater for samples containing less than 80 µg 

of C. This trend agrees with a consensus that analytical uncertainties associated with blank 

corrections become relatively large when C contents in samples are less than 100 µg (e.g. 

McNichol et al. 2001; Smittenberg et al. 2004). Nonetheless, these age errors are in an 

acceptable range for CSRA for samples with such limited C yields. 14C ages increase with depth 

from D3 to D5. In contrast, ages of deeper samples (D6, D7, D9 and wood fragment) cluster at 

roughly 8,000 cal.yrBP. These dates showed a trivial extent of age reversals with neighboring 

sedimentary horizons.  
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Discussion 

 

Origin of n-alkanes 

 

Long-chain odd-numbered n-alkanes are derived from epicuticular waxes of terrestrial higher 

plants (Eglinton and Hamilton 1967; Rieley et al. 1991) and are ubiquitous in aquatic sediments 

(Pearson and Eglinton 2000). Terrestrial n-alkanes possess unique molecular and isotopic 

diagnostic features that are easily distinguishable from those derived from other precursor 

sources. These compounds are highly resistant to post-depositional diagenetic alteration (e.g. 

Cranwell 1981; Sun and Wakeham 1994; Hoefs et al. 2002) and thus persist in sedimentary 

reservoirs for long periods of time (e.g. Kuypers et al. 1999). Furthermore, progressive 

biodegradation of n-alkanes involves negligible isotopic fractionation (Huang et al. 1997; 

Mazeas et al. 2002; Sun et al. 2005). Sedimentary n-alkanes, therefore, are popular for use as a 

tracer of terrestrial OM transport (Rieley et al. 1991; Ishiwatari et al. 1994; Pearson and 

Eglinton 2000; Pearson et al. 2001) and as a molecular proxy to reconstruct paleoenvironmental 

changes in watersheds (e.g. Bird et al. 1995; Bourbonniere and Meyers 1996; Yamada and 

Ishiwatari 1999; Brincat et al. 2000; Menzel et al. 2004; Muri et al. 2004). 

The most abundant n-alkanes in Ordy Pond sediment are odd-numbered compounds 

from n-C25 to n-C33, which suggests derivation from epicuticular waxes of terrestrial higher 

plants. A unimodal n-alkane distribution with a maximum at either n-C29 or n-C31 with 
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odd-over-even C predominance is a characteristic feature of leaf-wax n-alkanes (Eglinton and 

Hamilton 1967; Collister et al. 1994). The interpretation of terrestrial plant origin is also 

supported by 13C values of individual n-alkanes. 13CN-Alks values reflect the unique isotope 

fractionations involved in different carbon fixation pathways (C3, C4 and CAM fixation) utilized 

by plants. The n-alkanes derived from terrestrial plants conducting C3 C-fixation typically have 

13CVPDB values ranging from -30 to -40‰, whereas those synthesized by C4 land plants tend to 

be isotopically heavier and average from -17 to -25‰ (Collister et al. 1994; Reiley et al. 1991; 

Kuypers et al. 1999; Chikaraishi and Naraoka 2003). 13CN-Alks values from Ordy Pond 

sediments range from -30 to -25‰, which implies that these compounds were derived from both 

C3 and C4 land plants.  

The name of Ordy Pond presumably comes from an abbreviation of “Ordnance Pond”, 

referring to the disposal of ordnance during the World War II period (Athens et al. 1999). 

Although there is no direct evidence or reports of the disposal of ordnance into the pond (Athens 

et al. 1999), these facts raised a slight concern that the site could be contaminated by 

petroleum-derived materials. Chromatograms of both hydrocarbon and n-alkane fractions from 

Ordy Pond sediments reveal an overwhelming dominance of odd-numbered compounds and an 

absence of a baseline hump, which is caused by unresolved complex mixtures comprised of 

structurally complex isomers and branched/cyclic hydrocarbons. Lack of these diagnostic 

characteristics of petroleum incorporation (Ishiwatari et al. 1994; Bouloubassi et al. 2001; Wu et 

al. 2001) suggests that the sediments in Ordy Pond are not contaminated by petroleum-derived 
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materials.   

 Ordy Pond sediments contain abundant n-alkanes (Table1), despite the absence of 

riverine inputs of terrigeneous OM. This suggests that the main transport pathways of n-alkanes 

into the pond are aeolian transport from the vegetation in the vicinity and perhaps minor 

contributions (considering the rareness of macro-remains of plants) from direct fall-off of leaves. 

Epicuticular waxes of plants minimize water loss and serve as a protection barrier against 

ultraviolet radiation (Eglinton and Hamilton 1967; Kunst and Samuels 2003). Baker (1974) and 

Wirthensohn and Sedgley (1996) found a positive correlation between the quantity of wax 

secretions and solar irradiance and aridity, perhaps as an adaptive strategy to minimize water 

loss and damage caused by solar radiation. In response to the characteristic aridity in the ‘Ewa 

region and the strong incoming solar radiation of the subtropics, the local vegetation might have 

evolved abundant leaf waxes. Waxy coatings of the leaves are routinely eroded from the surface 

by wind abrasion as well as by a sandblasting effect, and become airborne (Wirthensohn and 

Sedgley 1996; Schefuβ et al. 2003; Conte et al. 2003). Those waxes physically removed from 

the surface of the leaves are promptly replaced with newly regenerated waxes to compensate for 

the losses within just a few days (Hallam 1970; Wirthensohn and Sedgley 1996). The 

combination of persistent trade-winds and wax-rich vegetation that is adapted to the local 

climate explains well the abundance of terrestrial plant n-alkanes in Ordy Pond sediments.  

 

Validation of CSRA / Error Assessment 
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Horizon D3 was intentionally selected from a depth reasonably close (roughly 20 cm apart) to 

horizon C dated by AMS using a plant macrofossil (Athens et al. 1999; 2002). The wood sample 

from horizon W is bracketed between horizons D7 and D9, from which n-alkane samples were 

prepared (Fig. 3). This three sample sequence spans a depth interval of about 160 cm and is also 

useful in validation of the CSRA method. 

In general, 14C ages of n-alkanes determined by CSRA show good agreement with 

those of plant macrofossils dated by AMS. The 14C ages of horizon C and D3, determined by 

two different methods, are in excellent agreement (Fig. 3). Horizon D5 extends the age-depth 

trend established by horizons A to D3, which further supports the reliability of the CSRA 

method (Fig. 3). The 14C ages of horizons W, D7 and D9, however, are not significantly different, 

although these horizons are contained within a nearly 160 cm interval of laminated sediment. 

The clustering of these three horizons may be attributed to greater analytical uncertainties 

associated with CSRA of older materials with limited sample quantities (McNichol et al. 2001). 

Indeed, the highest analytical uncertainties are associated with n-alkanes from horizon D7 and 

D9, which had two of the lowest C yields among all of the samples (Table 2). Although the 

age-ranges (2σ probability ranges) of these three samples overlap (Fig. 3), it should be noted 

that the “true age” of each sample can be anywhere between the upper and lower limits of the 2σ 

probability ranges. Therefore, the trivial extent of age reversals revealed by the operationally 

assigned dates (the mid-points of 2σ probable age-ranges of the samples) may not exist in reality. 
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Despite the lack of the expected trend of increasing age with depth, the similar n-alkane 14C 

dates for these three closely-spaced samples further demonstrate that CSRA using n-alkanes can 

reasonably reproduce 14C ages predicted by AMS dating of plant macrofossils. The results from 

this study, therefore, clearly show a promising potential of CSRA to serve as an alternative 

dating technique for paleo-applications.  

The n-alkane 14C date for horizon D6 is clearly older than anticipated (Fig. 3). The 14C 

age of D6 deviated from the trend of age progression with depth defined by the other dates, 

implying anomalous depletion of 14C in the n-alkanes from horizon D6. In fact, the 14C age of 

the n-alkanes from D6 was determined to be approximately 4,155 years older than the age 

predicted by the newly constructed sediment chronology (details will be discussed below). 

 There are two lines of evidence suggesting that D6 was contaminated during the 

operation of PCGC. The CO2 yield from the n-alkanes in the D6 sediment sample was 

significantly higher than from the other samples, although GC quantification confirmed that 

there were no major differences in n-alkane contents among the prepared samples (Table 3). 

CO2 recovery from D6 n-alkanes by PCGC was slightly greater than 100%, in comparison to 

roughly 40~60% recovery for the rest of the samples. Furthermore, the CO2 yield from D6 

n-alkanes was greater than the maximum theoretical yield based on stoichiometric calculations. 

Reproducibility of the GC was not monitored in this study, thus quantification of n-alkanes 

could be overestimated. Nevertheless, a recovery of nearly 100% is suspect. Trapping efficiency 

of PCGC at NOSAMS was reported to be about 80% for compounds with boiling points below 
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320°C (Eglinton et al. 1996). Meanwhile, Pearson (1999) reported that the PCGC trapping 

efficiency at NOSAMS ranged from 42 to 78% and averaged 58%, which is in good agreement 

with this study (except for D6). In addition, Eglinton et al. (1996) reported that when the target 

compounds are isolated and collected into a designated U-tube via PCGC, there are two 

potential sources of contaminants: (1) column bleed as a result of thermal degradation of the 

stationary phase of the capillary column used and (2) incomplete removal of solvent, which is 

used for transfer of the target compounds from the U-tube to a separate quartz tube for the 

subsequent procedures. Even though samples after PCGC separation are typically eluted over a 

silica-gel column as a precautionary step, background contamination due to the column bleed is 

nevertheless possible. Compounds with high molecular weight (such as long-chain n-alkanes) 

tend to form a layer of viscous “skin” above the solvent during N2 blow-down, which could 

potentially lead to incomplete removal of the solvent (Eglinton et al. 1996). In fact, Eglinton et 

al. (1996) concluded that incomplete removal of solvent prior to combustion is the major 

potential source of contamination. Both of these sources are likely to add 14C-depleted C to the 

sample, because the chromatographic stationary phase and solvents are ultimately derived from 

petroleum products. Incorporation of impurities could also arise due to the contamination of 

PCGC traps with residual compounds (i.e. from previous runs). 

The possibility of contamination of the D6 sample during PCGC is also demonstrated 

by simple isotopic mass-balance calculations. The PCGC system separates and traps the target 

compounds (n-C27, n-C29, n-C31 and n-C33) from an admixture of n-alkanes in the samples. 
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These four target compounds collected in the PCGC traps were combined and combusted to 

yield CO2 gas, approximately 10% of which was used for the determination of 13C values 

(13CCO2/NOSAMS) at NOSAMS. It is noteworthy that, before sample submission to NOSAMS, 

quantities and 13C values of these individual n-alkanes were determined by GC and CSIA. As 

described earlier, two to three separate lipid extracts were prepared from each horizon in order 

to meet the sample size requirement. N-alkane fractions from separate extracts were 

independently analyzed by GC and irm-GCMS. Therefore, theoretical 13C values of the CO2 

gas (13CCO2/UH) evolved from the n-alkanes in each sample can be estimated using a simple 

multi-component isotopic mass-balance calculation. Assuming complete combustion of these 

n-alkanes to the CO2 gas, 13C values of the post-PCGC CO2 gas should be equivalent to the 

weighted averages of the 13CN-Alk values. If the trapping of the compounds via PCGC and the 

subsequent combustion were operated completely without contamination, then technically, 

post-PCGC 13C values of the CO2 gas determined in NOSAMS and pre-PCGC values 

calculated from the isotopic mass-balance model based on the results from GC and CSIA at the 

University of Hawai‘i should be reasonably close. This hypothesis can be summarized by a set 

of simple mathematical expressions:  

13CCO2/NOSAMS ≈ 13CCO2/UH                                      (4) 

13CCO2/UH = [F2727 + F2929 + F3131 + F3333]Ext. 1                 

+ [F2727 + F2929 + F3131 + F3333]Ext. 2         (5) 

  1 = [F27 + F29 + F31 + F33]Ext. 1 + [F27 + F29 + F31 + F33]Ext. 2              (6) 
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where  and F in Eq. 4 and Eq. 5 denote the 13CN-Alk values and the theoretical molar fractional 

abundances of CO2 gas evolved from each compound (denoted by numerical subscripts) with 

respect to the total CO2 collected from the combustion of all target n-alkanes, respectively. The 

isotopic mass-balance model for the D5 sample requires extra terms (“Ext. 3”) because the 

sample represents the sum of three separate extractions.  

 The results of the isotopic mass-balance calculations (Table 4) clearly demonstrate 

agreement between the 13CCO2/UH and the 13CCO2/NOSAMS value for every sample except D6. 

Observed differences between the theoretical and the actual 13C values of CO2 gas liberated 

from the target n-alkanes are all within ~1.0‰ (the differences for the D3, D7 and D9 sample 

are within 0.2‰). These minor differences between the 13CCO2/UH and the 13CCO2/NOSAMS 

values can be explained by a small isotopic fractionation due to the nature of chromatographic 

separation, in which GC columns facilitate earlier elution of molecules containing the heavier 

isotope (Eglinton et al. 1996). In other words, during GC separation, the leading edge of a peak 

is more enriched with the heavy isotope (i.e. 13C-rich) and the tailing end of the same peak is 

more enriched with the light isotope (i.e. 12C-rich). Therefore, minor fractionation could occur if 

the compounds separated on the GC column were not fully collected by the PCGC system, 

particularly if the trapping window did not bracket the full width of the peaks of the compounds 

(Eglinton et al. 1996). A study by Eglinton et al. (1996) showed that the 13C compositions of a 

number of biomarkers, including long-chain n-alkanes and some volatile compounds with low 

molecular weight, before and after PCGC generally agreed within a range of 1.0 – 2.0‰. In 
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addition, Pearson (1999) suggested that the extent of isotopic fractionation is less than 1.0 to 

1.5‰ at most, based on PCGC operations with an analytical standard of a known 13C value. 

Consequently, the observed 2.2‰ deviation of the 13CCO2/UH and the 13CCO2/NOSAMS values for 

the D6 sample clearly exceeds the level of uncertainty that can be explained by the potential 

fractionation effect of the PCGC system. Observed disagreement between theoretical and the 

actual 13CCO2 values as well as suspiciously high CO2 yields from D6 n-alkanes, (and the 

resultant “too-old” 14C age) strongly suggest the introduction of contaminants during PCGC 

operations.  

Alternatively, but less likely, the D6 sample may have been contaminated prior to the 

PCGC separation. A useful way to assess the age discrepancy is to calculate the 14C content of a 

sample at the time of deposition. Initial 14C content of a material can be calculated according to 

the following equation: 

  Initial ∆14C = ( FmCorrected × e ( λ × yrBP ) – 1 ) × 1000 ‰                  (7) 

where, λ and yrBP represent the 14C decay constant (1 / 8267 years-1), and the year of deposition, 

respectively. This equation corrects for the losses of 14C through radioactive decay in a material 

since its sedimentation to the year of AMS measurement, and therefore provides the abundance 

of 14C at the time of deposition (Smittenberg et al. 2004). The 14C age of the D6 n-alkanes 

determined by CSRA then translates to an initial ∆14C value of -25.4‰.  

 But if the sediment chronology is indeed valid, the age of the D6 n-alkanes would be 

approximately 4,050 cal.yrBP. De-calibration using the IntCal 04 calibration curve by Reimer et 
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al. (2004) indicates that this calendar age roughly corresponds to a 14C age of 3,680 yrBP and an 

initial ∆14C of -12.9‰. This estimate implies that 14C in the D6 n-alkanes is somehow depleted 

by 12.5‰. The extent of the mixing between true and 14C-depleted n-alkanes can also be 

modeled by an isotopic mass-balance approach: 

 ∆14C∑ = { FT × ∆14CT } + { FC × ∆14CC }                                   (8) 

 FT + FC = 1                                                          (9) 

where ∆14C and F represent the initial 14C content in n-alkanes and the fraction of n-alkanes 

from distinct sources in the total combined n-alkanes (collective D6 n-alkanes). Subscripts ∑, T, 

and C refer to total combined n-alkanes, true n-alkanes, and contaminants (14C-depleted 

n-alkanes contributed from different sources), respectively. In this case, the values for ∆14C∑ and 

∆14CT are -25.4‰ and -12.9‰.  

If n-alkanes from fossil sources such as oils and greases are the sources of contaminants, 

conventionally, ∆14CD is -1,000‰ (Pearson and Eglinton 2000; Pearson et al. 2001). Then, the 

isotope mass-balance calculation suggests that the observed age offset of 3,680 years (dilution 

of ∆14C from -25.4 to -12.9‰) from the age-depth curve (Fig. 3) could result from 

contamination amounting to only 1.3% of the total n-alkanes collected from horizon D6.  

As discussed earlier, it seems unlikely that the pond and the sediments prior to coring 

were contaminated by petroleum-related materials. This conclusion is supported by the results 

from GC and irm-GC/MS analysis of both hydrocarbon and n-alkane fractions. The fact that 

n-alkanes from other horizons successfully produced reasonable 14C ages further supports this 
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interpretation. However, abnormal and accidental contamination by fossil n-alkanes in a 

particular sample is possible during sample preparation and analysis or coring operations in the 

field. Such trivial amounts (i.e. 1.3% of the total n-alkanes) of artificial contaminants are 

virtually impossible to detect even by GC and irm-GC/MS analysis, particularly in a situation 

where the signals of terrestrial n-alkanes are dominant.  

 

Sediment Chronology 

 

The new sediment chronology constructed from all 14C dates available is shown in Fig. 3. This 

depth-age curve allows the derivation of specific sediment dates for any interval of the core. All 

estimated ages, however, must be understood to have an unspecified error range similar to the 

14C determinations on which they are based. 14C dates from Athens et al. (1999; 2002) and 

Tribble et al. (1999) have been re-calibrated using CALIB 5.0 (Stuiver and Reimer 1993; 

Stuiver et al. 2005) with IntCal 04 of Reimer et al. (2004) (Table 5). The 14C date of horizon D6 

was not included in this age-depth model due to contamination of the sample. The 14C date of 

terrigeneous snails by Tribble et al. (1999) was also removed from the model. Earlier studies 

have shown that 14C dating of snail-shells from limestone areas often causes significant age 

discrepancy (Goodfriend and Stipp 1983; Dye 1994; Goodfriend et al. 1999). 14C-free C from 

limestone can be incorporated into snail shells by direct ingestion of limestone or uptake of 

limestone dissolved by foot secretions (Goodfriend and Hood 1983); however, the magnitude of 
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such incorporation is quite variable. For example, the age anomalies of snail-shells reported in 

the literatures range from ~600 to ~3,100 years (e.g. Goodfriend and Stipp 1983; Dye 1994; 

Goodfriend et al. 1999). Goodfriend and Stipp (1983) concluded that it is impossible to assign a 

systematic correction factor for 14C-depletion in snail-shells due to the considerable variability 

in the extent of limestone incorporation. These authors suggested that a reasonable upper limit 

of dating error caused by the effects of limestone on terrestrial snails is probably on the order of 

3,000 years. In order to deal with the unknown level of limestone-effect, a conceptual error of 

3,000 years is assigned to the 14C age of terrestrial snails from Ordy Pond sediment, besides the 

true statistical error associated with the analysis and calibration.  

 The most recent sedimentation history, phase I in Fig. 3, is estimated by a linear 

interpolation between the sediment surface and horizon A. Linear interpolation should be 

suitable for such a short time span (~120 cal.yrBP) relative to the whole sedimentation history 

of the pond. Sedimentation rates for deeper portions are calculated by first order linear 

regression with least squares fitting from horizons A to D5 (phase II) and horizons D5 through 

D9 (phase III). The depth-age curve results in a relatively good statistical fit, R2 = 0.96 for phase 

II and R2 = 0.86 for phase III. The slightly lower R2 value for phase III is a result of the 

clustering of three horizons (D7, W and D9) at very similar 2σ age ranges. The newly 

constructed age-control suggests that the sedimentation rate in Ordy Pond increased 

significantly over time. Estimated sedimentation rates according to the age-depth curve are 

approximately 0.06 (Phase III), 0.18 (Phase II) and 4.33 cm/yr (Phase I). 
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Conclusions 

  

Terrestrial biomarkers (n-alkanes) are ubiquitous and abundant in Ordy Pond sediments. The 

predominance of long-chain odd-numbered (n-C27, n-C29, n-C31, and n-C33) n-alkanes and the 

characteristic carbon isotopic composition of individual compounds indicate that these n-alkanes 

are of terrestrial plant origin. The 14C age of n-alkanes obtained from CSRA on a calibration 

sample (D3) is in excellent agreement with the age of a sedimentary horizon dated by AMS 

using plant macrofossils. A series of dates obtained from n-alkanes generally match well with 

independently determined 14C ages using plant macrofossils. This study thus demonstrated that 

CSRA using biomarkers is capable of providing reliable 14C dates for construction of sediment 

chronology for paleo-applications.  

Results of this study also documented a few negative aspects associated with CSRA. 

Analytical uncertainty becomes larger when the C content in a sample is less than 80 µg. 

Susceptibility of a sample to artificial contamination can be high during any phase of 

preparation and analysis. And most of all, sample preparations are time-consuming and CSRA 

by AMS is inarguably still an expensive and non-routine option. Nonetheless, 14C dating of 

individual biomarkers and subsequent construction of sediment chronology is in fact possible in 

lacustrine sediments. In this particular study, the lack of surface inflow and the poor soil 

development on the surrounding barren carbonate platform prevented the interference from 
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relict n-alkanes aged in soil reservoirs. But this issue may become a concern when drainage 

basins of a given lacustrine system have well-developed soil structures which facilitate 

long-term accumulation of refractory OM (e.g. Smittenberg et al. 2006). But from an opposite 

point of view, CSRA on n-alkanes can be used to differentiate the sedimentary horizons 

deposited mainly with contemporaneous terrestrial OM and the horizons with significant 

contributions from inwashed relict terrestrial materials.   

The site where this study was conducted is an unusual system in terms of its geological, 

hydrological and environmental setting and therefore results from this study alone can not draw 

broad generalization to support reliability of CSRA on n-alkanes in other areas. However, this 

study demonstrates that CSRA with appropriate selection of target biomarkers should be 

considered as a powerful tool for construction of sediment chronology if more conventional 

means of 14C dating such as the standard radiometric method are inapplicable. This method can 

be applied to sediment cores collected from carbonate-hosted lakes and sinkholes or offshore 

cores from fairly large lakes (e.g. Vance and Telka, 1998) in order to overcome the reservoir 

effect or rareness of macrofossils.  
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Table 1. Summary of gas chromatography (GC) analysis and compound-specific stable carbon isotopic analysis by irm-GC/MS on target n-alkanes.  
 
 

Horizon Depth N-alkane Abundance a CPI c   δ13C VPDB ( ‰ )   

 ( cm ) ( µg/g ) b   n-C27 n-C29 n-C31 n-C33 

D3 700 - 705 17.8 8.6 ± 0.9  -28.2 ± 0.1 -29.6 ± 0.3 -26.6 ± 0.1 -25.5 ± 0.0 
D5 925 - 930 12.7 8.0 ± 4.8  -26.5 ± 1.7 -28.3 ± 1.0 -26.6 ± 1.2 -27.1 ± 1.0 
D6 1015 - 1020 9.7 9.0 ± 0.2  -27.4 ± 0.5 -28.3 ± 0.4 -28.1 ± 0.7 -28.9 ± 0.6 
D7 1170 - 1180 27.4 11.7 ± 2.5  -27.0 ± 0.9 -29.0 ± 1.2 -29.8 ± 1.5 -28.5 ± 1.2 
D9 1320 - 1330 21.8 11.1 ± 0.6  -27.2 ± 0.7 -28.9 ± 0.5 -29.9 ± 0.9 -29.2 ± 0.6 

 

Extractions were continued with new sediment sub-samples until sufficient n-alkanes were collected from each horizon. Once GC and irm-GCMS 
were completed, and thus the terrestrial plant origin of the target compounds was confirmed, n-alkane fractions from separate extracts were combined. 
All of the values reported in this table represent averages and standard deviations of individually prepared sub-samples from each horizon (n = 2 or 3).  
 

a Quantity of n-alkanes was estimated by comparing the integrated peak areas of target n-alkanes to that of a co-injected internal standard (deuterated 
 n-C36) with a known concentration. N-alkane abundance refers to combined quantity of n-C27, n-C29, n-C31 and n-C33 alkanes.  
b Unit is “quantity (µg) of target compounds per unit mass (g) of dried sediment”.  
c Calculated as CPI = ∑(C25, C27, C29, C31, C33) / ∑(C24, C26, C28, C30, C32) in terms of n-alkane quantity (µg) from Pearson and Eglinton (2000).  
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Table 2. Summary of preparative capillary gas chromatography (PCGC) and compound-specific radiocarbon analysis (CSRA) data on n-alkanes 
extracted from Ordy Pond sediment, and the result of AMS 14C dating of wood fragments found in the sediment. All of the analyses were conducted in 
NOSAMS facility at Woods Hole Oceanographic Institution. 14C ages (yrBP) were calibrated to calendar years (cal.yrBP) using CALIB 5.0 program.  
 
  

Horizon Depth CO2 a 13CVPDB b C c Fm ∆14C 14C Age Calender Age d 
( Sample ) ( cm ) ( µmol ) ( ‰ ) ( µg )  ( ‰ ) ( yrBP ) ( cal.yrBP ) 

         
D3 700 - 705 6.0 -27.7 78.3 0.853 -152.7 1,280 ± 95 1,162.5 ± 183.5 
D5 925 - 930 8.3 -28.0 107.4 0.729 -275.6 2,540 ± 85 2,563.0 ± 204.0 
D6 1015 - 1020 12.8 -30.4 166.4 0.398 -604.5 7,400 ± 110 8,204.0 ± 196.0 
D7 1170 - 1180 5.5 -29.7 72.0 0.402 -601.0 7,330 ± 200 8,147.5 ± 390.5 
D9 1320 - 1330 5.3 -29.3 69.0 0.413 -589.5 7,100 ± 160 7,952.0 ± 338.0 

Wood 1267.2 170.5 -26.7 2048.0 0.398 -605.0 7,410 ± 60 8,211.5 ± 161.5 

 
a Quantity of CO2 evolved by combustion of target n-alkanes (n-C27, n-C29, n-C31 and n-C33) purified via PCGC system.  
b Stable carbon isotopic composition of CO2 described above. Values are reported against the VPDB standard material.  
c Quantity of carbon (C) after graphitization of CO2 evolved from the target n-alkanes.  
d Calendar ages represent the mid-points of the pair of probable dates encompassing 2σ probability age ranges (95% confidence interval) calculated by 
CALIB 5.0 program. Errors are the age difference from the mid-points to the end of 2σ probability ranges.  
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Table 3. Summary of changes in the quantities of target n-alkanes before and after PCGC in 
terms of CO2 equivalence.   
 
 

Horizon N-alkane Quantity a Theo. CO2 Y. b Act. CO2 Y. d PCGC Efficiency e

  10-2 µmol µmol µmol % 

 n-C27 5.6 1.5   
 n-C29 18.3 5.3   

D3 n-C31 18.4 5.7   
 n-C33 8.0 2.7   

 ∑ c 50.3 15.2  6.0 39.5 

 n-C27 8.1 2.2   
 n-C29 13.4 3.9   

D5 n-C31 12.8 4.0   
 n-C33 9.3 3.1   

 ∑ 43.6 13.2   8.3 62.9 

 n-C27 5.2 1.4   
 n-C29 14.5 4.2   

D6 n-C31 13.2 4.1   
 n-C33 6.9 2.3   

 ∑ 39.8 12.0  12.8 106.7 

 n-C27 5.5 1.5   
 n-C29 14.0 4.1   

D7 n-C31 16.9 5.2   
 n-C33 5.5 1.8   

 ∑ 41.9 12.6   5.5 43.7 

 n-C27 6.4 1.7   
 n-C29 16.1 4.7   

D9 n-C31 15.6 4.8   
 n-C33 5.6 1.8   

 ∑ 43.7 13.0 5.3 40.8 
 

a Molar quantity of n-alkanes estimated via GC analyses.  
b Theoretical CO2 yield from individual n-alkanes based on the GC quantification of n-alkanes  
 and elemental stoichiometry. C27H56, C29H60, C31H64 and C33H68 were used as the elemental  
 structure of each target compound, and complete reaction was assumed for calculation.  
c Sum of n-C27, n-C29, n-C31 and n-C33 alkanes for GC quantity and theoretical CO2 yield.  
d Actual CO2 yield from the collective n-alkanes trapped by PCGC system. 
e PCGC Efficiency = (Actual CO2 yield) / (∑ Theoretical CO2 yield) * 100% 
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Table 4. Comparisons of the 13C values of CO2 gas that are predicted by the isotopic 
mass-balance calculations based on the results of GC and CSIA and that are analyzed at the 
NOSAMS facility after the combustion of the four target n-alkanes trapped by PCGC.  
 
 

Horizon 13CCO2/UH 13CCO2/NOSAMS Difference 
 Theoretical Estimate Actual Measurement  
  ‰ ‰ ‰ 
D3 -27.6  -27.7  0.1  
D5 -27.0  -28.0  1.0  
D6 -28.2  -30.4  2.2  
D7 -29.5  -29.7  0.2  
D9 -29.1  -29.3  0.2  
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Table 5. Recalibration of the 14C dates used in the previous Ordy Pond sediment chronology.   
 
 

Horizon Source Method / Sample Type Radiocarbon Age a Calendar Age b 
      ( yrBP )  ( cal.yrBP ) 

Horizon A Athens et al. ( '99 & '02 ) Historic Pollen 120.0  120 
Horizon B Athens et al. ( '99 & '02 ) AMS / Plant macrofossils 510 ± 60  496.5 ± 156.5 
Horizon C Athens et al. ( '99 & '02 ) AMS / Plant macrofossils 1120 ± 60 1053.0 ± 125.0 
Horizon D Athens et al. ( '99 & '02 ) AMS / Plant macrofossils 1420 ± 60  1345.5 ± 161.5 
Horizon E Tribble et al. ( '99 ) C.R.M * / Land snails 9780 ± 110.0  11175.0 ± 426.0 

 
a Uncalibrated radiocarbon ages that were originally reported in earlier studies.   
b Original radiocarbon dates reported by Athens et al. (1999, 2002) and Tribble et al. (1999) were calibrated to calendar age (cal.yrBP) using CALIB 
 5.0 program (Stuiver and Reimer 1993; Stuiver et al. 2005) with the IntCal 04 calibration dataset (Reimer et al. 2004).  
* Conventional radiometric method. 
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Figure captions 

 

Fig. 1. Location of Ordy Pond in the ‘Ewa Plain of O’ahu. The pond is approximately 750 m 

from the coast and is situated 1.5 m above mean sea-level. The area of the pond is roughly 0.5 

ha.  

 

Fig. 2. Depth-age plot of 14C dates of aquatic sediment from Ordy Pond. (a) Sediment 

chronology based on AMS 14C dates derived from terrestrial plant materials (horizon B, C and 

D) by Athens et al. (1999; 2000). The age model is also supplemented by ages of horizon A 

(Athens et al. 1999; 2000) and E (Tribble et al. 1999) based on the first appearance of historic 

pollen and conventional 14C dating using shells of terrestrial snails, respectively. (b) Comparison 

of 14C dates obtained from terrestrial materials (filled triangles) from horizons A, B, C and D, 

and algal materials (open circles) by Athens et al. (1999; 2002). The radiocarbon age scale 

(yrBP) was used for the comparison because the algal dates could not to be calibrated to 

calendar ages (cal.yrBP) due to an unknown correction factor for the reservoir effect of the pond 

water. (c) Schematic representation of core stratigraphy. Labels B, M and T refer to basal 

non-aquatic sedimentary unit, middle laminated aquatic sedimentary unit and top sapropelic 

sedimentary unit, respectively. The actual base of the core extends to 17.5 m.  

 

Fig. 3. Complete chronology of Ordy Pond sediment. Dates of horizons A, B, C and D (closed 

triangles) are from Athens et al. (1999; 2000) and that of horizon E (open triangle) is from 

Tribble et al. (1999). Dates of n-alkanes from horizon D3, D5, D6, D7 and D9 (open circles) 

were determined by CSRA and that of wood fragments from horizon W (closed square) was 

from AMS. The two types of error bars on the snail date represent an analytical and statistical 

error, and an arbitrary error of 3,000 cal.yrBP due to limestone-effect. Three distinct phases of 

sedimentation (phase I, II and III) were modeled from a series of dates. The phase I (upper solid 
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line) is based on linear interpolation from the sediment surface to horizon A. Linear regression is 

used to model Phase II (middle dashed line), from horizon A through D5, and phase III (lower 

solid line) from horizon D5 through D9. Horizons D6 and E were not used in the regression for 

phase III due to possible contamination (D6) and the unknown extent of limestone-effect (E).    
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