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Abstract 

The eukaryotic community of Río Tinto (SW, Spain) was surveyed fall, winter, 

and spring through the combined use of traditional microscopy and molecular 

approaches including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence 

analysis of 18S rRNA gene fragments. We compared eukaryotic assemblages of surface 

sediment biofilms collected in January, May and September 2002 from 13 sampling 

stations along the river. Physicochemical data revealed extremely acidic conditions (pH 

ranged from 0.9 to 2.5) with high concentrations of heavy metals including up to 20 g l
-1
 

Fe, 317 mg l
-1
 Zn, 47 mg l

-1
 As, 42 mg l

-1
 Cd, and 4 mg l

-1
 Ni. In total, 20 taxa were 

identified, including members of the Bacillariophyta, Chlorophyta, and Euglenophyta 

phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoan and 

rotifers. In general, total cell abundances were highest in fall and spring decreasing 

drastically in winter and the sampling stations with the most extreme conditions showed 

the lowest number of cells as well as the lowest diversity. Species diversity does not 

vary much during the year. Only the filamentous algae showed a dramatic seasonal 

change almost disappearing in winter and reaching the highest biomass during the 

summer. PCA showed a high inverse correlation between pH and most of the heavy 

metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. is directly related 

to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained 

separate from the rest and showed an inverse correlation with most of the species 

analyzed except for Dunaliella sp.  

 

Keywords: acidophilic organisms, protists, acidic environment, pH, phytobenthos, water 

chemistry. 
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Introduction 

The discovery of extreme environments and their endemic residents have 

recently taken on significance for several reasons: 1) modern extreme environments are 

believed to reflect both early Earth conditions as well as those that persisted for most of 

the planet’s life history [40] and, 2) modern extreme environments may contain 

organisms that produce commercially important enzymes and cell products (i.e. 

thermostable DNA polymerases or heat-stable proteases) [31, 39].  

One group of extremophiles that is becoming increasingly important is 

acidophilic microorganisms. These organisms thrive at low pH (<3), by maintaining 

their cytoplasm at the same pH as their neutrophilic relatives [29] through the use of 

mechanisms that may involve secondary proton uptake mediated by membrane-

associated antiporters, unusual cell wall permeability properties, or high internal buffer 

capacity [34]. 

Since extreme acidic environments are often the consequence of anthropogenic 

influences (e.g., mining activity or acid rain), most ecological studies of acidic waters 

have been focused on environments affected by human activity. In this regard, Río 

Tinto (SW, Spain), is one of the most unique examples of extreme acidic environments, 

not only for its non-anthropogenic origin but for its peculiar microbial ecology [3, 13, 

14].  The river originates in the massive bodies of iron and copper sulfides that make up 

the Iberian Pyritic Belt, and maintains a constant low pH (pH 1.0-2.5), buffered by 

ferric iron and with high concentrations of heavy metals that are toxic to numerous 

aquatic organisms [8, 13, 14]. These extreme conditions are the product of the metabolic 

activity of chemolitotrophic microorganisms, including iron- and sulfur-oxidizing 

bacteria that can be found in high numbers in its waters [17]. 
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However, what makes Río Tinto a most unique extreme acidic environment is 

the unexpected degree of diverse eukaryotic organisms that are the principal 

contributors of biomass to the river, over 65% of the total biomass [3, 4, 25, 36]. Green 

algae, diatoms and euglenoids as well as ciliates, cercozoans, amoebae, stramenopiles, 

and fungi have been detected.  

Thus, Río Tinto has attracted some attention in literature, mainly in the fields of 

geochemistry [13, 14] and microbial diversity [3, 17, 25]. The aim of this work is to 

complete the studies carried out until now in Río Tinto regarding the eukaryotic 

community. Although some recent papers have been published [1, 2], none of them 

reports a complete description of the eukaryotic species in relation with their spatial 

distribution along the river as well as their quantitative seasonal variation during one 

year.  This study analyses also the temporal patterns in relation to physical and chemical 

conditions of the water, which is important to understand the ecology of these 

communities. In order to achieve this, several methods were used to assess the presence 

and degree of abundance of specific eukaryotic taxa. Traditional techniques involving 

species identification based on morphological and morphometric criteria as well as 

molecular techniques, such as DGGE or gene cloning, have been used. Multivariate 

statistics were used to determine trends and infer possible interactions between 

eukaryotic benthic communities and water physico-chemistry characteristics. 

 

Materials and methods 

Study site and environmental parameters 

Río Tinto is located in southwestern Spain and can be divided into three main 

zones based on topological, geological and geochemical characteristics, northern, 

transitional and estuarial (Fig. 1) [13]. The headwaters of the river are characterized by 
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extreme physico-chemical conditions in terms of low pH, with an annual mean value of 

2.2, and high concentrations of heavy metals, such as total Fe (up to 20  g l
-1
), Cu (100 

mg l
-1
) and Zn (235 mg l

-1
) [1]. Due to this fact, we concentrated our sampling in the 

upper part of the river. 

A general description of the Río Tinto physico-chemical parameters as well as 

geological records and hydrochemistry conditions was carried out previously [1, 25]. 

Seasonal variations in geochemical conditions result from alternating wet and dry 

seasons, during the winter and summer months respectively. January rainfalls in excess 

of 120 mm are common, contrasting with the little or no rainfall observed from July 

through September.  

Based on previous studies, 13 sites along Río Tinto (between 0 and 50 Km from 

its source) were selected for in situ measurements, water sampling and eukaryotic 

benthic communities collection [1] (Fig. 1). Samples were taken in January, May and 

September 2002. Measurements of conductivity, temperature (conductimeter Orion 122, 

Orion Research, USA), redox and pH (pHmeter Crison 506 pH/Eh), and Oxygen (Orion 

810 oxymeter) were made in triplicate. Chemical analyses were carried out as described 

previously [25].  

 

Sample collection 

At each sampling site, two transects were defined perpendicular to the water 

current. Water depth was always between 1 to 5 cm. The sampling unit, a 10 × 10 cm 

quadrant with a grid of 100 equally spaced intersection points of 1cm
2
, was positioned 

along the transects as many times as it fit [41]. Each square of the grid was numbered 

and 10 of them were randomly chosen taking the sequence numbers from a random 

numbers table and ranking them from the smallest to the largest [27, 42]. The biofilm 
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occurring underneath each chosen square were resuspended in 1ml of filtered river 

water and combined. Two subsamples of 5 ml each were obtained in order to perform 

the microscopy identification and the DNA extraction. 

Samples for light microcopy analysis were collected into sterile 1.5 ml tubes, 

fixed in 5% (wt/vol) formaldehyde and stored until processed. Samples for DNA 

extraction were also collected directly into sterile 1.5 ml tubes and kept at 4ºC until 

processed (within 3 days).   

 

Microscopy and morphotype quantification.  

Identification of algae and heterotrophic protists was carried out up to the lowest 

possible taxonomic level by direct microscopic observation using different phenotypic 

features based on previous studies of the eukaryotic communities in this river [3, 4, 25] 

as well as using traditional identification keys [7, 9, 22, 23, 28, 35, 43]. The microscope 

used was a Zeiss Axioscope 2 equipped with phase-contrast. Cell counts were 

performed in triplicate in a Sedwerick-Rafter chamber. For mean cell or filament 

volume estimates, at least 10 individuals where measured for size with a calibrated 

ocular micrometer , and volumes were calculated based on standard geometric formulas 

[18]. Biovolume of each species was the product of the count/liter and the mean 

volume. 

 

DNA extraction 

The Fast DNA Spin kit for soil (Bio 101, Carlsbad, CA, USA) DNA extraction 

was used according to the manufacturer’s instructions. To disrupt the cells, the mixture 

of ceramic and silica beads provided in the kit and six pulses of 40 sec at speed 5.5 of 

the FastPrep bead beating instrument (Bio 101) were applied. Samples were washed 
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five times with TE Buffer (10mM Tris HCl [pH 8], 1mM EDTA) before DNA 

extraction in order to remove the natural acidic water.  

 

PCR for DGGE analysis 

Universal eukaryotic primers targeting 18S rDNA were used. For DGGE we 

tested the primers Euk20F (5’GTA GTC ATA TGC TTG TCT C 3’) and Euk516r-GC 

(ACC AGA CTT GCC CTC CCG CCC GGG GCG CGC CCC GGG CGG GGC GGG 

GGC ACG GGG GG 3’), which amplifies fragments sized about 500 bp [2]. PCR were 

run in a Perking Elmer Cycler in 150 µl tubes using 100 µl reaction volumes. The 

reaction mixture contained 5 µl of template, 0.5 µl of both primers (50 µM), 1 µl of  

dNTPs 25 mM, 1x reaction buffer and 0.5 U of Taq DNA polymerase (Promega Co., 

Madison, USA). The program included an initial denaturation at 94ºC for 5 min, 

followed by 29 touchdown cycles of denaturation at 94ºC for 1 min, annealing at 64ºC 

(with the temperature decreasing 0.5ºC each cycle) for 1 min and extension at 72ºC for 

3 min. Final extension was done at 72º for 6 min. Aliquots of 5 µl of the PCR product 

were run in 1% agarose gel at 130V for 1 hr, stained with ethidium bromide, and 

quantified by using a standard (Φ29 digested with HindIII). 

 

DGGE electrophoresis 

The DGGE was carried out as previously described [2]. Briefly, electrophoresis 

was performed with 0.75 mm thick 6% polyacrylamide gels (ratio of acrylamide to 

bisacrylamide 37.5:1) and the denaturing gradient was urea 20% to 60%. The running 

buffer was TAE 1x (40 mM Tris, 40mM acetic acid, 1mM EDTA; pH 7.4) at 60ºC. 

Approximately 100 ng of PCR products were mixed with the same volume of loading 

dye (2% bromophenol blue, 2% xylene cyanol, 100% glycerol) and applied to 
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individual lanes. Gels were run at 60ºC for 11 hr at 100 V, stained with ethidium 

bromide and visualized under UV illumination. 

DNA bands were cut from the gel with sterile razor blades and placed in 

sterilized vials, 20 µl of milliQ water was added. The DNA was allowed to diffuse into 

the water at 4ºC overnight. Five microliters of the eluate were used as a template DNA 

in a PCR with the primers described above.  

 

Clone library construction 

Clone libraries of complete 18S rDNA genes were generated from five 

environmental DNA templates collected at the following sampling stations AG, FE, 

ANG, EST and LPC. 18S rDNA genes were amplified from the environmental DNA 

extractions by PCR with two general eukaryotic primers, Euk1a (5’ CTG GTT GAT 

CCT GCC AG 3’) and Euk1800r (5’ TCC GCA GGT TCA CCT AGC GA 3’) [2]. PCR 

conditions were as follows, initial denaturation at 97ºC for 5 min, followed by 29 cycles 

of denaturation at 94ºC for 40 sec, annealing at 48ºC for 1 min, and extension at 72ºC 

for 1 min. The amplification products were used to construct a clone library with the 

TOPO 1 Kit (InvitroGen, Carlsbad, CA, USA). Positive transformants were checked for 

correct insert size by standard agarose gel electrophoresis.  

 

Sequence analysis 

The PCR products were directly sequenced with dye terminator cycle 

sequencing kit (Big-Dye 1.1 sequencing kit, Applied Biosystems) as described in the 

manufacturer’s instructions. The sequences were aligned to 18S rRNA sequences 

obtained from the National Center of Biotechnology Information Database. The 

sequences were also checked for potential chimeras with the Bellerophon Chimera 
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Check program and were subsequently aligned with 18S rRNA reference sequences in 

the ARB package (http://www.arb-home.de). The rRNA alignment was corrected 

manually and alignment uncertainties were omitted. Only unambiguously aligned 

positions were used to construct phylogenetic trees with ARB. Distance analysis using 

the Jukes-Cantor correction [19] and bootstrap resampling (100 times) were performed, 

and the distance matrix was used to construct a tree via neighbor-joining method [37]. 

Parsimony and maximum likelihood analysis was performed using DNAPARS from the 

PHYLIP package [12]. Sequences have been deposited in GenBank under accession 

numbers EF591004-EF591019. 

Statistical Analysis 

All physical chemical and microbiological parameters for each sampling site and 

season were organized in a single matrix. An estimate of possible relations between 

physicochemical and biological parameters was developed by correlation analysis and 

Principal Components Analysis (PCA), performed with Statistica V.6.0 program. This 

analysis allows us to ascertain the origin of each element based on its level of 

association with the others and to determine the factors that control its behaviour. The 

method reduces the original variables to a smaller number of factors, those representing 

the original variables with a minimal loss of information.  

 

Results 

Sample locations and physicochemical parameters 

Sample locations and sample types were chosen to cover most of the area under 

study and a range of the visibly different microbial assemblages that occur there. Water 

physicochemical measurements were taken from 13 locations distributed along the 

upper 50 km of the river (Fig. 1), together with samples of submerged eukaryotic mats 
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attached to the sediments. Zones A and B are the headwaters and can be considered the 

origin of the Río Tinto. Zone A includes site AG, where a small surface stream 

combines with water seeping out of a bank that has some of the most conspicuous 

biofilms on the river, and site 3.2, a small impoundment behind an old dam that is 

typically anoxic at the bottom. Zone B is the major headwater system (Fig. 2a); site Iz-

Iz, nominally considered the “origin” of the river, is a trickle of very red water springing 

from the base of a large pile of rocks, and FE is a site located a few meters beyond 

where two other small streams join Iz-Iz.  

Downstream from FE, site ANG is a spring coming from a pile of loose rocks; 

here the water temperature is high, presumably due to microbial metabolism inside the 

rock pile.  Sites NUR and UMA are a seep and a small stream with moderate water flow 

that join the river downstream from ANG, while RI is located in the exit of a small 

tunnel with only periodic water flow associated with rainy periods.  The drainages from 

Zones A and B merge just north of the town of Nerva into a small river flowing west of 

the town. Site CEM is located just downstream from the merging point (about 10km 

downstream from the origin); site STB is a small stream coming from a flooded mine 

shaft that joins the river and has conspicuous biofilms. At site EST, Río Tinto has 

become a wide stream with a high water flow all around the year.  

The last two stations, BRR and LPC, are located at ca. 25 Km and 50 Km 

respectively from the origin of the river (Fig. 2b,c). At these locations, the river 

becomes wider and deeper, with an average water flow of 8.1 m
3
/s throughout the year 

[25]. The slope of the river between these two stations is gentle, ca.0.56% average 

value, resulting in a moderate current speed that facilitates the settlement of dense 

microbial community mats covering large sections of the river course [25]. Sampling 

site BRR is a section where iron precipitates are beginning to make the water cloudy red 
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and by LPC the pH buffering capacity of the iron in the river is nearly exhausted, 

resulting in occasional spikes of higher pH where circumneutral side streams enter the 

main river. 

Physical and chemical water data collected during this study are given in Table 1 

and 2. The highest values for heavy metals were found in the stations located near the 

origin of the river. In this regard, Iz-Iz, RI, ANG and UMA were locations with lowest 

pH and highest concentrations of dissolved metals. Concentrations of most ions 

decreased downstream but proportions varied between sampling sites:  Iz-Iz showed the 

highest concentration of Cd (more than 40 mg l
-1
), FE had the highest Zn (more than 

160 mg l
-1
), RI had the lowest pH (1.2) and highest values of S (ca. 29 g l

-1
), Fe (ca. 22 

g l
-1
), Co (61.9 mg l

-1
), As (47.8 mg l

-1
), and Cr (13.1 mg l

-1
), while CEM was rich in Cu 

(278.3 mg l
-1
) and Ni (7.9 mg l

-1
).   

The dominant characteristic of Río Tinto water chemistry is the extremely high 

proton concentration which influences other chemical parameters. Thus, extreme acidity 

is combined with high concentrations of calcium, silica, sulfate, manganese or arsenic 

and heavy metals as iron, zinc, cobalt, copper, chrome or cadmium. In general, 

concentrations of chemical elements rise during summer and fall and decrease in winter 

due to dilution by rain (data not shown).  

 

Eukaryotic community structure and spatial distribution 

The eukaryotic community is mainly distributed into biofilms of different 

thicknesses all over the riverbed (Fig. 2d-i). A total of 20 taxa were microscopically 

distinguished (Table 3). 

At sites Iz-Iz and FE, species related to different Chlorophyta genus (Chlorella 

sp., Chlamydomonas spp., Mesotaenium sp. and Stichococcus sp.) dominated the 
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phytobenthonic community (Fig. 3). Dunaliella sp. was the dominant species at Iz-Iz, as 

well as Euglena sp. and the filamentous algae, represented by the genera Zygnemopsis 

and Klebsormidium, were present at high numbers in FE, forming thick green 

filamentous biofilms all over the sediment (Fig. 2d). Although algae accounted for the 

greatest proportion of the biomass, there are other protozoan components present in 

lower proportions (usually less than 5% of the total cell number), resulting in increased 

biodiversity. Here we found one species of heliozoa, tentatively identified as 

Actinophrys sp., amoebas and three morphotypes of small flagellates belonging to the 

genera Cercomonas, Bodo and Ochromonas.  

Stations AG, RI and ANG were also dominated by Chlorophyta species, 

however the diversity was higher in this part of the river (Fig. 3). AG was the first 

station with visible amounts of the diatom Pinnularia sp., along with Cyanidium sp. 

Euglenoids, and filamentous algae were also well represented. A completely different 

taxa composition was found at site RI. Here the predominant species were Dunaliella 

sp. and Cyanidium sp. (Fig. 2e) between them representing ca. 80% of the total biomass, 

followed by Chlorella sp. Amoebas and the cercomonad flagellates were also found in 

lower numbers. Site ANG was covered by green mats formed mainly by Chlorella sp., 

although Pinnularia sp. was also present forming small brown patches (Fig. 2f) as well 

as Cyanidium which makes up ca. 15 % of the total biomass. Amoebas, flagellates 

similar to Bodo, Cercomonads and Ochromonas, as well as the ciliate Oxytricha were 

also present at this site. 

Sites 3.2, NUR and UMA were very different from each other (Fig. 3). The 

community present at 3.2 was mainly formed by euglenoids (ca. 90% of the biomass). 

Ciliates constituted ca. 5% of the total cell number, and amoebas and heliozoans were 

found in low numbers.  This is the place closest to the origin of the river where a species 
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of bdelloid rotifer had been found. Site NUR is dominated by filamentous algae, 

euglenoids and diatoms which all together represent more than the 80% of the biomass. 

A thick green filamentous film covered all the sediment mixed with brown patches 

formed by diatoms (Fig. 2g). Ciliates, amoebas and heliozoans have also been found as 

well as small cercomonad flagellates. UMA showed a completely different community 

assemblage inhabited mainly by Dunaliella, small cercomonad flagellates, amoebas and 

Oxytricha ciliates. In this part of the river, no visible cell biofilms were found.  

Near the town of Nerva, diversity increases at sites CEM and STB (Fig 3). 

Chlorella sp., Pinnularia sp., Cyanidium (Fig. 2h) and filamentous algae were most 

abundant. In addition, Chlamydomonas spp., Euglena sp., amoebas and small flagellates 

also occurred at these places. Ciliates similar to Colpidium were observed along with 

Oxytricha ciliates. Site EST was mainly inhabited by Euglena and Chlorella (Fig. 2i, 

Fig. 3k). Oxytricha ciliates, amoebas and cercomonad flagellates contributed five 

species, but only 23% of the biomass.  

Further downriver at site BRR, Euglenas dominated the community mixed with 

some amoebas and cercomonad flagellates (Fig. 3). No diatoms have been found at this 

site. LPC showed more diversity, with an increase in two green algae, Chlamydomonas 

and Chlorella. Other recorded groups included diatoms, Zygnema sp., Stichococcus sp., 

ciliates, amoebas, heliozoans and heterotrophic flagellates. 

 

Total abundances and seasonal distribution 

 Seasonal variation of the eukaryotic communities as well as total cell numbers 

are shown in Fig. 3 and 4. Although cell numbers in free-flowing water were generally 

low (<10
2
 cells ml

-1
), in the biofilms they were considerably higher (up to 10

7 
cells 

cm
2
). Total cell abundances were generally highest in May and September decreasing 
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drastically in January. However, at five sampling stations the cell number remained 

relatively constant throughout the year (e.g. ANG, RI or CEM). The stations with the 

most extreme physicochemical conditions (Iz-Iz, RI and UMA, located at the origin of 

the river) showed the lowest number of cells (ca. 10
3
-10

5
 cells cm

-2
) as well as the 

lowest diversity. 

In general, although great differences were found in total cell number, the 

species diversity remained fairly constant during the year at most of the sampling 

stations (Fig. 3). Only the filamentous algae showed a dramatic seasonal change, almost 

disappearing in winter and reaching their highest cell number during the summer (e.g. 

FE and NUR sampling sites). There was also variability in the presence of heterotrophic 

flagellates. These groups typically increased their number during winter and spring to 

decrease in summer (e.g. Iz-Iz and UMA sampling stations). Ciliates were more 

common during summer and late summer, tracking the variation of the algae (e.g. 3.2 

sampling site). Rotifers were found during the entire period from June to September 

decreasing substantially in winter. The heliozoans analyzed appeared in spring and 

disappeared in winter.   

 

Principal Component Analysis (PCA) 

Figure 5 shows the distribution of the variables in the space formed, during the 

year assayed, by the first two components of the PCA analysis. In January (Fig 5a), 

63.66 % of the total variance is explained by the two first components of the analysis. In 

this season, five principal components (PC) with an eigenvalue >1 were extracted. PC1 

explained 34.28 % of the observed variance and included the variables pH, 

conductivity, Fe, Co, As, Cd, Cr as well as Dunaliella sp. PC2 explained 29.38% of the 

observed variance and contained Zn, Cu, Ni and Chorella sp., Diatoms, Euglenoids, 
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Filamentous algae Cyanidium sp. and Chlamydomonas spp. PC3 (Tª, an heterotrophic 

flagellates) represented 12.6 % of the variance and PC4 and PC5 (Redox and Oxygen) 

were of less importance, explaining only 7.1 and 5.7 % of the variance. PC1 can be 

described as an abiotic factor as it contained most of the physicochemical parameters, 

while, PC2 had a strong biotic component including most of the species studied. Some 

variations were obtained when the variables corresponding to May were represented 

(Fig. 5b). In this case, although the total variance explained was similar to January, 

57.65%, only four principal components (PC) with an eigenvalue >1 were obtained. The 

first component PC1 explained 36.49 % of the variance and included the same variables 

than in January besides Temperature. PC2 explained 21.26 % of the variance and 

contained Cu, Ni, Diatoms, Euglenoids, Filamentous algae and Cyanidium sp. PC3 

(Chlorella sp., heterotrophic flagellates and Zn) represented 19.6 % of the variance and 

PC4 (Chlaydomonas spp., Redox and Oxygen), represented only 5.7 % of the variance. 

September showed different results (Fig. 5c). Total variance explained by the two first 

components of the analysis was 51.72%.  Although six principal components (PC) with 

an eigenvalue >1 were obtained, more than 80% of the variance was explained by the 

first four PC. The first component PC1 explained 36.96 % of the variance and included 

the same variables than in January. PC2 explained 16.76 % of the variance and 

contained Diatoms, Euglenoids, Filamentous algae and heterotrophic flagellates. PC3 

(Ni, Cu, Zn and Chlorella sp.) represented 15.6 % of the variance and PC4 

(Chlaydomonas spp., Temperature, Redox and Oxygen), represented 12.26 % of the 

variance. 

 

DGGE fingerprints analysis and cloning library construction 
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 The potential of DGGE for identifying eukaryotic species was evaluated. Total 

nucleic acids were extracted from mat samples from each sampling station, and 18S 

rRNA gene segments were amplified using primer sets for eukaryotes. Amplification of 

the 18S rRNA gene was successful in all samples, and the DGGE generated band 

patterns that were characteristic for each sample (Fig. 5). A total number of 59 bands 

from the 13 samples were sequenced. The closest match and percentages of similarity 

for the sequences obtained were determined by BLAST searches (Table 4). In all 

samples, the number of species identified by DGGE was lower than the number of 

species detected morphologically, however the affiliations of all the provided sequences 

were consistent with microscopic observations. In addition, only eukaryotic sequences 

were recovered indicating the specificity of the primers. In general, the most intense 

bands obtained corresponded to the chlorophytas, Chlamydomonas, Dunaliella and 

Chlorella. Several other groups, such as diatoms, ciliates, amoebas and fungi were also 

detected. Percent similarities ranged from good (99%) for most of the species detected 

to poor (89%), usually for fungi. In general, the number of bands per sample was lower 

in samples that showed the most extreme physicochemical characteristics. 

 

Cloning and Phylogenetic analysis 

From each cloning reaction, ca. 30 clones were sequenced. None of the clone 

sequences were chimerical according to the Bellerophon program. Of those 150 clones, 

only 16 yielded unique species sequences. The phylogenetic tree obtained by using all 

the sequences available from natural samples is shown in Fig. 6. Most of the sequences 

grouped with chlorophytan and streptophytan algae, although other groups were also 

detected. In all cases, the affiliations of the sequences obtained provided results that 

were consistent with microscopic observations. Interestingly, the sequences related to 
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Chlamydomonas clustered into two groups, one group related to Chlamydomonas 

noctigama (i.e rtLPA6cla and rtAGA2cla) and other related to Chlamydomonas 

pitschmanii (i.e. rt32cla764 and rtUM32cla) not distinguished previously under the 

microscope since both species are phenotypically very similar.  

The sequence alignment performed with ARB as well as the phylogenetic 

analysis showed that the sequences obtained for one particular species isolated from 

distant sampling sites were almost identical with an identity of over 98%. Thus, clones 

rtLPA6cla and rtAGA2cla were related to Chlamydomonas noctigama isolated from 

LPC and AG respectively clustered together as did clones rtUMH1dia and rtAGH5dia 

related to Pinnularia isolated from UMA and AG respectively. 

 

Discussion 

This study analyzed the diversity, spatial distribution and seasonal variation of 

the eukaryotic community in a natural extreme acidic river, Río Tinto (SW, Spain). 

There are relatively few reports on the biodiversity and abundance of acidophilic 

microorganisms in the literature, and most have focused exclusively on prokaryotes. In 

addition, few ecological studies have been performed in rivers, probably due to their 

complexity and the difficulty in obtaining integrated samples [21]. References regarding 

the use of molecular techniques to identify and estimate the eukaryotic species in these 

environments are also scarce. In the current work, molecular techniques were used in 

combination with more traditional methods including microscopy. The results revealed 

that, although molecular approaches facilitated the identification of the different species, 

these techniques should be complemented with microscopy observations in order to 

obtain more accurate data.  
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Eukaryotic community and seasonal variability in Río Tinto 

 The high water table maintains the river flow even during the extremely dry 

summers, characterized by lack of rain and high evaporation rates. In general, the water 

temperature was highest in June and September with an average of 25 ºC. This 

corresponds to periods of lowest water flow and highest eukaryotic biomass. Dissolved 

oxygen rose in winter and then decreased during the dry summer and fall months. 

However, conductivity, redox and pH showed no notable changes over the year [1]. 

Ferric iron and sulfuric acid are the most common components found in this acidic 

environment. Ferric iron establishes an efficient buffer system at pH values of 

approximately 2.3. Ferric iron is produced by the metabolism of iron oxidizing 

microorganisms, which are very active in the aerobic part of the river, sulfuric acid 

originates from sulphides by chemical oxidation or the activity of sulfur-oxidizing 

microorganisms, depending on the sulfide mineral substrate [17].  The result is a 

strongly acidic oxidant solution of ferric iron which brings into solution other heavy 

metals, increasing their concentrations in comparison to neighboring rivers with higher 

pH [13]. 

Although some of the species found were previously identified using light 

microscopy [25] or molecular approaches [3, 4], our approach combining both methods 

revealed new taxa and details of the seasonal and spatial distributions of known species. 

Microscopic observations of the biofilms revealed a variety of prokaryotic 

morphotypes, algae, protozoa or fungi.  The whole community is usually embedded in a 

coating that may well protect the inner microbial community from external conditions 

[1]. Members of the Chlorophyta such as Chlamydomonas, Dunaliella, Chlorella, and 

Euglena, were the most frequent species, forming large green patches along the river 

bed. These species are known for their high metal and acid tolerance [15, 44] and show 
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the same patchy distribution found in other acidic environments [20]. The most acidic 

sampling station of the river, RI, is inhabited by an eukaryotic community dominated by 

two species related to Dunaliella and Cyanidium. 

Members of the Bacillariophyta are the other eukaryotes able to produce visible 

brown mats in the river. One species closely related to the genera Pinnularia has been 

identified. The genera Pinnularia has been widely described in acidic environments 

[45]. The low number of taxa present in the river in comparison with the diversity found 

in neighboring freshwaters as well as in the literature, suggests that there is a threshold 

between pH 4.5 and 3.5 at which many species are eliminated [11]. There have been 

few experimental studies of the tolerance of diatom taxa to extremely low pH values. It 

has been reported that at pH values below 4.5 most species are not able to grow [30, 

33]. 

The low species diversity of flagellates, dominated by cercomonads and 

stramenopiles, is also characteristic of these extreme environments [38]. These 

organisms employ the same ecological strategies as the phytoflagellates to overcome 

limitations in nutrient supply such mixotrophy and mobility which are in an important 

advantage in these environments [24].   

The protistan consumer community was characterized by low diversity and the 

lack of some common groups such as corixids.  At least two species of ciliates are 

quantitatively important members of the community. The dominating ciliate taxa 

belonged to the order Hypotrichida. Although two different species have been 

microscopically observed, only clones related to Oxytrichia granulifera were 

molecularly identified. The other morphotype could be tentatively assigned to the 

genera Euplotes. The reduction of species diversity and ciliate abundance with 

increasing acidity is well documented [5, 6]. The members of the order Hypotrichida 
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thrive predominantly in soils or benthos usually associated with algal clumps [16]. They 

can be found in almost all sampling sites in Río Tinto except in the upper headwaters 

and near Nerva. The ciliates found in the river were relatively large, slow-swimming 

organisms which may be attributed to lack of predatory impact.  Amoebas can be found 

frequently even in the most acidic parts of the river eating large diatoms.  Valhkampfia 

have been identified microscopically and several other species of amoeba have been 

observed, including lobosea-like and acanthamoeba-like amoebas.  One species of 

heliozoan belonging to the genera Actinophyris was found at six sampling sites. 

Heliozoa seem to be characteristic top predators of the benthic food chain in the river. 

They are omnivorous [32], with the ability to overwhelm organisms larger than they are, 

including rotifers, algae and ciliates [46] that get stuck on their adhesive podiae. In Río 

Tinto, we have observed their ability to ingest algae, mainly Chlorellas, 

Chlamydomonas, and Euglena. 

According to recently reviewed literature [10], few rotifers have been reported in 

waters of pH<3.0, which are typically dominated by one or two species. Our results in 

Río Tinto are in close agreement with this pattern as only one species of bdelloid rotifer 

related to the Rotifera genera has been observed at sampling sites 3.2 and LPC. This 

pioneer species can persist because of its high physiological tolerance of severe acidic 

stress and the lack of other more efficient competitors. Although this rotifer was 

observed ingesting algae, their potential impact on phytobentos seems to be negligible. 

Together with ciliates, amoebae, and heliozoans, rotifers are part of a simple food-web. 

The abundance of eucarya show seasonal correlations with the physicochemical 

conditions of the water [1]. Spatially, low pH and heavy metal concentrations correlates 

with lower eukaryotic diversity and cell abundance at sites where the pH reached the 

lowest values such as RI and Iz-Iz  where only Dunaliella and Cyanidium were able to 
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grow in appreciable amounts. In general, PCA showed a high inverse correlation 

between pH and most of the heavy metals analyzed as well as Dunaliella sp., while 

Chlamydomonas sp. is directly related to pH during May and September. Three heavy 

metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse 

correlation with most of the species analyzed except for Dunaliella sp. The occurrence 

of filamentous species, Zygnemopsis and Klebsormidium, during the dry summer 

months, when ion concentrations were highest and most of the physicochemical 

parameters most extreme, suggested that these species have a competitive advantage 

under high-ionic-strength conditions. These species are attached to the sediments 

forming long filamentous biofilms on the water surface that reach 1 m in length (i.e. 

Fig. 3g). 

While many species of fungi have been isolated from the river [25, 26], one 

species, related to the genus Hobsonia, has been identified in many parts of the river 

where it forms thick denditric macrofilaments closely associated with other protists 

present in the river (i.e. Fig. 3a,j). When the fungi is present, a whole community forms 

embedded in a mucilaginous substance that might protect the inner microbial 

community from the external conditions by creating different physico-chemical 

conditions. 

 

Conclusions 

 The Río Tinto is a unique natural extreme environment where eukaryotic 

organisms are the main contributors of biomass and where eukaryotic diversity is 

greater than prokaryotic diversity [17, 25].  The results obtained using different 

methodological techniques with environmental samples demonstrate that only an 

integrated approach combining molecular techniques, microscopic observations and 
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new isolation strategies will guarantee a more thorough knowledge of the microbial 

diversity of any given ecosystem. 

Understanding the ecology of highly acidic environments requires investigation 

of metabolic pathways and survival strategies. Although highly acidic environments 

occur all over the Earth, and interest in the ecology of acidophilic organisms has 

increased significantly over the past decade, the answers to many questions about them 

remain elusive. One of the most intriguing questions is how acidophilic species colonize 

new habitats. Are they contained as endemic species and therefore isolated for long 

periods of time, forming different strains with different genotypes?  We hope to address 

some of these topics in future research on Río Tinto.  
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Table 1. Means and standard errors of water physical parameters at each sampling site 

during the year. Tª- Temperature in ºC. Cond.- Conductivity in mS cm
-1
, Redox.- redox 

potential in mV, O2.- Dissolved oxygen in ppm. Stations with an average pH below 2 

are in grey, and the most extreme values for each parameter in bold. 

      

 Site     GPS Coordenates          pH              Tª       Cond       Redox     O2  

 

AG 37º43’29”N / 6º33’3”W 2.6±0.28 19.8±7.5 5.30±1.6 413±44.5 5.8±2.9  

3.2 37º43’20”N / 6º33’48”W 2.4±0.23 18.8±5.9 5.50±7.6 562±86.4 1.0±2.4  

Iz-Iz 37º43’15”N / 6º33’3”W 1.8±0.25 18.6±4.1 25.7±2.3    569±22.0 3.4±1.5  

FE 37º43’15”N / 6º33’3”W 2.1±0.35 18.1±6.0 5.20±3.8 488±33.6 7.7±2.7  

ANG 37º43’15”N / 6º33’10”W 1.7±0.21 24.3±2.4 30.8±3.4 471±16.9 1.7±0.7  

NUR 37º43’22”N / 6º33’25”W 2.0±0.26 19.5±2.0 9.40±1.0 515±17.4 1.6±0.7  

UMA 37º43’13”N / 6º33’23”W 1.7±0.36 15.6±6.7 40.2±8.3 473±10.9 4.5±2.2  

RI 37º43’14”N / 6º33’15”W 1.2±0.35 15.8±3.6 38.9±16.9 460±3.50 2.4±0.5  

CEM 37º42’8”N / 6º33’31”W 2.5±0.12 17.5±5.1 11.4±1.3 446±30.5 2.8±2.3  

STB 37º42’6”N / 6º33’31”W 2.3±0.14 15.0±2.4 4.30±2.6 560±14.8 1.5±0.1  

EST 37º41’24”N / 6º33’37”W 2.5±0.29 23.1±8.5 10.2±0.9 444±17.7 3.5±0.1  

BRR 37º35’36”N / 6º33’4”W 2.5±0.32 25.5±10.4 10.2±5.2 460±27.3 1.2±0.1  

LPC 37º25’25”N / 6º36’36”W 2.5±0.33 24.7±8.6 3.70±1.1 548±70.6 5.9±0.9   
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Table 3. Species present in the river. LM= Light Microscopy, DG= DGGE, 18S= 18Sr 

RNA cloning. 
 

   Order         Family        Genus  ID technique 

   

 

Volvocales  Chlamydomonadaceae  Chlamydomonas   LM/DG/18S 

Volvocales  Dunaliellaceae   Dunaliella   LM/DG/18S 

Chlorellales  Chlorellaceae   Chlorella   LM/DG/18S 

Zygnematales  Mesotaeniaceae   Mesotaenium  LM/DG 

Zygnematales  Zygnemataceae   Zygnemopsis   LM/DG/18S 

Ulotrichales  Ulotrichaceae   Stichococcus   LM/18S 

Klebsormidiales  Klebsormidiaceae  Klebsormidium   LM/18S   

Naviculales  Pinnulariaceae   Pinnularia   LM/DG/18S 

Euglenales  Euglenophyceae   Euglena    LM 

Porphyridiales  Porphyridiaceae   Cyanidium   LM 

Schizopyrenida  Vahlkampfiidae   Vahlkampfia   LM 

Schizopyrenida  Vahlkampfiidae   Naegleria  LM 

Actinophryida  Actinophyridae   Actinophrys   LM 

Kinetoplastida  Bodonidae   Bodo   LM 

Ebriida   Cercomonadidae   Cercomonas   LM 

Ochomonadales  Ochromonadaceae  Ochromonas   LM 

Labyrinthulida  Labyrinthulidae   Labyrinthula  LM/18S 

Bdelloidea  Philodinidae   Rotaria    LM 

Stichotrichida  Oxythrichidae   Oxytricha  LM/DG/18S 

Hymenostomatida  Turaniellidae   Colpidium   LM 
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Table 4. Sequence identity of excised DGGE bands.  

 

Sample  Most closely related  % Similarity Taxonomic group Bands 

 

AG  Chlorella sp.   98%  Chlorophyta  2 

  Chlamydomonas pitschmanii 98%  Chlorophyta  2 

  Pinnularia cf. interrupta  96%  Bacillariophyta  1 

  Hobsonia santesonii  89%  Fungi   1 

Iz-Iz  Dunaliella parva   97%  Chlorophyta  2 

FE  Oxytricha granulifera  98 %  Ciliate   1 

Chlorella sp.   99 %  Chlorophyta  2 

Mesotaenium kramstai  97%  Chlorophyta  2 

ANG  Oxytricha granulifera  98%  Ciliate   1 

Chlorella sp.   99%  Chlorophyta  3 

Pinnularia cf. interrupta  96%  Bacillariophyta  1 

NUR  Zygnemopsis circumcarinata 94 %  Streptophyta  3 

  Pinnularia cf. interrupta  98%  Bacillariophyta  2 

RI  Dunaliella parva   97 %  Chlorophyta  1 

  Chlorella sp.   97%  Chlorophyta  1 

CEM  Chlorella sp.   99%  Chlorophyta  1 

  Chlamydomonas pitschmanii 98%  Chlorophyta  3 

Oxytricha granulifera  98%  Ciliate   1 

Dunaliella parva   97 %  Chlorophyta  1 

STB  Chlorella sp.   99%  Chlorophyta  3 

Pinnularia cf. interrupta  96%  Bacillariophyta  1 

EST  Chlamydomonas pitschmanii 98%  Chlorophyta  4 

  Hobsonia santesonii  89%  Fungi   2 

  Chlorella sp.   99%  Chlorophyta  3 

BRR  Hobsonia santesonii  89%  Fungi   2 

LPC  Oxytricha granulifera  98%  Ciliate   1 

Dunaliella parva   97 %  Chlorophyta  2 

Chlamydomonas pitschmanii 98%  Chlorophyta  3 

 

The identity, % of similarity of the closest relative found in GenBank database is indicated. Bands 

column indicates the number of bands per sample that yielded the same identity. The most closely related 

species corresponded to the first known relative. 
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Figure 1.  Schematic map of the Río Tinto from the source near the town of Nerva to 

the ocean near the town of Huelva.  The relative location of each sampling site is 

shown. Inset in lower right shows general location of the river in Spain, and at upper 

left is a more detailed map of the headwaters. 

 

Figure 2.  Sampling locations and microbial eukaryotic biofilms found in the river. 

Scale bar = 5 cm. 

a) View of the origin of the Río Tinto. 

b) Panoramic view of the sampling station BRR. 

c) View of LPC. 

d) Green filaments formed mainly by Zygnemopsis and Klebsormidium located at 

the origin. 

e) Cyanidium biofilm at RI. 

f) Biofilm of diatoms at ANG. 

g) Euglenas and diatoms are main generators of biofilms located at NUR. 

h) Biofilm formed by Cyanidium and diatoms located at CEM. 

i) Biofilms of Euglena, Chlamydomonas and fungi at EST. 

 

Figure 3.  The percentage seasonal distribution of each eukaryotic taxa at each 

sampling site as determined from microscope counts. 

 

Figure 4.  Total cell abundances of eukaryotic taxa at each sampling site as determined 

from microscope counts.   

 

Figure 5.  Eukaryotic community profiles based on specific amplification and DGGE 

separation of 18s rRNA gene sequences from the different sampling stations. 

 

Figure 6.  Phylogenetic tree based on 18S rRNA sequences. The tree was inferred by 

neighbor-joining analysis of approximately 500 homologous positions of 18S rDNA 

sequence.  New isolates are indicated in bold. Published sequences from organisms 

isolated in Río Tinto are indicated in bold and italics. 

 

Figure 7.  Two dimensional plot of the Principal Component Analysis (PCA) 

performed for the whole dataset including physicochemical and biological data.   
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