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Abstract 

Toothed whales produce short, ultrasonic clicks of high directionality and source level to probe their 

environment acoustically. This process, termed echolocation, is to a large part governed by the properties of 

the emitted clicks. Therefore derivation of click source parameters from free ranging animals is of increasing 

importance to understand both how toothed whales use echolocation in the wild and how they may be 

monitored acoustically. This paper addresses how source parameters can be derived from free ranging 

toothed whales in the wild using calibrated multi-hydrophone arrays and digital recorders. We outline the 

properties required of hydrophones, amplifiers and analog to digital converters, and discuss the problems of 

recording echolocation clicks on the axis of a directional sound beam. For precise localization the 

hydrophone array apertures must be adapted and scaled to the behavior of, and the range to, the clicking 

animal, and information on hydrophone locations is critical. We provide examples of localization routines 

and outline sources of error that lead to uncertainties in localizing clicking animals in time and space. 

Furthermore we explore approaches to time series analysis of discrete versions of toothed whale clicks that 

are meaningful in a biosonar context. 
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Introduction 

Echolocating toothed whales emit ultrasonic clicks to acquire information about their environment and to 

find food by reception and analysis of echoes returning from ensonified objects in the water column and the 

bottom (Au, 1993). The performance of a biosonar system is partly dictated by the source properties of the 

emitted clicks (Au, 1997; 2004) in that high amplitude signals may ensonify more distant targets and a 

higher directionality (figure 1A) reduces the number of unwanted echoes (also called clutter). The temporal 

and spectral properties of the clicks determine the information that can be derived from returning echoes. 

The ability to resolve the location of a target as well as its size, shape and material follow from the properties 

of the signal waveform (Au, 1993). A broad bandwidth of the source signal improves these abilities (Brill et 

al., 1992; Roitblatt et al. 1995). The detection range increases with the transmitting and receiving 

directionality, which in turn depends on the dominant wave lengths of the sonar signal relative to a fixed 

transmitting aperture. Shorter wavelengths on a fixed transmitting aperture increase the directionality both on 

the transmitting and receiving side. Higher frequencies reduces the incoming noise levels with masking 

potential  (Wentz, 1962)., but will also lead to a higher absorption sound energy in the medium (Urick, 

1983). Thus, there is a trade off in terms of the range, noise levels, clutter reduction and resolution for a 

given biosonar as dictated by the transmitted signals and the sound producing structures of the echolocating 

animal emitting them. For example, the source properties of sperm whale echolocation clicks with very high 

source levels at 15-20 kHz show that these signals hold the potential to operate in a long range biosonar 

system (Madsen et al. 2002; Møhl et al., 2003), whereas the low amplitude, 130 kHz clicks from small 

toothed whales such as harbor porpoises and pygmy sperm whales preclude anything, but use in short range 

biosonar systems (Au et al., 1999; Madsen et al., 2005). Source properties of echolocation clicks are also 

relevant for passive acoustic monitoring with towed arrays (Barlow and Taylor, 2005), sonobuoys (Levenson 

1974) and automated porpoise detectors ( e.g. Tpods) for optimizing detection routines and classification of 

species on the basis of acoustic cues. 

Echolocating animals point the sound beam on the target of interest (Au, 1993), so for a meaningful 

evaluation of the consequences for performance of a biosonar system, it is of paramount importance that the 

source properties are derived for clicks on or close to the acoustic axis of the sound beam (figure 1A). It is 
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not only the acoustic intensity which differs greatly with the recording aspect relative to the animal, but also 

the temporal and frequency properties of the signal changes (figure 1A). Clicks recorded on the acoustic axis 

of the transmitting aperture are generally of broad bandwidth and short duration. As the recording aspect 

increases, the frequency content decreases, as the high frequency components are more directional than the 

low frequency ones. Sound does not come from a point source in the toothed whale nasal complex, but from 

an extended aperture of many small sources, which means that the duration of the click increases, as sound 

produced by various parts of the source arrives with increasing delays. For some species of toothed whales, 

such as porpoises, dwarf and pygmy sperm whales and dolphins of the genus Cephalorhynchus producing 

narrow band high frequency signals, these distorting effects are small (Au et al. 1999), because of the smaller 

potential for interference.  

For on-axis measurements in captivity the animal can be trained to hold station in a hoop or on a bite 

plate and transmit clicks towards an array of hydrophones in front of it (Au et al., 1974). Such investigations 

have provided critical information on the performance of toothed whale biosonar, and have formed the basis 

for formulating meaningful parameters and models for emission and use of toothed whale sonar signals (Au, 

1993). However, as shown for bats (Surlykke and Moss, 2000), it can be questioned if data on the 

transmission system from trained animals studied in captivity are representative of the signals free ranging 

animals produce while using their biosonar for orientation and food finding in natural habitats (Au, 1993; 

Au, et al., 2004, Au and Herzing, 2003, Madsen et al., 2004ab). With the exception of rare open water 

experiments (e.g. Au et al., 1974; Murchinson, 1980), animals in captivity are normally recorded in small 

tanks where their sonar signals are of much lower amplitude than those recorded in the field, and with a 

much lower frequency emphasis and therefore directionality (Au 1993). Secondly, housing and training of 

captive toothed whales is costly, rendering derivation of source properties of clicks from all toothed whale 

species by means of capture and training impractical at best. Accordingly, there are good arguments for 

quantifying toothed whale sonar signals in the wild in habitats and in behavioural settings such as foraging 

for which the biosonar systems have evolved.  

Field recordings are logistically challenging and must often take place in challenging weather 

conditions and in the presence interference from other sound sources or with more than one vocally active 
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species present. Moreover, estimation of source parameters of directional, high pressure transients, like 

toothed whale clicks, from moving sources, requires multiple receivers connected to calibrated recorders 

with sufficient bandwidth and dynamic range to handle such signals. 

The use of hydrophone arrays for bioacoustic research at sea was pioneered in the 60’s and 70’s by W. 

Watkins and W. Schevill who recorded a large number of cetacean and pinniped species (Watkins and 

Schevill, 1972 and others), but employed little quantitative analysis on the recordings. Later on, Møhl and 

coworkers (Møhl et al., 1991) used a deep vertical array of hydrophones to localize echolocating narwhals 

and estimate source parameters of their clicks. These studies documented for the first time that free-ranging 

toothed whales could generate source sound pressure levels just as high as or higher than documented for 

trained animals engaged in long-range target detection experiments (Au et al., 1974). It was also 

demonstrated that foraging free-ranging toothed whales, in analogy with echolocating bats, produced high 

repetition buzzes during the final stages of prey capture (Miller et al., 1995).  

Up until recent years, multi-channel recorders with sufficient bandwidths were only available in the 

form of analogue tape recorders (Diercjks et al., 1973; Weber, 1963). Unfortunately, high speed analog 

recording systems have limited dynamic range and are large, expensive and cumbersome to handle. Analysis 

of recordings stored on magnetic tape is either hampered by the time consuming processes of analog signals 

analysis or often by subsequent less-than-real time digitization of the analog signals (see Watkins and Daher, 

1991). Development of high speed digital recorders and PC based signal processing of discrete signals have 

made recording and derivation of source properties of toothed whale clicks much less expensive and less 

cumbersome, and therefore accessible to a larger community of researchers. The use of digital recording gear 

to quantify source properties of biosonar sound sources underwater is nevertheless not straightforward and 

researchers at sea are faced with an array of pitfalls and technical challenges in concert with questions of 

how to approach the analysis of directional ultrasonic sound pulses. 

Here we provide a technical overview and a critical evaluation of methods to record and quantify 

ultrasonic echolocation clicks from free-ranging toothed whales at sea using digital, multichannel recording 

systems. We outline array configurations, specifications, and calibration of hydrophones and amplifiers 

suited for recording and localization of ultrasonic transients from toothed whales, and we discuss signal 
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Background 

Sound consists of particle motions that create a pressure wave propagating away from the sound source at a 

sound speed determined by the properties of the medium. A sound field is therefore made up by a particle 

velocity component (v) and a pressure component (p), and their product defines the acoustic intensity (I):  

I = p·v, 

The particle velocity is given by the pressure divided by the acoustic impedance of the medium. In the 

acoustic free field, far from the sound source and any reflecting boundaries, the acoustic impedance is the 

product of the sound velocity c and the density of the medium (ρ). Under those circumstances the sound 

intensity may therefore be calculated as  

 

I = p2 / (ρc). 

 

Usually, we express the sound intensity in decibel units: 

 

10 log10 (I / I0) 

 

where I0 is the intensity of a plane wave with an rms sound pressure of 1 µPa. 

Accordingly, we quantify the sound pressure as  

 

dB re µPa = 20 log10 (p / p0) 
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where p0 is reference sound pressure of 1 µPa quantified in the same way as the measured pressure p. The 

pressure wave amplitude is normally decreasing in magnitude as the sound pulse propagates away from the 

source. The transmission loss (TL) is defined as the ratio between the acoustic intensity one meter in front of 

the animal (I
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1m) to the acoustic intensity at a distance r from the animal (Ir). By transforming to logarithmic 

units this ratio becomes a difference instead (Urick, 1983): 

    TL = 10 log10(Ir /I1m) =20 log10(Pr / P1m) = SL – RL. 

 

SL is the source level, or the acoustic intensity measured at or back calculated to one meter on the acoustic 

axis of the animal in decibel units, 20 log10 (p1m/p0), where p1m  is the acoustic pressure 1 m from the source, 

and p0 is a reference pressure of 1 µPa in water.  The received level (RL) is defined as 20 log10 (pr/p0), where 

pr is the acoustic pressure at a distance r from the source. 

Thus, if the transmission loss is known, the source level can be derived from measurements of the received 

level (Urick, 1983): 

 

SL = RL + TL. 

 

The apparent simplicity is seductive as it contains two terms that must be interpreted with great care. First, 

the received level must be measured in an unambiguous way with relevance for the hearing/sonar system of 

the animal in question. Secondly, the transmission loss (TL) must be known. In its most basic form the 

transmission loss consists of two parts: geometric spreading and absorption. Geometric spreading is caused 

by the sound energy being distributed over an expanding surface analogous to the ever-expanding ring of a 

wave created by dropping a stone into the water. In a boundary-free, iso-velocity medium, the sound wave is 

expanding with the distance r to the sound source as if on the surface of a sphere. The surface area of the 

sphere is increasing by r2, and the acoustic intensity is thereby reduced proportional to r-2.  This is so-called 

spherical spreading (or inverse square loss) where the sound intensity in decibel units decreases by 20 log10 

(r). If the sound energy is channeled between two reflective surfaces that are close together relative to the 

duration of the sound pulse, the sound wave is expanding as cylindrical spreading by which the acoustic 
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intensity decreases by 10 log10 (r). In many real situations, the geometric transmission loss will be in-

between cylindrical and spherical for long or continuous sounds (Richardson et al., 1995). However, from a 

geometric calculation for ranges and bottom depths of interest here (up to 100 m range and more than 1 m 

away from the surface and the bottom), the spherical spreading is a reasonable approximation for the short-

duration and very directional toothed whale signals (Figure 2). Nevertheless, measurements of the 

transmission loss of toothed whale signals in various habitats should be conducted to test this assertion, 

especially when recording at long ranges of e.g. sperm whale echolocation clicks.  

Absorption is a complicated process caused by molecular interactions induced by the pressure 

fluctuations. It may be looked at as sound being lost due to friction, e.g. sound energy being transformed into 

heat. Absorption is highly frequency and temperature dependant, and in the frequency range of interest for 

toothed whale biosonars it can be approximated by (Au 1993):  

α = A B f2 / (B2 + f2) dB / m, 

where f is the frequency (in Herz) and the other parameters are given by  

A = 48.83x108 + 65.34 x10-10 T  s/m

B = 1.55 x107 (T + 273.1) exp (-3052/(T+273.1)) Hz 

T = temperature in degrees Celsius

(f = frequency in kHz). For broadband signals, higher frequencies will attenuate faster than lower ones. Thus, 

the transmission will low pass filter the signal and thereby change its temporal and spectral structure. This is 

important to consider when measuring toothed whale signals at long range. Consequently, absorption can be 

ignored for sperm whale clicks at 15 kHz recorded at 500 meters (<1dB absorption), but must be considered 

for a porpoise click at 130 kHz at the same  (>20 dB absorption at 500m) and much shorter ranges. 

 

Combining geometric spreading and attenuation, the transmission loss may be quantified as 

     

TL = 20 log (r) + αr. 
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This formula assumes spherical spreading, applicable within a certain range depending on the signal duration 

and depth of the hydrophone, sea floor and the clicking animal. On top of this, the transmission loss is 

affected by several other processes. A varying sound velocity of the medium will cause the sound waves to 

bend, very much like optical rays through a lens. This refraction may significantly affect the transmission 

loss at larger ranges (Lynch and Kuperman, 2003), but for distances of interest here (normally less than 100 

meters, except for sperm whales) the problem is small. Sound will also be scattered by objects in the medium 

that are large enough relative to the dominant wavelengths of the sound to provide efficient backscatter.  
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A recording chain for underwater recordings normally consists of a hydrophone, a preamplifier,and a band-

pass filter connected to a digital recorder (figure 3). The hydrophone is normally a piezo-ceramic pressure to 

voltage transducer that generates a given voltage (V) per Pascal (Pa) of sound pressure that is impinging on it 

(Lewin 1973). Given the large dynamic range of received sound pressures and the general use of the dB 

scale, hydrophone sensitivity is specified in dB re 1V per µPa. For example, a hydrophone with a sensitivity 

of -180 dB re 1V per µPa provides 1 nV per 1 µPa of sound pressure impinging on it (20log10(10-9V/1V) = -

180 dB re 1V) , and a hydrophone with a sensitivity of -200 dB re 1V per µPa would be 20 dB (10 times) 

less sensitive. Another way of looking at it is simply that the hydrophones will generate 1V if exposed to 180 

and 200 dB re 1µPa, respectively. Hence, an output of 0.5 V (- 6 dB re 1V) from a hydrophone with a 

sensitivity of -180 dB re 1V per µPa means that a sound pressure of 174 dB re 1µPa (180 dB re 1uPa – 6dB) 

is impinging on it. Thus, the sound pressure level, z, impinging on a hydrophone is simply given by the 

voltage, y, in dB re 1V, plus the sound pressure, x, it takes to generate 1V in the hydrophone minus any gain 

used: 

z dB re 1 µPa = GainVyVPaVxdBre −+ )1/(log20/1 10µ  23 

24 

25 

26 

The sensitivity of hydrophones is frequency dependant with a maximum sensitivity at the resonance 

frequency of the piezoceramic element. Generally for good hydrophones, the frequency response is 

acceptably flat (<±2 dB) below the resonance frequency (figure 4a). It is therefore important to use a 
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hydrophone that has a resonance frequency well above the frequency range of interest (figure 4a). For 

recording ultrasonic clicks of toothed whales, this calls for hydrophones with small piezoceramic elements, 

which in turn are quite insensitive (less voltage per µPa). Another argument for using a small or spherical 

hydrophone elements is that non-spherical hydrophones become directional when the wavelength of the 

sounds impinging on it is comparable to or smaller than the physical dimensions of the hydrophone element 

(Figure 4b,c). By using hydrophones with small spherical or cylindrical piezoceramic elements their 

receiving beam pattern is close to omnidirectional also at high frequencies (figure 4b,c), and can therefore be 

used to measure ultrasonic transients from toothed whales without correcting for directional sensitivity.  

The low sensitivity of small piezoceramic elements can to some degree be countered by introducing a 

preamplifier next to the element as an integrated part of the hydrophone. This means that the hydrophone 

effectively becomes more sensitive, and that the output can be driven in long cables without having the 

capacitance of the element and the resistance of the cable affecting the sensitivity and the frequency response 

of the hydrophone. The use of small hydrophone elements means that the resulting signal to noise ratio will 

be poorer, and therefore such hydrophones, even with good preamplifiers, cannot be used to record natural 

ambient noise levels at low wind speeds (Wentz, 1962). Thus, there is a trade off between choosing small 

hydrophone elements for obtaining a sufficient flat recording bandwidth with omnidirectional sensitivity, and 

at the same time maintain an adequate signal to noise ratio in the recordings. 

Hydrophones should come with specification charts stating their sensitivity as a function of frequency 

and direction (fig 4A). However, with or without calibration charts it is good practice to check the overall 

sensitivity through calibration ideally prior to and after every recording. Recording of a calibration signal 

through the entire recording chain and generation of a wave file with a known sound pressure level is 

reassuring for subsequent derivation of absolute sound measures of toothed whale clicks. Calibration can be 

done with a pistonphone, by insert voltage calibration, relative to a hydrophone of known sensitivity or by 

reciprocity calibration (Urick, 1983), but should be done in a way that ensures that the hydrophone is 

calibrated in the frequency range of interest. 

We will not deal with analog recorders here (see Weber 1963, Diercks et al., 1971; Watkins and 

Daher, 1992 for use of analog tape recorders), but focus on digital recordings of high sampling rate. A digital 

Recording of ultrasonic clicks 



Madsen & Wahlberg Page 11 10/8/2006 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

recorder is based on an analog to digital converter (ADC) that creates a discrete time series from an analog 

voltage input (figure 3). The maximum frequency, the so-called Nyquist frequency, at which a signal can be 

unambiguously described requires at least 2 samples per pressure/voltage cycle (the Nyquist sampling 

theorem), and theoretically any frequency below the Nyquist rate can be represented unambiguously. For 

reasons listed below, it is prudent to sample fast enough that the Nyquist frequency (sampling rate/2) is 

significantly higher than the highest frequency of interest. 

The effective dynamic range of a recording system provides the range of resolved amplitudes that can 

be covered between the system noise floor and saturation (clipping). The noise floor is defined by the 

combination of the noise contributions from each active and resistive component in the recorder from the 

hydrophone up to and including the ADC and can even include quantization noise from audio compression 

on the digital side. Usually, however, the noise floor is dominated by one contribution, almost invariably, 

either the preamplifier immediately following the hydrophone or the ADC.  Clipping occurs whenever the 

signal is too large to be represented by the voltage or digital numbers available. It too can occur anywhere in 

the recording circuit but is most likely to happen in the ADC. The peak-to-peak dynamic range of an ADC 

(i.e. the ratio of the largest signal that can be represented without clipping to the maximum quantization 

noise) is given by 2N, where N is the number of bits (nbits in figure 3). For a sine-wave input, the RMS 

dynamic range is 2N+3.5 dB. Each bit therefore provides 6dB of dynamic range. For example, an 8 bit ADC 

provides 256 quantization steps (28, 48 dB pk-pk dynamic range), whereas a 16 bit ADC provides 65376 

points (216 or 96 dB). In reality, few ADCs will achieve their theoretically dynamic range, and performance 

could be as much as 10 dB worse depending on other noise sources in the ADC, aliased noise due to an 

inadequate anti-alias filter, as well as noise coupled through its power supply and ground circuit. 

Nonetheless, an ADC with more bits will generally provide a larger dynamic range, which will allow the 

recording system to handle larger fluctuations in the received sound pressure levels without adjusting the 

gain settings, provided that the dynamic range is not limited by other parts of the recording chain. The price 

to pay for more than 8 bits is that the size of the wav file is doubled for the same sampling rate up to and 

including 16 bit. For example 500 ksamples/s at 8 bit generates 0.5 Mb/s per channel, whereas a 12, 14 or 16 

bit ADC will generate 1 Mb/s at the same sampling rate (in the computer, 12 bits will be stored as a 16 bit 
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number) per channel. There are 24 bits and higher ADC’s available, but these rarely offer more than 100 dB 

of dynamic range, i.e., an effective number of bits of 16-17 and there is little advantage in preserving the 

superfluous bits in most situations. If the gain setting in the recording chain is adjusted properly, it is our 

experience that the 80-90 dB of real dynamic range of a 16 bit ADC can handle the range, source and 

directionality induced fluctuations in received levels of toothed whale clicks effectively. Received levels of 

toothed whale echolocation clicks may in some cases exceed 200 dB re µPa which means that it is not 

possible to use the same 12 or 16 bit ADC with the same gain settings to make simultaneous recordings of 

the low ambient noise levels at ultrasonic frequencies (Wentz, 1962). 

It is of paramount importance to measure the dynamic range of the entire recording chain under 

realistic conditions (e.g., with partly discharged batteries etc.) because limitations in the dynamic range that 

go undetected can lead to erroneous conclusions on the dynamics and properties of the toothed whale sound 

generator. For example, the received peak or peak-to-peak amplitudes of clicks recorded from an 

approaching toothed whale might appear to be independent range of the animal if there is clipping anywhere 

in the recorder. Calculating the source level of the animal from these measurements could lead to the 

interpretation that the animal was reducing its source level as it approached the hydrophone array by 

20log(range), so-called automatic gain control (see Au and Benoit-Bird 2003 for a treatise), even if, in 

reality, the source level was invariant. It should be noted that it is not sufficient to look for +/- full-scale 

numbers in the ADC output to detect clipping although this is always a good thing to do as well. If clipping 

occurs before the ADC, e.g., in a preamplification stage, the flattened peaks of the signal will become 

rounded after passage through the anti-alias filter and so may appear as more-or-less normal clicks when 

digitized.  

Localization of the sound source with multiple receivers requires synchronized sampling of a number 

of sound channels in the ADC. This can either be achieved by sharing a single high speed ADC among the 

channels (a process known as multiplexing) or by having multiple ADCs with each one dedicated to a single 

channel. The problem with a multiplexed file from N channels is that there will be a phase delay of (1/fs) x N 

seconds between the channels that must be compensated for when looking at time of arrival differences of 

the same click on different channels.  
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Depending on the hydrophone sensitivity and the voltage clipping level of the analog to digital 

converter (ADC), it may be necessary to amplify the hydrophone output before digitization. This is normally 

done in an external conditioning box with variable gain and filter settings. If the hydrophone is without a 

built-in preamplifier, the conditioning box should have a suitable high input impedance to avoid unwanted 

high pass filtering of the signal (see below) and a low output impedance to avoid attenuation when coupled 

to the ADC. Before digitization, a band pass filter is necessary. Low frequency noise must be reduced to 

avoid saturating the recording system. If signal components above the Nyquist frequency (sampling rate 

(fs)/2) are not filtered out, energy at frequencies above the Nyquist frequency will be folded back during 

digitization creating aliasing ambiguity and noise. For recording of ultrasonic clicks from toothed whales, a 

high pass filter at 1 kHz is often suitable. If there is no preamp built in to the hydrophone, a one pole (-6 

dB/octave) high pass filter can be made in the conditioning box simply by choosing its input impedance 

properly. Given a hydrophone with a capacitance C (provided by the manufacturer), and a desired -3 dB cut 

off frequency of the filter of f
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0, the input resistance of the conditioning box should be R = 1/(2πf0C). The 

anti-alias low pass filter should be located as close as possible to the ADC to avoid picking up high 

frequencies in the cables between filter and ADC. It is tempting to use a steep, high order anti-aliasing filter 

to maximize the usable bandwidth below the Nyquist frequency while still filtering the frequencies above the 

Nyquist frequency efficiently, but that can cause ringing, dynamic range limitations and phase matching 

problems. These difficulties are substantially avoided by using a lower order (e.g., a 4-6th order 

Butterworth)_low pass filter that starts well below the Nyquist frequency. A good rule of thumb is to sample 

at least three times faster than the highest frequency of interest. For some toothed whale signals a bandwidth 

of 150 to 200 kHz would be required, which in turn calls for a sampling rate of 500-600 ksamples/s per 

channel to avoid aliasing problems. An elegant way to address aliasing problems is to use a sigma-delta 

converting ADC. This type of converter, common in modern audio recording equipment and PCs, samples at 

a very high rate and then combines samples digitally to reduce the sampling rate using a steep digital anti-

alias filter. 
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Acoustic localization and array configurations  

Localization of a vocalizing animal is important in many studies. One way to accomplish this is to record the 

sound of the animal with an array of receivers (Figure 5). A signal emitted by the source will arrive at the 

various receivers with different time delays, due to different propagation path lengths from the source to the 

receivers. For a certain source location relative to the array, there will be a certain set of time delays. It is 

possible to use these time lags to calculate the location of the source, and thereby the spatial relationship 

between the source and the receivers needed to estimate the transmission loss. 

Consider first the problem of localizing a sound source in a 2-dimensional situation (Fig. 5). From 

each pair of receivers the signal time of arrival difference (TOAD) can be measured. Each such TOAD 

restricts the possible location of the source to a hyperbolic curve, having its axis in the direction of the line 

connecting the two receivers. With one more receiver, another hyperbolic curve can be generated, and the 

source is ideally restricted to the intersection of the two curves.  

Adding the third receiver will actually add two hyperbolic curves, as there will be two TOADs 

generated by the additional reception of the click, one relative the first and one relative the second receiver. 

However, it follows that one of these TOADs will be a function of the other one, and provide no new 

information in on sound source location.  

While horizontal 2-dimensional localization may be feasible for some terrestrial situations, it is usually 

not feasible for toothed whales moving in a 3-D world (Wahlberg et al., 2001). For localization in three 

dimensions, each TOAD restricts the source to a hyperboloid surface. Using the line of argument as in the 2-

D example above, three such surfaces are needed to restrict the source ideally to one point. Thus, three 

receivers are needed to pinpoint the source location in two dimensions, whereas four receivers are needed in 

three dimensions. In some source-receiver constellations there may be two source locations generated by 

each set of TOADs, and here an extra receiver is needed to resolve the ambiguity (Spiesberger 2001). 

It is important to realize that if only a minimum number of receivers are used, there will be no explicit 

information available on how well the localization system performs. The hyperbolas or hyperboloids will 

always (except for some pathological cases) render a single and therefore at first glance a precise result (a 
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perfect intersect), independent of the error in data fed to the localization algorithm. The situation is similar to 

the one using only two Cartesian data points to determine the slope of a line. Using linear regression the line 

will perfectly intersect the two data points. However, we will have no chance of knowing how accurate the 

determined slope is. This can only be achieved from increasing the number of data points. Similarly, more 

receivers are needed to determine how well the hyperboloids intersect. A well-defined intersect from many 

hyperboloids provides considerably more confidence in the derived source location, compared with only 

having one such intersect. The drawback of this is that more receivers are needed, adding logistical 

challenges in the field and more data to process.   

The precision in the calculated source location is depending on the information fed into the 

localization algorithm. For good localization, precise information is needed on the receiver locations, the 

TOADs and the sound velocity of the medium. The meaning of ‘good’ and ‘precise’ is determined by how 

accurate the investigator needs to know the location of the vocalizing animal. For smaller arrays (e.g. Au et 

al., 2003, Schotten et al. 2004, Madsen et al., 2004), inter-receiver locations may be obtained with a 

measuring rod, and channel synchronization is obtained from connecting all receivers to the same recorder. 

For large arrays, the receiver locations may be deduced using signals emitted at known locations (Watkins 

and Schevill 1972, Wahlberg et al. 2001). Nowadays, the Global Positioning system has added an elegant 

way in which 2-D receiver locations and synchronization may be obtained from an arbitrary number of 

receivers located at any distance from each other (Møhl et al. 2001). 

Many toothed whale species forage at great depths, and biosonar signals may not be recordable from 

individuals close to the surface. To perform recordings at the depths where the animals are using their 

biosonar, hydrophone arrays may need to be deployed at great depths.  This poses some problems for the 

hydrophone array design (see Moehl et al., 2003; Heerfordt et al, in press) and the means by which they are 

deployed.  

In Table I different array configurations are outlined, rendering different number and kinds of source 

coordinates relative the receivers of the array. In general, the more receivers that are used, the more 

information can be obtained about the source location. Besides outlining the number of receivers required, 

Table I also shows that the geometric arrangement of the receivers is critical for the localization information 
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that can be derived. In general, optimal source location is obtained for array distances of the same order of 

magnitude as the source-to-array distance, and for sources ‘within’ the array, or in the direction 

perpendicular to the array’s geometric extension. For source level estimates, only the range from the 

receivers to the source is actually needed, and therefore a vertical linear array of sufficient aperture will do 

(e.g. Møhl et al., 1991, Madsen et al. 2004, Heerfordt et al, in press). Linear sparse arrays are favorable in the 

sense that the region of accurate localization extends quite far out from the array on its broadside axis. 

However, if information is also needed on animal movement and the directionality of the signals, a planar 

array may be more useful (e.g. Au et al., 2001; Rasmussen et al. 2004).  

Additional ‘virtual’ hydrophones may be constructed by using surface reflected source to receiver 

paths that can improve the vertical resolution of the localization. In calm waters, the surface reflected path to 

the hydrophone may be viewed as a signal reaching a receiver situated above the water surface at a height 

corresponding to the hydrophone depth. Additional reflexions on the bottom, surface-bottom et cetera may 

give even more virtual hydrophones. Thereby, hyperboloids can be generated from such reflections so that 

the location of the whale can be estimated from single-hydrophone recordings (e.g. Aubauer et al., 2000; 

Laplanche et al., 2004). Likewise, hyperboloids from virtual hydrophones can be used to improve the 

localization precision with multi-hydrophone arrays (Møhl et al. 1991, Wahlberg et al. 2001, Thode et al. 

2002). 

The location of the ‘virtual hydrophones’, and thereby their usefulness, is critically dependent on 

surface waves which may disturb the perfect mirroring of the sound path, and stability in hydrophone depth 

(Urick, 1983). Another issue with surface-reflected paths is that, as noted below, if the animal is pointing its 

beam upwards so that the surface reflected path is much stronger than the direct path, we may easily 

misinterpret the reflected path as being the direct one. For MINNAs there is no easy way to mediate such 

errors. For ODAs the problem is usually quite easily recognizable as it often results in one or several 

hyperbolas pointing towards a completely different point of intersection than most of the other ones. Almost 

any one working with sound localization of whales has experienced having flying whales or whales localized 

below the ocean floor. Such errors can be caused by an erroneous interpretation of click multipaths or by tilt 

in an assumed vertical array. Such obvious errors should be regarded as an excellent chance both to control 
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and debug the localization algorithms used, but also to carefully scrutinize the interpretation of the recorded 

signals.          

The coordinates of the source relative the receivers may be derived from the hyperbola intersects or 

through calculations. It is prudent to do both and only trust localizations, where the two independent methods 

render comparable results. For 3-D localization the hyperboloid plots can be projected on the vertical plane 

crossing one of the receivers and the best hyperboloid intersect (see Wahlberg et al. 2001).  

For calculating the source location, different approaches may be used. Most of them rely on the 

following basic scheme. Each signal impinging on a hydrophone results in an equation which we write as 

|ri-s|2 = (c Ti)2 

 

In this equation, |ri-s| is the distance between the source (s) and the i:th hydrophone (ri). Bold types denotes 

vectors, so the source has coordinates s = [sx,sy,sz], where the last element is omitted in 2-D cases. Similarly, 

each receiver has coordinates ri = [rix,riy,riz], where we again omit the last element in 2-D applications.  The 

sound velocity is denoted c, and Ti is the time it takes the signal to travel from the source to the receiver. 

There will be a total of N such equations, where N is the number of receivers in the array. 

When recording signals with an array, we may determine the receiver locations and the sound 

velocity, but we do not know the time of arrivals, Ti. What is known, however, are the time-of-arrival 

differences (τi) between any receiver and e.g. receiver no. 1. If the first equation is subtracted from the N-1 

other equations, and if we choose the coordinate system so that the first receiver is in the origin (0,0,0), we 

end up with the following set of equations: 

 

2 ri s + c2 τi T1  = - c2 τi
2  + |ri|2 , i = 2 .. N. 

 

For MINNA systems this equation may be solved for sx, sy and sz through elimination, rendering the source 

coordinates. For ODA systems there will be more equations than unknowns, and least-squares or other 

smoothing techniques may be used to derive the source location (see Wahlberg et al. 2001 and Spiesberger 

2001 for details). Another, and sometimes more reliable approach, for ODA systems  is to split up the 
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localization system into smaller MINNA ‘cells’, and derive an averaged source location from the MINNA 

locations (Spiesberger and Wahlberg 2002, Wahlberg 2003, Spiesberger 2005). 

As noted above and in Table I, different array geometries will render different numbers and types of 

source coordinates, and with a precision depending on many factors. For measurements of the source 

properties of toothed whale echolocation signals we find the linear and star-shaped arrays particularly useful. 

The linear array has the advantage of being able to cover a relatively large volume of the water within which 

it can localize sound sources with adequate precision. Three hydrophones are needed to derive the bearing 

and range to the sound source, which is sufficient for assessing the transmission loss and thereby the source 

level. Adding an extra hydrophone improves the reliability in the derived source location and thereby 

increases the effective range of the array. The distance between the hydrophones should be kept as large as 

possible, but not larger than the same signal can be recorded on all receivers. Also, the larger the inter-

receiver distances, the more difficult it is to keep track of the inter-receiver distance, and the general shape of 

the array unless differential GPS is used for each recording station.      

A disadvantage with the linear array is that it is not possible to estimate the animals’ 3-D swimming 

direction using consecutive clicks and thereby test if the animal’s body axis is generally pointing towards a 

hydrophone. A star-shaped array is more suited for this (Au et al.2003; Rasmussen et al. 2004). The 

localization algorithm and the on-array-axis localization accuracy for a star-shaped array have been 

published by Aubauer et al 2001. The drawback with this array type is that animals can only be localized 

with some confidence within a relatively narrow volume of water right in front of the array aperture. Also, 

most small planar arrays are MINNA systems that ideally should be augmented by an additional hydrophone 

to improve the confidence in the derived locations. 

The localization precision will critically depend on the degrees of freedom given by array shape and 

size, the source-receiver geometry, the signal type and the signal-to-noise ratio (SNR). Before determining 

which array is needed for what kind of signal at which range, it is important to consider the required 

accuracy. For source level measurements of interest here, a precision within a decibel is rarely crucial. As 

noted above it is above all the transmission loss estimates that determine the accuracy at which the source 

level can be computed. For spherical spreading with an attenuation no higher than that for harbour porpoise 
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signals (0.038 dB/m), a variation of 2 dB in transmission loss (and thereby in source level) corresponds to a 

maximum absolute error in range of about 20% out to a distance of 100 m (sloping dotted line in Fig. 6). The 

slopes of the lines are the effect of attenuation. All toothed whales known up to date have a lower center 

frequency than harbour porpoise clicks, and the signals will accordingly suffer from the same or less 

attenuation. The biosonar signals with lowest frequency emphasis known is generated by the sperm whale, 

having an attenuation of about 1-2 dB/km at 15 kHz. The effect on the transmission loss of sperm whale 

signals is also depicted in Fig. 6 as the almost horizontal lines. All other known toothed whale clicks will be 

found within the ‘V’ of the harbour porpoise and sperm whale data.   

Having determined the ranging accuracy needed, we may determine which array configuration is 

needed using error modeling. Such modeling can be done with many different techniques such as linear error 

propagation modeling (Wahlberg et al. 2001) or numerical modeling (Spiesberger and Wahlberg 2002). 

Numerical modeling is usually rendering the most reliable results (Spiesberger and Wahlberg 2002, 

Wahlberg 2003). Note that source localization precision is not only a function of the range to the receiver, 

but also to the source’s aspect to the array (figure 7). Conveniently, another nice feature with the linear array 

is that it will provide robust bearing estimates so that sources located close to the array axis may be extracted 

for further analysis with a high degree of confidence. 

Needless to say, it is clear that acoustic localization is a rather complicated process producing a large 

number of possible error sources for wrongly assessing the range between the whale and the receivers. It is 

therefore detrimental that both algorithms and hardware are regularly checked through calculating the 

location of sound sources produced at known locations around the array. 
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Analysis of array data 

Array data can be used to track and monitor vocalizing animals for use in behavioral and abundance 

studies (e.g. Wahlberg, 2002, others). Here we will address how array data from a calibrated hydrophone 

array can be used to derive source parameters of echolocation clicks from toothed whales. Having obtained 

array recordings, the signals may be localized with some precision and the transmission loss and source level 

can be determined. The derived levels will most likely vary tremendously for two reasons. First, toothed 
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whale echolocation signals are highly directional, with a 3 dB beam width in some species smaller than ±5 

degrees (Au 1993). Therefore, depending on whether the receiver is aligned with the animals’ acoustic axis, 

the received sound level may vary by more than 40 dB. Also, animals are known to vary their apparent 

source level by more than 20 dB in a single click train (Madsen et al. 2002).  

This poses a problem since we wish to record the on-axis source level of the clicks when assessing the 

sonar potential of the clicks. However, from merely inspecting the back calculated sound pressure level to 

one meter from the source, we have no way of telling a faint on axis signal from a powerful off-axis one. 

Off-axis signals may be relevant for passive acoustic monitoring, but have little value when evaluating the 

performance of toothed whale biosonar systems, and recording of clicks at varying degrees off-axis can lead 

to erroneous classification of sonar signals from the same species or animal into different click types, that 

may in fact to caused by varying degrees of off-axis distortion. Biosonar signals must therefore be recorded 

on or close to the acoustic axis of the transmitting aperture of the clicking toothed whale to quantify the 

clicks with respect to performance of the biosonar system and to render inter- and intra specific comparisons 

and classifications meaningful. Statistical treatment of clicks in the light of biosonar performance only makes 

sense for on-axis clicks. Subsequently, simultaneous recording of off-axis versions of the same click 

recorded on-axis can provide an array of useful information of the sound generating system, but only in 

conjunction with the on-axis version of the click. 

Acknowledging these problems, the concept of the Apparent Source Level (ASL) was introduced by 

Møhl et al (2000) (see figure 1). The ASL is defined as the back calculated acoustic intensity 1 m in any 

direction from the sound source. While this does not facilitate classification of on-axis signals, it provides a 

way to report the acoustic level back-calculated to 1 m, without knowing exactly in which direction relative 

to the sound source the signal was recorded. The term source level (SL) should only be used for sound 

pressure levels back-calculated to one meter on the acoustic axis of the animal (Urick, 1983). Quite often in 

the bioacoustic literature source levels are reported where it would be more appropriate to use the ASL 

instead. 

Several criteria have been used to determine whether or not a signal is recorded on axis. First, the 

relative amplitude difference between clicks recorded at the various receivers may be used to define the on 
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axis clicks as signals of highest amplitude as compared to adjacent receivers (Au et al., 2004) or within a 

certain amplitude difference, such as 3dB, compared to the same click on other receivers (Au and Herzing, 

2003). This criteria is only useful for clicks recorded within a distance where there will be a measurable 

reduction in received level due to directionality on adjacent hydrophones. The amplitude information in a 

click train, both within the same receiver channel and adjacent ones, can be used to define on axis signals as 

the one with the highest back calculated sound pressure level, assuming that the animal sometimes scans the 

sound beam across the receivers and ensonifying one of them with its on-axis signal (Madsen et al. 2003). 

The latter approach can be used in conjunction with a threshold for ASL that is considered to be high enough 

to represent an SL (Møhl et al., 2000, 2003), but that will inevitably introduce a bias of only quantifying 

clicks with high source levels (Møhl et al., 2003). Surface reflections may be used  to improve the 

confidence that the analyzed signal is on axis. If the surface reflexion has higher amplitude than the direct 

path, there is reason to believe that the animals acoustic axis is not pointing towards any of the receivers 

(Madsen et al. 2004).While the equal levels approach likely is too generous by accepting upwards 2/3 of all 

recorded clicks as being on-axis (Au et al., 2004), it is also clear that a minimum level approach will exclude 

many low amplitude clicks recorded on-axis (Møhl et al., 2003). 

For broadband signals (as are most toothed whale clicks) the spectral and temporal properties give 

additional clues to whether or not the signal is recorded on axis (Au ref, Madsen et al., 2004; Beedholm and 

Møhl 2006). The acoustic localization information from tracking the animal in a series of clicks may also 

hint to when the acoustic axis is most likely pointing towards the array, assuming that its acoustic axis is 

identical to the animal’s body axis as expressed by the pointing vector of the swimming direction and that 

localizations are accurate enough to derive a reliable velocity vector (Rasmussen et al. 2004). Irrespective of 

the technique used to determine if a signal is on axis, it is important to stress that no technique so far 

developed seems completely satisfying and none of the methods have been thoroughly ground thruthed 

under controlled conditions. Accordingly there is always a risk of including off axis clicks or excluding on 

axis clicks in the analysis. We recommend to use several of the above mentioned criteria and to be very 

specific about the implemented methodology and its caveats when reporting and discussing the data. 
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Analysis of discrete signals 

This section attempts to address how the source parameters of clicks can be analyzed on the basis of 

discretely sampled amplitude values in a way that is meaningful for quantifying the sound generator in a 

biosonar system. An analog to digital recorder (ADC) creates a discrete time series by sampling amplitude 

values of an analog voltage signal. The sampling rate (fs) defines how often the analog signal is sampled per 

second. The faster the sampling rate, the higher the frequencies that can be reproduced unambiguously (see 

Nyquist sampling theorem above). Time and frequency domains are linked via the Fourier transform and 

both approaches are useful to quantify when assessing the performance and properties of toothed whale 

biosonar (Au, 1993; Au, 2004). In the time domain, relevant parameters include click repetition rates, sound 

pressure and energy measures, and duration. In the frequency domain measures of frequency emphasis and 

bandwidth should be computed. 
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A) Amplitude and duration measures 

An often used proxy for the maximum range at which the toothed whale is acoustically searching for prey is 

the interclick interval (ICI), because toothed whales in captive trials normally use ICI’s longer than the two-

way travel time to the target (Au, 1993). Although the ICI may reflect the maximum time an echolocating 

toothed whale is prepared to wait for a returning echo, the actual two-way travel time to the target may be 

much longer for animals echolocating in the wild (Madsen et al., 2005). The short durations and well defined 

onsets of clicks make derivation of ICI straight forward and any click detector or measures by hand would 

normally suffice. If the time-bandwidth product (duration times bandwidth) of the signal is sufficient, higher 

temporal resolution in ICI’s can be achieved by using a high SNR on-axis click from the same recording as a 

matched filter.  

An absolute dB measure must be accompanied by a reference value along with information on how the 

magnitude of the sound pressure was quantified. Measures of magnitude for aquatic biosonars are due to lack 

of standardization variously reported in terms of peak-peak, peak-equivalent RMS, RMS and energy flux 

density measures (Au et al., 1974; Møhl et al., 1990; Au, 1993; Madsen et al., 2004). For the same transient 

waveform, levels in decibels may vary by 15 dB or more between different measures of pressure, rendering 
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meaningful comparisons difficult without detailed information about how the pressure amplitude was 

quantified. For a pure sine wave the ratio between peak-peak and rms is 9 dB, but for a-periodic signals, such 

as toothed whale click, the difference between peak-peak and RMS varies widely and can be 15 dB or more. 

The most common and straight forward measure for quantifying the magnitude of toothed whale clicks is the 

peak-peak sound pressure level (Au et al., 1974; Au, 1993), that can be read directly from an oscilloscope. 

However, since the mammalian ear operates as an energy detector, it is also relevant to include the rms and 

energy flux density measures of biosonar signals (Au et al., 1999).  

A peak to peak sound pressure level can be derived in a straight forward manner from a digitized 

version of the click (figure 8) provided that the sensitivity, the gain of the recording chain and the maximum 

peak voltage of the ADC are known. Let us consider a transient from a delphinid toothed whale (figure 8a). 

It is impinging on a hydrophone with a sensitivity of -206 dB re. 1V/µPa and is amplified by 20 dB before 

digitization by an ADC with a peak clip voltage of ±5V. It follows that a 1V input to the ADC from the 

hydrophone and amplifier corresponds to a received sound pressure of 186 dB re 1µPa.  An amplitude of 

unity (+1 or -1), corresponding to 5V into the ADC, in the discrete version of the click after digitization in 

the ADC must therefore equal a received sound pressure of 200 dB re 1µPa (peak) on the hydrophone (206 

dB re 1µPa/V - 20 dB + 20log(5V/1V)). It follows that a peak to peak amplitude from the discrete signal of 

1.57 (0.78 + 0.79 in figure 8d) is equivalent to a peak to peak sound pressure level of 20log(1.57) + 200 dB 

re 1µPa = 204 dB re 1µPa (pp).  

To approximate the rms value of a click, Møhl et al. (1990, 2003) used the peak equivalent rms 

(perms) measure that compares the peak pressure of a click with the rms measure of the calibration signal. 

The perms is still a peak measure and is by definition 9dB less than the peak to peak pressure. True rms 

measures of toothed whale clicks will depend on the size of the chosen window over which the squared 

pressure is averaged. This will almost always render values higher than 9 dB, and we strongly advocate 

calculation of the rms sound pressure rather than using the perms measure as a proxy for rms. 

The root of the mean of the squared pressure (RMS) of a plane wave in a time window from 0 to T is 

given by: 
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The length of the analysis window is critical for RMS measures of transient signals, since the duration 

determines the window over which the pressure squared should be averaged (Madsen, 2005). For the same 

transient waveform, the rms level will decrease with increasing duration of the averaging window. Various 

techniques have been used to define the averaging window for toothed whale clicks. The so-called D 

duration, which is given by the –10 dB end points relative to the peak of the envelope of the waveform, has 

been applied to determine the durations of narwhal clicks (Møhl et al., 1990). The envelope is computed by 

taking the absolute value of the analytical signal (consisting of the signal as its real part, and the Hilbert-

transformed signal as its imaginary part, Randall, 1987). As a variation of this approach, Møhl et al. (2003) 

used –3 dB end points relative to the peak of the envelope when computing rms measures of p1 pulses in 

sperm whale clicks. However, the use of the -3dB definition will render 2-3 dB higher rms measures than 

any other approach (Madsen, 2005) since only the highest amplitude values of the clicks are considered. We 

advocate either using the D-duration or a window enclosing a fixed proportion of the energy of the click, as 

both measures render about the same rms values (±1 dB) for good signal to noise ratios (Madsen, 2005). In 

the latter approach, the duration of transients is determined by using the relative energy in a window that 

incorporates the entire signal waveform along with short samples of noise on either side. For short duration, 

high SNR clicks from toothed whales a 95 or 97% energy approach has been implemented (Au, 1993; 

Madsen et al., 2004) (figure 8c). For example, for a 95% energy window, the onset of the signal would be 
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defined as the time at which 2.5% of the signal energy is reached, and the termination of the signal is defined 

as the time at which 97.5 % of the signal energy was reached. Using this method we find that the click 

depicted in figure 8a has a duration of 16 µsec compared to 17 usec derived with the -10 dB re peak of 

envelope approach. For very short clicks lasting few samples, it may be necessary to interpolate to achieve a 

better resolution (Madsen et al., 2004). 

 For the click of figure 8a, the rms amplitude of the waveform in the window making up 95% of the 

relative energy is computed to be 0.32 (figure 8d). Hence, the received rms sound pressure level can be 

calculated to be 20log(0.32) + 200 dB re 1uPa = 190 dB re 1uPa (rms). There is typically a difference of 13-

15 dB between the rms and the peak-peak pressure of most toothed whale clicks (Au, 1993; Madsen et al., 

2004). 

 The energy of a sound pulse is given by the intensity integrated over the pulse duration, and the 

intensity is proportional to the time-averaged pressure squared for a plane wave in an unbounded medium 

(Urick, 1983, Au, 1993). Hence, the energy flux density (dB re. 1µPa2s) of transients can be approximated by 

10log to the time integral of the squared pressure (sum of squared pressures for the discrete version of the 

signal) over the duration of the pulse (Young, 1970), which for the same duration, T, is the rms level (in dB) 

+ 10log(T): 

 

Energy flux density (dB re. 1µPa2s)   =     =dttp
T

)(log10
0

2∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ dttp

T

T

)(1log10
0

2  + 10log(T) 18 

19 

20 

21 

22 

23 

24 

25 

[T, window length  in seconds] 

 

 

Accordingly, we can compute the received energy flux density of the click in figure 8 by integrating the rms 

sound pressure over the signal duration:  

 

190 dB re 1µPa (rms) + 10log(22 x 10-6 sec) =  143 dB re. 1µPa2s. 
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The energy flux density on a dB scale (dB re. 1µPa2s) can be converted to Joule/m2 by dividing the squared 

pressure on a linear scale by the specific impedance Z (sound speed x density) of the medium. E.g. 143 dB 

re. 1µPa2s = (14 Parms)2s / (1500 m/s x 1040 kg/m3) = 0.13 mJoule/m2. Subsequently, the estimated ASL or 

SL can be generated by adding the transmission loss (TL = 20 log (r) + αr) to the received levels computed 

above. E.g. if the dolphin was 12 meters from the array and the click had the energy centered around 100 

kHz, the SL would be: 

204 dB re 1uPa (pp) + 20log(12m) + 12m*0.03dB/m (absorption at 100 kHz) = 226 dB re 1uPa (pp). For the 

click in figure 8 this corresponds to SL’s of 212 dB re 1uPa (rms) and 165 dB dB re. 1µPa2s (20 mJoule/ m2). 

 

B) Frequency domain11 
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The spectral properties of a digitized click can be quantified with the Discrete Fourier transform that links 

the time and the frequency domains of a signal. The most efficient calculation of a DFT is the Fast Fourier 

Transform (FFT), which can be used if the signal length (in samples) is a multiple of 2. The frequency 

resolution of an FFT-derived spectrum is given by the sampling rate (fs) divided by the FFT size. Thus, a 

256 FFT on a click sampled at 500 ksamples provides a frequency bin width in the spectrum of 1.95 kHz. 

Normally, discrete versions of toothed whale clicks will only be 10-100 samples long, which either leads to 

derivation of the frequency spectrum on the basis of a much larger window or to a spectrum with very coarse 

frequency resolution. A smaller bin width on a short signal can at first glance be achieved through zero 

padding (interpolation), where the signal is extended by a number of samples with a value of zero, but the 

actual resolution has not improved. In figure 9 we have computed the power spectrum of the click displayed 

in figure 8. The spectral characteristics of the signal are quantified from a 256-point FFT window 

symmetrical around the peak of the click envelope (the absolute value of the Hilbert tranformed version of 

the signal). The peak frequency (fp, kHz) is defined as the center frequency of the band with the highest 

amplitude of the spectrum. The centroid frequency (f0, kHz) is defined as the point dividing the spectrum in 

halves of equal energy (Au, 1993), which is a much more robust measure of the frequency emphasis of a 
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broad band click than the peak frequency (Madsen et al., 2004). Delphinid clicks often have bimodal spectra 

with two peaks more than an octave apart, but with small and varying amplitude differences across the 

spectrum. For such clicks the peak frequency can come out very differently for similar clicks, whereas the 

centroid frequency is a much more robust measure that uses the power distribution as a function of frequency 

in the clicks. The bandwidth (BW) of the signals can be paramerized by the –3 dB BW (kHz) and –10 dB BW 

(kHz) and by the centralized root mean square bandwidth (RMS-BW, kHz) (Au, 1993), providing a measure 

of the spectral standard deviation around the centroid frequency (f
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0) of the linear spectrum (figure 9). The 

RMS-BW can be used as a proxy for the frequency window over which the animal integrates both signal 

energy and noise (Møhl et al., 2003). 

 

DI estimation11 
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If we can assure that the same signal has been recorded both on and off the acoustic axis in known angles, 

this information may be used to assess the beam pattern (the acoustic intensity as a function of the angle to 

the acoustic axis). With no information on animal orientation relative the array, it must be assumed that the 

beam pattern is rotational symmetric, which is a reasonable approximation for most species measured to date 

(Au et al., 1986; Au et al., 1988; Zimmer et al., 2005, Beedholm and Møhl, 2006) with the exemption of 

Pseudorca (Au et al., 1995). Knowing the beam pattern given by the ASL as a function of off-axis angle we 

may calculate the transmission directionality index (DI). The DI quantifies the directionality of a signal, and 

is defined as the ratio between the source level intensity on the acoustic axis and the source level intensity of 

a hypothetical omni-directional sound source (where ASL = SL) radiating the same acoustic power as the 

sound source in question (Urick, 1983). A DI of 20 dB means that the source level is 20 dB higher than what 

would be obtained from an omnidirectional sound source emitting the same power. With the beam pattern of 

pressure (p) sampled and extrapolated at N number of angles v1 to vN, spaced ∆v apart, the directivity index 

can be approximated by (Møhl et al. 2003):       

 

DI = ))sin(/2log(10
1

vvp i
N

i i ∆∑ =
 26 
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The angular spacing ∆v should be reasonably small to obtain a good approximation of DI with this equation. 

A useful theoretical framework for modeling of radiation patterns of echolocation clicks is that of a circular 

piston (Au et al., 1978, Au, 1993). The sound transmission of a toothed whale forehead can be modeled by a 

flat piston of equivalent aperture with the same DI (Au, 1993), and the off-axis waveforms can be modeled 

with accuracy by convolving the on-axis waveform with the transfer function of a flat piston as a function of 

off-axis angle (Beedholm and Møhl, 2006).  The beam pattern given by the pressure, p, as a function of off-

axis angle (ϑ ) can described by a first order Bessel function using the wave number k times the equivalent 

aperture radius a (Au, 1993; Zimmer et al., 2005): 

8 

9 

)sin(
))sin((2))sin(( 1

0 ϑ
ϑϑ

ka
kaJPkaP =  10 

The broad band beam pattern can either be derived by integrating ))sin(( ϑkaP  with respect to frequency, 

or approximated with a pure tone signal at the centroid frequency of the radiated click in question. The 

problem of using a single tone approximation is that it leads to deep notches in the beam response that would 

never be generated for a broad band signal. The ka product (

11 

12 

13 

xax )/2( λπ , where λ is the wavelength and a is 

the radius of the transmitter) is a measure of the relationship between the effective transmission aperture and 

the radiated wavelength (here approximated by the centroid frequency of the radiated click). This measure 

comes in handy when assessing the relationship between the half power beam width ( ), the 

frequency emphasis of the echolocation click and the effective size of  transmitting anatomical structure. 

14 
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dBBeam 3−

For , which applies for known echolocating toothed whales, the DI can be approximated by (Urick, 

1983): 

1>>ka

DI )log(20 ka≈  21 

22 

23 
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And the half power beam width can be estimated as (Zimmer et al., 2005): 

 

kaBeam dB /1853
o≈−  

Recording of ultrasonic clicks 



Madsen & Wahlberg Page 29 10/8/2006 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

 

Consequently, the half power beam width is linked to the DI by (Zimmer et al., 2005): 

 

o1853 ≈− dBBeam x  20/10 DI−

 

When estimating the equivalent aperture of a toothed whale sound projection system, the dimensions 

normally come out as being smaller than the physical dimensions of the nasal complex of the whale, and the 

equivalent aperture estimate is larger for larger animals (Au et al., 1978; Au et al., 1988; Au et al., 1995). 

However, it is far from evident how the functional morphology of the nasal complex leads to the observed 

radiation pattern, and there is at present no well founded rationale behind the notion that the toothed whale 

sound generator should behave as a flat piston in an infinite baffle. The piston model should therefore be 

seen as a helpful tool to approximate and predict radiation patterns from toothed whales, but not as a de facto 

paradigm that can be forced on all observed radiation patterns. 

 

Other techniques 

Since derivation of source parameters in principle only requires knowledge on the range and the orientation 

of a clicking toothed whale with respect to a single calibrated receiver, it is possible to acquire the needed 

information without the aid of arrays of real and/or virtual hydrophones. Two recently developed techniques 

using onboard tags have provided elegant ways to derive source parameter estimates of echolocating toothed 

whales. Multisensor, archival tags, called Dtags (Johnson and Tyack, 2004) record sound with 16 bit 

resolution and at sampling rates up to 192 kHz along with animal orientation parameterized by 3-axis 

accelerometers and magnetometers sampled at 50 Hz.  

Zimmer et al. (2005a) used such an onboard tag in conjunction with a towed hydrophone system to 

derive source parameters of echolocation clicks from a tagged sperm whale. Knowing the depth of both the 

tagged whale and the towed hydrophone allowed for derivation of range between the whale and the receiver 

by exploiting multipath delays between the direct and surface reflected versions of the clicks. The relative 
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orientation of the whale with respect to the hydrophone in the far field was derived from the absolute 

pointing vector of the tagged whale and the depth and estimated GPS position of the towed hydrophone. This 

setup provided recordings of clicks in known aspects and ranges to the whale, generating the first 3-D 

radiation pattern of echolocation clicks from a toothed whale (Zimmer et al., 2005a). 

In a second study with Dtags, Zimmer et al., (2005b) used the novel approach of having two tagged 

echolocating Cuviers beaked whales recording each other during deep foraging dives. Both animals were 

tagged with Dtags recording clicks of the tagged whale and clicks of nearby conspecifics, including the other 

tagged whale. The time delays between emission and reception of clicks from one whale to the other and 

vice versa allowed for derivation of the range between the two tagged whales (Johnson et al., in prep). The 3-

axis orientation sensors of the tags provided the relative orientation of the whales for each click, which along 

with range between the whales allowed Zimmer et al., (2005b) to compute ASL as a function of off-axis 

angles. Subsequently, the off-axis angle versus ALS data provided the basis for estimating SL, DI and the 

spectral properties of the clicks. The advantage of having tagged animals recording each other is that they 

often dive to the same depth when foraging and that they stay fairly close together (Johnson et al., in prep). A 

possible bias is that they may try to avoid ensonifying each other with high sound pressure levels, which may 

lead to underestimation of the source parameters (Zimmer et al., 2005b) or that no on-axis clicks are 

recorded. 
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Table I. Summary of array types. Nr: number of receivers, MINNA: minimal receiver number array, ODA: Over-determined 

array. Ncoordinates indicates the number of source coordinates that are possible to derive with the array. In the first column, 

circles indicate receivers in the horizontal plain, bold circles are located in a different vertical coordinate. Parenthesis around 

examples of coordinates indicates that the coordinates may be ambiguous, e.g. when the source may be located on either side 

of the array plane. 

 

 

 

 Nr Geometry Array name Ncoordinates Examples 

o 1 Point single - - 

oo 2 Line stereo 1 (bearing) 

ooo 3 Line linear 2 (x, y), range 

o 

o o 
3 Plane 2-D MINNA 2 (x, y, bearing, range) 

o o   o 

o  o oo 
>3 Plane 2-D ODA, or 2/3-D >2 x, y, (z, bearing, range) 

o o   

o  o  
4 Volume 3-D MINNA 3 (x,y,z, bearing, range) 

o o   oo  o oo >4 Volume 3-D ODA >3 x,y,z, bearing, range 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recording of ultrasonic clicks 



Madsen & Wahlberg Page 36 10/8/2006 

Figure 1  1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

A) Radiation pattern of a click from an echolocating dolphin (Au, 1993) showing off axis distortion. 

B) The passive sonar equation applied to a clicking dolphin. SL is the back calculated sound 

pressure level (Received level (RL) + transmission loss (TL)) one meter from the source and on the 

acoustic axis. ASL is the sound pressure back calculated to 1 meter in an unknown aspect to the 

animal. 

 
Figure 2 

Modelling the received level of a harbour porpoise click emitted at 1 m depth and received at 5 m 

depth at different ranges. Bottom depth is 10 m. The dotted line indicates a transmission loss 

according to spherical spreading and absorption of 38 dB/km. The model does not take into account 

that the signal is directional, so the effect of surface interference may be somewhat exaggerated.  

 

Figure 3 

Clicking dolphin and a recording chain with a hydrophone, an amplifier and an analog-to-digital-

converter (ADC). The dolphin produces an analog pressure waveform that is converted to an analog 

voltage waveform by the hydrophone. The amplifier unit filters and amplifies the analog voltage 

input before digitization in the ADC that forms a discrete version of the click. 

 
Figure 4   

A) Sensitivity of a spherical hydrophone (Reson TC4043) as a function of frequency. Note that it is 

reasonably flat up to the resonance frequency of the element around 120 kHz. B) Receiving 

directivity in the horizontal plane of the same hydrophone. C) Receiving directivity in the vertical 

plane of the same hydrophone. 

 

Figure 5  

Localizing a dolphin with a 4-hydrophone linear array. The time-of-arrival differences at the 

receivers (marked with circles) generate three independent hyperbolas. They do not intersect 

in a single point, due localization errors as described in the text. The analytical source 

location (see appendix) is marked with a star and lies within the hyperbola crossings. 
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Maximum error in calculated transmission loss for a harbour porpoise signal (sloping lines) 

and a sperm whale (almost horizontal lines) located at a range of up to 100 m distance, with a 

ranging absolute error of 10 and 20%, corresponding to received level errors of 1-2 dB when 

only considering spherical spreading. 

 

Figure 7  

Modelling the source localization error for a 4-hydrophone array, assuming a good signal-to noise 

ratio on all four receivers. The sound velocity is assumed to be known within 10 m/s, the receiver 

locations within 5 mm, and the TOADs are assumed to be measurable within 10 µs. The errors are 

given in units of percentage error (calculated as the average error out of 100 simulations) relative 

the range to receiver 1 (the top receiver). Receivers are denoted with filled circles. The figure does 

not take into account any erroneous horizontal shift in receiver locations (array bending). 

 

 

Figure 8   

A) Toothed whale click as received by the hydrophone. B) Discrete version of the click in A) 

sampled at 500 ksamples/sec. C) Cumulated relative energy in the interpolated (10 times) waveform 

of B) to define 95% duration (dotted lines). D) Peak-peak and rms measures computed on the 

discrete version of the click in A). 

 

 

Figure 9 

Power spectrum generated from 256 size FFT. Binwidth of 2 kHz. Fc = centroid frequency, Fp = 

peak frequency, RMSc-BW = centralized root-mean-square band width. 
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% Source localization and hyperbola plot with linear array implemented in Matlab 
% M Wahlberg, Aarhus University, April 2006 
% 
clear; 
c0 = 1494.;                              % speed of sound (m/s) 
R = -4 - [0 2 4 6 ]';                    % receiver depth coordinate (m) 
t= [-0.1657   -0.1657  0]'*10^-3;         % TOADs for receiver 2 -receiver 1 and so on, see Wahlberg 
et al. 2001 and this ms 
r = (R(2:end)-R(1));                     % normalized receiver coordinates 
step = .01;                              % step size in hyperbola plots 
A = 2 * [r t*c0^2];                      % source location A matrix, defined in Wahlberg et al. 2001 
and this ms 
b = - (t.^2)*(c0^2) + r.^2;              % source location b column vector, defined in Wahlberg et 
al. 2001 and this ms 
m = A\b;                                 % source solution solved by least squares as in Wahlberg et 
al. 2001 and this ms 
so(2) = m(1)+R(1);                       % source depth coordinate 
so(1) = sqrt((c0*m(2))^2 - m(1)^2 );     % source horizontal coordinate 
figure(1); set(1,'Color',[1 1 1]);     
plot(zeros(4,1),R,'ko');                 % plot receivers 
ax = [-3 2*so(1) min([so(2) min(R)])-5  max([ so(2) max(R) ])+5];   % define size of plot 
hold on                                  
plot(so(1),so(2),'r*');                  % plot source coordinates 
for i=1:length(r),                        
    a = c0*t(i)/2;                       % the three parameters a, b, and c used to define the 
hyperbola curve in line 29 
    c = r(i) / 2;                 
    b = sqrt(c^2 - a^2); 
    if imag(b) == 0,                     % check if TOAD render physical hyperbola 
        if t(i) ~= 0                      
            y = -sign(r(i))*sign(t(i))*[step:step:2*(ax(4)-ax(3))] ;  % equally spaced vector for 
which to calcualate a hyperbola below 
            x = b * sqrt( y.^2 / a^2 - 1); % equation of a hyperbola curve with the parameters a and 
b defined above 
        else 
            y = zeros(1,2);             % plot straight line instead if TOAD is zero 
            x = [0 ax(2)]; 
        end 
        ind = min(find(imag(x)==0));    % find index in x vector where hyperbola starts 
        x = [ fliplr(-x(ind:end)) x(ind:end) ]'; % extend hyperbola to both positive and negative x 
values 
        y = [ fliplr(y(ind:end))  y(ind:end)]' + c + R(1); % estend y vector to two-sided hyperbola 
curve 
        plot(x,y)                       % plot hyperbola 
    end 
end 
axis(ax); 
xlabel('Range (m)');  
ylabel('Depth (m)'); 
% End of program 
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