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While acoustic scatter from oceanic turbulence is sensitive to temperature–salinity
covariations, there are unfortunately no published measurements of the turbulent
temperature–salinity co-spectrum. Several models have been proposed for the form
of the co-spectrum of two scalars in turbulence, but they all produce unsatisfactory
results when applied to the turbulent scattering equations (either predicting negative
scattering cross-sections in some regimes or predicting implausible levels of correlation
between temperature and salinity at some scales). A new model is proposed and
shown to give physically plausible scattering predictions in all density regimes. High-
frequency acoustic data illustrate the importance of the co-spectrum for acoustic
scattering, but were collected in a density regime where there is little difference
between the co-spectrum models.

1. Introduction
The exact form of the turbulent co-spectrum for two scalars – specifically temp-

erature and salinity – has two key oceanographic applications. First, it is essential
to making measurements of salinity microstructure (Nash & Moum 1999, 2002).
Accurate measurements of salinity microstructure and the consequent turbulent salt
fluxes are an important step toward improved parameterization and predictive powers
for global ocean models. As salinity cannot be measured directly, it is generally
measured by proxy through conductivity measurements. But, as the conductivity of
water is strongly dependent on temperature as well as salinity, the covariance between
temperature and conductivity (or, equivalently, temperature and salinity) must be
known in order to obtain salinity microstructure from conductivity microstructure.

Secondly, the exact form of the turbulent temperature–salinity co-spectrum is crucial
to making accurate predictions of acoustic scatter from turbulent microstructure (Seim
1999). This is important because acoustic methods are showing increasing promise as
a relatively cheap and easy way to make quick synoptic measurements of turbulence
(Seim, Gregg & Miyamoto 1995; Ross & Lueck 2003; Lavery, Schmitt & Stanton
2003).

While there has been extensive numerical modelling of the covariance (or, equi-
valently, the coherency) of two scalars (e.g. Yeung 1998; Fox 1999; Yeung, Sykes &
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Vedula 2000), limitations on computational power in the direct numerical simulations
have limited these studies to low Reynolds numbers and low Schmidt numbers
(Sc = ν/κθ where ν is the molecular viscosity and κθ is the molecular diffusivity of the
scalar θ). Laboratory experiments examining differential diffusion have typically been
performed at either low Schmidt number (e.g. Smith et al. 1995) or low Reynolds
number (Saylor & Sreenivasan 1998). Buoyancy Reynolds numbers (Reb = ε/νN2,
where ε is the rate of dissipation of turbulent energy and N is the buoyancy frequency)
are typically quite high when turbulent scatter is expected to be significant (the mean
Reb is around 7 × 104 for our data, to be discussed later). The buoyancy Reynolds
number is equivalent to the standard Reynolds number (Re = LU/ν) if L is taken
to be the scale of the largest eddy (i.e. the Ozmidov scale Lo = (ε/N3)1/2) and U is
taken to be the typical scale of the fluctuating velocity (i.e. U ∼ (ε L)1/3). Perhaps
more importantly than the low Reynolds numbers of the experiments, however, is
that the Schmidt numbers for temperature and salinity in the ocean are 8.7 and 867,
respectively, whereas at least one of the scalars had Sc � 1 for each of the numerical
experiments. When Sc � 1, one would expect quite different physics to occur at small
scales, as there is no scale separation between the smallest scales of the eddies and the
diffusive scale of the scalar. Until the direct numerical simulations are able to resolve
the full small-scale physics relevant to oceanic turbulence, there is a need for simple
analytical models for use in the above-mentioned oceanographic applications.

The theoretical contribution of the co-spectrum to sound scattering from turbulence
will be discussed in § 2. This is followed in § 3 by a discussion of previous models
proposed for the spectrum of one scalar and the co-spectrum of two scalars with
high Schmidt numbers in high Reynolds number turbulence. Section 4 introduces
a revised model, which is then compared with the former models in § 5. Data that
demonstrate the importance of including the temperature–salinity co-spectrum in
models of acoustic scatter from turbulence will also be presented in § 5.

2. Role of temperature–salinity co-spectrum in modelling of acoustic scatter
from turbulence

The basic fluid mechanics of acoustic scattering from turbulence, first introduced
by Batchelor (1957), is that the turbulent motions act on the ambient gradients in
sound speed and density (in the ocean these are prescribed by the temperature and
salinity gradients) to create fluctuations in sound speed and density on many scales,
possibly including that of the incident acoustic wave. When the incident acoustic
wave encounters a parcel of water with the same density, but a different sound
speed (which can be viewed as a change in density-weighted compressibility, as sound
speed squared is inversely proportional to density times compressibility), the parcel of
water compresses either more or less than the surrounding water and then rebounds
isotropically creating a new ‘scattered’ sound wave. On the other hand, if the incident
sound wave encounters a parcel of water with a different density, but the same sound
speed, the difference in inertia between the parcel of water and the surrounding water
will cause it to oscillate in the direction of the passing wave. This dipole moment
creates a directional ‘scattered’ sound wave. A sound wave encountering a parcel of
water with different sound speed and density will create a ‘scattered’ wave that is a
combination of the above. As the sound speed and density of seawater is determined
by its temperature and salinity, these fluctuations in sound speed and density are
often expressed in terms of fluctuations in temperature and salinity.
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Thus, it can be shown (Batchelor 1957; Goodman 1990) that the expression for the
turbulent backscattering cross-section per unit volume (σturb) is

σturb = 2πk4
(
A2ΦT (2k) + B2ΦS(2k) + 2ABΦT S(2k)

)
, (2.1)

where k is the wavenumber of the incident acoustic wave. ΦT , ΦS , ΦT S (normalized
such that, for example, 4π

∫
K2ΦT S(K) dK = T ′S ′) are, respectively, the isotropic

vector spectra for temperature and salinity, and the temperature–salinity co-spectrum
evaluated at the Bragg scattering wavelength, 2k. Lavery et al. (2003) showed that the
coefficients are given by A= aµ − α and B = bµ + β , where aµ and bµ are, respectively,
the fractional changes in sound speed from temperature and salinity changes, while
α and β are the coefficients of thermal expansion and saline contraction.

An examination of (2.1) reveals how the temperature–salinity co-spectrum has a
large effect on the scattering cross-section. ΦT and ΦS are always positive, but ΦT S

can be either positive or negative, depending on the sign of the ratio of the ambient
gradients δ = (dT /dz)/(dS/dz). Seim (1999) pointed out that when δ is negative, and
the relative contributions to scattering from temperature and salinity are similar (he
used the condition Rη = aµδ/bµ ≈ −1 as he neglected density fluctuations from his
model; Lavery et al. (2003) more completely propose using Rρc = Aδ/B ≈ −1), the
turbulent scattering signal will be greatly reduced and may disappear. Thus, for
Rρc ≈ −1, the turbulent sound scattering model is highly sensitive to the model used
for the temperature–salinity co-spectrum.

3. Previous co-spectrum models for two scalars
As all the analytical co-spectrum models for two scalars are based on some

combination of the spectra of each scalar, we start with a review of models used for
spectra of a scalar (θ) in isotropic turbulence.

Dimensionally Eθ , the wavenumber-magnitude spectrum of θ variance (normalized
such that

∫
Eθ (K) dK = θ ′2), is given by (Batchelor 1959)

Eθ (K) ∝ χθε
−1/3K−5/3 for kb < K < kν, (3.1)

where χθ is the rate of dissipation of θ variance, kb = (N3/ε)1/2 is the buoyancy
wavenumber and kν =(ε/ν3)1/4 is the Kolmogorov wavenumber. It follows that, since∫

Φθ (K ) dK =
∫

4πK2Φθ (K) dK = θ ′2, the isotropic vector spectrum is given by

Φθ (K) =
1

4πK2
Eθ (K) =

C

4π
χθε

−1/3K−11/3. (3.2)

When the Schmidt number for the scalar θ is greater than 1 (this is true for both
temperature and salinity in seawater as ν ≈ 1.3 × 10−6 m s−2, κT ≈ 1.5 × 10−7 m s−2, and
κS ≈ 1.5 × 10−9 m s−2), there is a viscous–convective subrange between the Kolmogorov
wavenumber and the Batchelor wavenumber, kBθ = (ε/(νκ2

θ ))
1/4. Then, again

dimensionally,

Eθ ∝ χθ (ε/ν)1/2K−1 for kν < K < kBθ . (3.3)

Batchelor (1959) derived the high-wavenumber vector spectrum for a scalar in
isotropic turbulence by arguing that beyond the dissipative cut-off, kν = (ε/ν3)1/4,
where all velocity variance is destroyed by viscosity, the distribution of θ will be
affected only by the residual pure straining distortion. In a Lagrangian frame, with
axes fixed to the direction of constant principal rates of strain (α, β, γ ), this can be
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expressed as

∂θ

∂t
+ αx

∂θ

∂x
+ βy

∂θ

∂y
+ γ z

∂θ

∂z
= κθ∇2θ. (3.4)

Assuming a solution of the form θ(x, t) = θ0(t)e
ik(t) · x , with the initial condition

θ(t =0) = Θ0e
il · x , we obtain

dk3

dt
= −γ k3 ⇒ k3(t) = l3e

−γ t , (3.5)

dθ0

dt
= −κθk

2θ0 ⇒ θ0(t) = Θ0 exp

[
κθ

2α

(
k2

1 − l21
)

+
κθ

2β

(
k2

2 − l22
)

+
κθ

2γ

(
k2

3 − l23
)]

. (3.6)

The expressions for k1 and k2 are identical to (3.5), but with α and β in place of γ .
After a relatively short time, the θ-planes will become perpendicular to the direction

of the greatest rate of contraction. In this case the greatest rate of contraction is γ ,
if we choose α >β >γ . Note that γ < 0, since α +β + γ = 0. Thus, defining K = |k|
and l = |l |,

θ → Θ0 exp

(
κθ (K

2 − l2)

2γ

)
eik · x, (3.7)

for each spectral component of θ . The contraction of each spectral component of
θ means that θ-variance is being transferred from lower wavenumbers (l) to higher
wavenumbers (K), such that

Eθ (K)
K

l
dl =Eθ (l) exp

(
κθ (K

2 − l2)

γ

)
dl. (3.8)

This combined with the definition of χθ (i.e. χθ = 2κ
∞∫
0

K2Eθ (K) dK), leads to a
wavenumber-magnitude θ-spectrum of

Eθ (K) = − χθ

γK
exp

(
κθK

2

γ

)
. (3.9)

The principle rate of contraction (γ ) is not necessarily constant throughout the
fluid, however, so the true form of Eθ (k) is a superposition of exponentials with
different exponents. Nevertheless, it is standard in the literature to approximate this
superposition of exponentials as a single exponential with γ ∝ (ε/ν)1/2, where (ε/ν)1/2

is the representative viscous strain rate of the turbulence. This proportionality can be
expressed with the universal constant q as

γ = − 1

q

( ε

ν

)1/2

, (3.10)

where q > 0 and the negative sign is imposed to ensure γ < 0.
Kraichnan’s (1968) model for the scalar spectrum, which took into consideration

that strain rates may fluctuate in space and time, has a more gentle exp (−
√

6qK/kBθ )
roll-off. While some measured spectra (e.g. Nash & Moum 2002) agree well with
Kraichnan’s (1968) model, others, such as the K−3/2 spectra measured by Gargett
(1985), fit neither theoretical form. Nevertheless, they all show a steep roll-off around
the predicted wavenumber, which is all that is important for most modelling purposes.
Whether a single exponential (of form e−x or e−x2

) or a superposition of exponentials
are used is therefore probably unimportant. As the physics is clearer in Batchelor’s
(1959) model than in Kraichnan’s semi-empirical model, this paper will deal only with
the Batchelor form of the spectrum. The empirically measured value of q in (3.10)
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can be thought of as a factor that ensures that the roll-off occurs at the correct spot,
which is what is of primary importance.

Combining (3.10) with (3.9) and (3.2), gives the isotropic high-wavenumber vector
spectrum for temperature or salinity,

Φθ (K) =
qχθ

4πK3

(ν

ε

)1/2

exp
(
−qK2

/
k2

Bθ

)
. (3.11)

As oceanic microstructure measurements are typically one-dimensional – collected
with turbulence profilers that are either dropped vertically or towed horizontally –
the one-dimensional spectra, obtained through the integration

φ(kx) =

∫∫ ∞

−∞
Φ(k) dky dkz (3.12)

are more relevant for comparison with data. The one-dimensional Batchelor spectrum
is given by (Gibson & Schwarz 1963)

φθ =
qχθ

2kx

(ν

ε

)1/2

(
exp

(
−qk2

x

/
k2

Bθ

)
−

√
2qkx

kBθ

∫ ∞

√
2qkx
kBθ

exp (−x2/2) dx

)
for kx > kν.

(3.13)

3.1. One-dimensional upper-bound model

Washburn, Duda & Jacobs (1996) and Seim (1999) applied the mathematical identity
for the upper limit of a co-spectrum to the one-dimensional spectra,

φT S � (φT φS)
1/2, (3.14)

to evaluate the maximum effect the co-spectrum could have.
Combining the equality in (3.14) with the Batchelor spectrum model (3.13) gives a

rather complicated co-spectrum

φT S(kx) =
q(χT χS)

1/2

2kx

(ν

ε

)1/2

[(
exp

(
−qk2

x

k2
BT

)
−

√
2qkx

kBT

∫ ∞

√
2qkx
kBT

exp

(
−x2

2

)
dx

)
(

exp

(
−qk2

x

k2
BS

)
−

√
2qkx

kBS

∫ ∞

√
2qkx
kBS

exp

(
−y2

2

)
dy

)]1/2

, (3.15)

which, inverting (3.12), can be converted into an isotropic vector co-spectrum and
then substituted into (2.1) to calculate turbulent scattering cross-sections.

This model predicts non-zero co-spectrum at low wavenumbers and zero co-
spectrum at higher wavenumbers (where φT = 0), and is in that way physically
plausible. However, if the coherency spectrum,

γT S =
ΦT S(K)

|ΦT (K)|1/2|ΦS(K)|1/2 , (3.16)

is calculated for this model, it tends to infinity as K/kBT becomes large. Also, this
model frequently predicts unphysical negative scattering cross-sections. These negative
scattering cross-sections occur when φT becomes close to zero (i.e. when K is close to
kBT /

√
q), for most Rρc < 0 (note that in figure 2, to be discussed later, this occurs at√

qK/kν =
√

ScqK/kBT ∼ 3).
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3.2. Co-spectrum model based on Stern’s theory

Recently Lavery et al. (2003) proposed a co-spectrum model based on Stern’s (1968)
theory,

φT S =
1

δ
φT +

κS

κT

δφS, (3.17)

where δ = (dT /dz)/(dS/dz) = (χT /χS)
1/2.

Because (3.17) is linear in φT and φS , the same expression applies to the vector
spectra. Thus, combining (3.17) with (3.11) leads to a co-spectrum model of

ΦT S =
q (χT χS)

1/2

4πK3

(ν

ε

)1/2
(

exp
(
−qK2

/
k2

BT

)
+

κS

κT

exp
(
−qK2

/
k2

BS

))
, (3.18)

which can be substituted into (2.1) to calculate turbulent scattering cross-sections.
There are several problems with this co-spectrum model. First, when k � kBT we

expect no covariance between temperature and salinity (all temperature fluctuations
have been damped) and, therefore, the co-spectrum must be zero. This model has a
small (since κS/κT ≈ 1/100) but finite co-spectrum for kBS > k >kBT , where we would
expect no covariance. This can cause gross overestimation of the scattering cross-
section at high wavenumbers when |Rρc| � 1. Second, like the previous model, the
coherency spectrum (3.16) tends infinity for high K . The low-wavenumber limit of
the coherency for this model can also be larger than 1 by κS/κT (when δ > 0).

4. New co-spectrum model
The new co-spectrum model we propose is essentially just the application of the

upper-bound model to the isotropic vector spectra rather than the one-dimensional
spectra. This makes more sense physically, as the smoothing out of temperature
fluctuations due to diffusion (and thus the disappearance of the co-spectrum) is more
likely to be dependent on the wavenumber magnitude than the wavenumber in any
particular direction (any kx could be made up of components with large or small
wavenumber magnitude). Thus, applying the upper-bound theorem to the vector
spectra, we obtain

ΦT S = (ΦT ΦS)
1
2 =

q (χT χS)
1/2

4πK3

(ν

ε

)1/2

exp
(
−qK2

/
k2

BT S

)
, (4.1)

where
1

k2
BT S

=
1

2

(
1

k2
BT

+
1

k2
BS

)
=

1

2

(ν

ε

)1/2

(κT + κS),

and thus,

kBT S =

{
ε/

[
ν

(
κT + κS

2

)2
]}1/4

could be considered the ‘Batchelor wavenumber’ of the co-spectrum. As before, (4.1)
can be substituted into (2.1) to predict acoustic scattering cross-sections.

4.1. Direct derivation of a ‘Batchelor’ co-spectrum

Looking back to the derivation of the scalar spectrum (3.11), we can argue that
(4.1) is more than just an upper limit for the co-spectrum, but is an exact solution
for isotropic turbulence. Note, in (3.5), that the wavenumber depends only on the
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background straining rate γ = −(ε/ν)1/2/q , which will be the same for all scalars. So,
analogously to Batchelor (1959) argument, we can write

ET S(K)
K

l
dl = ET S(l) exp

(
κT (K2 − l2)

2γ

)
exp

(
κS(K

2 − l2)

2γ

)
dl, (4.2)

and, assuming ∫ ∞

0

K2ET S(K)dk =

(
χT

2κT

χS

2κS

)1/2

,

derive (4.1) directly.
Another way to look at it is that, because the time dependence of the wavenumber

is not scalar-dependent, T and S will remain phase locked as they evolve to
higher wavenumbers and, although the co-spectrum will eventually disappear as
T fluctuations are diffused away, the coherency between T and S will remain 1. With
perfect coherency, ΦT S(K) = (ΦT (K)ΦS(K))1/2 is exact.

This assumption of perfect coherency throughout the whole of wavenumber space
may not prove to be justified. If the true scalar spectra and co-spectra were a
superposition of exponentials with different γ , there would be a loss of coherency
(with a superposition of even two exponentials, the ‘Batchelor derived’ co-spectrum
is no longer equivalent to the upper-bound (4.1) thereby reducing the coherency).

Direct numerical simulations with low Schmidt and Reynolds numbers (Yeung et al.
2000) and low Reynolds number laboratory experiments (Saylor & Sreenivasan 1998)
have shown that there is a loss of coherency between scalars beyond the Batchelor
wavenumber of the more diffusive scalar, and that these double-diffusive effects can
even ‘backscatter’ to lower wavenumbers. Based on their numerical results, Yeung
et al. (2000) predict that this ‘backscattering’ to lower wavenumbers will become
more important at large Schmidt number. Another view, however, is that, for larger
Schmidt numbers, the larger separation between the energy-containing wavenumbers
and the wavenumbers at which diffusion is important will render this effect negligible
(in terms of Yeung et al.’s (2000) triad interactions this means that the wavenumbers
of the two scalar modes become even larger relative to the velocity mode connecting
them – so the ‘backscatter’ only affects very high wavenumbers). The laboratory
experiments of Saylor & Sreenivasan (1998) found evidence of differential diffusion
at scales much larger than the Batchelor scale for scalars with very large Schmidt
numbers (Sc = 1200 to 77000). Thus, while the predictions of Yeung et al. (2000) have
their foundation in high-Sc laboratory results, the experiments were conducted at low
Reynolds number, so it is unclear whether their results can be extrapolated to high
Re.

Further study is necessary to determine the true form of the coherency spectrum
at high Schmidt and Reynolds numbers. Until such a time, we argue that it is better
to assume perfect coherency, than to use one of the previous models, where the
coherency tends to infinity for high K . In the context of the acoustic scattering model,
any loss of coherency beyond the roll-off of the temperature spectrum should make
very little difference, as one would simply be multiplying a number of order 1 by a
vanishingly small temperature spectrum.

As with the one-dimensional upper-bound model, this three-dimensional upper-
bound model predicts a plausible co-spectrum for low wavenumbers, which then goes
to zero at higher wavenumbers (i.e. when ΦT → 0). Additionally, with this model σturb

cannot be negative (since ΦT and ΦS are positive definite, (A
√

ΦT ± B
√

ΦS)
2 � 0),

making this model at least physically plausible for all combinations of parameters.
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Figure 1. Comparison of different one-dimensional temperature–salinity co-spectrum models,
using Batchelor scalar spectra. The ratio of the one-dimensional to the three-dimensional
upper-bound co-spectrum shown in (b) brings out differences which are more difficult to see
in the logarithmic plot (a).

This three-dimensional upper-bound co-spectrum also yields a much simpler
expression for the one-dimensional co-spectrum,

φT S(kx) =
q(χT χS)

1/2

2kx

(ν

ε

)1/2

(
exp

(
− qk2

x

k2
BT S

)
−

√
2qkx

kBT S

∫ ∞

√
2qkx

kBT S

exp

(
−x2

2

)
dx

)

for kx > kν. (4.3)

Note that (4.3) is directly analogous to the Batchelor spectrum for a scalar (3.13), as
opposed to the much more complicated one-dimensional version (3.15).

5. Comparing co-spectrum models
Figure 1 shows the different forms of the co-spectra for the scalars temperature

and salinity in turbulent seawater (i.e. with Lewis number Le = κT /κS =100). The
Stern model diverges quite significantly from the other two models and, as mentioned
earlier, predicts far too much variance at wavenumbers beyond the diffusive cut-off
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Figure 2. Comparison of scattering models for different co-spectrum models, calculated from
(2.1) using (3.11) and the co-spectrum models detailed in § § 3.1, 3.2 and 4. When |Rρc| is close
to 1, salinity and temperature contribute roughly equally to sound scattering from turbulence
and scattering is much reduced at low wavenumbers, where they cancel. Both the scattering
cross-section (σ ) and the Bragg wavenumber (K =2k where k is the wavenumber of the
incident acoustic wave) have been non-dimensionalized, such that the shape of the scattering
curve is determined by Rρc , and the Schmidt numbers ν/κS , and ν/κT . The missing portions
of the curves are where the models predicted negative scattering cross-sections. The scattering
cross-section is only calculated for K > (5/12)3/2kν , as below that is the inertial–convective
regime (Seim 1999), which is not modelled here. A value of q = 3.7 (Oakey 1982) was used to
determine the position of the cut-off on the scaled wavenumber axis.

for heat. The differences between the two upper-bound models are not large –
but increase as the wavenumber approaches the diffusive cut-off for salt (kBS).
Measurements such as those performed by Nash & Moum (2002) may be able
to detect the difference between the two upper-bound models, but unfortunately there
are currently no published oceanic temperature–salinity co-spectra data with which
to compare the models.

5.1. Applied to the acoustic model

For most values of Rρc, the effect that the different co-spectrum models have on
the acoustic scattering model is negligible. In certain circumstances, however, such as
when Rρc ≈ −1 or |Rρc| is large (see figure 2), there can be large differences between
the models.

In figure 2, note that the Stern model and both upper-bound models give essentially
identical results for Rρc = 1. When |Rρc| � 1, however, the Stern model significantly
over- (or under-, if Rρc < 0) predicts the scattering cross-section for large K . This
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is a consequence of the fact that it erroneously predicts a small but finite co-
spectrum beyond the diffusive cut-off for temperature. Also note that when Rρc ≈ −1,
the one-dimensional upper-bound model gives negative scattering cross-sections for
0.2 <q1/2k/kν < 2, and while the three-dimensional upper bound model cannot give
negative cross-sections, it does go to zero for Rρc < −1.

5.2. 44.7 kHz sounder data illustrates importance of including co-spectrum

In a field study in Knight Inlet in June 2001 (Ross & Lueck 2003) we collected
co-located acoustic and microstructure data. There were two sounders mounted on
a horizontally towed microstructure instrument. While the acoustic data collected at
307.2 kHz are discussed at length in Ross & Lueck (2003), here we present 44.7 kHz
data that illustrate the importance of including the co-spectrum when modelling
acoustic scatter from turbulence.

Temperature gradient microstructure is visually correlated with acoustic scatter at
44.7 kHz (figure 3). While this does not in itself constitute proof that the scatter is
from turbulence, in Ross & Lueck (2003) we did a careful analysis of the stronger
returns seen in the 307.2 kHz data, concluding that they could not be biological and
were a good fit to the scattering model. As the animals collected in net-hauls in the
turbulent region were generally smaller than the wavelength of 44.7 kHz sound, the
bioacoustic signal should be even less of a confounding factor at 44.7 kHz. Therefore,
it is safe to assume that the scatter seen in figure 3 is from turbulence.

While the 44.7 kHz instrument we used could not be calibrated to better than
±5 dB, the turbulence scattering data still show that the co-spectral contribution to
scattering is definitely non-negligible (note that, in figure 4, the line neglecting the co-
spectrum does not overlap the 44.7 kHz data points). This is because temperature and
salinity are negatively correlated (on average Rρc = −0.75) in Knight Inlet, and thus,
the effect of neglecting the temperature–salinity co-spectrum is to overestimate the
volume scattering strength by 12 dB (or, in linear space, overestimate the scattering
cross-section by a factor of 16). The volume scattering strengths predicted while
neglecting the co-spectrum were in fact 17 dB higher than the measured Sv (i.e. the
predicted σ was 50 times larger than what was measured).

Neglecting the co-spectrum has little effect on the 307.2 kHz data (figure 4),
because most of the data were collected when the turbulent conditions were such
that temperature variations (and hence temperature–salinity co-variations) at the
wavelength of 307.2 kHz sound were being smoothed away due to diffusion.

While the 44.7 kHz data show that the co-spectrum cannot be neglected in the
modelling of sound scatter from turbulence, they are not of good enough quality to
distinguish between the Stern and three-dimensional upper-bound models (the one-
dimensional upper-bound model predicts negative σturb, and so is obviously incorrect
in this density regime). While the spread in the 307.2 kHz data is smaller, because
of where they fall on the spectrum of turbulent scattering cross-sections (figure 4),
they also offer no help in identifying the correct co-spectrum model (aside from also
rejecting the no-correlation and one-dimensional upper-bound models).

Another consideration in the interpretation of these acoustic data is Gargett’s
(1985) careful study of turbulent temperature spectra in Knight Inlet (very near the
location where our acoustic data were collected). This study found that ΦT (K) only
followed the classical form – (3.1), followed by (3.9) with q ∼ 4 – when the parameter
I = kν/kb = (Reb)

3/4 was around 50–100 (labelled Class B). When I was larger (up to
O(3000), labelled Class A), ET (K) followed a K−3/2 scaling throughout the inertial–
convective (classically K−5/3) and viscous–convective (classically K−1) subranges,
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Figure 3. (a) An echogram from the 100 kHz ship-board sounder. The white line is the
approximate path of the towed vehicle (the ship-board sounder data are lagged to line up
with vehicle data) and the overlying coloured circles are predicted backscatter at 100 kHz as
estimated from microstructure data. (b) Echogram from the 44.7 kHz vehicle-mounted sounder
for time and depth of the pink box in (a). Each horizontal line shows the echo from one
ping. As time progresses downwards and the range is the distance ahead of the vehicle, parcels
of water travel diagonally across the figure, from right to left. The temperature-gradient
microstructure is shown on the left.
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Figure 4. Wavenumber spectra of scaled turbulent scattering cross-sections for different
co-spectrum models. The points are measured scattering cross-section (green 44.7 kHz, blue
307.2 kHz), which are scaled by kν/χT to collapse them onto the same model. The thickness
of the spectra allow for the range of Rρc measured when there were acceptable echoes at 44.7
kHz (Rρc = −0.71 ± 0.15). Data are only presented for K > (5/12)3/2kν – beyond the transition
to the viscous–convective subrange, and q = 3.7 was used to scale the wavenumber axis.
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followed by a Batchelor-like exponential decay with q ∼ 12. As our turbulent scattering
measurements were collected in regions of high Reb, most of the data in figure 4 fall
into the non-traditional Class A. Goodman (1990) has discussed the effect that
this alternative spectral shape would have on acoustic scattering for the case of
temperature microstructure. If we were to substitute an empirical Class A model for
the traditional Batchelor model (3.11) in (2.1), there would be no substantial difference
to our conclusions vis-à-vis the effect of the co-spectrum. The different q would shift
the region of negative scattering cross-sections to lower K/kν , and also decrease the
wavenumber at which salinity scatter begins to dominate. As the level of a Class A
spectrum is higher at low wavenumber, the effect of using Class A spectra would
be to increase the predicted total level of scatter at low wavenumbers. This would
decrease the agreement currently found in figure 4, as the traditional spectra model
already slightly overestimates the turbulent scatter.

6. Conclusions
A new co-spectrum model for two scalars in high Schmidt and Reynolds number

turbulence was introduced here with a view to applications in the ocean. This model
can be viewed either as the upper bound for an isotropic vector co-spectrum or as an
extension to Batchelor’s (1959) derivation of the spectrum of a scalar in turbulence. Its
fundamental assumption of perfect coherency between the scalars at all wavenumbers
needs to be tested through high Sc and Re numerical and/or laboratory experiments.

While there are no published oceanic turbulent scalar co-spectra data to compare
this and previous models with, this model is shown to be simpler and more physically
plausible than those used in previous oceanographic literature. It also functions much
better in models of acoustic scatter from oceanic turbulence, which are shown to be
sensitive to the inclusion of a reasonable temperature–salinity co-spectrum model.

Given the sensitivity of the scattering models to the co-spectrum model used, it
would be interesting to see samples from regions with Rcρ ≈ −1, as it is there that
we predict the biggest discrepancies between the scattering predictions based on the
different temperature–salinity co-spectra.
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Sciences for the loan of the echosounders. This work was supported by NSERC and
by ONR under grant #N00014-93-1-0362.
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