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Abstract Radioactive tracer techniques may be useful for assessing water transport and the overall effects
of concurrent biogeochemical processes in river-reservoir systems. In this study, we show that radium
isotopes can assess the hydrodynamics and sediment/nutrient retention in the Xiaolangdi Reservoir, the
largest impoundment along the Yellow River, China. Activity ratios of 224Ra/226Ra and 223Ra/226Ra were used
for water mass age calculations in the riverine, transition, and lentic reaches of the reservoir. Water ages
were combined with the length scale of three river-reservoir zones to determine water transport rates of
3.6 ± 1.2, 1.3 ± 0.3, and 0.16 ± 0.14 km/day, respectively. Radium ages were also used to quantify the net
retention of sediment and nutrients in different parts of the river-reservoir system. Suspended sediment was
removed at a rate of 1.4 ± 0.6 g/m3/day, mainly in the riverine zone. Nutrient dynamics were more
complicated, with addition or removal at different rates within the three zones.

Plain Language Summary This paper should be of interest to fluvial aquatic scientists and resource
managers. Typically, numerical models have been used to estimate reservoir hydrodynamics, and associated
biogeochemical processes are investigated separately. Here for the first time, we explore the validity of using
radium isotope tracers to assess water age distributions in the Xiaolangdi Reservoir, the largest
impoundment along the Yellow River (China). Radium ages were then used to quantitatively evaluate the net
retentions of suspended sediments and nutrients within the reservoir. The technique is easy to conduct at
relatively low cost and allows one to assess the overall effect of synchronized biogeochemical processes.

1. Introduction

In large river systems, the construction of dams and reservoirs for the purpose of water and sediment
regulation significantly alters natural riverine hydraulic conditions. Depending on the water regulation
scheme, river damming often results in the transformation of upstream water bodies from a natural riverine
ecosystem to a lentic, or lake-like, reservoir (Friedl & Wüest, 2002). When river water discharges into a
reservoir, water transport rates decrease, leading to settling of suspended particles and an increase in water
transparency. Under such weakening hydrodynamic conditions, nutrient transformation processes are more
effective and thoroughly developed within the reservoir. Consequently, such reservoirs tend to act as a
sediment filter and/or a biogeochemical reactor for the river.

To improve our understanding of hydrologic-ecologic links in river systems, hydrologic conditions should be
characterized in parallel with biogeochemical and ecological properties (Jones et al., 2017; Straškraba, 1999).
To date, biogeochemical investigations and hydrodynamic simulations have usually been performed
separately. Only rarely have there been endeavors to match these two studies simultaneously, mainly
because of different research strategies. It has been shown, however, that nutrient removal in estuaries
can be quantitatively estimated based on the relationship between nutrient concentrations and derived
water transport rates (Peterson et al., 2009; Xu et al., 2016).

Water age is a commonly used time scale for first-order descriptions of water transport in reservoirs (Delhez
et al., 2014; Monsen et al., 2002). It is suitable for quantifying, with high spatial resolution, the time history of a
water mass (de Brauwere et al., 2011; Qi et al., 2016). In the case of rivers, lakes, and reservoirs, age is
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commonly computed with numerical (e.g., particle tracking) models (e.g., Bolin & Rodhe, 1973; Qi et al., 2016;
Shen & Haas, 2004), occasionally assisted by use of passive dyes (Li et al., 2015) or stable isotopes (Birkel &
Soulsby, 2016). In marine systems, besides modeling approaches, radioactive tracer techniques have been
widely applied for age assessment (Delhez et al., 2003; England & Maier-Reimer, 2001). For example, during
the past decade, the radium quartet and the Apparent Radium Age Model have been found to be useful tools
for evaluating water ages in mostly marine settings including large river plumes extending into the coastal
zone, estuaries, and over continental shelves (Charette et al., 2001; Dulaiova & Burnett, 2008; Moore, 2000;
Xu et al., 2016). It is a convenient and low-cost technique for depicting water age distribution and plume
trajectories (Xu et al., 2013).

Here we explore the validity of using radium isotope tracers to assess hydrodynamic processes through the
perspective of water age distributions in a large river reservoir. The Xiaolangdi Reservoir (XLDR), located in the
lower reaches of the Yellow River, is used as a novel laboratory to test this approach. Radium isotopes have
only rarely been applied in freshwater systems. While the XLDR is responsible for a large majority of the
sediment yield of global proportions (Syvitski et al., 2005), the measured suspended particulate matter
(SPM) concentrations are comparable to some other major rivers. The high radium concentrations at the
entrance to the reservoir, likely from desorption from SPM, provide a prominent starting point, allowing
one to observe decay of short-lived Ra isotopes (223Ra, 224Ra) with downstream transport. We examined
radium isotope activities and distributions throughout the river-reservoir system. Water ages were calculated
by using the Apparent Radium Age Model and used to quantitatively evaluate the net retention effects of
suspended sediments and nutrients within the reservoir. The technique is easy to conduct at relatively low
cost (1- to 2-day sampling and a few days of radium measurements) and allows one to assess the net effect
of synchronized biogeochemical processes.

2. Materials and Methods
2.1. Study Area

The Yellow River is the second largest river in the world in terms of sediment delivery to the sea (Milliman &
Meade, 1983; Wang et al., 2017). Since the 1950s, China has been making serious efforts to manage the river,
and more than 3,000 reservoirs and dams have now been constructed in the river basin (Wang et al., 2007).
The XLDR, the most downstream large reservoir, is located at the mouth of the final gorge within the middle
reach of the river (Kong et al., 2017). With a total water storage capacity of 13 km3 and a sediment storage
capacity of 7.6 km3, the XLDR controls 92% of the Yellow River basin area and almost all of its sediment
(Wang et al., 2016). The construction of the XLDR was completed in 1999, and this has significantly altered
the water and sediment discharge pattern of the Yellow River since it became fully operational in 2002
(Wang et al., 2017; Zhou et al., 2015). Storage levels in the reservoir fluctuate during the year (Figure S1 in
the supporting information). Usually, the XLDR is operated under a high storage protocol before May in order
to provide water for spring irrigation and ice jam control. During June and July (prior to the wet season), the
water level in the reservoir is reduced to below the flood control level of 225 m in order to free up storage
space. During the wet season from August to October, excess water is stored in the reservoir, and the
reservoir storage is maintained at a high level until the following May (Kong et al., 2017).

2.2. Sampling and Analysis

We launched a 5-day sampling expedition to the XLDR from 11 to 15 June 2017. A sampling transect was set
up along the river channel direction, starting from ~60 km upstream from the Xiaolangdi Dam (Figure 1). The
river discharge recorded at the upstream Sanmenxia Hydraulic Station during this sampling period ranged
from 494 to 552 m3/s. Surface water samples were collected for SPM, radium isotopes (226Ra, 223Ra, and
224Ra), and nutrient analysis. Nutrients reported here include dissolved inorganic nitrogen (DIN) as the sum
of NO3

�, NO2
�, and NH4

+; dissolved inorganic phosphorus as PO4
3�; and dissolved reactive silicate (DRSi)

as Si (OH)4. Detail information about sampling and analysis are shown in supporting information Text S1
(Grasshoff et al., 1999; Kim et al., 2001; Luan et al., 2016; Moore & Arnold, 1996; Waska et al., 2008).

2.3. Apparent Radium Age Model

The water radium age is intended to represent the calculated time elapsed since the radium isotopes were
added to the system and isolated from a source (Dulaiova & Burnett, 2008; Moore, 2000). These ages (t) are
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determined from the ratio of one of the shorter-lived radium isotopes to a longer-lived one. Use of a ratio
corrects for any change by dilution or mixing, as both isotopes would be affected in the same manner. The
radium ages are calculated from the following expression:

t ¼ ln ARobs=ARið Þ½ �= λlong � λshort
� �

(1)

where ARobs refers to the activity ratio of the Rashort/Ralong (e.g.,
224Ra/223Ra, 224Ra/226Ra, and 223Ra/228Ra) at

a specific sampling location/time, while ARi represents the initial Rashort/Ralong ratio at the suspected source.
In our case, this initial ratio is taken from the sample with the highest activity ratio, which was collected near
the entrance to the reservoir (i.e., presumably the one with minimum decay should be closest to a source).
Thus, all ages are calculated relative to this location. The parameters λlong and λshort represent the decay con-
stants of the long- and short-lived radium isotopes, respectively.

The radium age model approach has three basic assumptions: (1) the radium input is dominated by one
source with a constant isotopic composition, (2) the losses of radium after leaving the source are only caused
by mixing and radioactive decay, and (3) the downstream waters contain negligible amounts of excess 224Ra
and 223Ra activities (Moore, 2000; Tomasky-Holmes et al., 2013). It is not necessary to require steady state con-
ditions as long as the stated assumptions are satisfied. In our case, the data suggest that the assumptions are
meant. More details regarding model assumption validity are shown in the supporting information Text S2
(Zhao & Wang, 2005).

2.4. Reservoir Retention Effects Model

Because of the dam/reservoir construction, water transport rates in the Yellow River have decreased.
Concentrations of water transported materials, either dissolved (e.g., nutrients) or particulates (e.g., SPM), will
be gradually changed (either by addition or removal) during downstream transport because of various physical
and biogeochemical processes. To quantitatively estimate the apparent addition and/or removal rates of these
substances within the river reservoir, we propose a simple model shown conceptually in Figure 2. The model is
based on the relationship between material concentrations (Ct) versus water transport times (t) as follows:

Ct ¼ C0 � kt (2)

where C0 is the initial substance concentration at t = 0 and k is the retention coefficient, which is an apparent
removal (or addition) rate for a certain parameter within the reservoir (units = concentration/day). Positive k

Figure 1. The study area of the Xiaolangdi Reservoir (top) and a more detailed sampling map for June 2017 (bottom). The
red crosses are the Ra sampling sites, and the yellow-circled sites are where samples for suspended particulate matter
and nutrients were also collected.
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values represent a removal rate (negative k suggests addition), which is
dependent on the combined effects of phytoplankton consumption,
organic matter decomposition, suspended particles adsorption, or
desorption and downstream mixing. The time, t, is the water transport
time calculated by the radium model. The boundary condition is taken
as when t is greater than 0 and less than ts (0 < t ≤ ts). When t > ts, water
has flushed further downstream and the concentrations have reached
steady state background levels. In this case, material concentrations may
be expressed as Ct = Cs.

3. Results and Discussion
3.1. Radium Isotopes

All three measured radium isotopes (224Ra, 223Ra, and 226Ra) show
decreasing activity trends from upstream to the downstream XLDR, a
consequence of mixing and radioactive decay processes (Figure 3). The
zero distance shown in Figure 3 is the most upstream sampling location,

about 60 km upstream of the Xiaolangdi Dam. The highest radium concentrations were found in the
upstream river water, which passes through the Loess Plateau in the middle reaches of the river basin. The
maximum time scale for a radioisotope tracer is approximately 5–6 half-lives of the isotope or a maximum
of about 20 days for 224Ra and 60 days for 223Ra. The short-lived 224Ra isotope was only detectable in the first
45 km. Nomeasurable 224Ra was detected within 15 km of the dam, indicating that the water ages within this
section were all older than 20 days. The longer-lived 223Ra also showed the most apparent reduction in the
upper 45 km of the transect. However, the activities of 223Ra in the last 15 km were still measurable,
demonstrating that the water ages within this section were no greater than about 2 months. Long-lived
226Ra (with a half-life of 1,600 years) would not decay under such short time scales, so the decrease of
226Ra is mainly a consequence of mixing and dilution. It can thus serve as a stable tracer for the other
radium isotopes.

Figure 2. Conceptual sketch of the retention model. Ct is material
concentrations when water transport time is t. C0 and Cs are the initial and
constant background levels of substance concentrations at t = 0 and t > ts,
respectively. k is the retention coefficient.

Figure 3. Activities of three radium isotopes, 224Ra (a), 223Ra (b), and 226Ra (c) in the Xiaolangdi Reservoir river-reservoir
system measured in June 2017. The uncertainties indicated are ±1σ based on counting statistics.
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3.2. Radium Ages and Reservoir Zonation

The distributions of water ages traced by both the 224Ra/226Ra and
223Ra/226Ra activity ratios indicate a hydrodynamic zonation within the
XLDR (Figure 4). In the upper 25 km, water ages based on 224Ra/226Ra ratios
are all less than ~5 days, resulting in an overall water transport rate of
3.6 ± 1.2 km/day. In the middle section between 25 and 45 km, water ages
gradually increased to the maximum tracing time scale (~20 days), sug-
gesting a water transport rate of 1.3 ± 0.3 km/day. The water ages based
on 223Ra/226Ra ratios in the first 45 km are somewhat more scattered and
also gradually increase to about 20 days, resulting in an overall water trans-
port rate of 1.5 ± 0.3 km/day. In the last section, from 45 km to the exit of
the XLDR (Ra age ~60 days), the waters were very slow moving with calcu-
lated transport rates of only 0.16 ± 0.14 km/day. We also calculated the bulk
water flushing time (75 days) by a classical approach and did a comparison
to the radium age model result in supporting information Text S3. We
consider the results based on these two methods that are comparable.
The radium age model could offer more details about the ages distribution
instead of a single bulk value, which is more useful to understand the
hydraulic zonation of the reservoir.

Similar zonation characteristics have been previously reported in other
river reservoirs, and riverine, transition, and lentic zones are considered a

typical fluvial-to-lentic continuum (Hayes et al., 2017; Soares et al., 2008). The riverine zone is the region of
the river-reservoir system located furthest from the dam, which is the first 25 km upstream in our case. It is
characterized by an intense inflow of nutrients (Figure 5), other dissolved materials, and low primary produc-
tion (Figure S2), as a result of rapid water flow and high turbidity. As sedimentation and light availability

Figure 4. Apparent radium water ages in the Xiaolangdi Reservoir
river-reservoir system during June 2017, based on 224Ra/226Ra ratios (a) and
223Ra/226Ra ratios (b). The upper (0–25 km), middle (25–45 km), and
lower (45–60 km) sections of the Xiaolangdi Reservoir are now classified as
riverine, transition, and lentic zones, respectively.

Figure 5. Concentrations of SPM and nutrients versus water ages in the XLDR river-reservoir system during June 2017. Red
squares represent data from the riverine zone, and blue circles represent data from the transition and lentic zones. Open
symbols and dashed lines indicate the zone with background concentrations when t > ts. Water ages are based on
224Ra/226Ra ages for the first 45 km and 223Ra/226Ra ages from 45 km to the end of the reservoir. The ± values correspond
to confidence level of 95%. SPM = suspended particulate matter; XLDR = Xiaolangdi Reservoir; DIN = dissolved inorganic
nitrogen; DIP = dissolved inorganic phosphorus; DRSi = dissolved reactive silicate.
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increase downstream, primary production increases within the transition zone. In XLDR, this zone is between
25 and 45 kmwith relatively low SPM concentrations (Figure 5), water flow rates, and increasing chlorophyll a
(Figure S2). The final section is the lentic zone near the dam. Water ages in this section of the XLDR are older,
at least 60 days relative to the most upstream sampling points (Figure 4). DIN and DRSi show enrichment
downstream as SPM decreases (Figure 5), leading to an increase in productivity as shown by the increased
chlorophyll a and dissolved oxygen (Figure S2).

3.3. Retention Effects

To quantitatively assess the retention effect within different sections of the reservoir, we applied the reten-
tion model by plotting nutrient and SPM concentrations versus apparent water ages (Figure 5). During the
period of our investigation, the XLDR behaved as a net filter of suspended particles. Within the first 5 days,
suspended particles were removed at a rate of 1.4 ± 0.6 g/m3/day, equal to about 75% removal of the total
suspended sediment load within this riverine section. This is consistent with Wang et al. (2010), who reported
that after the Yellow River passed the XLDR, both the annual sediment load (40 Mt/year) and median grain
size (6 μm) decreased significantly compared to the upstream values (400 Mt/year and 25 μm).
Biogeochemical processes for nutrients were more variable within the different sections of the reservoir. In
the fluvial section, DIN was removed at rates of 2.0 ± 0.2 mmol/m3/day. DRSi, however, was added with a rate
about 0.8 ± 0.5 mmol/m3/day. Apparently, different nutrients are controlled by different biogeochemical pro-
cesses. Since the observed nutrient behavior was a net result of several contributions and removal processes
taking place under different spatial and temporal scales, we are not able to interpret the nutrient data based
solely on a single process. The net retention dynamics assessed by our radium age approach is actually mixed
nutrient signal occurring within the residence time of water in different sections of the reservoir.

In the transition section with water ages between 5 and 40 days, suspended particles were removed at a
much slower rate of about 0.08 ± 0.03 g/m3/day. Both DIN and DRSi were added to the water in this zone
at a very similar rate of about 0.3 ± 0.1 mmol/m3/day, implying that this addition may be resulted from
decomposition and transformation of organic matter. In the lentic zone close to the Xiaolangdi Dam, we
observed no further change in the DIN, dissolved inorganic phosphorus, and DRSi concentrations. Possible
reasons for the observed nutrient behavior are discussed in the supporting information Text S4 (Hecky &
Kilham, 1988; Justic et al., 1995; Li, 2017; Ran et al., 2015, 2018; They et al., 2017; Wang et al., 2010). We also
calculated nutrient retention fluxes using a traditional approach and found that the estimate is comparable
to the radium age approach result (supporting information Text S5). We think that the Ra age approach is
actually preferable, because it does not rely on hydraulic gaging results, and can evaluate nutrient retention
with high spatial resolution in the river-reservoir system.

3.4. Model Uncertainty and Application

Uncertainties associated with Ra-based water mass ages stem from the analytical uncertainty of radium iso-
topic measurements as well as possible departures from model assumptions. Reported analytical uncertain-
ties are associated with measurement replications, counting statistics, and uncertainty propagation. In
practice, relative analytical uncertainties of field samples analyzed by RaDeCC are usually on the order of
5% to 40% (Garcia-Solsona et al., 2008; Peterson et al., 2008). In our case, the analytical uncertainties for
226Ra, 224Ra, and 223Ra ranged from 2% to 4%, 5% to 16%, and 16% to 40%, respectively. The higher ranges
of analytical uncertainty (30% to 40%) are usually associated with very low activity cases, for example,
<0.2 Bq/m3 for 224Ra and 223Ra.

Ideally, the radium age model is suitable for one-entrance-one-exit reservoirs where the entrance represents
a single source of radium and stratification is intense. Once the water entered the reservoir, dissolved radium
would simply decrease by radioactive decay and mixing (Figure S3a). If there are large tributaries within the
reservoirs, there could be additional radium sources that would invalidate the calculated ages. However, the
entire reservoir system could be separated into a few sections. The model might still be valid within each sec-
tion (Figure S3b). However, if there are too many tributaries and there is no clear radium decay observed in
between, the model application would be limited. This is also true for rivers with multiple reservoirs in row
(Figure S3c). Water discharged out of the uppermost reservoir should have low radium (short lived) because
of decay during transportation inside the reservoir. Before entering the next reservoir, dissolved radium in the
river would be recharged because of pore water release and sediment desorption. So the Ra agemodel could
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even be applied to a series of reservoirs separately, which would benefit the understanding of hydrody-
namics in major rivers with intense human regulation. Of course, in whatever cases, the model assumptions
should be tested.

In shallow reservoirs, especially when there are strong episodic disturbances (e.g., storms or hurricanes),
enhanced physical mixing could introduce additional radium from bottom sediments. In reservoirs where
radium inputs may occur throughout the system, the age model would provide only a lower limit age esti-
mate. To account for this shortcoming, Moore et al. (2006) previously formulated another more explicit
Continuous Input model, which was based on the activity ratios of the isotopes entering the system
(Tomasky-Holmes et al., 2013).

The biogeochemical behavior of aquatic ecosystems depends, to a large extent, on the water transport and
mixing dynamics that occur within them (Rueda et al., 2006). Lower discharge rates would allow coarser
particles to settle more effectively while water flushed downstream. Nutrient concentrations and speciation
could also be changed during downstream transport (Garnier et al., 1999; Kõiv et al., 2011; Ran et al., 2016).
However, nutrients and SPM retention or release are usually calculated as an integrated parameter based on
the difference between the inflow and outflow to the reservoir (Maavara, 2017). By using our proposed
retentionmodel, the results of nutrient and SPM removal and/or addition within the different hydraulic zones
of the reservoir may be assessed. Water-transported materials may show quite different behaviors within
each zone of the river-reservoir system. Both reaction rates and directions could vary under different
hydrodynamic conditions. By using the radium age approach, one can not only quantify the overall retention
effects but also consider the various zones and related hydrodynamics. Even for nonconservative species like
nutrients, understanding their apparent retention or addition dynamics is very useful, especially for fluvial
aquatic scientists and resource managers.

4. Conclusions

Water exchange and ecological responses in human-influenced major river reservoirs are of keen interest to
the scientific community. However, biogeochemical investigations and hydrodynamic simulations have
usually been performed as separate studies. In this study, we found that radium isotopes are suitable tracers
to assess both water transport and the overall effects of concurrent sediment/nutrient retention in the XLDR,
the largest river-reservoir system along the Yellow River. Water transport rates based on activity ratios of
224Ra/226Ra and 223Ra/226Ra were 3.6 ± 1.2 km/day, 1.3 ± 0.3 km/day, and 0.16 ± 0.14 km/day in the riverine,
transition, and lentic reaches of the Xiaolangdi Reservoir, respectively. Radium ages were used to
quantitatively evaluate the retention dynamics of sediment and nutrients in different parts of the system.
SPM was removed at a rate of 1.4 ± 0.6 g/m3/day, mainly in the riverine zone. Nutrient dynamics were more
complicated, with addition and/or removal at different rates in the three zones of the reservoir. In the future,
the Ra-age approach should be considered by aquatic scientists and resource managers for assessment of
the hydrodynamics and associated biogeochemical processes in large river reservoirs.
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