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Abstract 

Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to 

the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of 

the central U.S. Atlantic margin that appear to be defined by variations in geologic 

framework. Here we use regionally extensive, deep penetration multichannel seismic 

(MCS) profiles to reconstruct the influence of the antecedent margin physiography on 

sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and 

uppermost rise from the Miocene to Present. These data are combined with high-

resolution sparker MCS reflection profiles and multibeam bathymetry data across the 

Currituck Slide complex. Pre-Neogene allostratigraphic horizons beneath the slope are 

generally characterized by low gradients and convex downslope profiles. This is followed 

by the development of thick, prograded deltaic clinoforms during the middle Miocene. 

Along-strike variations in morphology of a regional unconformity at the top of this 

middle Miocene unit appear to have set the stage for differing styles of mass transport 

along the margin. Areas north and south of the Currituck Slide are characterized by 

oblique margin morphology, defined by an angular shelf-edge and a relatively steep 

(>8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine 

canyons, and small, localized landslides confined to canyon heads and sidewalls 
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characterize these sectors of the margin. In contrast, the Currituck region is defined by a 

sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (<6°). 

Thick (>800 m), regionally continuous stratified slope deposits suggest the low gradient 

Currituck region was a primary depocenter for fluvial inputs during multiple sea level 

lowstands. These results imply that the rounded, gentle slope physiography developed 

during the middle Miocene allowed for a relatively high rate of subsequent sediment 

accumulation, thus providing a mechanism for compaction–induced overpressure that 

preconditioned the Currituck region for failure. Detailed examination of the regional 

geological framework illustrates the importance of both sediment supply and antecedent 

slope physiography in the development of large, potentially unstable depocenters along 

passive margins.  

 

Keywords: submarine landslides; multichannel seismic data; U.S. Atlantic margin; 

geomorphology, unconformity, sediment supply, stratigraphy, isopach maps, slope 

gradient, accommodation space 

 

Highlights: 

 Margin morphology and sediment supply are key factors in slope instability. 

 Antecedent slope physiography influences sediment accumulation patterns.  

 Slope prograded margins are most likely the site of large-scale slope failures. 

 The Currituck Slide was preconditioned for failure by rapid sediment accumulation. 

 The stratigraphy of the Currituck Slide suggests repeated failure-prone conditions. 
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1. Introduction 

Constraining the spatial distribution of large submarine landslides is a first step towards 

understanding the physical processes that lead to submarine slope failure. Along passive, 

siliciclastic continental margins, many of the largest submarine landslides observed on 

the modern seafloor occur in areas of thick sediment accumulation and limited submarine 

canyon development (Hampton et al., 1996; Locat and Lee, 2002; McAdoo et al., 2000; 

Canals et al., 2004; Masson et al., 2006; Krastel et al., 2012; Urlaub et al., 2013). 

Twichell et al. (2009) identified 48 distinct landslide complexes along the U.S. Atlantic 

Margin (USAM) across two broad morphological categories: canyon-confined landslides 

found on the upper slope (<1000 m water depth) and open slope-sourced landslides that 

originate mostly along the low gradient seafloor of the lower slope (1500-2500 m water 

depth) between submarine canyons (Booth et al., 1988; Twichell et al., 2009). Of these 

two classes, open slope landslides are larger and concentrated in areas containing thick 

Quaternary depocenters (Twichell et al. 2009). Along the USAM, the accumulation and 

distribution of many of these Quaternary depocenters appears to be determined by a 

combination of sediment supply to the margin (Poag, 1985; Poag and Sevon, 1989) and 

antecedent, pre-Quaternary margin physiography (Brothers et al., 2013a,b). 

 

Given the tsunamigenic potential of large submarine landslides (e.g., Driscoll et al., 

2000; Ward, 2001; Lynett and Liu, 2002; Geist et al., 2009; Grilli et al., 2009; ten Brink 

et al., 2009a; 2014; Tappin, 2010; Harbitz et al., 2013), many studies have focused on 

determining the causes of slope failure. Numerous preconditioning factors (e.g., high 

sedimentation rates, compaction, and development of pore fluid overpressure) and 
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triggering mechanisms (e.g., seismicity, gas hydrate dissociation, and other transient 

stress variations) have been linked to submarine slope failures along low-gradient passive 

margins (Hampton et al., 1996; Locat and Lee, 2002; Kayen and Lee, 1991; O’Leary, 

1991, 1993; Paull et al., 1996, Dugan and Flemmings, 2000; Canals et al., 2004; Sultan 

et al., 2004; Bryn et al., 2005; Kvalstad et al., 2005; Urlaub et al., 2015). Several studies 

describe the prevalence of glacial cycles in the timing of large passive margin landslides, 

where the accumulation and subsequent destabilization of Quaternary depocenters are 

influenced by rapid sedimentation during glacial-interglacial transitions (Bryn et al., 

2005; Kvalstad et al., 2005), increased seismicity due to post-glacial lithospheric 

rebound, and/or changes in sea level (Stewart et al., 2000; Owen et al., 2007; Lee, 2009; 

Brothers et al., 2013c), and gas hydrate dissociation (Kayen and Lee, 1991; Paull et al., 

1996; Mosher et al., 2004; Maslin et al., 2004; Brothers et al., 2014). However, the 

details of these potential cause and effect relationships remain poorly understood. It is 

particularly notable that large open-slope landslides may be found adjacent to sections of 

a margin dominated by canyon incision or even intact (unfailed) sections of the slope. 

The central USAM displays this dichotomy very well: the large, retrogressive Currituck 

landslide complex (Bunn and McGregor, 1986; Twichell et al., 2009; ten Brink et al., 

2014) is surrounded by broad sections of slope that are characterized by dense canyon 

spacing (Figs. 1, 2). We propose that the antecedent margin physiography and 

stratigraphic framework play important, but often overlooked roles in dictating how and 

where potentially unstable depocenters develop. 
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The aim of this study is to reconstruct the stratigraphic development of the central USAM 

from the Neogene to present, as this time periods appears to be when distinct differences 

in slope morphology arose that contributed to varying styles of slope instability. Analysis 

of paleo-seafloor gradients and differences in sediment accumulation patterns along the 

margin provide insight to the subsequent development and distribution of thick 

Quaternary depocenters, where many of the large landslides observed along the central 

USAM are found. 

 

2. Background 

2.1 Conceptual models for siliciclastic margin morphology  

The first-order shape of the continental shelf-edge, slope and upper rise is an important 

factor in understanding deep-water depositional systems and is fundamental to 

constraining where sediment accumulates versus where bypass is likely to occur (Van 

Wagoner et al., 1988; Ross et al., 1994; Galloway, 1998). Previous studies have 

developed morphological classifications for siliciclastic passive margins (Pratson and 

Haxby, 1996; Adams and Schlager, 2000, O’Grady et al., 2000; Schlager and Adams, 

2001; Brothers et al., 2013a) that can be separated into two end-member categories. (1) 

Oblique margins are characterized by an angular shelf-edge and a steep upper slope. Such 

margins are linked to relatively low energy shelf-edge environments, limited sediment 

supply, and often display an abrupt transition from current-driven sediment mobilization 

to downslope gravity-driven transport. Sediment flows bypassing the steep upper slope 

contribute to the development of closely spaced, slope confined submarine canyons and 

small landslides along canyon headwalls and sidewalls. Primary depocenters along these 
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margins are found near the gentler gradients of the lower slope and upper rise. (2) In 

contrast, sigmoidal margin morphology is typically linked to more energetic shelf-edge 

environmental conditions (e.g., stronger wave and current energy) and higher sediment 

supply, leading to slope progradation, the development of a smooth shelf-edge rollover 

and gentler downslope gradients. The low gradient slopes of sigmoidal margins are 

expected to contain a greater volume of accumulated Quaternary sediment than the 

steeper and oblique margins with dense canyon spacing (Adams and Schlager, 2000; 

O’Grady et al., 2000; Schlager and Adams; 2001; Brothers et al., 2013a). The balance 

between these end-member morphologies is often defined by overall slope gradient (Ross 

et al., 1994; Brothers et al., 2013a). Slope oversteepening generally contributes to 

erosional mass-wasting and downslope gravity flows that lead to deposition and 

aggradation on the lower slope. As these slope fan-aprons onlap the lower slope, this 

deposition in turn creates a lower-gradient platform that can support thick sediment 

accumulation and subsequent progradation across the upper slope provided there is 

sufficient sediment supply (Ross et al., 1994; Brothers et al., 2013a).  

 

2.2 Depositional history  

As the archetype Atlantic-style passive margin, the post-rift morphology of the USAM 

prior to the Neogene appears to have been characterized by a broad ramp of mixed 

carbonate and siliciclastic deposits (Schlee et al., 1979; Schlee and Hinz, 1987; Mountain 

and Tucholke, 1985; Klitgord et al., 1988). Increased denudation of the Appalachian 

Mountains and perhaps changing climatic conditions led to increased terrigenous 

sediment delivery to the central USAM during the middle Miocene via the Paleo- 
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Potomac, James, Roanoke and Susquehanna Rivers (Fig. 1; Poag, 1978; Klitgord et al., 

1988; Poag and Sevon, 1989; Poag and Ward, 1993). A massive wedge of prograded 

middle Miocene deltaic clinoforms underlies the shelf-edge and upper to middle slope 

between Norfolk Canyon and Cape Hatteras, extending the shelf-edge 30-60 km seaward 

of its previous position (Poag and Sevon, 1989; Poag and Ward, 1993).  

 

This rapid progradation filled most of the accommodation space on the shelf by the early 

Pliocene (Schlee et al., 1979; Poag, 1984). Sediment sourced from the Paleo-James and 

Paleo-Roanoke Rivers mostly bypassed the shelf and forced depocenters to migrate 

farther offshore, building large Pliocene fan-apron complexes on the continental rise 

(Schlee et al., 1979; Mountain and Tucholke, 1985; Poag, 1984, Poag and Sevon, 1989; 

Poag and Ward, 1993). Across much of the margin, these deposits were dissected during 

the Quaternary by widespread canyon and channel incision of the slope and upper-rise 

(Poag and Sevon, 1989; Poag and Ward, 1993). These features, along with onlapping 

base-of-slope fan-apron complexes suggest slope failures and generation of mass flows 

were the dominant sediment transport processes during the Quaternary (Schlee et al., 

1979; Poag, 1985; Mountain and Tucholke, 1985; Poag et al., 1992; Twichell et al., 

2009; Brothers et al., 2013a,b). 

The Paleo-James and Paleo-Roanoke rivers supplied large quantities of sediment to the 

margin during Quaternary sea-level lowstands (Stanley and Swift, 1976; Poag and Sevon, 

1989; Popenoe et al., 1982; Hobbs, 2004; Mallinson et al., 2010; Thieler et al., 2014). 

Southward progradation of the Accomack Spit on the east side of Chesapeake Bay during 

the Pleistocene redirected drainage southward through the Bay where the combined 



 

 8 

drainage of the Paleo- Susquehanna and Potomac Rivers likely turned offshore, 

delivering additional sediment to the Norfolk Canyon region (Hobbs, 2004). 

Paleochannel incisions on the inner shelf of North Carolina suggests the Paleo- James 

may have continued southward to converge with the Roanoke River before flowing 

offshore toward the site of the Currituck Slide (Shideler and Swift, 1972; Swift, 1976; 

Hobbs, 2004; Thieler et al., 2014). Extensive networks of buried paleochannels are 

encased in Miocene through Pleistocene units on the shelf offshore of the Albemarle 

Sound, indicating the Roanoke River repeatedly extended to the shelf-edge above the 

Currituck Slide during sea-level lowstands (Shideler and Swift, 1972; Popenoe et al., 

1982).

 

2.3 Major submarine landslide complexes  

Many studies of large submarine landslides are site specific and localized to individual 

failures, which often does not require an examination of the longer-term margin 

evolution. At the other end of the spectrum, broad-scale morphologic classifications of 

continental margins (e.g., considering the entire USAM as a single entity; O'Grady, 

2000; Adams and Schlager, 2000) often overlook the geological and morphological 

variation along a particular stretch of margin that may provide insights into the processes 

that preconditioned slopes for failure. Brothers et al. (2013a) analyzed bathymetric data 

spanning most of the USAM and identified six distinctive geomorphic provinces that 

could be linked to along-strike changes in the underlying Neogene and older geologic 

framework. Within these provinces, five of the largest submarine landslide complexes 

span a range of geologic settings, including differences in Quaternary sedimentation, 
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substrate architecture and neotectonic process that have generated different styles of 

failure (Booth et al., 1993; Twichell et al., 2009; Brothers et al., 2013a; ten Brink et al., 

2014).  

 

The geomorphic characterization of Brothers et al. (2013a) considered the central USAM 

as a single category defined by an angular shelf break and a steep, narrow upper slope 

dissected by densely spaced slope sourced submarine canyon networks (i.e., an oblique 

margin; Fig. 2). However, finer-scale variations in along-strike morphology and 

sedimentation history suggest the shelf-edge and slope containing the Currituck Slide 

Complex is geomorphologically distinct and may have resulted from a different set of 

geological processes. Fluvial systems delivering large volumes of sediment to the shelf-

edge and upper slope have dominated the Currituck margin since the Cretaceous (Poag 

and Sevon, 1989; Poag and Ward, 1993; Twichell et al., 2009). Pronounced accumulation 

of slope sediment, compaction-induced sediment loading and excess pore pressure 

conditions (Bunn and McGregor, 1980; Prior et al., 1986; Locat et al., 2009; Twichell et 

al., 2009) may have developed in a manner similar to the glacial margin to the north, 

where sediment loading or glacial recharge (Dugan and Flemmings, 2000; Person et al., 

2003), and weak layers associated with deltaic strata (O’Leary, 1991; 1993) are believed 

to have contributed to large-scale slope failures (Twichell et al., 2009).  

 

The Currituck Slide complex removed and redeposited sediment over an area greater than 

6500 km
2
 along the continental slope and upper rise (Figs. 1, 2). The seafloor 

morphology resulting from a series of nested slides of translational or slab-type failure 
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were initially described by Bunn and McGregor (1980) and Prior et al. (1986). Two 

headwall scarps with ~12° slopes were identified from the seafloor bathymetry; an upper 

slope headwall scarp with 250 m of relief is located seaward of the shelf break between 

500-700 m water depth; a lower headwall (1100 -1400 m water depth) has ~400 m of 

relief across a stepped scarp (Fig. 2), where differences in lithology may have allowed 

more resistant units to form terraces (Prior et al., 1986).  Stepped seafloor scarps on 

either side of the main evacuation zone have been suggested to indicate an additional 

failure plane within the main slide and highlight the influence of bedding planes on the 

shape of the failure surface and surrounding scarps (Locat et al., 2009). Sidewall relief 

associated with the lower failure(s) was estimated to be much less (100-120 m), but with 

steeper gradients (>25°) (Prior et al., 1986). Prior et al. (1986) also noted the presence of 

a possible buried scarp along the southern sidewall of the lower failure. Slump faults 

upslope of the slide scars have been interpreted as post-failure crown cracks (Popenoe et 

al., 1982; Prior et al., 1986). The main slide scar is floored by a seaward dipping wedge 

of slope strata with subsurface reflections that are laterally continuous both seaward and 

along slope (Bunn and McGregor, 1980). Subbottom data presented by Prior et al. 

(1986) show an apparent basal shear surface 4-9 m below the seafloor dips seaward ~4°, 

congruent with the regional stratal gradient; cores collected here suggest several meters 

of dry, friable clay may be associated with this surface (Bunn and McGregor, 1980). 

Bunn and McGregor (1980) noted that subsurface horizons can be traced laterally more 

than 10 km under the main slide scar and are continuous under an adjacent ridge of intact 

strata on the lower slope, suggesting both areas formed at the same time, under similar 

conditions. The intact strata are composed of well-stratified, thinly layered sequences on 
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the south side, with fewer unconformable horizons indicative of erosion on the north side, 

and small-scale slumping features in the surficial sediments (Bunn and McGregor, 1980). 

Debris fans extend seaward from the slide complex in two main zones. The primary 

debris field to the north covers an area ~55 km wide that extends 180 km from the 

estimated toe of the original slope (Locat et al., 2009). A secondary debris channel is 

observed south of the intact slope strata and appears to truncate slope canyons to the 

south (Figs. 1, 2). 

 

Cores collected from the main slide scar sampled mostly silt and clay with interbedded 

sands, while cores from the adjacent intact slope strata recovered organic-rich silt and 

clay with limited sand content (Bunn and McGregor, 1980). Despite limited age control, 

the two primary slides identified from the Currituck complex are believed to have 

occurred sequentially in the late Pleistocene between 50 ka – 16 ka and are thought to be 

related to lowstand delta development associated with the James and Roanoke Rivers 

(Bunn and McGregor, 1980; Prior et al., 1986; Locat et al., 2009).  

 

3. Data and Methods 

1980‘s vintage MCS reflection profiles obtained from the USGS National Archive of 

Marine Seismic Surveys (NAMSS; https://walrus.wr.usgs.gov/NAMSS/) provide regional 

framework constraints for this study. Two Western Geco data sets were used for this 

study, W-4-82-A (WG82) and W-6-80-A (WG80), spanning the region from the Norfolk 

Canyon to the southern canyon failure (Fig. 1). These data were collected using a 14-

airgun array with a 36-channel streamer (100 m group spacing) for a 10-50 m vertical 
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resolution, and up to 5 s (twt) of penetration. Additional profiles across the shelf from the 

U.S. Bureau of Ocean and Energy Management (BOEM) contracted surveys (B-04-82-

AT, B-11-82-AT, and B-16-76-AT) were included to identify paleochannels and fluvial 

valleys within the study area, but are not shown here. Western Geco collected and 

processed (stacked, filtered and migrated) the original 2-D data. Navigational offsets 

within the Western Geco and BOEM data, arising from the limited positioning 

capabilities at the time of acquisition, were corrected by shifting the profiles to align with 

correlative seafloor features in the high-resolution multibeam bathymetry data. Raw 

multibeam bathymetry data from numerous surveys across the study region were 

obtained from the NOAA National Centers for Environmental Information repository 

(NCEI; http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html), edited and combined into 

a mosaic grid at 20 m cell spacing, following the methods of Andrews et al. (2012).  

 

High-resolution sparker MCS reflection profiles were acquired aboard the M/V Tiki XIV 

in 2012. More than 1000 line-km of 72-channel (6.25 m group spacing) data were 

acquired along the shelf edge and slope between Norfolk Canyon and the Currituck Slide 

(Fig. 1). A 6 kJ sparker source provided peak frequencies between 90 and 300 Hz, 

yielding 5–10 m vertical resolution and ~1 km of penetration. Data were sorted into 

common depth point gathers using SIOSEIS then loaded into Promax for standard 

processing (zero phase bandpass filter, trace editing, f-k filtering, velocity analysis, static 

correction, normal moveout, stack and constant velocity f-k migration). Migrated sections 

were integrated with the existing legacy data in IHS Kingdom Suite for interpretation.  
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Additional USGS legacy MCS profiles that span the study region have been correlated to 

borehole logs, dredge samples and exposed seafloor outcrops on the slope (Schlee, 1976; 

Schlee et al., 1979; Poag, 1984, 1985, 1992; Dillon and Popenoe, 1988; Grow et al., 

1988; Poag and Ward, 1993; Klitgord et al., 1994). The interpretations allow us to 

identify four unconformity-bounded allostratigraphic units of Poag and Ward (1993) 

throughout the study area (Fig. 3). These allostratigraphic units are as follows: Phoenix 

Canyon/middle Miocene unit bounded by the middle Miocene Unconformity (MMU) at 

the base and the upper Miocene Unconformity (UMU) above; Mey/upper Miocene unit 

bounded by the UMU at the base and the Pliocene Unconformity (PU) above; Toms 

Canyon/Pliocene unit bounded by the PU at the base and the Quaternary Unconformity 

(QU) above; Hudson Canyon/Quaternary unit bounded by the QU at the base and the 

seafloor above. These unconformity-bounded allostratrigraphic units are not equivalent to 

chronostratigraphic units, (i.e. not specifically defined by upper and lower bounds of each 

time unit, but rather are interpreted to represent total preservation of deposits from within 

each time period), and thus provide first-order age control on strata beneath the shelf, 

slope and rise.  

 

The allostratigraphic units defined above were gridded across the study area to generate 

the sediment thickness isopach maps, which were converted from two-way travel time to 

depth using the average layer velocities from Klitgord and Schneider (1994). Sediment 

volume and average sediment thickness (total volume divided by area) were calculated 

from the isopach units for Areas 1 – 4 (Fig. 1b), between 200 – 2000 m water depth. For 

the Quaternary sediment volume and thickness calculations, an addition of the total 
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volume of sediment removed by the Currituck Slide (165 km
3
, Locat et al., 2009) was 

divided proportionately between Area 1 (33 km
3
) and Area 2 (132 km

3
), as the slide scar 

covers the lower slope across both these regions (Figs. 1, 2).  

 

Representative depth-converted sections were obtained from the NAMSS repository for 

the detailed horizon gradient analyses of ten representative MCS profiles spanning 

distinct regions across the study area. For several Western Geco profiles of which depth 

sections were unavailable, RMS velocity functions were obtained from metadata files, 

converted to interval velocities (e.g., Dix, 1955) and used for depth conversion. The 

seafloor horizon and four key allostratigraphic surfaces were extracted from each of the 

depth-converted MCS profiles and smoothed using a (~2km) moving average filter. 

These smoothed profiles were used to to calculate slope gradients along each of the 

seismostratigraphic horizons. 

4. Seafloor Morphology 

The study area is divided into four sub-regions based on margin morphology (Fig. 2), as 

described in the following sections.  

 

4.1. Slope Canyons (Area 1) 

Area 1 is classified as an oblique morphology due to the angular shelf-edge and a steep, 

narrow upper slope (Figs. 2, 3, 4).  The shelf indenting Norfolk Canyon defines the 

northern limit of Area 1 (Figs. 1, 2). Characterized by numerous small sidewall failures 

along the upper reaches, and thick levee development on the lower slope, this shelf-

sourced canyon has served as a significant sediment conduit for detrital material derived 
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from the central USAM (Forde, 1981). South of the Norfolk Canyon, dendritic networks 

of slope-sourced canyons incise the slope and uppermost rise (Fig. 2; Goff et al., 2001; 

Brothers et al., 2013a,c; Mitchell, 2004, 2005; Vachtman et al., 2013). 

 

4.2 Currituck Slide Complex (Area 2) 

The Currituck Slide Complex dominates the morphology of Area 2. New multibeam 

bathymetry data reveal substantially greater detail of the seafloor in and around the slide 

evacuation zone (Figs. 1, 2). In addition to the previously identified upper and lower 

headwalls, large seafloor scarps are now clearly seen landward of the upper slope 

headwall, on all sides of a large section of relatively intact strata on the lower slope, and 

bordering the main evacuation zone across the lower slope and rise (Fig. 2). Along the 

northern section of the primary slide scar, the relief on the upper slope headwall 

decreases from 250 m to ~150 m, where the uppermost strata appear to be truncated by 

an additional failure farther upslope, producing a U-shaped scarp with ~100 m of relief at 

the shelf-edge (―shelf-edge headwall‖ in Figs. 1, 2). The seafloor above the upper slope 

headwall is highly irregular, exhibiting large undulating depressions and numerous 

smaller seabed pockmarks between ~250-500 m water depths. More detailed 

morphologic structures along each of the headwalls are now visible as well. Both the 

shelf-edge headwall and upper slope headwall scarps are extensively gullied (Fig. 2). 

Some of the sidewall scarps along the lower slope show relief up to 150-200 m; higher 

than previously estimated by Prior et al. (1986). Outcropping strata between 1500-1600 

m water depth form a bench that juts >800 m seaward of the lower headwall across the 

extensively gullied and notched scarp. Smaller scarps up to 50 m of relief are observed 
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within the primary evacuation zone. Between the upper and lower headwalls, the seafloor 

is gently sloping (~4°), relatively smooth and undissected, with occasional scattered 

debris blocks. 

 

 A large (10 km wide, 18 km long, 500 m thick) section of relatively intact slope strata 

observed on the lower slope flanks the primary slide scar (Figs. 1, 2). This feature 

corresponds to the intact ridge of sediment initially described by Bunn and McGregor 

(1986), which can now be observed in much greater detail. Stepped scarps on all sides of 

this section (‗intact slope‘ hereafter) show variable relief (300-600 m), with extensive 

gullying along the steepest scarps, and scattered debris blocks along the base (Fig. 2). 

The uppermost sediment package within this section appears to have been removed on 

the northern side, where the seafloor steps down to expose more irregular bathymetry that 

shows evidence of channelized downslope flows on the surface of the deposit (Figs. 1, 2).  

 

4.3 South of Currituck (Area 3) 

The margin south of the Currituck Slide Complex exhibits a distinct convex slope profile 

and shelf-edge that protrudes several kilometers seaward relative to the surrounding 

regions (Figs. 2, 3, 4). The slope in the northern portion of Area 3 is characterized by 

small, low order, dendritic canyon heads that coalesce just below the shelf-break into 

steep-walled (20-40°) and flat-floored canyons (Fig. 2). The canyon interfluves in this 

section are characterized by small, localized failures along canyon walls. The convex 

upper slope seafloor morphology is more pronounced in the southern section of Area 3 

(Fig. 2), where it is characterized by large, closely spaced gullies with low-order dendritic 
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heads that incise the upper slope and transition downslope into small slump block failures 

below ~1000 m water depth  (Fig. 2).  The upper slope across this region is covered in 

circular pockmarks from the shelf break down to ~400 m water depth (Fig. 2). 

 

4.4 Southern Canyon Failure Zone (Area 4) 

The southern limit of the study area, just north of Cape Hatteras, is defined by a series of 

shelf indentations that have been interpreted to result from large, coalesced canyon-

confined failures (Twichell et al., 2009). These features contribute to the steep, concave 

profile of the slope throughout this region (Fig. 2, 3, 4). The heads of these canyons are 

extensively gullied and the scarps are short, suggesting numerous small failures rather 

than one large event (Twichell et al., 2009). These canyons have been linked to high 

backscatter lobes extending more than 100 km across the seafloor observed in sidescan 

sonar imagery (Twichell et al., 2009). Linear north-south trending troughs and seafloor 

offsets on the lower slope suggest potential fault control across this region (Prior et al., 

1986; Locat et al., 2009). Although no subsurface fault structures have been identified in 

this immediate region, growth faults within upper Miocene section are observed on a 

regional seismic profile just to the south (USGS Line 17; Klitgord et al., 1994). 

 

5. Substrate Architecture 

5.1. Margin-scale stratigraphic framework  

The following sections describe the Neogene through Quaternary stratigraphic 

framework across the study region, from the Norfolk Canyon to Cape Hatteras, 

interpreted from allostratigraphic horizons within the regional MCS profiles. The middle 
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Miocene Unconformity (MMU) has a relatively gentle slope gradient (< 6°) across the 

upper slope along most of the study region (Figs. 3, 4).  A prominent increase in gradient 

of the MMU across the upper rise in all four areas appears to coincide with truncation of 

the Lower Miocene package and subcropping of Eocene strata (Fig. 3).  This change in 

morphology is most pronounced in Area 4, where the slope gradient increases to >10° 

across the lower slope/upper rise (Figs. 3, 4). The shelf-edge middle Miocene deposits are 

thickest (>600 m) in Areas 2 and 3 (Figs. 5, 6), where large clinoform deposits downlap 

onto the upper Miocene Unconformity (UMU) reflector and extend seaward to >1800 m 

water depth across the upper slope, with little truncation along the upper boundary (Fig. 

3). The middle Miocene clinoforms in Areas 1 and 4 are more shelf-edge restricted and 

show truncation of the most seaward strata (Figs. 3, 5). In Area 1, this truncation is 

initiated directly beneath the shelf edge and extends downslope to the base of the deposit 

(Fig. 3). In Area 4, truncation is initiated farther offshore, preserving more of the middle 

Miocene upper slope strata (Fig. 3). Lower slope/upper rise aprons onlap the subcropping 

Eocene unit across all the areas and increase in thickness to the south (Figs. 3, 5). 

 

Most of the upper Miocene package is thin or absent along a broad swath of the outer 

shelf and upper slope in Areas 1 and 4 (Fig. 5). The truncated seaward face of the middle 

Miocene clinoforms here generated the steepest gradients (>8°) of the upper slope along 

the UMU (Figs. 3, 4). The UMU in Areas 2 and 3 maintained a relatively gentle gradient 

across the entire slope, similar to the MMU, although the steepest (~7°) portion of the 

profile was shifted upslope due to onlapping and burial of the subcropping Eocene strata 

(Figs. 3, 4, 5).  This upper Miocene package appears to be truncated mid-slope beneath 
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Areas 3 and 4 (Figs. 3, 5). The thickest upper Miocene deposits (~500 m) are found in 

Area 2, where fan-aprons onlap the lower slope/upper rise (Figs. 3, 5, 6).  

 

The steepest gradients (8-10°) of the Pliocene Unconformity (PU) are found on the upper 

slope in Area 1, just beneath the modern shelf-edge inflection point, which also coincides 

with the inflection point of the underlying MMU (Figs. 3, 4). Pliocene accumulation is 

greatest on the lowermost slope and upper rise, where 300-400 m thick Pliocene fan-

apron deposits onlap the steepest part of the slope (Fig. 5). Relatively gentle gradients (4-

7°) along the PU underlie the slope in Areas 2 and 3. Area 2 comprises a relatively thin 

layer of Pliocene sediment across the upper slope that shows an abrupt increase in 

thickness beneath the lower headwall, where the strata onlap truncated Miocene layers 

(Figs. 3, 5, 7). The Pliocene sediment in Area 3 is more evenly distributed across the 

entire slope (Figs. 3, 5). The PU gradient steepens significantly (>10°) beneath Area 4 

(Fig. 4). Pliocene deposition here is similar to Area 1, with relatively thin upper slope 

deposits; the sediment thickness increases downslope, but is thinner than areas to the 

north (Fig. 5). 

 

The Quaternary Unconformity (QU) in Areas 1 and 4 is similarly steep (<8°) beneath the 

upper slope (Fig. 4). The Quaternary package in Area 1 is relatively thin (<150 m) along 

the upper slope (Fig. 5), where small Pleistocene deltas are perched on the shelf-edge 

(Hill et al., 2004). Thick (>400 m) Pleistocene fan-apron sequences onlap the lower slope 

(Figs. 3, 5). Area 4 is mantled by a relatively thin Quaternary shelf-edge cover, giving 

way to mounded canyon debris on the lower slope (Figs. 3, 5). Areas 2 and 3 exhibit a 
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more gentle (<6°) slope profile along the QU (Figs. 3, 4). Area 2 is underlain by a 

seaward thickening wedge of Pleistocene material characterized by continuous reflections 

that are truncated by steep scarps (Figs. 3, 7, 8). Intact strata of the upper rise and lower 

slope can be correlated with upper slope strata, suggesting that the Quaternary sediment 

thickness here was ~750 m prior to failure (Figs. 5, 9, 10). The largest Quaternary 

sediment thickness in Area 3 is found on the outer shelf to upper slope, with fan apron 

deposits on the lower slope (Figs. 3, 5).   

 

5.2 Stratal Architecture of the Currituck Submarine Slide Complex 

Regional mapping of the allostratigraphic surfaces described above, combined with new 

higher-resolution Sparker MCS data, provides additional constraints on the stratal 

architecture encompassing the Currituck Slide. The seismic units of Prior et al. (1986) 

can now be correlated withpre-middle Miocene strata in Unit A; upper Miocene strata in 

Unit B, as the middle Miocene deposit is very thin on mid-slope here; and Plio-

Pleistocene strata in Units C and D; resolving some earlier discrepancies regarding the 

possible age of these units. Several large packages of spatially continuous strata define 

the stratigraphy beneath the Currituck Slide failure surface and show little or no evidence 

for buried submarine canyons, in contrast with surrounding regions (Figs. 2, 7, 8, 9). 

Headwall and sidewall scarps truncate the strata and the basal failure surfaces below the 

scarps appear to correspond to exposed bedding planes (Figs. 7, 8). A seaward thickening 

section of Quaternary strata underlies the slide scar along the middle slope and onlaps the 

upper slope beneath the upper slope headwall (Figs. 7, 8). Successively younger packages 

of intact strata landward of the upper slope headwall appear to downlap onto bedding 
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planes that define local failure surfaces (Fig. 7). Deformed strata, deposited above buried 

scarps in the Pleistocene section, correspond to an irregular seafloor surface along the 

intact upper slope and outer shelf (Fig. 8). Several profiles appear to show an inflection 

point in the Quaternary and Pliocene unconformities, directly beneath the upper and 

lower headwalls respectively, where the paleo-seafloor gradient becomes much steeper 

downslope (Figs. 4, 8).  

 

Truncated strata within the subsurface, suggestive of multiple buried scarps, are observed 

both landward of the upper slope headwall in the Quaternary section and seaward of the 

lower headwall, in the Pliocene section (Figs. 8, 10). Numerous vertical chimney 

structures and offset reflections are also found throughout the slide initiation area (Fig. 

8). Highly reflective, deformed Pliocene strata are observed below the more continuously 

stratified, seaward-thickening Quaternary wedge that defines the floor of the slide scar 

along the mid slope (Fig. 8). Seaward of the lower headwall, the Pliocene strata that were 

not removed by the most recent failure are folded and faulted (Fig. 8b). Within the trough 

seaward of the lower headwall, Quaternary and Pliocene strata appear to be made up of 

stacks of chaotic sequences separated by local bounding surfaces (Fig. 8a). 

 

A large (10 km wide, 18 km long, 500 m thick) section of subparallel, continuous 

reflections along the lower slope appears to contain relatively intact strata that did not fail 

during formation of the Currituck Slide Complex. The intact strata flank the southern 

edge of the primary slide scar in water depths of 1200–1800 m (Fig. 2). Regionally 

continuous strata can be traced from below this intact section, both across the main slide 
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scar to the north and upslope to the paleo shelf-edge (Figs. 8, 9, 10). Vertical faults pierce 

the seafloor at a 300 m high failure scarp along the lowermost slope, which shows the 

greatest relief of all the stepped scarps that surround this unit (Figs. 2, 9, 10).  A ~100 m 

thick unit made up of chaotic reflections is exposed at seafloor on the north side of this 

deposit and sandwiched between parallel strata on the south side (Fig. 10). Where the 

chaotic unit is exposed at the seafloor, the bathymetry is relatively rough, compared with 

neighboring stratified sections, and shows evidence of downslope, channelized flows in 

the bathymetry (Fig. 2). A ~150 m thick stratified section is found atop this chaotic unit 

to the south, where perched strata appear to be draped across buried scarps, with little 

evidence of internal deformation or faulting within the overlying deposit (Figs. 9, 10). 

Chimney structures cut across most of the intact slope strata and breach the chaotic layer, 

but do not appear to penetrate the overlying perched strata (Figs. 9, 10).  

 

6. Discussion 

6.1 Role of Antecedent Geology in Margin Morphology and Slope Failure 

Comparison of the margin morphology and underlying stratal architecture along the 

central USAM suggests that localized differences in slope morphology resulting from 

regional unconformities, along with variations in sediment supply related to 

paleodrainage patterns, can have a major impact on long term margin development, 

driving sections of the margin to be more landslide dominant or canyon dominant. Lower 

sediment supply and shelf-edge depocenters lead to oblique profiles with oversteepened 

slopes and intense canyonization, constrained by downslope gravity flows and erosion of 

shelf-edge material (Adams and Schlager, 2000, Schlager and Adams, 2001; Brothers et 
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al., 2013a), similar to the margin morphology observed in Areas 1 and 4 (Fig. 11). 

Conversely, high sediment supply and slope depocenters, indicative of progradation, tend 

to lead to broad, low-gradient, sigmoidal margin profiles characterized by open slope 

landslides and limited canyon development, as observed within Areas 2 and 3 (Fig. 11). 

 

The extraction and analysis of regional allostratigraphic surfaces suggests that much of 

the study area exhibited similar paleo-seafloor morphology characterized by a smooth 

shelf break and a relatively gentle slope gradient prior to the middle Miocene (Figs. 3, 4, 

11). Numerous paleochannels incised across the shelf suggest the margin was dominated 

by fluvial sediment delivery during sea level lowstands since at least the Mid-Miocene, 

when large, shelf-edge deltaic clinoforms were deposited (Figs. 3, 5, 11; Poag, 1984, 

1985; Poag and Sevon, 1989; Greenlee et al., 1992; Poag and Ward, 1993; Poulsen et 

al., 1998; Monteverde et al., 2008). Differences in the preservation of these middle 

Miocene clinoform deposits created distinct variations in shelf-edge and slope 

morphology that appear to have set the stage for differing styles of mass failure along the 

margin (Figs. 3, 4, 11). Erosion of the seaward face of the middle Miocene clinoforms 

along Areas 1 and 4 (―truncated clinoform strata‖ in Fig. 3) appears to have contributed 

to the development of an oblique margin morphology, defined by an abrupt, angular 

shelf-break with relatively steep downslope gradients (>8°), that helped transfer large 

volumes of sediment to the lower slope and upper rise (Figs. 3, 5, 11). Peripheral 

deposition and limited sediment delivery from the Paleo-Potomac and Paleo-Roanoke 

Rivers to these areas during the middle Miocene (Figs, 5, 6; Poag and Sevon, 1989; Poag 

and Ward, 1993) may not have been sufficient to keep pace during periods of sea level 
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rise.  Following the slope readjustment model of Ross et al. (1994), sediment 

accumulation restricted to the shelf edge and upper slope would have led to 

oversteepening of the margin during subsequent lowstands, which contributed to 

sediment bypass along the upper slope, the development of slope-sourced canyons and 

preferential aggradation on the lower slope and upper rise. 

Limited accommodation space along the steep, oblique slope margin meant that much of 

the Plio-Pleistocene sediment initially deposited on upper parts of the margin was 

transported offshore via mass flows through preexisting canyons or the formation of new 

upper slope sourced canyons (Brothers et al., 2013a). This led to the build up of large 

Pliocene fan-apron deposits, as sediment was funneled downslope (Figs. 5, 11; Schlee et 

al., 1979; Poag, 1984; Poag and Sevon, 1989; Poag and Ward, 1993). As a result, these 

areas are dominated by closely spaced canyon incision, sediment bypass and canyon 

failures, with primary accumulation on canyon interfluves of the lower slope (Figs. 2, 5).  

 

The main morphological difference between Areas 1 and 4 is that the coalesced, shelf-

edge indenting canyons in Area 4 have steeper downslope gradients along the modern 

seafloor relative to Area 1 (Figs. 2, 3, 4, 11). This morphology appears to have been 

inherited from the shape of the MMU, which is steepest along the upper slope in Area 4 

(Fig. 4, 11). The smooth seafloor and lack of debris blocks downslope of the large 

canyons in Area 4 (Fig. 2a) suggests these features may not necessarily be canyon-

confined failures as suggested by Twichell et al. (2009), but rather the result of 

downslope flows along an already oversteepened oblique margin, similar to what is 

observed in Area 1. A higher sediment supply from the Paleo-Roanoke River, relative to 
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the Paleo-Potomac contribution, likely contributed to the thicker fan-apron deposits 

found in Area 4 as well (Figs. 5, 6). 

 

In contrast, Areas 2 and 3 are characterized by a sigmoidal slope profile, with smooth 

shelf-edge rollovers and gentler slope gradients (<6°) (Figs. 2, 3, 4, 11). Deposition from 

the Paleo-Roanoke River appears to have contributed significant volumes of sediment to 

these areas since at least the middle Miocene (Figs. 5, 6; Shideler and Swift, 1972; 

Popenoe et al., 1982). Evidence of downlap and seaward pinch out in the middle 

Miocene clinoform strata across these regions indicates a lack of significant erosional 

truncation at this time (Fig. 3). This evidence implies that high sediment supply may have 

allowed this portion of the margin to keep pace with sea level fluctuations and maintain a 

near equilibrium profile that allowed for continued slope progradation (Ross et al., 1994). 

Aggradation of the lower slope and upper rise throughout the upper Miocene and 

Pliocene further reduced the paleo-seafloor gradient across these areas, allowing a broad 

ramp to develop that would support large scale Pleistocene progradation across the entire 

slope (Fig. 11).  

 

Southward diversion of the Paleo-James River and convergence with the Paleo-Roanoke 

flowing eastward across the shelf may have significantly intensified Quaternary 

sedimentation across Area 2 (Figs. 5, 6; Poag and Sevon, 1989; Hobbs, 2004; Mallinson 

et al., 2010; Thieler et al., 2014). This increase in sedimentation is particularly evident in 

the thick, seaward thickening wedge of Quaternary slope sediment that underlies the 

main Currituck failure (Figs. 3, 5, 7, 8, 11). Reconstructions of the pre-failure 
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morphology imply massive sediment accumulation (~750 m thick) across the slope at this 

time, much of which was subsequently removed by the large retrogressive submarine 

landslide (Fig. 11; Bunn and McGregor, 1980; Prior et al., 1986; Locat et al., 2009). 

This interpretation is supported by the presence of intact slope strata that can be traced 

regionally both upslope and across the main slide evacuation zone (Figs. 9, 10).  

 

Area 2 is the only location along the central USAM comprised of relatively continuous, 

parallel strata throughout, with no evidence of canyon formation beneath the slide 

surface, since at least the middle Miocene (Figs. 3, 7, 8). Prior to failure, seaward 

progradation of the continental slope appears to have created a low gradient, sigmoidal 

morphology more prone to large open-slope landslides due to enhanced sediment 

accumulation from slope progradation, much like that of southern New England and the 

Hudson Apron (Brothers et al., 2013a). In contrast, the well-developed, closely spaced, 

dendritic canyons observed in Areas 1 and 4 are consistent with long term slope canyon 

evolution, most likely initiated by oversteepening of the upper slope associated with the 

shelf-edge clinoform truncation at the start of the middle Miocene; numerous stacked 

canyon cut-and-fill deposits are observed within the Miocene deposits along this section 

of the margin (Fig. 2c). Downlapping Quaternary strata on the upper slope of Area 3 

show evidence of progradation similar to Area 2, although oversteepening in the mid-

slope here appears to have led to canyonization and small-scale mass failures within the 

Quaternary section (Fig. 3). Low-order canyons with relatively steep-sided, straight 

thalwegs incise much of the Quaternary section across the northern portion of Area 3, but 

do not cut as deeply into this deposit as is observed in Area 1 (Fig. 2c). The convex 
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seafloor morphology of Area 3 is most pronounced in the southern part of this area, 

where the thickest upper-slope Quaternary sediment accumulations occur (Figs. 4, 5). 

This section of the margin is characterized by gullies and rills with limited incision across 

the upper slope, slump block scars on the mid slope and knickpoints indicative of 

headward erosion on the lower slope (Fig. 2b). This morphology is consistent with the 

canyon initiation model proposed by Pratson and Coakley (1996) and suggests the 

development of canyons in this region may be more recent than in Areas 1 and 4. 

Consequently, the pattern of progradation observed in the southern portion of Area 3 may 

be the best analog for pre-failure, upper slope stratigraphy within Area 2. 

 

6.2 Preconditioning Factors for Currituck Slope Failure 

The most critical factor for preconditioning the Currituck Slope for failure appears to be 

the low gradient margin morphology developed during the Miocene that supported a 

substantial accumulation of slope sediment (Figs. 5, 6, 11). Thick middle Miocene 

sediment accumulation on the upper slope may have contributed to an initial build up of 

high pore pressure due to rapid sediment loading. Subsequent slope progradation 

associated with relatively high sediment input from the Paleo-Roanoke River allowed 

thick Plio-Pleistocene accumulations of spatially continuous, parallel-bedded strata that 

would have enhanced this overburden. These strata would have generated conditions that 

allowed the lateral migration of pore fluid over long distances without escaping through 

submarine canyon walls, unlike surrounding areas. Increased sedimentation across 

Currituck from the merging of the Paleo-James and Paleo-Roanoke Rivers likely led to 

some of the thickest Quaternary sediment deposits along the margin (Figs. 5, 6). The 
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resulting development of overpressure from this rapid sedimentation would have reduced 

shear strength and promoted failure along bedding planes within the seaward dipping 

Quaternary wedge. Similar conditions have been described from numerous sites along 

passive margins (e.g., Dugan and Flemings, 2000; Canals et al., 2004; Kvalstad et al., 

2005; Leynaud, 2007; Flemings et al., 2008; Masson et al., 2010; Dugan and Sheahan, 

2012). While gas accumulation and venting features (e.g., pockmarks and chimney 

structures) are common across the slide complex (Figs. 2, 8, 9, 10), it is not clear if these 

features developed prior to failure or what role free gas accumulation or hydrate 

dissociation may have played in the failure.  

 

At least four major surface scarps are visible in the surface morphology of the Currituck 

Slide complex (Fig. 2). The new multibeam bathymetry suggests that features interpreted 

as crown cracks and slump faults above upper slope headwall (Popenoe et al., 1982; 

Prior et al., 1986) appear to coincide with the irregular seafloor topography and large 

depressions observed at the shelf-break. These depressions exhibit a similar size and 

shape to the u-shaped failure observed along the northern portion of the upper slope 

headwall, and are underlain by possible buried scarps (Fig. 8), which suggests potential 

subsurface control on the position of these features. Possible buried scarps are also 

observed in the Pliocene section beneath the lower headwall where folded strata appear to 

represent an anticlinal hinge (Figs. 8b, 10). Differential compaction across similar 

features has been highlighted as a key factor in landslide triggering of low gradient mid 

slope sediments elsewhere, as this may also enhance the development of overpressured 

regions (e.g., Georgiopoulou et al., 2007; 2010).  
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The upper section of intact strata on the lower slope adjacent to the Currituck Slide 

Complex shows evidence of well-stratified sediment perched atop channelized flows that 

appear as chaotic, possible mass transport deposits in the seismic section (Figs. 2, 9, 10) 

that may be associated with failure along one of the buried scarps. In addition, the 

Pliocene and Quaternary sections beneath the lower headwall show evidence of repeated 

layering of chaotic deposits that could be interpreted as additional mass transport deposits 

(Fig. 8). This evidence all suggests that this region has repeatedly developed failure-

prone conditions, with multiple triggering events, since at least Pliocene time, when 

large-scale deposition was initiated across the slope. 

 

7. Conclusions 

 

The large size of the Currituck failure complex is remarkable along this portion of the 

central USAM, as oversteepening along much of the adjacent margin has led to closely 

spaced canyons fed by downslope flows and sediment bypass. Distinct differences in the 

modern slope morphology along this section of the central USAM appear to be inherited 

from antecedent physiography defined by the shape of the upper Miocene Unconformity. 

The development of two end members of margin morphology (sigmoidal vs. oblique) 

appears to have influenced the spatial distribution of sediment accumulation and the 

nature of slope failure within each end member. Oversteepening of the upper slope along 

more oblique sections of the margin generated intense canyonization in Areas 1 and 4. In 

contrast, rapid sedimentation and continued progradation of the low-gradient Currituck 
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margin throughout the Pliocene and Quaternary most likely led to a vast region of pore 

fluid overpressure within spatially continuous slope strata, preconditioning this portion of 

the margin for large-scale slope failure.  

 

These morphological differences derived from variations in depositional history highlight 

the need to examine the subsurface architecture to better understand the evolution of 

continental margins through sedimentary processes. Key insights from the stratigraphic 

evolution of the central USAM suggest that large-scale slope failures are associated with 

regionally extensive depocenters along slope prograded margins that can support thick 

sediment accumulation along low gradient slopes. As result, these areas may be where 

the greatest submarine landslide hazard exists. Elsewhere, steep, oblique slopes have led 

to extensive canyon formation, which leads to sediment bypass and deposition on the 

lower slope and rise, where smaller failures occur. High rates of sediment accumulation 

along the slope and rise can lead to compaction–induced pore fluid overpressure and 

subsequent destabilization. The presence of hydrate and/or free gas within the sediment 

may also contribute to non-compaction generated overpressure, although the significance 

of this contribution remains unclear.  These results highlight the importance of examining 

the detailed stratigraphy of the framework geology across areas with large, low-gradient 

Quaternary slope depocenters prior to undertaking localized geotechnical modeling or 

hydrate stability analyses, as the stratigraphy will provide key insights to patterns of fluid 

migration and zones of potential instability. Although much of the sediment from the 

evacuation zone of the Currituck Slide has been dispersed, investigation of the upper 

slope adjacent to Currituck in Area 3 may provide significant insight into the local 
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preconditioning factors prior to slope failure. We suggest particular emphasis should be 

placed on examining the stratigraphy of this region, as well as the intact slope strata 

within Area 2, as these areas appear to provide the best analogs and direct records of 

sedimentation history and margin morphology that are comparable to the Currituck Slide 

Complex. 

 

A general survey of the U.S. Atlantic margin, as well as of passive margins worldwide, 

suggests that the majority of large submarine slope failures are located on the lower 

slope/upper rise and often coincide with regions of thick Quaternary sediment 

accumulation (Canals et al., 2004; Mosher et al., 2004; Masson et al., 2006, Twichell et 

al., 2009; Krastel et al., 2012), and the Currituck Slide Complex is a prime example of 

this relationship. These observations highlight the need to use regional framework 

analyses to better understand potential locations of instability along a margin. The desired 

outcome of this strategy is a shift toward a predictive framework in which morphological 

characterization (e.g., Adams and Schlager, 2000; O'Grady, 2000; Mosher et al., 2004; 

Amblas et al., 2006; Brothers et al., 2013a), landslide distribution patterns (e.g., McAdoo 

et al., 2000; Masson et al., 2006; Twichell et al., 2009; ten Brink et al., 2009b; Krastel et 

al., 2012) and substrate architecture of the passive margins (e.g., Brothers et al., 2013a; 

Campbell et al., 2015) are combined to assess the relative vulnerability of a particular 

region to large-scale slope failure. Detailed mapping using large volumes of newly 

available, regional coverage, and legacy data will aid in the identification of thick, lower 

slope, Quaternary depocenters where large, open-slope landslides are most likely to 

occur. The continental slope north of Washington Canyon, offshore of Virginia, may 
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provide one such example. Preliminary examination of the seafloor bathymetry and slope 

stratigraphy of this region suggest a prograded slope with limited canyon development on 

the upper slope that appears similar to the seafloor morphology in Area 3, as well as a 

thick, stratified and regionally continuous deposit of Pliocene and Quaternary sediment 

on the mid to lower slope. Further analysis of the regional geologic framework, however, 

would be required to make a more thorough assessment of this and other potentially 

unstable regions.  

 

Figures 

Figure 1: Location maps showing the study area along the central U.S. Atlantic margin: 

(a) USGS seismic multichannel seismic (MCS) profiles used to constrain the 

allostratigraphic units described in this study; modern river locations are shown onshore 

and blue arrows denote the approximate locations of offshore paleo-fluvial valleys 

discussed in the text: P= Potomac River, S=Susquehanna River, J=James River, R= 

Roanoke River; boxes B and C indicate panel locations; Additional locations discussed in 

the text are abbreviated as follows: AB=Albemarle Sound, AC=Accomack Spit, 

CB=Chesapeake Bay; (b) Overview of the Western Geco MCS trackline coverage 

spanning the 4 distinct sectors of the margin discussed here; representative MCS profiles 

used in detailed gradient analyses are highlighted in red; (c) 2012 USGS Sparker MCS 

profiles over the Currituck Slide are shown in blue; Western Airgun MCS profile WG82-

170 referenced in figure 7 is shown in green. 

 



 

 33 

Figure 2: (a) Perspective view of the seafloor morphology compiled from high resolution 

multibeam bathymetry data sets gridded at 20 m resolution showing the major features of 

central U.S. Atlantic margin that are discussed in the text. The study region is divided 

into 4 areas based on seafloor morphology. (b) Detailed perspective view of the seafloor 

morphology encompassing the Currtiuck Slide complex and adjacent portions of the 

margin; (b) BOEM Airgun MCS profile across the upper slope shows the variability in 

the regional stratigraphy; the profile location is indicated by a transect from B-B‘ in part 

a. Allostratigraphic units following Poag and Ward (1993) are shown here, bounded by 

regional unconformities: middle Miocene Unconformity (MMU); upper Miocene 

Unconformity (UMU); Pliocene Unconformity (PU); Quaternary Unconformity (QU). 

  

Figure 3: Representative Western Geco Airgun MCS profiles shown in grayscale 

highlight along strike variations in stratigraphy and resulting morphology among the four 

sectors of the margin. Locations of seismic lines are shown in Figure 1. Allostratigraphic 

units following Poag and Ward (1993) are shown here, bounded by regional 

unconformities: middle Miocene Unconformity (MMU); upper Miocene Unconformity 

(UMU); Pliocene Unconformity (PU); Quaternary Unconformity (QU). 

 

Figure 4: (a-e) Depth-distance and (f-j) gradient-depth plots of allostratigraphic surfaces 

across representative profiles along the margin. See Figure 1 for profile locations. Bold 

curves represent the mean depth profiles and gradient profiles, while the individual 

profiles used are shown in the legend. The colors represent profiles from the four 

morphological provinces: Area 1 (blue); Area 2 (red); Area 3 (green); Area 4 (yellow). 



 

 34 

The gray bars indicate the approximate depth of the continental slope-rise transition. All 

profile distances are normalized to the shelf-slope break.  

 

Figure 5: Isopach maps of sediment thickness for allostratigraphic units (a) middle 

Miocene, (b) upper Miocene, (c) Pliocene and (d) Quaternary, interpreted from regional 

Western Geco Airgun and USGS Sparker MCS profiles. The trackline coverage is shown 

in gray. The black arrows indicate paleo-fluvial drainage locations interpreted from 

paleochannels preserved in seismic profiles across the shelf, as well as data from Poag 

and Sevon, 1989; Hobbs, 2004; Mallinson et al., 2010; Thieler et al., 2014. 

 

Figure 6: Average sediment thickness between 200 – 2000 m water depth across each of 

the four areas of the central U.S. Atlantic margin referenced in the text. The height of the 

bars represents total sediment thickness from the middle Miocene to present for each 

area; the sediment thickness contribution for each time period is noted in italics, color 

coded and labeled as follows: Q = Quaternary (brown), P = Pliocene (pink), UM = 

upperMiocene (yellow) and MM = middle Miocene (orange).   

 

Figure 7: Comparison of seismostratigraphy and data resolution between subparallel 

profiles of (a) USGS Sparker MCS data have been converted to envelope to highlight 

major reflections and (b) grayscale, full polarity Western Geco Airgun MCS data. The 

Sparker MCS data show much higher resolution stratigraphy of the Pliocene and 

Quaternary sections, while the Airgun MCS data provide stratigraphic controls on deeper 

units. See Figure 1 for profile locations. 
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Figure 8: USGS Sparker MCS dip profiles across the Currituck Slide Complex; the full 

profiles are shown in grayscale envelope form to highlight major reflections, while the 

insets show the full waveform stratigraphy. See Figure 1 for profile locations.  

 

Figure 9: USGS Sparker MCS (a) dip and (b) strike profiles across a large section of 

intact strata on found on the lower slope adjacent to the Currituck Slide; the full profiles 

are shown in grayscale envelope form to highlight major reflections, while the insets 

show the full waveform stratigraphy. See Figure 1 for profile locations.  

 

Figure 10: 3-Dimensional perspective view of the morphology of the Currituck Slide 

Complex showing grayscale envelope cross-sections from USGS Sparker MCS profiles 

across the intact section of the lower slope. 

 

Figure 11: Schematic showing the depositional patterns associated with each 

allostratigraphic unit and the resulting morphology along the four areas of the central 

U.S. Atlantic margin referenced in the text; locations are shown in Figures 1 and 2.  
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