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Abstract 
 
Recent research has shown that the microbiome—a collection of microorganisms, including 
bacteria, fungi, and viruses, living on and in a host—are of extraordinary importance in human 
health, even from conception and development in the uterus. Therefore, to further our ability to 
diagnose disease, to predict treatment outcomes, and to identify novel therapeutics, it is 
essential to include microbiome and microbial metabolic biomarkers in Systems Biology 
investigations. In clinical studies or, more precisely, Systems Medicine approaches, we can use 
the diversity and individual characteristics of the personal microbiome to enhance our resolution 
for patient stratification. In this review, we explore several Systems Medicine approaches, 
including Microbiome Wide Association Studies to understand the role of the human microbiome 
in health and disease, with a focus on ‘preventive medicine’ or P4 (i.e., personalized, predictive, 
preventive, participatory) medicine. 
  



CHARACTERIZING THE HUMAN MICROBIOME 
 
In recent years, Systems Biology has revolutionized our discovery of biomarkers to prevent, 
diagnose, and treat diseases.  For example, the personalized diagnosis of HER2 breast cancer 
is one of the first examples implemented at the clinical level1. Systems Biology approaches 
allow us to make sense of the vast amount of data generated by “-omics” technologies, such as 
genomics, transcriptomics, metabolomics, and proteomics, through statistical, computational, 
and mathematical approaches that enable us to reveal the emergent properties of studied 
systems.  
 
The Human Microbiome is heterogeneous between body sites (e.g. skin, gut, vagina), is 
distinctly personal2, evolves over our life span3, and has been implicated in, among other 
conditions, obesity4 and depression5. Clinical studies to characterize the microbiome must 
consider numerous elements6, including cohort selection, participant attrition, sample size, 
experimental design, sample collection, transportation and preservation, and more.  Sample 
size is crucial to achieve statistical power, though few methods are currently available to 
establish a priori sample size for microbiome studies7. Many microbiome studies suffer from 
small sample sizes that may not capture the variability of the system, and we possess limited 
understanding of how to calculate sample size for longitudinal investigations. These limitations 
likely result from a lack of information about variability, which has led to a number of large scale 
efforts aimed at characterizing data from groups of participants in an attempt to quantify the 
variance in different traits8,9. For the microbiome, crowdsourcing efforts, such as American Gut 
(www.americangut.org), provide a unique opportunity to create data resources that can be used 
to predict statistical power for clinical studies.  
 
To perform a Microbiome Wide Association Study (MWAS)6, it is necessary to profile the 
microbiome to identify biomarkers that can be associated with host traits. The microbiome can 
be characterized using 16S/18S/ITS rRNA amplicon sequencing to identify the relative 
abundances of the different species, shotgun metagenomic sequencing to identify the 
organisms functional potential, metatranscriptomics (RNA-seq) to determine their functional 
response to change, metabolomics to identify microbial products, meta-proteomics10 (UPLC-
MS) to identify the enzymes being produced, and imaging (e.g. 3D cartography11) to visualize 
the spatial structure of the microbiome. The most common method is amplicon sequencing, 
usually using 16S rRNA2,3 amplicons to describe bacterial and archaeal diversity, community 
structure, and composition of the microbiota. The benefit of amplicon sequencing is that it is 
inexpensive (<$20 a sample), is fast, and provides easy-to-interpret biomarker units. 
Traditionally, these biomarkers have been known as operational taxonomical units (OTUs) 
and were clusters of similar taxa (e.g. QIIME12, Mothur13); however, new computational 
techniques have enabled this data to be probed at a greater taxonomic resolution14-16, 
enabling the identification of biomarkers potentially at strain-level resolution (Table.1). Once 
that amplicon sequencing has been processed and annotated to known bacterial taxa, 
amplicon sequence data needs to be treated or normalized to avoid experimental and 
technical artifacts12,17,18. Subsequently, normalized amplicon data can be processed through 
computational pipelines (Table.1) to study the community structure (e.g., alpha and beta 
diversity) and to perform the statistical analysis that will link these biomarkers to host traits 
(e.g. phyloseq19, QIIME12, Mothur13).  
 
Amplicon sequencing is limited, however, by the taxonomic resolution (i.e. you cannot usually 
identify microbes to the species or strain level), and it provides no information on the 
functional capacity of the microbes, although techniques exist to computationally predict 
microbial function for members of the ecological community that have a known sequence 



(e.g. PICRUSt20). Therefore, to characterize microbial biomarkers such as genomic strain or 
functional gene, shotgun metagenomics is used, whereby the total genomic DNA of a sample 
is randomly sequenced21,22. While this provides less coverage of the total community 
composition, it does provide greater taxonomic resolution and potential functional information, 
which improves the ability to identify associations with host traits and patient stratification. 
However, shotgun metagenomic sequencing is expensive ($300-500 a sample), and analysis 
is more labor intensive than human genomics, mostly because there are no reference 
genomes for a majority of the organisms in a sample, which makes it harder to interpret the 
sequencing data.23 However, there are a number computational pipelines, such as 
MetAMOS24, Xander25, and Anvi’o26, that reduce the workload (Fig.1). 
 
Importantly, metagenomic analysis only describes the genetics and functional potential of the 
microbiome, as it does not characterize the genes that are actively transcribed and translated 
into proteins. Metatranscriptomics27 and metaproteomics28 can be used to explore these 
phenomena, but they are more expensive than amplicon or metagenomic sequencing—
metatranscriptomics can cost more than $500 per sample, while metaproteomics can cost more 
than $1000 per sample. Metatranscriptomics is easier to implement experimentally and 
computationally29 than meta-proteomics; in the latter, the cells have to be isolated and the 
extracted proteins must be analyzed using LC-MS methods30. Metaproteomics provides useful 
biomarkers, as these are the active proteins and enzymes that are influencing host traits, but 
cost and difficulty of sample preparation limit the application of this approach.  
 
The culmination of genetics, transcriptomics, and proteomics is of course the metabolome, 
which represents the small molecules generated by the individual cell or community of 
microbes. The influence of microbial metabolites of human health is well recognized31. In fact, 
metabolite biomarkers can often show the strongest association with host traits, likely 
because they have direct influence on host function31,32. Microbial metabolites, such as short 
chain fatty acids, have been shown to have a significant influence on local inflammation32, 
hormonal balance9, and even on mitochondrial activity33. The presence of microbe-related 
metabolites is commonly determined by gas or liquid chromatography followed by mass 
spectrophotometry29, and the cost can vary from a few dollars for single metabolites to more 
than $100 per sample for an untargeted analysis of the metabolome. Due to the large 
correlation and interdependence between metabolites, clustering methods are employed to 
reduce the data dimensionality for downstream analysis34. 
 
SYSTEMS MEDICINE APPROACHES  
 
When analyzing individual variables or traits in isolation, it is likely that the emergent properties 
of their interactions will not be observed (e.g. quorum sensing). An emergent property of a 
system is defined as characteristic of a complex system that cannot be predicted from its 
individual components directly without knowing the relationships or interactions between them. 
Therefore, identifying the emerging properties of the ecological community is fundamental to 
deciphering the key molecules in the system for diagnosis and treatments. Cancer biology has 
greatly benefited from Systems Biology approaches, specifically in identifying markers for 
particular cancers and using these to predict treatment strategies for individual patients1,35. 
Including microbiome characteristics in these predictions could greatly enhance the potential of 
emergent property discovery through systems thinking. 
 
Amplicon studies, such as 16S rRNA sequencing, generally provide relative abundance data, 
which generates a ‘compositional’ effect. Compositional data is in a non-Euclidian space, and 
therefore common Systems Biology approaches are not applicable, as they require the 



properties that a Euclidian space possess—e.g. distances between 2 points. However, a 
number of methods have been developed that accommodate relative abundance, such as 
SparCc36, which utilizes ratios of normalized abundance between OTUs to determine co-
abundance correlations37. Correlation networks can lead to numerous indirect edges between 
the microorganisms, and graphical models have been proposed to remove these spurious 
connections—e.g. SPIEC-EASI38, sparse neighborhood and inverse covariance selection. 
Silverman et al.39 suggested a different approach to transforming the compositional data into 
Euclidian space, so that the standard Systems Medicine methods can be directly applied (Table 
1). This method is comparable to other normalization approaches and it does allow the 
identification of OTUs that differentiate samples, providing a forum for the characterization of 
microbial biomarkers. Similarly, determining the microbial biomarkers that correlate with a given 
host trait is often performed by generalized linear models17,18, linear discrimination analysis40, 
and linear log-contrast models with l-1 penalization to accommodate compositional data41. For 
example, with LEfSE40, biomarkers such as metabolic pathway and taxonomic signature that 
correlate a host trait such as diet, can be calculated from metagenomic data27 (Table 1). To 
improve the prediction of potential metabolic function from 16S rRNA data, several publically 
available27 and commerical8 databases that link genetic function to taxonomy are being 
developed, so that Systems Medicine can benefit from more accurate predictions at a lower 
data generation cost.  
 
Correlation networks (e.g., Spearman correlations) are also frequently used to determine the 
interactions between microbial components36 of a system, or between microbes and 
metabolites, clinical variables, and host traits, such as inflammatory markers (Table 1). For 
example, Schirmer et al.42 developed an elegant approach to establish whether microbes and 
genes in stool samples could describe population variance in individual immune cytokine 
expression following pathogenic stimulation. Using Spearman correlations, the authors were 
able to identify which cytokine changes were associated with which microbes and genes, and 
they demonstrated high interpersonal variability, suggesting that patient populations should be 
stratified by immune response and microbiome. Price et al.8 demonstrated a ‘personalized 
medicine’6 approach in a cohort of 108 participants followed longitudinally over nine months, 
characterizing their genomes and clinical variables associated with disease in order to identify 
metabolic and microbial biomarkers of patient variables from blood, urine, and stool. Using 
Spearman correlations, they were able to identify clusters of patient traits that correlated with 
known clinical phenotypes and that were associated with specific microbial and metabolic 
biomarkers. Price et al.’s methodology can be extended to larger, more diverse samples for 
longer period of times and to include other more complex traits, such as those related with 
neurological disorders5.  
 
Machine learning approaches based on tree methods, e.g. Random Forest3, are able to 
discriminate important biomarkers associated with a given host trait, even when non-linear 
relationships are present. For instance, to predict the glycemic response in a population of 800 
participants, researchers43 modelled postprandial blood glucose (PPGR) values as a function of 
different phenotypic and personal traits (e.g. nutritional intake, BMI, immune levels, glucose, 
and microbial composition and function) using a gradient bootstrapping tree (Table 1). PPGR 
predictions significantly aligned the experimental PPGR results from a new cohort of 
participants with a different dietary profile. The application of this method for high-dimensionality 
data has been used to form a company, DayTwo (www.daytwo.com), which predicts 
personalized diets for customers based on their blood chemistry and microbiome. Notably, 
these approaches can be used to predict biomarkers and create models for many disorders, 
such as cardiovascular diseases, hypertension, preeclampsia, anemia, and stress levels, just to 
name a few. 



 
While we can create models of association between microbial taxa and host traits, microbial 
metabolic products generally appear to have greater predictive potential. While metabolomics is 
becoming more common in MWAS studies6, it is possible to predict microbial metabolism from 
metagenomic data44 and as a function of manually curated, genome-enabled metabolic models 
(GEMs). A database of semi-manually GEMs for 773 gut-associated microbial taxa just became 
available45. Using these approaches, it is possible to predict emergent metabolic properties from 
the interaction of the microbiota and to study metabolic connections with the host9,46-48 through 
flux balance analysis—a linear optimization method48 (Table 1). Although not yet applied to 
Systems Medicine, due to the limited amount of available data, it is also possible to apply GEMs 
to describe nodes in an artificial neural network49, where the topology, such as edge 
connectivity of each node, can capture emergent properties and enable more accurate 
predictions of microbial biomarker activity8.  
 
PREDICTING CAUSATION WITH DYNAMIC DATA 
 
Longitudinal studies, which provide time-resolved 16S rRNA amplicon sequencing data, are 
becoming common; yet, many studies do not use analyses that take advantage of the potential 
of these datasets to predict causality8,22,48,50,51, most likely due to the lack of adequate methods 
to analyze longitudinal microbial data. Typically, correlation networks (e.g., SparCc36, 
CCLasso37) or graphical models (e.g., SPEIC-EASI38) are instead employed, though they do not 
provide edge directionality. Several longitudinal studies have been investigated to provide 
predictions of the associations between microbial dynamics and host trait-dynamics (Table 1). 
For example, David et al.27 followed participants on different diets over several days. Pearson 
correlation coefficients were grouped using dynamic hierarchical clustering, and those clusters 
were associated with the differing diets, corresponding to well-reported functions of microbiota 
in animal diets.  
 
Machine learning methods can be extended to study dynamic microbial abundance data (Table 
1). Sparse Variance Autocorrelation models (sVARs)—commonly used in econometrics—and 
Dynamic Bayesian networks (DBNs) have been employed to model longitudinal proteomics 
data35. Recently, sVARs have been used to model longitudinal stool microbial abundances, 
effectively characterizing the underlying network interactions that contribute to observed 
ecosystem dynamics52. However, sVAR models do not guarantee causation, since they predict 
Granger causality.  DBNs allow us to include non-linear relationships, which is a distinct 
advantage over linear approaches, to account for noisy data, and to incorporate prior knowledge 
of the system. For example, McGeachie et al.53 employed DBN to model the colonization of the 
gut microbiome of 58 low birth-weight infants in a neonatal intensive care facility. Employing 
lagged time correlations, whereby events at time point 1 are used to predict events at time point 
2, microbial biomarkers were identified that were significantly associated with gestational age at 
delivery and the use of antibiotics. Therefore, DBNs and Bayesian statistics can generally be 
used to identify emergent properties that enable biomarker identification, but it is also essential 
to validate the proposed interactions, if possible.  
 
Several other approaches exist to identify molecular mechanisms that underpin observed trends 
and can therefore be used to predict biomarkers. For example, it is possible to use Lotka–
Volterra models (Table 1) to predict the individual growth rates of microorganisms in a 
community as a function of specific perturbations—e.g. antibiotics. Generalized Lotka–Volterra 
(gLV) parameters have been estimated through Tikhonov regularization54, Bayesian statistics54, 
or sparse linear regression with bootstrap aggregation55. While gLV analysis can be used to 
capture dynamics in multi-omic datasets, they generally require substantial longitudinal data to 



achieve accuracy. Finally, agent-based models (Table 1) are useful to model systems and have 
been employed to predict interactions between host and microbial metabolism56. However, 
agent-based models require a priori knowledge of a relationship and quantification of that 
relationship, which we lack for many interactions. As systems become more parameterized, the 
use of agent-based modeling approaches might become more prevalent, enabling the prediction 
of complex behaviors that emerge from multicellular systems, like the human microbiome.  
 
FUTURE PERSPECTIVES 

 
The application of Systems Biology modeling to medical microbiome studies is still in its infancy, 
in large part due to the availability of adequately powered studies. However, much of the 
analytical infrastructure and the systems thinking does exist, albeit with provisos. While it is 
possible to calculate and leverage correlations between microbial and host variables to 
demonstrate significant associations, we still have substantial knowledge gaps regarding what 
these associations actually represent. These knowledge gaps will be filled through a 
combination of Systems Biology on different scales, from in vitro cellular studies to in vivo 
community dynamic studies. An obvious gap that should be easy to fill is the absence of 
extensive datasets characterizing the fungal27 and viral57 components of the human microbiome. 
This is essential, as we attempt to predict bacterial-host trait associations, since viral or fungal 
variables may explain the host trait more effectively. In addition, where appropriate, there should 
be further investment into longitudinal datasets, especially prospective longitudinal 
investigations. These temporal association studies will enable the prediction of time-lagged 
relationships and feedback loops, which are particular useful to uncovering emergent properties 
that could be used to forecast clinical outcomes for specific diseases. Gut microbiome-produced 
metabolites can influence distal organs in the body, and have long-term effects that may not be 
manifest for many years. For example, bacteria can produce neurotransmitters, such as 
serotonin pre-cursors and gamma aminobutyric acid (GABA), which can influence 
neurophysiological development in infants5 and result in cognitive disruption in childhood. Also, 
such studies need more effective strategies to integrate data types, such as immunological, 
endocrinological, and neurological variables, with multi-omic microbiome variables to feed the 
systems modeling approaches outlined above.  
 
The goal of building large-scale networks that accommodate all known data types and create 
predictions of putative functional associations is not enough. There needs to be a strategy, not 
just intention, to aid experimental validation of proposed associations. This is often difficult due 
to the number of associations identified, resulting in a necessity to sub-select observed 
associations for validation42. It is also necessary to validate predictive models on relevant data, 
whereas current validation methods rely on simulated data to determine the accuracy of their 
methods. Simulated data, while being a great initial approach for method optimization, rarely 
resembles reality. Examples of validation methods are functional genomics. Functional 
genomics can identify host-microbiome interactions through transfection of cloned microbial 
DNA fragments into E. coli, for instance, to identify microbially-derived molecules—peptides, 
metabolites, etc.—that influence the host58 or the development of in vitro analogues for 
simulating the gut environment59. Again, there is a substantial need to integrate data across 
scales, and as such, single cell analyses are becoming invaluable. For example, mathematical 
combinatorial approaches based on ordinary linear regression to generate random communities 
from single cell isolation experiments have proven successful in predicting likely strains 
responsible for observed phenotypes60. Progress in single cell isolation and subsequent 
analysis61 will open doors to new biological insights, as well as novel methods to validate 
experimental results. 
 



The ultimate goal of systems microbiome medicine is to develop diagnostic tools based on the 
microbiome, and treatments—probiotics and prebiotics—to restore loss-of function or to elicit 
specific host responses. Therefore, it is important to develop mathematical theory, or adopt 
statistical approaches from other fields, that can facilitate the identification of emergent 
properties and specific associations to define biomarkers62.  Finally, Systems Microbial Medicine 
is the ultimate multidisciplinary field, and the ability to translate basic research into clinical 
applications will require integration of expertise across microbiologists, geneticists, 
mathematicians, statistics, engineers, computational biologist, nutritionists, immunologist, 
neurologist, endocrinologist, etc. In essence, we need a system of scientists to study the 
systems of life. 
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Table 1. Summary of the most common experimental and computational methods 
employed in Systems Microbiome Medicine 
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