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Abstract 39 

Co-occurrence methods are increasingly utilized in ecology to infer networks of species 40 

interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use 41 

is particularly common, but not restricted to, microbial networks constructed from metagenomic 42 

analyses. In this study, we test the efficacy of this procedure by comparing an inferred network 43 

constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central 44 

Chile to a well-resolved, empirically-based, species interaction network from the same region. 45 

We evaluated the overlap in the information provided by each network and whether there is a 46 

bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative 47 

interactions. We found a poor correspondence between the co-occurrence network and the 48 

known species interactions with overall sensitivity (probability of true link detection) equal to 49 

0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions 50 

varied with interaction type. Positive non-trophic interactions such as commensalism and 51 

facilitation were detected at the highest rates. These results demonstrate that co-occurrence 52 

networks do not represent well classical ecological networks in which interactions are defined by 53 

direct observations or experimental manipulations. Co-occurrence networks provide information 54 

about the joint spatial effects of environmental conditions, recruitment, and, to some extent, 55 

biotic interactions, and among the latter, they tend to better detect niche-expanding interactions 56 

such as positive non-trophic interactions including habitat engineering. Detection of links 57 

(sensitivity or specificity) was not higher for well-known intertidal keystone species than for the 58 

rest of consumers in the community. Thus, as observed in previous empirical and theoretical 59 

studies, patterns of interactions in co-occurrence networks must be interpreted with caution, 60 

especially when extending interaction-based ecological theory to interpret network variability 61 
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and stability. Co-occurrence networks may be particularly valuable for analysis of community 62 

dynamics that blends interactions and environment, rather than pairwise interactions alone. 63 

Keywords: species interactions, non-trophic interactions, food webs, ecological networks, co-64 

occurrence, intertidal, keystone species, anthropogenic impacts 65 

Introduction 66 

Most past ecological research on the network of species interactions within communities has 67 

focused on small subsets of interacting species, and usually on those interactions that can be 68 

easily inferred from observation of an organism’s diet or physical contact between species, such 69 

as predation, pollination, and fruit dispersal (Bascompte and Jordano 2104, Dunne et al 2002, 70 

Montoya and Solè 2002). Since such approaches usually require extensive efforts in data 71 

collection, and because many types of interactions or ecological systems cannot be readily 72 

observed (e.g. microbial communities, endoparasites), it is increasingly common to infer or 73 

reconstruct interaction networks from pattern in species co-occurrence in either time or space 74 

(e.g. Stephens et al. 2009, Araujo et al., 2011, Faust and Raes 2012, Borthagaray et al. 2014). 75 

Species co-occurrence is a simple and long sought after approach to infer species interactions 76 

within ecological systems (Morales-Castilla et al., 2015, Cazelles et al., 2016, Sander et al., 77 

2017). Significant spatial co-occurrence is considered evidence of positive or mutualistic 78 

interactions, and co-exclusion considered evidence of negative (e.g. competitive) interactions 79 

(Faust et al., 2015, Fuhrman et al 2015). However, co-occurrence patterns within a single 80 

ecosystem can also be interpreted in terms of species response to environmental factors (Peres-81 

Neto et al. 2001) or dispersal limitation (Ulrich 2004). The premise of the co-occurrence 82 

approach is that if species in a community are interacting with each other in a way that affects 83 

each others’ abundance or presence over space, thereby influencing local community assembly 84 
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patterns, then they will have non-random co-occurrence that could be revealed through an 85 

appropriate sampling design and statistical tests (e.g. Ulrich & Gotelli 2013, Borthagaray et al. 86 

2014). For example, predators might be observed with their prey more frequently, and 87 

competitors might be observed together less frequently than expected from random assembly. 88 

This approach is closely related to the development of assembly rules (Diamond 1975) and null 89 

models in ecology (Graves and Gotelli 1996). While our understanding of co-occurrence patterns 90 

and the processes underlying community assembly is much more sophisticated and multifactorial 91 

than originally envisioned (de Bello et al., 2012, Chase 2012, Cazelles et al., 2016), the basic 92 

premise from the point of view of building ecological networks from such patterns is essentially 93 

the same (Peres-Neto et al 2001). 94 

The pattern of interactions among members of an ecological community has consequences 95 

for population dynamics and persistence of species, for network stability and for the maintenance 96 

of ecological function (e.g. Allesina and Pascual 2008, Faust and Raes 2012, Slessarev et al., 97 

2016). It is therefore important to understand to what extent patterns of co-occurrence of species 98 

(or Operational Taxonomic Units in the case of microbes) reflect species interactions.  In other 99 

words, to what extent ecological networks built from co-occurrence patterns, for microscopic or 100 

metazoan organisms, are commensurate with those built through direct observation, such as gut 101 

content analyses, direct observations of consumption, stable isotope analyses, or experimental 102 

manipulations (Dunne et al 2008, Kéfi et al 2015, 2016, Sander et al., 2017)? 103 

There are important ecological and methodological reasons as to why ecological interactions 104 

may not translate into easily discernible patterns of co-occurrence. The method of constructing 105 

ecological networks from co-occurrence data has explicit spatial assumptions built into its 106 

design, which should be scrutinized further so that we better understand the limitations of the 107 
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approach when it comes to interpreting network structure and dynamics. Predator and prey are 108 

expected to positively correlate over some spatial scale that allows predators to maximize prey 109 

encounters. Yet, over some smaller scale, effective predators should reduce or completely 110 

eliminate prey, sometimes restricting them to refuges beyond predator reach, generating strong 111 

negative associations. The actual spatial scale over which the direction of species correlation 112 

changes across an environmental or biotic gradient will also change depending on biological 113 

attributes of the species involved, such as body size and dispersal capacity (Borthagaray et al 114 

2014). This makes it quite challenging to detect such correlations across multiple-species 115 

assemblages using a fixed sampling size. In addition, species interaction networks, especially 116 

food web networks, are directed, which means the matrix of species interactions can be 117 

asymmetric (Cazelles et al 2016). Covariance structures estimated from spatial co-occurrence 118 

can only infer symmetric interactions. Further, species can coexist and exhibit a correlation in 119 

their abundances through either time or space because they are affected by a third species (as in 120 

apparent competition, e.g., Holt and Bonsall 2017), or through a common environmental factor, 121 

even if the species pair does not interact directly. Moreover, spatial variability in dispersal and 122 

subsequent settlement and recruitment can by itself generate spatial correlation patterns between 123 

species (e.g. de Bello et al., 2012, Shinen & Navarrete 2014). The multi-species interactive 124 

nature of real communities, where each species simultaneously interacts with many others and in 125 

different ways (Berlow et al 2004, Kéfi et al 2016), adds additional complications when trying to 126 

construct patterns of paired interaction from co-occurrence (Azaele et al 2010).  In this context, it 127 

is of great importance to understand the robustness of the network reconstructions based upon 128 

co-occurrence data.  129 

Despite these limitations, one can still argue that if species interactions are important in 130 
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determining the presence of species, then non-random patterns of co-occurrence must reflect the 131 

multiplicity of interactions, especially after controlling for environmental effects and indirect 132 

effects of third species (Peres-Neto et al 2001, Azaele et al 2010). Co-occurrence analyses can be 133 

particularly valuable because they have the potential to reveal which species respond in similar 134 

ways to ecosystem conditions.  Indeed, many ‘true’ observed links (e.g. a predator incidentally 135 

consuming a prey species) may be feeble and have little relevance in modulating prey abundance 136 

(but see Berlow 1999). In this sense, significant patterns of co-occurrence may reveal strong 137 

ecological interactions and filter out many weak effects.  138 

Here we provide an empirical test of inferring species interactions from correlational studies 139 

using a well-resolved and comparatively specious empirically-based ecological network from the 140 

wave exposed rocky shore of central Chile.  We focus on examining the types of interactions for 141 

which there is the greatest correspondence between correlation-based and empirical approaches 142 

to species interactions. The only other study to conduct such an analysis focused on machine 143 

learning approaches and comparison to different ecosystems (Sander et al 2017). We elucidate 144 

the aspects of the intertidal ecosystem that relate most directly to species co-occurrence.  145 

We examine whether patterns of species co-occurrence, obtained through intensive field 146 

surveys conducted at multiple sites, may reflect the documented species interactions in the 147 

network. Importantly, not only consumptive interactions among the members (hereafter food 148 

web) of the local community have been considered, but also non-trophic interactions (hereafter 149 

NTI), such as facilitation, interference, or habitat provisioning have been described (Kéfi et al., 150 

2015, 2016).  Since many of the documented interactions in ecological communities are non-151 

trophic, such as mutualistic relations and competition, we examine whether spatial co-occurrence 152 

patterns reflect best trophic, positive NTI or negative NTI type of interactions. Moreover, we 153 
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assess whether known strong interactions are better resolved by spatial co-occurrence patterns, as 154 

well as assess the performance of the methods across strong environmental gradients.    155 

Method 156 

Network 157 

The approach we follow here is to use a 'known', independently constructed ecological 158 

network of species interactions for the wave-exposed rocky shore of central Chile (see Castilla 159 

and Durán 1985 and Castilla 1999 for an overview of this system) and examine whether such a 160 

network can be reconstructed from extensive species co-occurrence data. The interaction 161 

structure for this community is composed of the trophic interactions, negative NTIs, and positive 162 

NTIs recorded in Kéfi et al. (2015). Like all ecological networks, there is uncertainty as to the 163 

significance of some of the links connecting species in the network (see discussion in Kéfi et al. 164 

2015), but the network used here represents one of the most complete networks yet published in 165 

which both food web (trophic) interactions and non-trophic interactions are determined from 166 

long-term analysis of species’ natural history, surveys and observations, and experimental 167 

studies. Further methodological details and analyses of the network structure can be found in 168 

Kéfi et al. 2015, 2016 and in http://beta.mappr.io/play/chile-marine-intertidal-network. 169 

Field surveys in rocky shore communities 170 

The spatial data is from surveys of species at multiple sites over multiple years along the 171 

rocky shores of central Chile. A total of 49 sites and 3847 quadrats were considered in our 172 

analyses (Figure 1). Out of these 49 sites, 46 sites were sampled during the time periods 1998-173 

2000, 2003-2005, and 2010, 7-15 quadrats of 50 by 50 cm placed haphazardly along a 20-30 174 

meter long transect at each low and mid, and occasionally high, intertidal zones were sampled. 175 

This sampling effort was sufficient to capture the full species richness at each site (Broitman et al 176 
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2011). Note that not every site was sampled every year and a different number of quadrats were 177 

sampled during each survey. Details of the surveys, methods and distribution of sites sampled 178 

can be found in Broitman et al. (2001, 2011), Navarrete et al., (2005), and Wieters et al. (2009). 179 

In 2013, three additional sites around the region of Copiapó (27oS) were surveyed. This time, 25 180 

quadrats of 50 by 50 cm at three different tidal levels (high, mid, and low tide) along 50 meter 181 

transects were sampled. For all surveys, mobile species were counted as individual organisms 182 

while sessile species were recorded as percent cover.  183 

Inferring links from spatial structure 184 

We used Pearson correlations on presence/absence data to test for spatial association between 185 

species.  The sign and magnitude of the association is that of the correlation coefficient. Note 186 

that for presence/absence data, Pearson correlation is equivalent to Spearman and Kendall’s tau 187 

correlations. We assigned a α = 0.1 significance threshold, privileging a greater number of 188 

significant links over precision. The results are insensitive to alterations in this value, however it 189 

should be noted that 10% of the inferred associations are likely due to statistical effects.  190 

In the results section that follows, and for ease of presentation, we describe to what extent the 191 

species interactions recovered from co-occurrence data revealed ‘true’ links as previously 192 

described in the intertidal ecological network, using the Pearson correlation approach and note 193 

the differences with the null model approach. Of course, as discussed above, identification of 194 

such ‘true’ links are not free of assumptions (see Kéfi et al., 2015 for detailed discussion). We 195 

adopt the terminology of ‘interaction’ for links in the ‘true’ network and ‘association’ for links in 196 

the co-occurrence network. 197 

We present heatmaps of the full results in the Appendix S1, figures S2-S6 and present and 198 

discuss condensed versions of these results in the body of the manuscript. 199 
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Sensitivity, or the probability of detection of a true link, is computed as the ratio of the 200 

number of links that are correctly identified as ecological interactions (true positives) to the total 201 

number of links in the empirical network. Specificity, or the true negative rate, is the ratio of the 202 

number of links that are correctly identified non-interactions (true negatives) to the total number 203 

of non-interactions in the empirical network. Sensitivity and specificity are defined for any given 204 

subnetwork, including for single species, by counting only the links that connect to species 205 

within that subnetwork (links may originate or end outside of the subnetwork). 206 

There is a plethora of approaches for reconstructing species interactions from 207 

presence/absence data, but most have the covariance matrix, the object of analysis in this study, 208 

as a common underpinning. An alternative conceptual approach, the “probabilistic approach”, is 209 

to measure association based on significant deviations from the expected probability of co-210 

occurrence of two species based on the occurrence of single species (Araujo 2011, Veech 2014). 211 

Significant deviation from the expectation can be determined using a null model approach 212 

(Gotelli and Graves 2000), or an exact p-value if there are very few samples (Veech 2014). To 213 

complement our analysis we used both the correlation and the probabilistic approach described 214 

above. 215 

Strong Interactions 216 

The keystone species in this ecosystem that have been identified through experimental 217 

manipulations (Paine et al. 1966, Castilla and Duran 1985, Navarrete and Castilla 2003, Oliva 218 

and Castilla 1986, Aguilera and Navarrete 2012) are carnivores: the seastar Heliaster helianthus 219 

and the muricid whelk Concholepas concholepas, and grazers: Fissurella crassa and Fissurella 220 

limbata. It should be noted that these grazers are highly omnivorous (Camus et al., 2008, 2014). 221 

There are also 14 species that are harvested by humans, including three of the keystone species 222 
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(C. concholepas, F. crassa, and F. limbata).  223 

Results 224 

Inferring links of the ecological network from non-random co-occurrence 225 

The probabilistic approach performs substantially worse than the correlation-based approach 226 

due to a high false-positive rate (specificity of 0.283). It has slightly higher sensitivity (0.692) 227 

than the correlation-based approach, particularly for rare species, but much lower specificity. 228 

Consequently, we focus on analyzing the performance of the better-performing correlation 229 

method and present these results in appendix S1, figures S7 and S8.  230 

The overall sensitivity using the correlation-based approach with a significance of α = 0.1 is 231 

0.469, meaning just under half of the interactions in the empirical network are detected as 232 

significant associations. The specificity is 0.527, meaning that slightly over half of the detected 233 

non-associations are not interactions. The lowest specificity (0.367) was in the sessile-sessile 234 

interactions, which are mostly negative NTIs. In comparison to other interactions, there are 235 

relatively few interactions where a sessile species affects a mobile species and both specificity 236 

(0.558) and sensitivity (0.531) are highest for these interactions.   237 

As a species becomes more common across the region, sensitivity increases rapidly at first 238 

and then appears to level off around an occurrence of 1000 quadrats out of the total of 3847 239 

quadrats (Figure 2a). Similarly, specificity rapidly declines, i.e. more false or spurious 240 

interactions are detected with increasing occurrence of the species in the field surveys up to 241 

about 1000 quadrats, where it levels off to between 0.2- 0.3 (20-30% of non-interactions 242 

correctly classified as non-interactions) (Figure 2b). The specificity does not fall off as quickly 243 

as sensitivity increases; a linear best fit between the two metrics for each individual species 244 

compared to all interaction types has a slope of -0.861 (Figure 2c). The detection is best for 245 
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positive non-trophic interactions (Figure 2c, purple line). We find no relationship between the 246 

total number of potential interactions and the average effect size (Appendix S1; Figure S1). 247 

Detection by interaction type 248 

The ability to correctly detect a true link (i.e. sensitivity) varies across different interaction 249 

types with positive non-trophic interactions being most detectable by co-occurrence. Of the 250 

known positive non-trophic interactions, 77.4% were detected (Figure 3). Negative non-trophic 251 

interactions and trophic interactions are less detected with 46.7% and 44.4% of the known 252 

interactions detected, respectively (Figure 3).  253 

At the spatial scale of the quadrats (0.25m2), the sign of significant correlation coefficients 254 

that correspond with trophic interactions is mainly positive, suggesting that the co-occurrence 255 

approach is best able to detect instances where species co-occur with their prey more often than 256 

they exclude their prey (Figure 4c). This may be a general principle for this system, but we 257 

would need to collect additional evidence to support this hypothesis. The strongest positive 258 

association observed was between the kelp Lessonia spp (L. spicata and L. beteroana) and the 259 

grazing limpet S. scurra, which lives almost exclusively on the kelp. These species thus also 260 

share a positive non-trophic interaction. Almost all of the asymmetrical interactions in the 261 

interaction network are trophic interactions. Only 614 of the significant associations correspond 262 

to asymmetrical interactions; consequently 614 of 2888 false positives are possibly accounted for 263 

by asymmetry in interactions. 264 

Of the 120 positive non-trophic interactions detected as a significant association, 14 were 265 

detected as negative associations (Figure 4d). Of these, 4 were species pairs that have both 266 

positive and negative non-trophic interactions (Corallina officinalis -> Perumytilus purpuratus, 267 

Phragmatopoma spp. -> Ulva rigida, Porphyra spp. -> Semimytilus algosus, Semimytilus 268 
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algosus -> Porphyra spp.). Four of the positive NTIs that were detected as significant negative 269 

correlations are positive interactions initiated by P. purpuratus, which is both a strong 270 

competitor for space and a habitat engineering species.  271 

Negative non-trophic interactions detected as significant associations in the co-occurrence 272 

analysis were overwhelmingly and incorrectly identified as positive associations (Figure 4a). In 273 

the low intertidal zone, negative non-trophic interactions were more likely to be identified as 274 

negative associations in the surveys than at any other tidal height.  275 

The intertidal stress gradient 276 

The gradient from low to high intertidal zone represents a strong environmental stress 277 

gradient for intertidal organisms of marine origin (Connell 1961). We therefore performed 278 

separate analyses per tidal height, which is one way of controlling for or reducing the influence 279 

of environmental conditions.  280 

Overall, a smaller percentage of the links were detected when separate analyses were 281 

conducted for the high, mid, and low shore heights, especially a lower percentage of positive 282 

non-trophic interactions and of trophic interactions (Figure 3). The lower percentage of links 283 

detected is due, at least in part, to reduction in statistical power due to the smaller sample sizes. 284 

There are 1610 quadrats for each of the low and mid tidal heights and 627 quadrats at the high 285 

tidal height. In order to control for the effects of reducing the sample size on the statistical 286 

power, we performed the co-occurrence analysis on 500 random subsamples with the same 287 

number of quadrats as were available for each shore height, 1610 quadrats for comparison to the 288 

low and mid tidal zone and 627 quadrats for comparison to the high tidal zone. For all interaction 289 

types, a lower percentage of interactions were detected with a random subsample than with all 290 

samples, indicating that there is a reduction of statistical power with a reduced sample size.  291 



14 

 

From these analyses we found that species co-occurrence detected 34.6±0.0187% of the negative 292 

non-trophic interactions with 627 randomly selected samples and 38.2±0.0152% of the negative 293 

non-trophic interactions with 1610 samples, 60.2±0.0338% of the positive non-trophic 294 

interactions with 627 samples and 66.3±0.0616% of the positive non-trophic interactions with 295 

1610 samples. Finally, species co-occurrence detected 28.0±0.0141% of the trophic interactions 296 

with 627 samples and 33.8±0.010% of the trophic interactions with 1610 samples. These 297 

numbers should be compared with Figure 3 to understand the interaction of tidal height and 298 

interaction type for detectability. Co-occurrence using just samples from the high tidal height 299 

detects a higher proportion of the known negative non-trophic and trophic interactions than a 300 

sample across the environmental gradient of the same size. Using the low and mid tidal elevation 301 

samples, co-occurrence detects fewer links than in a sample of the same size across the 302 

environmental gradient for all interaction types.  303 

Indirect interactions 304 

The empirical network is dense, with 4458 links representing both trophic and non-trophic 305 

interactions, resulting in a connectance of 0.47. Consequently, indirect interactions are extremely 306 

abundant in this system. At path length 4, the network is complete (every species is connected to 307 

every other species by a path of length 4). An indirect interaction of path length 2 is an 308 

interaction between two species that is mediated by a third species (e.g. species A and species B 309 

have an interaction, species C and species B have an interaction, so the interaction between 310 

species A and species C is a path length two indirect interaction). There are 8833 interactions of 311 

path length two; of these, 1537 correspond to significant co-occurrences that did not correspond 312 

to links in the empirical networks of known direct interactions (“false positives”), making them 313 

likely candidates for pairwise co-occurrence driven by interactions with a third species. One 314 
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example of an indirect interaction is competition for prey. In this network, 1324 path-length-two 315 

indirect interactions are between predators that share prey. Of these 1324 links, 496 links were 316 

discovered as significant association between species.  317 

Strong interactions: keystone species, anthropogenic effects, and effect size 318 

We did not find that the keystone species are distinguishable in either the specificity or 319 

sensitivity from other species in the community. Harvested species tend to have a slightly larger 320 

effect size (stronger correlation) for a given node degree (Figure 5), whereas no noticeable 321 

distinction between keystone and other species was observed in terms of the effect size (Figure 322 

5). The median effect size of correlations increases with increasing detected node degree and 323 

sessile species show a more gradual increasing trend than mobile species. The species with the 324 

largest median effect sizes were small generalist herbivores, the barnacles N. scabrosus and J. 325 

cirratus, and the algae M. laminarioides and Porphyra spp..  326 

Discussion 327 

The construction of ecological networks from patterns of species co-occurrences is rapidly 328 

expanding in the microbial ecological and biomedical sciences (Fuhrman et al 2015), and 329 

spreading to metazoan communities (Araujo et al., 2011, Borthagary et al 2014). There is no 330 

doubt that such co-occurrence networks reveal aspects of a local community that have important 331 

bearing on network dynamics, stability and resilience (Faust and Raes 2012), and, in the case of 332 

microbial environmental genomic studies, there are as of now few other sensible approaches to 333 

get a glimpse into the complex matrix of interactions among the members of these highly diverse 334 

communities. Our results do not dispute the importance of such networks.  However, in many 335 

ways, authors have interpreted co-occurrence as revealing ‘classical’ species interaction 336 

networks (e.g. competition, predations, facilitation). Our results complement and expand recent 337 
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empirical findings (Sander et al., 2017), which suggest this to be highly unlikely by using a 338 

spatially extensive dataset that reflects the type of presence-absence data that is commonly 339 

available for co-occurrence studies.  340 

Inferring links 341 

Given the multiplicity of ecological and environmental processes that affect species 342 

assemblages, the prevalence of weak links in the empirical network, and the potentially large 343 

number of species in this community, the result that many species interactions are still 344 

detectable, with 25-70% of species interactions detected, depending on the interaction type and 345 

data subset used, is indicative of a strong role of species interactions in this community.  346 

There are distinct reasons, statistical and artefactual, for why there may be false positives as 347 

opposed to false negatives. The correlation test can only infer symmetric interactions but true 348 

interactions can be asymmetrical, leading to false positives. In addition, some of the false 349 

positives could represent correlations based on shared environmental preference, common 350 

settlement patterns, or indirect interactions. Indirect interactions could also result in false 351 

negatives, if multiple interactions cancel out (Cazelles et al 2016). There may be other reasons 352 

for the lack of sensitivity, such as a priority effect operating on sessile or highly territorial 353 

species, for instance. If a priority effect is important, then the order of arrival of larva to the 354 

shore, a stochastic process that may also depend on species-specific life history traits, may matter 355 

more for coexistence than does the outcome of competitive interactions among juveniles or 356 

adults once on the shore (Berkeley et al. 2010, Aiken and Navarrete 2014, Orostica et al 2014).  357 

Increasing occurrence of individual species decreases the specificity while increasing 358 

sensitivity. This diminishing return has both statistical and biological explanations. As 359 

occurrence increases, more information is available about new species combinations, but as 360 
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occurrence asymptotes to match the number of samples, there is less information available again. 361 

The saturating relationships in Figure 2a,b is likely a unimodal relationship with zero sensitivity 362 

as occurrence goes to one and as occurrence goes to the number of samples. We cannot verify 363 

this hypothesis since no species were present in all samples. This suggests that there is a limit to 364 

detectability of interactions when using occurrence alone, a limitation that in theory could be 365 

resolved with quantitative abundance data. Previous studies have attributed similar results based 366 

on occurrences to significant ecological processes, hypothesizing that less common species are 367 

more affected by biotic interactions than by environmental preferences (Azaele et al 2010). This 368 

may be the reason why including both biotic and abiotic predictor variables usually improves the 369 

modeling of species interactions and spatial distribution (Gonzalez-Salazar et al. 2013, Stephens 370 

et al. 2017). In our system, we have no information that could help us test this hypothesis. 371 

Further work along this research direction should be encouraged. 372 

We found that the Pearson’s correlation test performed better than the probabilistic approach. 373 

The robustness of Pearson’s correlation has been noted in other studies. Notably, Sander et al 374 

(2017) found that two machine-learning approaches were not superior to using Pearson’s 375 

correlation. 376 

Niche-based and interaction-based processes 377 

Positive non-trophic interactions are more detectable than either negative non-trophic 378 

interactions or trophic interactions. The fact that over 70% of positive non-trophic interactions 379 

were correctly detected indicates the usefulness of occurrence data to infer species interactions. 380 

A similar result was also obtained by Sanders et al. (2017) using occurrence data and both 381 

Pearson’s correlation and Dynamic Bayesian Networks to infer non-trophic interactions (positive 382 

and negative pooled), which suggest that the increased sensitivity of occurrence data for this type 383 
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of data may be a general phenomenon.  Positive non-trophic interactions generally ameliorate 384 

environmental stress or provide habitat for other species, in effect expanding the possible niche 385 

for the species involved (Jones et al. 1994, Wright et al, 2002, Hastings et al., 2007, Stachowicz 386 

2012). Trophic and non-trophic interactions can only operate within the niche defined by 387 

environmental constraints. This may be a key attribute of positive non-trophic interactions that 388 

makes them more detectable when sampling across space and environmental variability. 389 

Power to detect species interactions decreases when controlling for tidal height except in the 390 

high tidal zone. Many of the detected co-occurrences may be mainly driven by shared 391 

environmental preferences rather than species interactions. Controlling for tidal height might 392 

have been expected to increase the detectability of interactions because the interaction network is 393 

modular with the modules related to the height at which species are found (Kéfi et al 2015, 394 

2016). However, many strong interactions occur between tidal levels and lead to tidal 395 

segregation of species as shown in Chile and in other rocky shore communities, i.e. predators 396 

delimiting lower end of mussels (e.g. Paine 1966, Castilla & Duran 1985, Menge et al, 1994, 397 

2004), competitive monopolization or domination of the mid-tidal zone restricting other species 398 

to higher, or lower elevations (Connell 1961, Berlow & Navarrete 1997, Branch & Steffani 2004, 399 

Navarrete & Castilla 1990). This tidal segregation between strong interactors would go 400 

undetected when examining within tidal levels. In addition, the overlap between environmental 401 

preference and potential species interactions may artificially inflate detection of species 402 

interactions when samples from all tidal heights are included. 403 

Habitat preferences and environmental processes may be especially important for shaping 404 

species distributions if biotic interactions are weak (Shinen & Navarrete 2014). There are 405 

considerably more negative non-trophic interactions and trophic interactions in the empirical 406 
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network than there are positive non-trophic interactions, so there may also be proportionally 407 

more weak negative non-trophic and trophic interactions (Berlow et al. 2004, Lopez et al. 2017). 408 

Weak interactions may have either less of an impact or a more variable impact on the spatial 409 

structure of the community (Berlow, 1999).  While weak interactions can be quite important for 410 

population dynamics and community stability, they may be less detectable using co-occurrence 411 

alone, especially if there are many and diverse weak interactions. One implication of this work is 412 

that studies based on pairwise interactions may not be generalizable to understanding the whole 413 

community composition.  414 

Indirect interactions 415 

The pattern of species co-occurrence is affected by indirect interactions (those mediated by a 416 

third species) in addition to direct interactions (Cazelles et al. 2016). Exploitation competition 417 

for prey might affect predator co-occurrence, while the effects of multiple consumers on a single 418 

prey species might blur the relationship between a single consumer species and its prey. In terms 419 

of non-trophic interactions, a species' competitors are also likely competing with each other due 420 

to the density of the negative non-trophic interaction network.  421 

Indirect interactions mediated by the habitat provisioning species can be very strong. For 422 

example, of the species that have significant associations with both Lessonia. spp and P. 423 

purpuratus, 55 of 64 species have negative association with one and a positive association with 424 

the other. Lessonia and P. purpuratus compete for space on the low shore and have a negative 425 

non-trophic interaction. The reversed sign of the association might be an indirect interaction 426 

mediated by the competition between Lessonia and P. purpuratus.  427 

Lack of significant co-occurrence could be generated by indirect interactions if multiple 428 

interactions between species cancel the effects of pairwise interactions. If this were the case, one 429 
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would expect that species with many interactions (high node degree) would have fewer links 430 

detected than species with fewer interactions (low node degree). In this analysis, we find no 431 

relationship between total node degree and the percent of links detected. There is a weak inverse 432 

relationship between outgoing node degree and the percent of links detected, suggesting that 433 

specialist predators are more likely to co-occur with their prey, since trophic interactions are the 434 

main asymmetrical interactions in this network. This is most likely related to mobility patterns of 435 

these predators. 436 

Strong interactions: keystone species, anthropogenic influence, and effect size 437 

Harvested species have a larger effect size of realized co-occurrences than would be expected 438 

based on the number of links detected. This might be related to perturbations in the system 439 

aiding detection because species interactions are most evident as the species occurrences return 440 

to equilibrium after a disturbance. It may also reflect the fact that humans usually remove the 441 

larger bodied species within a given assemblage, which may have stronger effects than other 442 

species in the assemblage.  443 

The median of the absolute value of the effect size increases as the number of detected 444 

interactions increases (Figure 5) and there is no relationship between the total number of 445 

potential interactions and the average effect size (Appendix S1; Figure S1). These results largely 446 

contradict the assertion by Cazelles et al. (2016) that “the strength of an interaction decreases 447 

with the total number of interactions a species experiences”. The trend of increasing effect size 448 

as the detected node degree increases could be statistical; when there are many links, strong links 449 

are more likely to be detected. In sectors of the interaction matrix with few interactions (e.g. 450 

sessile species affecting mobile species), there is high specificity and high sensitivity, indicating 451 

that when there are fewer interactions at the community level, interactions may be more 452 
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detectable. More generally, these results indicate that co-occurrence may mostly identify 453 

interactions above a certain threshold and miss truly weak links. 454 

We find that small grazers have the largest median effect size of correlations. This is in line 455 

with the conclusions of Borthagaray et al 2014 that smaller species form tightly linked subgroups 456 

(here manifested as large effect size) and could be an effect of the relatively small quadrats, 457 

which may capture the co-occurrence of smaller-sized species better than larger species. There is 458 

also slightly higher edge density among the species in the steeply increasing section of Figure 5 459 

(0.25) as compared to edge density between those species and the species on the slowly 460 

increasing section of the trend (0.11). We additionally demonstrate that habitat engineering 461 

sessile species can also form tightly linked subgroups, but that not all sessile species form tightly 462 

linked groups. Most sessile species have relatively weak co-occurrence with other species.  463 

We do not find a distinct signal of keystone species. We would have expected keystone 464 

species to have large effect size (Menge et al., 1994, Power et al, 1996), however it is possible 465 

that keystone species instead have large effect size only when abundance is taken into account, 466 

or they may have strong effects only on a small subset of the species with which they interact. 467 

Moreover, it is possible that the effect of keystone species may be more noticeable on indirect 468 

than direct interactions. It is important to keep in mind, however, that the ability to detect a 469 

predator-prey interaction using spatial co-occurrence depends not only on the strength of the 470 

interaction, but also on how homogeneous or variable are across space the other factors that 471 

simultaneously influence species distribution, such as recruitment and environmental tolerances.  472 

Conclusions 473 

Co-occurrence networks do not reproduce interaction networks, but they do provide 474 

interesting and interpretable information about community assembly. In cases in which spatial or 475 
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environmental effects operate synergistically with species interactions to determine the presence 476 

and absence of species (or other interacting biological component such as a protein or an OTU), 477 

a co-occurrence network can be a valuable object of analysis, albeit at times difficult to interpret 478 

due to the influence of indirect interactions and stochastic processes.  479 

Both ecological and statistical effects can limit the interpretability of co-occurrence 480 

networks. As the occurrence of a given species increases, the probability of detecting a greater 481 

number of statistically significant associations increases as well. However, these associations 482 

may not necessarily correspond to interactions; both the number of true positives and false 483 

positives increases as the occurrence of a species increases. In terms of the important ecological 484 

effects, both environmental effects, including here recruitment, and species interactions 485 

determine the species range in the intertidal zone. Consequently, it can be difficult to disentangle 486 

which associations are related to interactions and which are related only to shared environmental 487 

preferences or correlated settlement. We suggest that environmental and settlement preferences 488 

may possibly outweigh biotic interactions in determining whole community co-occurrences. This 489 

is not to say that environment is more important in structuring communities than biotic 490 

interactions, but that environmental variability may leave a more discernable signal in spatial co-491 

occurrence patterns. Having said this, habitat engineering species and non-trophic positive 492 

interactions may leave a more detectable signal than other interaction types because they expand 493 

or create niche spaces for the species with which they interact. 494 

In summary, ecological patterns observed in co-occurrence networks must be interpreted 495 

with caution, especially when extending interaction-based ecological theory to interpret network 496 

variability and stability. Co-occurrence networks may be particularly valuable for analysis of 497 

community dynamics as an epiphenomenon combining interactions and environment, rather than 498 
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simply as the result of pairwise interactions. 499 
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Figure Legends 633 

Figure 1. Community surveys were done at 49 distinct coastal intertidal sites during the years 634 

1998-2013. Not all sites were surveyed in all years and a different number of samples were taken 635 

during each survey. The figure indicates the latitude of sampling sites, which should be projected 636 

on the coast for the actual sampling location. 637 

Figure 2 (a). Sensitivity, or percentage of links detected plotted against the total number of 638 

occurrences for a given species. (b). Specificity, or percentage of non-interactions detected as 639 

non-interactions plotted against the total number of occurrences for a given species. In these 640 

plots, each point is a different species. Blue dots are mobile species, green dots are sessile 641 

species. Darker dots are harvested species and species outlined in black are keystone species. (c). 642 

Specificity plotted against sensitivity. Each point is a different species. The colors indicate which 643 

network, trophic interactions (TI), positive non-trophic interactions (NTI+), negative non-trophic 644 

interactions (NTI-), or all interaction types is used as the ‘true’ network. The dashed lines are 645 

best fit lines for each interaction type. The black line is a 1:1 line. Points above the 1:1 have 646 

better detection than random while point below the 1:1 line have worse detection than average. 647 

Figure 3. The bars show the number of links of each type including species found at all 648 

heights along the intertidal and species only present in the high, medium, and low heights in all 649 

samples. The white bars show the number of links detected using co-occurrence of species. 650 

Proportions above each bar are the proportion of links of each type detected using co-occurrence. 651 

Figure 4. Links between species inferred using three different data subsets (only high tide 652 

samples, only mid tide samples, and only low tide samples) for each of three interaction types (a) 653 

negative non-trophic interactions, (b) positive non-trophic interactions, and (c) trophic 654 

interactions. Species are arranged on the axes from inward to outward by high to low trophic 655 
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position. The preferred tidal height of each species is indicated by the node color. Blue edges 656 

indicate an inferred positive association while red edges indicate an inferred negative 657 

association. (d) Network showing all positive non-trophic interactions. Blue edges indicate a 658 

positive association inferred by co-occurrence, red edges indicate a negative association inferred 659 

by co-occurrence, and black edges indicate no association. The node size represents the number 660 

of samples in which each species occurred while node color is the preferred tidal level for each 661 

species. 662 

Figure 5. True positives, plotted against the median effect size (correlation intensity) of all 663 

detected links. A true positive is a known species interaction that is also detected as a significant 664 

association. This analysis only includes the most common species (occurrence greater than 62 665 

quadrats). 62 occurrences was chosen because it is the inflection point in Figures 2a,b, in order to 666 

avoid the loss of power at low occurrence. Blue dots are mobile species, green dots are sessile 667 

species. Darker dots are harvested species and species outlined in black are keystone species.   668 



31 

 

 669 

Figure 1.   670 



32 

 

 671 

Figure 2   672 



33 

 

 673 

 674 

Figure 3   675 



34 

 

 676 

Figure 4.   677 



35 

 

 678 

Figure 5 679 


