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Northern Hemisphere surface temperature reconstructions suggest that the late 

twentieth century was warmer than any other time during the past 500 years and 

possibly any time during the past 1,300 years (refs 1,2). These temperature 

reconstructions are based largely on terrestrial records from extra-tropical or high-

elevation sites; however, global average surface temperature changes closely follow 

those of the global tropics3, which are 75% ocean. In particular, the tropical Indo-

Pacific warm pool (IPWP) represents a major heat reservoir that both influences 

global atmospheric circulation4 and responds to remote northern latitude forcings5,6. 

Here we present a decadally resolved continuous sea surface temperature (SST) 

reconstruction from the IPWP that spans the past two millennia and overlaps the 

instrumental record, enabling both a direct comparison of proxy data to the 

instrumental record and an evaluation of past changes in the context of twentieth 

century trends. Our record from the Makassar Strait, Indonesia, exhibits trends that 

are similar to a recent Northern Hemisphere temperature reconstruction2. 

Reconstructed SST was, however, within error of modern values during the Medieval 

Warm Period from about AD 1000 to AD 1250, towards the end of the Medieval Warm 

Period. SSTs during the Little Ice Age (approximately ad 1550–1850) were variable, 

and 0.5 to 1 °C colder than modern values during the coldest intervals. A companion 

reconstruction of 18O of sea water—a sea surface salinity and hydrology indicator—

indicates a tight coupling with the East Asian monsoon system and remote control of 



 

 

IPWP hydrology on centennial–millennial timescales, rather than a dominant 

influence from local SST variation 

The IPWP is the largest reservoir of warm surface water on Earth and the main 

source of heat for the global atmosphere. Small variations in SST of the IPWP influence the 

location and strength of convection in the rising limb of the Hadley and Walker 

circulations, and can thus perturb planetary-scale atmospheric circulation and influence 

tropical hydrology4. However, tropical hydrology is also responsive to high-latitude 

temperature change5,6. Recent work suggests that SST of the IPWP has varied during the 

past millennium, with colder SSTs during the peak of the Little Ice Age (LIA) than during 

the preceding centuries7. However, no millennial-length SST reconstructions from the 

IPWP capture the complete warming out of the LIA or extend into the instrumental era to 

allow a direct comparison with instrumental data. Therefore, the amplitude of reconstructed 

SST variations in the context of modern SSTs is still uncertain. Whereas conventional 

sediment corers—gravity and piston corers—often disturb surface and latest Holocene 

sediments, multi-corers are lowered gently into ocean sediment and recover the sediment–

water interface undisturbed, together with about a half-metre of underlying sediment. 

Combining records from multi-cores and gravity or piston cores enables the reconstruction 

of long records that overlap the instrumental record. 

We worked on multi-core BJ8-03-31MCA (‘31MC’) and gravity cores BJ8-03-

32GGC (‘32GGC’) and BJ8-03-34GGC (‘34GGC’), recovered from the Makassar Strait, 

on the Sulawesi margin (Fig. 1). We also use published data from nearby piston core 

MD98-21607 (‘MD60’). Mean annual SSTs in our study area averaged ~29.3 °C from 1997 

to 2007 (ref. 8) with coldest SSTs (averaging ~28.5 °C) from July through to the end of 

September (JAS), the upwelling season. SSTs decrease during El Niño events4,8. 

Seasonally, surface waters are freshest in boreal winter, when SST is warmest, owing to the 

combined influence of the northwest monsoon/intertropical convergence zone rainfall9,10 

and advection of low salinity waters to the site by surface currents (Supplementary 

Discussion). Boreal summer precipitation is reduced during El Niño events, but rainy 

season precipitation is unaffected10. The mean annual weighted 18O value of precipitation 



 

 

(18Oppt) is close to the boreal winter value (about −7‰ versus approximately −4‰ in 

boreal summer11), reflecting intense vertical convection and heavy rainfall12. 

Sediment core chronologies are based on 210Pb (31MC), radiocarbon dating, and a 

correlation to the AD 1815 Mount Tambora ash tentatively identified in MD607 

(Supplementary Methods). High sediment accumulation rates (~100–200 cm kyr−1) enable 

decadal-scale resolution. To reconstruct SST and 18Osw, we generated Mg/Ca and 18O 

data on the planktonic foraminifera, Globigerinoides ruber (sensu stricto morphotype), 

which inhabits the surface mixed layer (Methods). Sediment trap data indicate that in the 

tropics, the seasonal preference of G. ruber varies among locations, ranging from a cold 

season (upwelling) preference to a warm season preference13–15 (Supplementary Discussion). 

We converted Mg/Ca to SST using a calibration, Mg/Ca = 0.38exp(0.09SST), based 

on seasonal Mg/Ca variations in multiple species of planktonic foraminifera from Sargasso 

Sea sediment trap samples16 (Fig. 2a). Our reconstructed SSTs generally fall between 

historical mean annual and JAS SSTs (the National Oceanic and Atmospheric 

Administration extended SST reconstruction8, ERSSTv3; Fig. 2), suggesting that the 

seasonal flux of G. ruber to the sediment (G. ruber seasonality) in our study area varied 

through time, with a greater flux to the sediment in JAS during cooler periods (for example, 

around AD 1900–50) relative to warm periods, when reconstructed SSTs approach the 

annual mean. 

We applied the Mg/Ca–SST calibration16 to data from all four cores (Fig. 2b). 

Following previous studies7,17–19, we also reconstructed 18Osw from the 18O of G. ruber 

(Supplementary Data) and our SST estimates (Fig. 2c). The SST reconstruction shows 

cooler temperatures between about AD 400 and AD 950 than during much of the so-called 

Medieval Warm Period (about AD 900–1300), a warm period found in many northern high-

latitude records but whose global significance is uncertain1. A gradual SST decrease began 

at about AD 1300, and culminated at about AD 1700, within the peak of the LIA. Subsequent 

warming was interrupted by two multi-decadal cold periods, one towards the end of the 

LIA and one during the early twentieth century. Each was nearly as cold as the coldest LIA 

peak. 



 

 

At face value, our reconstruction suggests that peak LIA SSTs were ~1 °C and 

1.5 °C colder than late twentieth century JAS and mean annual SST, respectively. Given 

the possibility raised by our comparison of reconstructed SST to the instrumental record 

(Fig. 2a) that the flux of G. ruber to the sediment was higher in JAS during the LIA than at 

present, we favour a conservative interpretation that JAS surface waters were ~1 °C colder 

than late twentieth century JAS SSTs. Considering that from 1856 to 20078, the amplitude 

of mean annual SST variability averaged ~70% of the amplitude of JAS SSTs variability 

(Supplementary Discussion), we infer that mean annual SSTs were ~0.5 to 1 °C colder than 

the late twentieth century. 

Reconstructed SSTs were warmest from AD 1000 to AD 1250 and during short 

periods of first millennium (Fig. 2b). Given the evidence that G. ruber tends to record near 

mean annual SSTs during warm intervals of the last 150 years (Fig. 2a), reconstructed SSTs 

during these warm periods probably reflect mean annual SSTs. If this is the case, as we 

suspect, then SSTs within error of modern SSTs occurred in the IPWP during the Medieval 

Warm Period and during brief periods of the first millennium AD. If, on the other hand, G. 

ruber calcified preferentially during the JAS upwelling season throughout the study 

interval, then JAS SSTs as warm as modern also characterized the previous millennium. 

Regardless of G. ruber seasonality in this region, the reconstruction suggests that at least 

during the Medieval Warm Period, and possibly the preceding 1,000 years, Indonesian 

SSTs were similar to modern SSTs. 

To estimate errors and facilitate comparison to other records, we developed 

composite records (Fig. 3; Methods Summary). Our averaging scheme reduces the 

amplitude of the records, but preserves only the most robust features. Considering the age 

uncertainties in our reconstruction, long-term SST trends are similar to those in Northern 

Hemisphere temperature reconstructions, especially the ‘NH land error-in-variables (EIV) 

composite’2 (r2 = 0.5, P << 0.00001; Fig. 3a), consistent with the instrumental record, 

which suggests that Indonesian SST is correlated to global SST and air temperature on 

multi-decadal and longer timescales (Supplementary Notes). (Here NH indicates Northern 

Hemisphere.) Contrary to the Indonesia SST reconstruction, however, the Northern 



 

 

Hemisphere temperature reconstruction does not estimate temperatures as warm as modern 

at any time during the past two millennia. The hemispheric and global temperature 

difference between the early AD 1900s and the modern era is similar to the difference in 

mean annual SST at our core site (Supplementary Notes), so the greater amplitude of 

Makassar Strait SST than Northern Hemisphere temperature variability (note different axis 

scaling in Fig. 3A) may be related to the hypothesized changes in G. ruber seasonality. We 

note that the high-amplitude variations resulting from these hypothesized changes in G. 

ruber seasonality also preclude accurate estimates of the rates of SST change in the past 

and a meaningful comparison to the rate of SST increase during the past decade. 

Long-term 18Osw trends are also similar to Northern Hemisphere temperature 

trends (r2 = 0.3, P << 0.0001) with the lowest values during the coldest peak of the LIA 

(Fig. 3b). The 18Osw decrease that began at about AD 1300 was linked to gradual Northern 

Hemisphere and IPWP cooling, and the subsequent increase in 18Osw values associated 

with nineteenth- and twentieth-century warming. This general trend of increasing 18Osw 

was punctuated by two multi-decadal 18Osw minima, each with slightly higher 18Osw 

values. By analogy with the seasonality of modern precipitation9,10, of 18Oppt values11,12, 

and of surface currents (Supplementary Discussion), the low 18Osw values indicate that the 

Indonesian rainfall regime from about AD 1500 to AD 1900 was more boreal winter-like 

(stronger boreal winter, weaker boreal summer monsoon) than the preceding centuries. 

Additional proxy evidence, discussed below, that the boreal summer monsoon was 

weaker during the LIA than during the Medieval Warm Period suggests that the colder 

surface waters implied by our record were not caused by greater monsoon-driven 

upwelling. El Niño events, as recorded in lake sediments from high-altitude Ecuador20 and 

Galapagos21, may have been subdued during the LIA, suggesting a higher frequency/greater 

intensity of El Niño events nor a more El Niño-like mean Pacific state caused cold LIA 

SSTs. Rather, cooling of North Pacific surface water, which enters the southern Makassar 

Strait in boreal winter via the South China Sea/ Java Sea pathway to the west4,22, is the 

likely proximal cause of LIA cooling. 



 

 

Our interpretation of more a winter-like rainfall regime during the LIA is 

substantiated by records from Wanxiang cave, subtropical China23 (r2 = 0.2, P << 0.0001) 

and Lake Huguang Maar, coastal southeast China24 (r2 = 0.1, P << 0.0001) (Fig. 3c and d), 

which indicate weaker summer and stronger winter Asian monsoons, respectively, during 

the LIA. Low Indian summer monsoon rainfall25 also corresponds to  low 18Osw (greater 

Indonesian rainfall) on multi-decadal timescales (Fig. 4) (r2 = 0.6, P < 0.0005). These 

results, suggesting alternating precipitation maxima in the Northern Hemisphere Asian 

monsoon regions and over Indonesia, add to a growing body of evidence that 

monsoon/intertropical convergence zone variations profoundly influenced the tropical 

hydrology of the past two millennia7,23,24,26,27. 

Modern observations and modelling studies indicate that small changes in IPWP 

SSTs strongly influence the global hydrologic cycle4. For example, cooler SSTs in some 

areas of the IPWP might dampen intense deep atmospheric convection, reducing global 

precipitation28. However, our finding that 18Osw was lowest (and by inference, net regional 

precipitation greatest) when SSTs were cold—during the LIA (Fig. 3) and the early AD 

1900s (Fig. 4)—suggests that on multi-decadal through to millennial timescales, IPWP 

precipitation anomalies are not driven by local SST anomalies, but are remotely forced by 

the Asian monsoon/intertropical convergence zone. 

METHODS SUMMARY 

18O and Mg/Ca were collected on G. ruber in the 212–250 µm and 250–300 µm size-

fraction, respectively. 18O was measured at WHOI on a Finnigan MAT253 stable isotope 

mass spectrometer with the Kiel III Carbonate Device. Long-term precision of 18O 

measurements of standards is 0.07‰. Mg/Ca measurements were made at Rutgers 

Inorganic Analytical Laboratory using a sector field inductively coupled plasma mass 

spectrometer (Thermo Element XR). Additional details, including interlaboratory offsets 

and corrections, are discussed in Methods. 

To construct composite records, we binned data from all four cores in 10-year-

overlapping 50-year-long bins. We estimated errors in two ways. First, we took the 



 

 

standard error of the SST or 18Osw in each 50-year bin (grey lines in Fig. 3). Second, we 

estimated errors by dividing the standard error in the SST and 18Osw estimate by the square 

root of the number of data points in each bin. The standard error in the SST calibration is 

0.16 °C. The standard error of the 18Osw is a function of the error in both 18O of calcite 

and the error in SST. Assuming greater variance for geological samples than standards, we 

use a 0.2‰ standard deviation for the 18O of calcite, and knowing the standard error in the 

SST calibration, a standard error of 0.24‰ is estimated for 18Osw. The two methods gave 

similar error estimates for SST, but the second method (data not shown; 

http://www.ncdc.noaa.gov/paleo/) often suggests larger errors for 18Osw. 

To estimate correlation coefficients and P values for the records shown on Figs 3 

and 4, we linearly regressed data from each of the two records, already averaged within 10-

year-overlapping 50-year-long bins. 
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Figure 1 Mean annual SST of the IPWP. Shown (stars) are locations of sediment cores as 

follows: multi-core BJ8-03-31MCA (459 m), and gravity cores BJ8-03-34GGC (503 m) 

and BJ8-03-32GGC (454 m), all at 3° 53′ S, 119° 27′ E (‘BJ8’), and piston core MD98-

2160 (5° 12′ S, 117° 29′ E, 1,185 m, ‘MD60’). Locations of Lake Huguang Maar and 

Wanxiang cave are also shown (stars). Temperature data from ref. 29.  



 

 

Figure 2 Sea surface temperature and 18Osw reconstructions. a, ERSSTv38 mean 

annual (red line) and JAS (green line) SST reconstructions based on the instrumental record 

for the grid box containing the BJ8 core sites. Blue line, Mg/Ca-based SST estimates using 

a published calibration16. Crosses, Mg/Ca-based SST estimates. Lines are three-point 

running means. b, Downcore SST, and c, 18Osw reconstructions (31MC, blue crosses; 

MD60, red crosses; 34GGC, green crosses; 32GGC black circles). Colour-coded lines are 

three-point running means. Upper and lower horizontal lines in a and b are modern (1997–

2007) mean annual and JAS SST8 at the BJ8 core sites, respectively. Colour-coded triangles 

in b denote radiocarbon age control, except for the most recent red triangle, which denotes 

the Mt Tambora ash, tentatively identified in MD60 (Supplementary Notes). 18Osw values 

are relative to Vienna Standard Mean Ocean Water (VSMOW). 

Figure 3 Comparison of composite Indonesia records to hemispheric and regional 

records. a, Composite SST and b, 18Osw records (black) versus Northern Hemisphere land 

EIV composite temperature (T) anomaly2 (red). c, Composite 18Osw record (black) versus 

18O of Wanxiang cave, a summer monsoon record23 (green) and d, Lake Huguang Maar 

magnetic susceptibility, a winter monsoon record24 (orange). Upper and lower horizontal 

lines in a are modern (1997–2007) mean annual and JAS SST8 at the BJ8 core sites, 

respectively. Composite records were developed by averaging data in 10-year overlapping, 

50-year-long bins. Error bars (grey), ±1 standard error of data in each bin. Wanxiang cave 

and Lake Huguang Maar data were also averaged in 10-year overlapping 50-year bins for 

clarity. The approximate time interval of the Little Ice Age (LIA) is denoted by the 

horizontal bar in a. 

Figure 4 Comparison of Indonesian 18Osw and Indian rainfall. Red dashed line, 31MC 

18Osw three-point running mean; red solid lines, composite 18Osw record (thick line) with 

1 standard error (thin lines); green, All India Rainfall index25, 10-year overlapping, 50-

year long bins (thick line), with 1 standard error (thin lines).  
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1. Figures for Methods 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Age control for MC31A.  a, MC31A  210Pbexcess versus 
depth. b, Regression of the natural log of 210Pbexcess from depths below the sediment 
mixed layer, between 7.5 and 23.5 cm, versus depth. c, Assumed age versus depth 
relationship (line) yielded age estimates that were within error of ages suggested by 
radiocarbon data (vertical arrows). d, Low δ13C values of G. ruber at the top of the core 
(black) are consistent with the recent decrease in atmospheric δ13C (grey)36,37. 
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Supplementary Table 1. All measurements were made at the National Ocean 
Sciences Accelerator Mass Spectrometry Facility (NOSAMS) on mixed planktonic 
foraminifera and converted to calendar age33 using a reservoir age of 475 years34. 

Core ID Depth (cm) 14C Age Calendar age (BP) 
MC31A OS-45713 0-1  >Modern * 
MC31A  OS-58731 26-27 620±30 138±94 
MC31A  OS-52863 49-50 675±45 232±95 
32GGC OS-52745 3.5-4.5 45±40 * 
32GGC  OS-57846 70.5-71.5 920±30 503±14 
32GGC OS-54078 135.5-136.5 1140±30 639±34 
32GGC OS-57776 179.5-180.5 1610±35 1034±44 
32GGC OS-54079 229.5-230.5 2210±30 1644±46 
32GGC OS-57777 275.5-276.5 2460±35 1928±38 
34GGC OS-52741 8.5-9.5 780±55 358±79 
34GGC OS-52742 103.5-104.5 1320±40 748±43 
34GGC OS-52743 199.5-200.5 1900±45 1320±30 
34GGC OS-52733 303.5-304.5 2270±45 1719±59 
34GGC OS-45717 380-381 2750±30 2308±43 

*Outside calibration range.  

Supplementary Table 2. 210Pb and 214Pb measurements for MC31.  
  

Depth, 
cm 

210Pb, 
Bq/g 

214Pb, Bq/g 

0-1 1.5745 0.0395 

1-2 1.4219 0.0416 

2-3 1.2811 0.0380 

3-4 1.2833 0.0407 

4-5 1.1375 0.0404 

5-6 0.8126 0.0387 

6-7 0.6544 0.0395 

7-8 0.6455 0.0394 

11-12 0.3838 0.0325 

14-15 0.2887 0.0317 

17-18 0.1823 0.0325 

20-21 0.1177 0.0318 

23-24 0.1065 0.0331 
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 Supplementary Figure 2. Comparison of δ18O records after corrections for 

offsets. Black, 32GGC; Blue, 31MC; Green, 34GGC; Red, MD607. Data and 3-point 

running means. δ18O values are relative to Vienna PeeDee Belemnite (VPDB). 

2. Supplementary Discussion 
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a. Seasonal surface variability 

 

 

Supplementary Figure 3.  Boreal winter (a, c) and summer (b, d) SST39 and SSS40 for 
study area. Core locations denoted by stars.   

Surface temperatures are lowest in boreal summer, when monsoon winds drive regional 
upwelling and advection of cold, upwelled waters from the south (Supp. Fig. 3). Regional surface 
waters are freshest in boreal winter, when the Intertropical Convergence Zone (ITCZ) is near or 
above the site (precipitation averages 9-11mm/day)9 and surface currents advect low salinity 
waters from the east41. During boreal summer, the ITCZ rainfall migrates northward so rainfall 
over the site decreases (~2-3 mm/day), and southward flowing surface currents bring higher 
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salinity Pacific waters to the site41.  Thus, under modern conditions, surface waters are colder 
and saltier in boreal summer, and warmer and fresher during boreal winter. 

3. Supplementary Notes 

Relationship between Indonesian and Global SST trends 

In order to evaluate how well Indonesian SST have tracked global mean SSTs from AD 1856-
1991 on decadal and longer time scales, we correlated the 40-year averaged the global mean 
annual SST index (30°S-60°N)42 to 40-year averaged SSTs throughout the world’s oceans42 
(Supp. Fig. 4).  The correlation analysis suggests that SST in our study area is highly correlated 
to global SSTs (r>0.8) on this time scale.  

Supplementary Figure 4.  Correlation between 40-year averaged global mean SST 
and local SST42.  

Relationship between Indonesian JAS and mean annual SST 

Because our Mg/Ca-based SST estimates suggest that the seasonality of G. ruber changes on 
decadal and longer time scales (Fig. 2a), we compared JAS SSTs to SSTs during the rest of the 
year (October through June)8.  Multi-taper spectral analysis using a Matlab script written by 
Dr. Peter Huybers (http://www.people.fas.harvard.edu/~phuybers/Mfiles/index.html) indicates 
that JAS SST variations are coherent and in phase with SST during the rest of the year on 
decadal and longer time scales (Supp. Fig. 5), suggesting that our reconstructed SST on decadal 
and longer time scales also reflects mean annual SST trends, although with higher amplitude.  In 
order to estimate the amplitude of mean annual LIA SST relative to 1997-2007, we linearly 
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regressed JAS SST against mean annual SST (1856-2007)8 (Supp. Fig. 6). The results suggest, 
that on average, and across all represented time scales, mean annual SSTs at our study have an 
amplitude ~70% of JAS SSTs (r2=0.75, p<<0.0001).  As our SST reconstruction suggests that 
peak LIA JAS SSTs were ~ 1.2±0.2°C colder than the 1997-2007 mean, the slope of the 
regression suggests that peak LIA mean annual SST’s were ~0.8±0.2 colder than the 1997-2007 
mean. 

 

 

 

Supplementary Figure 5.  Cross-
spectral analysis between JAS and 
October-June SST8.  

Supplementary Figure 6.  
Regression between JAS 
and mean annual SST8.  
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