Expression and reconstitution of the bioluminescent Ca2+ reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes

Thumbnail Image
Date
2016-07-19
Authors
Chan, Harvey Y. S.
Cheung, Man Chun
Gao, Yi
Miller, Andrew L.
Webb, Sarah E.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1007/s11427-016-5094-6
Related Materials
Replaces
Replaced By
Keywords
Ca2+ signaling
Apo-aequorin expression
Bioluminescence
HES2 human embryonic stem cells
hESC-derived cardiospheres
IP3 and ryanodine receptors
Abstract
In order to develop a novel method of visualizing possible Ca2+ signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca2+ reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca2+ signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca2+ transients (generated by release from intracellular stores) were detected in 1–12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor (IP3R) agonist, small Ca2+ transients were generated from day 1 onward. That ATP was inducing Ca2+ release from functional IP3Rs was demonstrated by treatment with 2-APB, a known IP3R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor (RyR) agonist, a minimal Ca2+ response was observed at day 8 of differentiation only. Thus, our data indicate that unlike RyRs, IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science China Life Sciences 59 (2016): 811-824, doi:10.1007/s11427-016-5094-6.
Embargo Date
Citation
Science China Life Sciences 59 (2016): 811-824
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International