Origin of the deep Bering Sea nitrate deficit : constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes

Thumbnail Image
Date
2005-10-12
Authors
Lehmann, Moritz F.
Sigman, Daniel M.
McCorkle, Daniel C.
Brunelle, Brigitte G.
Hoffmann, Sharon S.
Kienast, Markus
Cane, Greg
Clement, Jaclyn
Alternative Title
Date Created
Location
DOI
10.1029/2005GB002508
Related Materials
Replaces
Replaced By
Keywords
Bering Sea
Denitrification
Nitrate isotopes
Abstract
On the basis of the normalization to phosphate, a significant amount of nitrate is missing from the deep Bering Sea (BS). Benthic denitrification has been suggested previously to be the dominant cause for the BS nitrate deficit. We measured water column nitrate 15N/14N and 18O/16O as integrative tracers of microbial denitrification, together with pore water-derived benthic nitrate fluxes in the deep BS basin, in order to gain new constraints on the mechanism of fixed nitrogen loss in the BS. The lack of any nitrate isotope enrichment into the deep part of the BS supports the benthic denitrification hypothesis. On the basis of the nitrate deficit in the water column with respect to the adjacent North Pacific and a radiocarbon-derived ventilation age of ∼50 years, we calculate an average deep BS (>2000 m water depth) sedimentary denitrification rate of ∼230 μmol N m−2 d−1 (or 1.27 Tg N yr−1), more than 3 times higher than high-end estimates of the average global sedimentary denitrification rate for the same depth interval. Pore water-derived estimates of benthic denitrification were variable, and uncertainties in estimates were large. A very high denitrification rate measured from the base of the steep northern slope of the basin suggests that the elevated average sedimentary denitrification rate of the deep Bering calculated from the nitrate deficit is driven by organic matter supply to the base of the continental slope, owing to a combination of high primary productivity in the surface waters along the shelf break and efficient down-slope sediment focusing along the steep continental slopes that characterize the BS.
Description
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4005, doi:10.1029/2005GB002508.
Embargo Date
Citation
Global Biogeochemical Cycles 19 (2005): GB4005
Cruises
Cruise ID
Cruise DOI
Vessel Name