Uncertainty in United States coastal wetland greenhouse gas inventorying

Thumbnail Image
Date
2018-11-12
Authors
Holmquist, James R.
Windham-Myers, Lisamarie
Bernal, Blanca
Byrd, Kristin B.
Crooks, Stephen
Gonneea, Meagan E.
Herold, Nate
Knox, Sara H.
Kroeger, Kevin D.
McCombs, John
Megonigal, J. Patrick
Lu, Meng
Morris, James T.
Sutton-Grier, Ariana E.
Troxler, Tiffany G.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1088/1748-9326/aae157
Related Materials
Replaces
Replaced By
Keywords
Coastal wetland
Carbon cycle
Tidal wetland
Saltmarsh
Mangrove
Tidal freshwater forest
Greenhouse gas inventory
Abstract
Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.
Description
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.
Embargo Date
Citation
Environmental Research Letters 13 (2018): 115005
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported

Version History

Now showing 1 - 2 of 2
Version Date Summary
2 *
2018-11-29 12:56:53
Add supplementary files
1
2018-11-29 12:52:24
* Selected version