Impact of recently upwelled water on productivity investigated using in situ and incubation-based methods in Monterey Bay

Thumbnail Image
Date
2017-03-11
Authors
Manning, Cara C.
Stanley, Rachel H. R.
Nicholson, David P.
Smith, Jason M.
Pennington, Timothy
Fewings, Melanie R.
Squibb, Michael E.
Chavez, Francisco P.
Alternative Title
Date Created
Location
DOI
10.1002/2016JC012306
Related Materials
Replaces
Replaced By
Keywords
Marine productivity
Carbon cycle
Dissolved gases
Abstract
Photosynthetic conversion of inline image to organic carbon and the transport of this carbon from the surface to the deep ocean is an important regulator of atmospheric inline image. To understand the controls on carbon fluxes in a productive region impacted by upwelling, we measured biological productivity via multiple methods during a cruise in Monterey Bay, California. We quantified net community production and gross primary production from measurements of inline image/Ar and inline image triple isotopes ( inline image), respectively. We simultaneously conducted incubations measuring the uptake of 14C, inline image, and inline image, and nitrification, and deployed sediment traps. At the start of the cruise (Phase 1) the carbon cycle was at steady state and the estimated net community production was 35(10) and 35(8) mmol C m−2 d−1 from inline image/Ar and 15N incubations, respectively, a remarkably good agreement. During Phase 1, net primary production was 96(27) mmol C m−2 d−1 from C uptake, and gross primary production was 209(17) mmol C m−2 d−1 from inline image. Later in the cruise (Phase 2), recently upwelled water with higher nutrient concentrations entered the study area, causing 14C and inline image uptake to increase substantially. Continuous inline image/Ar measurements revealed submesoscale variability in water mass structure and likely productivity in Phase 2 that was not evident from the incubations. These data demonstrate that inline image/Ar and inline image incubation-based NCP estimates can give equivalent results in an N-limited, coastal system, when the nonsteady state inline image fluxes are negligible or can be quantified.
Description
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1901–1926, doi:10.1002/2016JC012306.
Embargo Date
Citation
Journal of Geophysical Research: Oceans 122 (2017): 1901–1926
Cruises
Cruise ID
Cruise DOI
Vessel Name