Reitzel Adam M.

No Thumbnail Available
Last Name
Reitzel
First Name
Adam M.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Physiological and developmental responses to temperature by the sea anemone Nematostella vectensis
    (Inter-Research, 2013-06-12) Reitzel, Adam M. ; Chu, Tim ; Edquist, Sara ; Genovese, Caitlyn ; Church, Caitlin ; Tarrant, Ann M. ; Finnerty, John R.
    Environmental temperature and an organism’s ability to respond to it are critical determinants of the geographic distribution of species. Nematostella vectensis is a burrowing sea anemone that inhabits estuaries along the Atlantic coast of North America from Nova Scotia (45°N) to Georgia (31°N). Like other estuarine species, N. vectensis is exposed to large daily (>20°C) and seasonal (>25°C) fluctuations in temperature, requiring wide temperature tolerances. At the same time, the natural distribution of this species spans a pronounced thermal cline, which may promote the evolution of different temperature optima and tolerances in populations. We tested the thermal tolerance of N. vectensis adult and developmental stages, which showed all life cycle stages had critical temperatures within 1°C (lethal temperature 39.5 to 40.5°C). When temperature tolerance values were compared with recorded field data, N. vectensis is living in environments very close to their physiological limit. We utilized common garden experiments (13, 21, and 29°C) to test for temperature-specific growth and regeneration rates in N. vectensis from different portions of this species’ range. Temperature had a significant effect on growth and regeneration rate in all clonal lines, with a significant negative relationship between latitude of origin and growth rate at 29°C. Individuals from higher latitudes did not exhibit higher growth rates at cooler temperatures. Together, our results show a combination of broad thermal tolerances for developmental and adult stages and evidence for local adaptation to higher temperatures in populations living in lower latitude locations that would be physiologically compromised with future warming.
  • Article
    Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats
    (BioMed Central, 2014-01-14) Reitzel, Adam M. ; Karchner, Sibel I. ; Franks, Diana G. ; Evans, Brad R. ; Nacci, Diane E. ; Champlin, Denise ; Vieira, Veronica M. ; Hahn, Mark E.
    The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.