Summons Roger E.

No Thumbnail Available
Last Name
Summons
First Name
Roger E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England
    ( 2013-12) French, Katherine L. ; Sepulveda, Julio ; Trabucho-Alexandre, J. ; Grocke, Darren R. ; Summons, Roger E.
    A comprehensive organic geochemical investigation of the Hawsker Bottoms outcrop section in Yorkshire, England has provided new insights about environmental conditions leading into and during the Toarcian oceanic anoxic event (T-OAE; ~183 Ma). Rock-Eval and molecular analyses demonstrate that the section is uniformly within the early oil window. Hydrogen index (HI), organic petrography, polycyclic aromatic hydrocarbon (PAH) distributions, and tricyclic terpane ratios mark a shift to a lower relative abundance of terrigenous organic matter supplied to the sampling locality during the onset of the T-OAE and across a lithological transition. Unlike other ancient intervals of anoxia and extinction, biomarker indices of planktonic community structure do not display major changes or anomalous values. Depositional environment and redox indicators support a shift towards more reducing conditions in the sediment porewaters and the development of a seasonally stratified water column during the T-OAE. In addition to carotenoid biomarkers for green sulfur bacteria (GSB), we report the first occurrence of okenane, a marker of purple sulfur bacteria (PSB), in marine samples younger than ~1.64 Ga. Based on modern observations, a planktonic source of okenane’s precursor, okenone, would require extremely shallow photic zone euxinia (PZE) and a highly restricted depositional environment. However, due to coastal vertical mixing, the lack of planktonic okenone production in modern marine sulfidic environments, and building evidence of okenone production in mat-dwelling Chromatiaceae, we propose a sedimentary source of okenone as an alternative. Lastly, we report the first parallel compound-specific δ13C record in marine- and terrestrial-derived biomarkers across the T-OAE. The δ13C records of short-chain n-alkanes, acyclic isoprenoids, and long-chain n-alkanes all encode negative carbon isotope excursions (CIEs), and together, they support an injection of isotopically light carbon that impacted both the atmospheric and marine carbon reservoirs. To date, molecular δ13C records of the T-OAE display a negative CIE that is smaller in magnitude compared to the bulk organic δ13C excursion. Although multiple mechanisms could explain this observation, our molecular, petrographic, and Rock-Eval data suggest that variable mixing of terrigenous and marine organic matter is an important factor affecting the bulk organic δ13C records of the T-OAE.
  • Preprint
    Diagenetic and detrital origin of moretane anomalies through the Permian–Triassic boundary
    ( 2011-11-22) French, Katherine L. ; Tosca, Nicholas J. ; Cao, Changqun ; Summons, Roger E.
    Many biogeochemical anomalies coincide with the Late 1 Permian Extinction (LPE; 252.28 Ma). Several mechanisms have been proposed to explain the moretane/hopane anomaly that has been identified in samples from Meishan GSSP section in southeastern China. Here, we report homohopane, 2α- and 3β- methylhomohopane and lithological data for a drill core from the Meishan section in southeastern China. Three intervals of elevated C30 moretane/hopane ratios are recorded in the Lungtan, Yinkeng and Helongshan Formations. Moretane/hopane ratios of C31-34 homohopanes and the 2α- and 3β-methylhomohopanes display the same stratigraphic patterns as the C30 moretane/hopane record. In light of the multiple and parallel moretane anomalies for the homohopane and 2α- and 3β-methylhomohopane series, enhanced input from higher plant organic matter, such as coal and peat, does not adequately explain the observed isomer patterns. Correlation of high moretane/hopane ratios with low C35 HHI and high hopane/sterane values suggest increased input of hopanoids from oxic soils. Additionally, moretane/hopane ratios show excellent correlations with total clay percentages and specific clay types, particularly chlorite, illite, and mixed layer illite/smectite. We conclude that a combination of episodic hopanoid input from soil bacteria and diagenetic effects related to redox and detrital clays generated the unique moretane/hopane patterns at Meishan. Similar relationships of Ts/(Ts+Tm) with redox and source indicators and lithology indicate that Ts/(Ts+Tm) is affected by the same factors controlling the moretane/hopane ratios. Berthierine, a clay that requires reducing conditions for formation, was detected in samples from the Lungtan Formation. We are unable to determine from our results whether the berthierine is authigenic or detrital, but future determination of the origin of berthierine at Meishan may offer additional environmental insight. No link between diasteranes and lithology was observed in this study suggesting that diasteranes are relatively unaffected by the detrital clay component of the Meishan sediments. In total, the results point toward the complex role of source input, lithology, and depositional redox conditions in the transformation of organic matter during maturation. Future work is required to elucidate the lithological effects on diagenetic processes, including biomarker genesis isomerization, and thermal degradation.