

Funding was provided by the National Science Foundation through Grant No. OCE-87-16937.

Approved for public release; distribution unlimited.

#### WHOI-91-39

## Shelf MIxed Layer Experiment (SMILE) Program Description and Coastal and Moored Array Data Report

by

Carol A. Alessi, Steven J. Lentz and Robert C. Beardsley

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

December 1991

**Technical Report** 

Funding was provided by the National Science Foundation through Grant No. OCE 87-16937.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-91-39.

Approved for publication; distribution unlimited.

**Approved for Distribution:** 

MBL/WHOI

James Luyten, Chairman Department of Physical Oceanography

# Table of Contents

[\_ i

| Lis | t of Tables                                            | iii        |  |  |  |  |  |  |
|-----|--------------------------------------------------------|------------|--|--|--|--|--|--|
| Lis | List of Figures v                                      |            |  |  |  |  |  |  |
| 1.  | Introduction                                           | 1          |  |  |  |  |  |  |
| 2.  | Overview of the SMILE Field Program                    | 6          |  |  |  |  |  |  |
|     | 2.1 The Moored Oceanographic Array Component           | 6          |  |  |  |  |  |  |
|     | 2.2 Surface Shear Measurement (SASS) Component         | 16         |  |  |  |  |  |  |
|     | 2.3 Hydrographic Component                             | 18         |  |  |  |  |  |  |
|     | 2.4 Moored and Coastal Meteorological Component        | 20         |  |  |  |  |  |  |
|     | 2.4.1 Moored Meteorological Array                      | 20         |  |  |  |  |  |  |
|     | 2.4.2 Land-Based Meteorological Array                  | 22         |  |  |  |  |  |  |
|     | 2.4.3 Atmospheric Sounding Program                     | 26         |  |  |  |  |  |  |
|     | 2.5 Aircraft Overflight Component                      | 30         |  |  |  |  |  |  |
| 3.  | Complementary Field Programs: STRESS and NCCCS         | 32         |  |  |  |  |  |  |
| 4.  | Description of Data Presentation                       | 33         |  |  |  |  |  |  |
|     | 4.1 Data Processing Methods                            | 33         |  |  |  |  |  |  |
|     | 4.2 The Coastal and Moored Meteorological Observations | 34         |  |  |  |  |  |  |
|     | 4.3 Moored Current Observations                        | <b>3</b> 5 |  |  |  |  |  |  |
|     | 4.4 Moored Temperature and Conductivity Observations   | 35         |  |  |  |  |  |  |
| 5.  | Acknowledgments                                        | 36         |  |  |  |  |  |  |
| 6.  | References                                             | 36         |  |  |  |  |  |  |
| 7.  | Data Presentation                                      | 39         |  |  |  |  |  |  |
|     | 7.1 Coastal and Moored Meteorological Observations     | 41         |  |  |  |  |  |  |
|     | Statistics                                             | 44         |  |  |  |  |  |  |
|     | Data Presentation                                      | 46         |  |  |  |  |  |  |
|     | 7.2 Moored Current Observations                        | 77         |  |  |  |  |  |  |
|     | Statistics                                             | 80         |  |  |  |  |  |  |
|     | Data Presentation                                      | 86         |  |  |  |  |  |  |
|     | 7.3 Temperature and Conductivity Observations          | 173        |  |  |  |  |  |  |
|     | Statistics                                             | 175        |  |  |  |  |  |  |
|     | Data Presentation                                      | 178        |  |  |  |  |  |  |



## List of Tables

| 1.  | Principal Investigators & Their Primary Areas of Responsibility          | 5   |
|-----|--------------------------------------------------------------------------|-----|
| 2.  | SMILE Station Information                                                | 7   |
| 3.  | Summary of Moored Oceanographic Sensors Deployed in SMILE                | 14  |
| 4.  | Summary of Available (SASS) Data                                         | 16  |
| 5.  | Summary of CTD Observations Acquired During SMILE                        | 19  |
| 6.  | Summary of Coastal & Moored Meteorologic Sensors Deployed in SMILE       | 24  |
| 7.  | Summary of Stewarts Point Atmospheric Soundings                          | 27  |
| 8.  | Summary of NCAR King Air Flights                                         | 31  |
| 9.  | Statistics of Hourly Averaged Data For:                                  | 44  |
|     | Air Temperature                                                          | 44  |
|     | Barometric Pressure                                                      | 44  |
|     | Relative Humidity                                                        | 44  |
|     | Long-Wave Insolation                                                     | 44  |
|     | Short-Wave Insolation                                                    | 44  |
|     | Wind Speed                                                               | 44  |
|     | Rainfall                                                                 | 44  |
|     | Cross-Shelf Wind                                                         | 45  |
|     | Along-Shelf Wind                                                         | 45  |
| 10. | Statistics of Hourly Averaged Data for Cross-Shelf & Alongshore Velocity | 80  |
| 11. | Statistics of Hourly Averaged Data for Conductivity & Salinity           | 175 |
| 12. | Statistics of Hourly Averaged Data for Water Temperature                 | 176 |



An arrest taxant but

 $\sum$ 

 $\square$ 

| Figure 1.        | Bathymetric chart of northern California shelf and upper slope<br>region from Pt. Reyes to north of Pt. Arena.                                                 | 2   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2.        | Timeline of the five main components and intensive period of the SMILE field program.                                                                          | 4   |
| Figure 3.        | Location map for moorings and coastal meteorological stations.                                                                                                 | 7   |
| Figure 4.        | Schematics of the USGS and SMILE moorings.                                                                                                                     | 10  |
| Figure 5.        | Cross-section of the shelf with bottom profile and instrument locations for the cross-shelf moored subarray.                                                   | 13  |
| Figure 6.        | Schematic of Surface Acoustic Shear Sensor (SASS).                                                                                                             | 17  |
| Figure 7.        | Examples of the repeated CTD small-scale and large-scale surveys conducted during SMILE.                                                                       | 18  |
| Figure 8.        | Schematic of the C3 surface discus buoy.                                                                                                                       | 21  |
| Figure 9.        | Schematic of the NCAR PAM II remote meteorological station.                                                                                                    | 23  |
| Figure 10.       | Example of SMILE King Air Flight Pattern.                                                                                                                      | 31  |
| Figures 11–13.   | Composite vector plots of the PL64 low-pass filtered winds.                                                                                                    | 46  |
| Figures 14–27.   | Individual time series of the basic hourly averaged wind components, in the form of vector and line plots.                                                     | 52  |
| Figures 28-32.   | Time series of the hourly averaged air temperature, atmospheric pressure, relative humidity, long- and short-wave radiation, scalar wind speeds, and rainfall. | 66  |
| Figures 33–47.   | Composite vector plots of the PL64 low-pass filtered currents.                                                                                                 | 86  |
| Figures 48-101.  | Individual time series of the basic hourly averaged current components, in the form of vector and line plots.                                                  | 117 |
| Figures 102–104. | Composite (overlay) plots of the PL64 low-pass filtered salinity and temperature records by mooring.                                                           | 178 |
| Figures 105–112. | Composite stacked plots of the hourly averaged individual salinity, conductivity, and temperature time series records.                                         | 184 |



#### Abstract

The Shelf MIxed Layer Experiment (SMILE) was designed to study the response of the oceanic surface boundary layer over the continental shelf to atmospheric forcing. The SMILE field program was conducted over the northern California shelf between Pt. Arena and Pt. Reyes from mid-November 1988 to mid-May 1989. The field program consisted of five main components: (a) a long-term moored array to obtain current, temperature, and conductivity time series observations in the upper ocean over the shelf; (b) a short-term moored instrument deployment to measure the vertical current shear and stratification in the top 6 m of the water column; (c) shipboard CTD and acoustic Doppler current profiler (ADCP) surveys over the shelf and adjacent slope to map regional water property and current distributions; (d) a long-term moored and coastal meteorological array including one sounding station to obtain time series observations of the atmospheric surface forcing and monitor the structure of the marine boundary layer; and (e) overflights with an instrumented aircraft to measure the spatial structure of the surface wind, wind stress, and heat flux fields under different atmospheric conditions.

This report has two objectives: (a) to describe the SMILE field program, including overviews of the five components, and (b) to present a statistical and graphical summary of the atmospheric (wind, air temperature, pressure, relative humidity, short- and longwave radiation) and oceanic (current, water temperature, and conductivity) long-term array measurements made as part of SMILE. A more detailed description of the instrumentation used in SMILE and an assessment of instrument performance and accuracy are presented separately by Dean *et al.* (1991).



#### 1. Introduction

The Shelf MIxed Layer Experiment (SMILE) was a cooperative research program designed to study how the ocean surface boundary layer over the continental shelf responds to atmospheric forcing. The SMILE field program was conducted over the northern California shelf primarily between Pt. Arena and Pt. Reves from mid-November 1988 to mid-May 1989 (Figure 1). The site and timing were chosen because (a) historical data suggested that there would be a wide range of wind stress, surface heating and stratification conditions (Nelson, 1977; Nelson and Husby, 1983; Huyer, 1984), (b) previous CTD and moored observations made during the 1981-82 Coastal Ocean Dynamics Experiment (CODE) (Lentz, 1990) offer a good characterization of the interior current and density fields and some information on the local surface boundary layer behavior, and (c) two complementary field programs, the MMSfunded Northern California Coastal Circulation Study (NCCCS) (EG&G, 1989) and the ONR-funded Sediment Transport Events over the Shelf and Slope (Nowell et al., (STRESS), 1987) were conducted in the same region at this time. The earlier CODE measurements showed that the surface and bottom boundary layer thicknesses can vary in time and space from less than a meter to more than 60 m depending on the boundary forcing and ambient stratification. Both layers often comprise a substantial fraction of the total water column, even over the outer shelf. The surface boundary layer is difficult to observe because of the problems associated with making reliable measurements near an energetic moving free surface and because of the dynamic character of the surface boundary layer itself which varies in time and space. Moored observations made in recent continental shelf field studies have typically been concentrated in the interior away from both boundary layers, so that the surface and bottom boundary layers are either poorly resolved or not sampled at all. As a consequence, very few data sets exist which can be used to describe the surface and bottom boundary layers over the shelf and investigate their dynamics.

SMILE was undertaken to obtain a comprehensive set of high-quality atmospheric and oceanographic measurements to determine the spatial and temporal characteristics of the continental shelf surface boundary layer and its response to atmospheric forcing and thus to provide a basis for developing and evaluating models of the shelf surface boundary layer. The proposed SMILE field program had six scientific objectives:

- 1. to determine by direct measurement at the central mid-shelf site the vertical structure of horizontal velocity and density through the surface layer and under what conditions the surface layer is well-mixed (*i.e.*, slablike),
- 2. to measure directly the very near-surface shear and determine its dependence on atmospheric forcing, the surface wave field, and current conditions,
- 3. to make crude estimates of the cross- and along-shelf scales over which the surface boundary layer structure varies,





- 4. to construct volume and layered mass and heat budgets which allow estimation of the vertical velocity profile over the mid-shelf,
- 5. to determine the vertical resolution necessary to resolve the vertical structure of the mixed layer over the continental shelf,
- 6. to investigate the near-surface wind field and wind stress field during winter storms and document the re-establishment of the coastal stable marine layer between storms.

To address these objectives, a group of eight principal investigators at four different institutions (see Table 1) developed the SMILE field program which included the following five main components: (a) a long-term moored array to obtain current, temperature, and conductivity time series observations in the upper ocean over the shelf; (b) a short-term moored instrument deployment to measure the vertical current shear and stratification in the top 6 m of the water column; (c) shipboard CTD and acoustic Doppler current profiler (ADCP) surveys over the shelf and adjacent slope to map regional water property and current distributions; (d) a long-term moored and coastal meteorological array, including one sounding station, to obtain time series observations of the atmospheric surface forcing and monitor the structure of the marine boundary layer; and (e) overflights with an instrumented aircraft to measure the spatial structure of the surface wind, wind stress, and heat flux fields under different atmospheric conditions. The timing of these various components is shown in Figure 2.

This report has two objectives: a) to provide a brief description of the SMILE field program, including overviews of the five SMILE components and the complementary STRESS and NCCCS studies; and (b) to present statistical and graphical summaries of the long-term atmospheric and oceanographic measurements made as part of SMILE. In particular, standard statistics and time series plots of the following variables are presented: wind, air temperature, atmospheric pressure, relative humidity, insolation, long-wave solar radiation, rainfall, current, water temperature, and salinity (derived from temperature and conductivity measurements). To make the presentation of the moored current, temperature, and salinity data complete, observations made as part of STRESS by B. Butman of the United States Geological Survey (USGS) are also presented. A more detailed description of the instrumentation used in SMILE and an assessment of instrument performance and accuracy are presented separately by Dean *et al.* (1991).

This report is organized in the following way. A description of the SMILE field program is presented in Section 2. This includes a description of the five components of the field program and the associated data return. A brief overview of the complimentary STRESS and NCCCS programs is given in Section 3. A description of the long-term meteorological and oceanic data analysis procedures and data presentations is given in Section 4. Compilations are presented in Section 7 of the coastal and moored meteorological measurements

#### Time Periods of SMILE Components



Figure 2: Timeline of the five main components of the SMILE field program from mid-November 1988 to mid-May 1989 (upper). Timeline for the intensive period (February 6 to March 18) showing aircraft overflights, atmospheric soundings at Stewarts Point, CTD observations, and SASS deployment (lower).

(7.1), moored velocity measurements (7.2), and the temperature and conductivity measurements (7.3). These compilations consist of basic statistics and time-series plots of unfiltered (hourly averages) and low-pass filtered data for each instrument.

#### Table 1: Principal Investigators and Primary Areas of Responsibility

| Investigator                              | (Affiliation)              | Areas of Responsibility                                                                                                                                                            |
|-------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S. Lentz<br>R. Beardsley<br>R. Limeburner | (WHOI)<br>(WHOI)<br>(WHOI) | Long-term meteorological, current, temperature,<br>and conductivity measurements at central site,<br>hydrography, shipboard current measurements,<br>overall program coordination. |
| R. Davis                                  | (SIO)                      | Long-term current and temperature<br>measurements at four perimeter sites.                                                                                                         |
| A. J. Williams III<br>E. Terray           | (WHOI)<br>(WHOI)           | Short-term near-surface current,<br>temperature, and conductivity measurements,<br>long-term swell and wind-wave observations.                                                     |
| C. Friehe                                 | (UCI)                      | Aircraft measurements of wind, wind stress,<br>heat flux and sea surface temperature spatial<br>variability and three-dimensional structure<br>of marine layer.                    |
| C. Dorman                                 | (SDSU)                     | Long-term coastal measurements of wind,<br>rainfall, and other meteorological<br>variables. Coastal soundings to monitor the<br>vertical structure of marine layer.                |

Institutional affiliations are Scripps Institution of Oceanography (SIO), San Diego State University (SDSU), University of California, Irvine (UCI), and Woods Hole Oceanographic Institution (WHOI).

#### 2. Overview of the SMILE Field Program

6

#### 2.1 The Moored Oceanographic Array Component

The focal point of the SMILE field program was a five element moored array of oceanographic instrumentation deployed for a six-month period from mid-November 1988 to mid-May 1989. The locations of the SMILE moorings are listed in Table 2 and shown in Figure 3 along with the coastal meteorological stations discussed in Section 2.4 and the NCCCS moorings discussed in Section 3.2. The central mid-shelf mooring (C3) was set within a cross-configuration with moorings C2, C4, and M3, G3 yielding cross-shelf and along-shelf spatial information respectively. The along-shelf sub-array (G3, C3, and M3) was deployed approximately along the 93-m isobath, with horizontal spacings of 14.5 km between G3 and C3 and 14.7 km between C3 and M3. The cross-shelf sub-array (C2, C3, and C4) was deployed along a cross-shelf transect spanning the 80 m to the 120-m isobaths, with horizontal spacings of 3.2 km between C2 and C3 and 4.9 km between C3 and C4. These spatial separations were chosen to make this a coherent array for subtidal flow based on the previous CODE observations in this region. The C2 mooring was originally deployed closer to shore on the 60-m isobath, however, the mooring was found adrift six days after deployment. The mooring was then recovered with all instrumentation intact and redeployed during the February 1989 hydrographic cruise in slightly deeper water at the 80-m site shown in Figure 3. This new site was located outside the nearshore zone of intense crab fishing since it was believed that crabbers may have set the mooring adrift while retrieving their trap lines.

The central mid-shelf C3 mooring utilized a WHOI-designed 3 m diameter discus buoy to support both meteorological and oceanographic instrumentation (Figure 4). The C3 meteorological instrumentation included two Vector-Averaging Wind Recorders (VAWRs) equipped to measure wind and other atmospheric variables, water temperature at depths of 1 and 1.8 m, and conductivity at 1 m depth (see Section 2.4.1 for a description of the meteorological buoy and the VAWR instrumentation). Beneath the discus buoy was a string of 12 VMCMs with the rotor pairs centered at depths of 4, 7, 10, 13, 16, 19, 22, 27, 32, 37, 42, and 47 m. The VMCM was developed at SIO in the late 1970s by Weller and Davis (1980) to obtain accurate velocity measurements in the upper ocean when deployed on surface moorings. The field comparisons in CODE by Beardsley (1987) and Pettigrew et al. (1986) suggest that the VMCM mechanically filters out much of the high-frequency surface gravity wave and mooring motion noise and yields horizontal velocity measurements accurate to within a few percent. To complement the standard VMCM temperature measurements and obtain direct measurements of conductivity to allow estimation of salinity, self-contained temperature-conductivity units built by SeaBird Electronics called SeaCats were mounted on every other VMCM starting at 7 m. The VMCM at 47 m also had an EG&G conductivity

Table 2: SMILE Station Information

| Station                | Abbrev-<br>iation | Station Elevation(+)/<br>Water Depth (-) m | Loc<br>(°N | ation<br>/°W) |
|------------------------|-------------------|--------------------------------------------|------------|---------------|
| Cabrillo Pt. Light*    | CL                | 15                                         | 39°20.95′  | 123°49.55'    |
| NDBC 14                | 14                | -306                                       | 39°11.98′  | 124°00.00'    |
| Pt. Arena Light        | PT                | 19                                         | 38°57.30'  | 123°44.40′    |
| Gualala Pt. Park*      | GP                | 14                                         | 38°45.56′  | 123°32.23'    |
| SMILE Mooring G3       | G3                | -93                                        | 38°44.40′  | 123°36.40′    |
| SMILE Mooring C2       | C2                | 80                                         | 38°39.80'  | 123°27.82′    |
| SMILE Mooring C3       | C3                | -93                                        | 38°38.71′  | 123°29.56'    |
| USGS Mooring C3b       | СЗЬ               | -97                                        | 38°38.44′  | 123°29.64′    |
|                        | C3b               | -95                                        | 38°38.14′  | 123°29.97'    |
| SMILE Mooring C4       | C4                | -117                                       | 38°36.78′  | 123°31.87′    |
| Cloverdale Airport*    | CA                | 83                                         | 38°46.45′  | 122°59.00'    |
| Stewarts Point, Ridge* | SR                | 238                                        | 38°39.80'  | 123°23.63′    |
| Stewarts Point, Beach* | SB                | 28                                         | 38°39.38′  | 123°24.15′    |
| SMILE Mooring M3       | M3                | -93                                        | 38°32.67′  | 123°22.97'    |
| Bodega Bay Marine Lab  | BB                | 9                                          | 38°19.00'  | 123°04.00'    |
| NDBC 13                | 13                | -125                                       | 38°11.98′  | 123°18.00'    |

\* Portable Atmospheric Monitor (PAM) station.



Figure 3: Map of the northern California shelf, showing locations of the SMILE long-term moored and coastal array. Also shown are locations of the two NDBC environmental buoys (NDBC 13 and NDBC 14) and the four NCCCS moorings deployed across the shelf just south of the SMILE central line.

cell. A 1700-pound depressor weight was attached to the mooring line about 20 m below the lowest VMCM to help keep the VMCM string as vertical as possible (tilts less than 12°) during strong currents.

A subsurface mooring supporting five VACMS at depths of 67, 73, 79, 85, and 91 m was deployed and maintained near the C3 discus mooring by B. Butman (USGS) as part of STRESS (Figure 4). This mooring was set in early December 1988, recovered and redeployed in late February 1989, and finally recovered in early May 1989. Three of the VACMs (at 67, 79, and 91 m) were fitted with SeaBird Electronics conductivity cells and SeaTech 25 cm beam transmissometers wired into the VACM electronics and data logger. The horizontal separation of the USGS mooring from the C3 discus mooring was 0.5 km during the first subsurface mooring deployment and 1.2 km during the second deployment. For completeness the USGS moored VACM data is included in the data summaries and displays. A brief description of the STRESS program is given in Section 3.

The four SMILE moorings (Figure 4) surrounding the central C3 mooring used SIOdesigned 3 m toroids as their surface floatation. Three of these moorings were nearly identical in design (C4, M3, and G3). Each supported a basic VAWR with wind speed and direction sensor set at 3.5 m and a water temperature sensor at 1 m below the surface, and a separate temperature pod (T-pod) at 2 m below surface. The T-pods were self-contained temperature loggers built by Brancker Instruments and modified for oceanographic use by L. Regier (SIO). Both temperature sensors were installed on the bridle of the surface toroid. Attached to the mooring line below the bridle was a VMCM at 10 m, a self-contained SIO temperature chain with 14 temperature sensors per T-chain spanning the upper 50 m, and an upwardlooking 300 kHz ADCP (manufactured by RD Instruments) with the acoustic transponders located at 54 m. The C2 toroid also supported a basic VAWR with wind speed and direction sensor set at 3.5 m and a water temperature sensor at 1 m below surface but because of the shallow deployment depth, a downward-looking 300 kHz ADCP was mounted within the toroid bridle with the acoustic transponders at 2 m depth. Attached to the mooring line beneath the C2 bridle was a VMCM at 10 m and 14 T-pods concentrated in the upper 50 m. The four ADCPs were configured to record data in 32 depth bins with a ping length of 6 m and a bin size of 2 m. Each profile was the average of 100 pings and a new profile was written every 7.5 minutes. The four toroid moorings were also set with depressor weights to help keep the mooring line vertical during strong flows. A cross-section of the shelf bottom bathymetry showing the instrument locations for the cross-shelf sub-array (C2-C4) is shown in Figure 5.

The overall data return was good but not outstanding, roughly 90% for temperature and conductivity and 70% for currents. The C2 mooring was found to be drifting six days after deployment. The mooring was recovered with all instrumentation and redeployed during the February 1989 hydrographic cruise in slightly deeper water (80 m versus 60 m), outside the nearshore zone of intense crab fishing. Of the 14 temperature pods deployed on the C2 mooring, the 37 m sensor was lost during mooring recovery operations. The central C3 mooring suffered several instrument problems which limited its data return. A leak in one of the C3 VAWRs caused the complete loss of water temperature data at 1 and 1.8 m depth. Additionally, the conductivity sensor on the C3 VAWR returned no data because it was improperly wired. The WHOI VMCM current time series are typically only 4 to 5 months long, rather than the complete six-month deployment period, due to bearing corrosion problems. The 4 m VMCM record has a large data gap and the 7 m VMCM record has two smaller gaps which we believe are due to fouling by drifting kelp. The C4 VAWR was lost resulting in no atmospheric and 1 m water temperature at C4. A gouge in the aluminum stand for the VAWR suggests the VAWR was sheared off its base when the buoy was hit by a passing ship. No data were recovered from the 2 m temperature pod installed in the bridle of M3 and from the T-chain temperature sensor at 13 m depth. The M3 and G3 ADCPs ran for only 2-3 weeks. The cause for the short records is not known. The G3 VAWR had a clock problem which resulted in an increased sampling rate and a short record. A summary of the moored oceanographic instrumentation deployed during SMILE and the data return is given in Table 3.



Figure 4: Schematics of the USGS and SMILE moorings.



Figure 4: (Continued).







|          |                  | Sensor | Record     | Data   | Record            |                                           |
|----------|------------------|--------|------------|--------|-------------------|-------------------------------------------|
| Station  | Sensor Type      | Depth  | Rate       | Source | Length            | Comments                                  |
|          | l                | (m)    | (min)      |        | (days)            |                                           |
| ·        |                  |        |            |        |                   |                                           |
| C2       | T<br>T           | 1.0    | 15.0       | WHOI   | 80                |                                           |
| C2       | ADCP/T           | 2.0    | 7.5        | SIO    | 80/80             |                                           |
| C2       | T.POD            | 4.0    | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 5.0    | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 7.0    | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 8.0    | 20.0       | SIO    | 80                |                                           |
| C2       | VMCM/T           | 10.0   | 7.5        | SIO    | 80/80             |                                           |
| C2       | T.POD            | 13.0   | 20.0       | SIO    | 80                | 1. S. |
| 02       | T.POD            | 15.0   | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 18.0   | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 23.0   | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 27.0   | 20.0       | SIO    | 80                |                                           |
| 02       | T.POD            | 32.0   | 20.0       | SIO    | 80                |                                           |
| C2       | T.POD            | 37.0   | 20.0       | SIO    |                   | lost                                      |
| C2       | T.POD            | 42.0   | 20.0       | SIO    | 80                |                                           |
| 02       | T.POD            | 47.0   | 20.0       | SIO    | 80                |                                           |
| 02       | T.POD            | 53.0   | 20.0       | 510    | 80                |                                           |
| 00       | an an            | 10     |            | WILOT  |                   | · · ·                                     |
| 03       | 1<br>T           | 1.0    | 7.5        | WHOI   | · <u> </u>        | no data                                   |
| 03       |                  | 1.0    | 7.5        | WHOI   |                   | no data                                   |
|          | VMCM/T           | 1.0    | 1.5        | WHOI   | 00/100            | no data                                   |
| 03       | VMCM/1           | 4.0    | 7.5        | WHOI   | 80/188<br>179/199 | 2 gaps                                    |
| 03       | CD T             | 7.0    | 7.5        | WHOI   | 1/0/100           | 2 gaps                                    |
|          | VMCM/T           | 10.0   | 3.0<br>7 F | WHOI   | 100/100           | abant                                     |
| C3       | VMCM/T           | 12.0   | 7.5        | WHOI   | 104/104           | short                                     |
| C3       | CDT              | 13.0   | 7.0<br>5.0 | WHOI   | 199/199           | snort                                     |
| C3       | VMCM/T           | 16.0   | 5.0<br>7 5 | WHOI   | 151/199           | chart                                     |
| C3       | VMCM/T           | 10.0   | 7.5        | WHOI   | 199/199           | Short                                     |
| C3       | CDT              | 10.0   | 5.0        | WHOT   | 188/188           |                                           |
| C3       | VMCM/T           | 22.0   | 75         | WHOI   | 137/188           | chort                                     |
| C3       | VMCM/T           | 22.0   | 75         | WHOI   | 130/188           | short                                     |
| C3       | CDT              | 27.0   | 5.0        | WHOI   | 188/188           | BHOIT                                     |
| -C3      | VMCM/T           | 32.0   | 7.5        | SIO    | 188/188           |                                           |
| C3       | VMCM/T           | 37.0   | 7.5        | WHOI   | 132/188           | short                                     |
| C3       | CD.T             | 37.0   | 5.0        | WHOI   | 188/188           |                                           |
| C3       | VMCM/T           | 42.0   | 7.5        | SIO    | 188/188           |                                           |
| C3       | VMCM/T.CD.P      | 47.0   | 7.5        | WHOI   | 129/188/188/188   | short                                     |
| C3       | CD.T             | 47.0   | 5.0        | WHOI   | 188/188           |                                           |
|          |                  |        |            |        | <b>-</b>          |                                           |
| C3b      | VACM/CD,T        | 67.0   | 3.75       | USGS   | 84/84/84          |                                           |
| СЗЪ      | VACM/T           | 73.0   | 3.75       | USGS   | 84/84             |                                           |
| СЗЬ      | VACM/CD,T        | 79.0   | 3.75       | USGS   | 84/84/84          |                                           |
| СЗЬ      | VACM/T           | 85.0   | 3.75       | USGS   | 84/84             |                                           |
| C3b      | VACM/CD,T        | 91.0   | 3.75       | USGS   | 84/84/84          |                                           |
|          | <del>,</del> , , |        |            |        |                   |                                           |
| СЗЬ      | VACM/CD,T        | 65.0   | 3.75       | USGS   | 63/63/63          |                                           |
| СЗЬ      | VACM/T           | 71.0   | 3.75       | USGS   | 63/63             |                                           |
| СЗЬ      | VACM/CD,T        | 77.0   | 3.75       | USGS   | 63/63/63          |                                           |
| СЗЬ      | VACM/T           | 83.0   | 3.75       | USGS   | 63/63             |                                           |
| СЗЬ      | VACM/CD,T        | 89.0   | 3.75       | USGS   | 63/63/63          |                                           |
| <u> </u> | -<br>-           |        | <b>.</b> . |        |                   |                                           |
| C4       | T                | 1.0    | 7.5        | WHOI   | _                 | lost                                      |
| C4       | T.POD            | 2.0    | 20.0       | SIO    | 184               |                                           |
| 04       | 10               | 4.0    | 2.0        | 510    | 184               |                                           |
| U4       | 10               | 5.0    | 2.0        | 510    | 184               |                                           |

Table 3: Summary of Moored Oceanographic Sensors Deployed During SMILE

-1,

1

1

| Station | Sensor Type | Sensor<br>Depth<br>(m) | Record<br>Rate<br>(min) | Data<br>Source | Record<br>Length<br>(days) | Comments |
|---------|-------------|------------------------|-------------------------|----------------|----------------------------|----------|
| C4      | TC          | 7.0                    | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 9.0                    | 2.0                     | SIO            | 184                        |          |
| C4      | VMCM/T      | 10.0                   | 7.5                     | SIO            | 184/184                    |          |
| C4      | TC          | 13.0                   | 2.0                     | SIO            | 184                        |          |
| - C4    | TC          | 15.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 18.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 22.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 27.0                   | 2.0                     | SIO            | 184                        | a        |
| C4      | TC          | 32.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 37.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 42.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 47.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | TC          | 53.0                   | 2.0                     | SIO            | 184                        |          |
| C4      | ADCP/T      | 54.0                   | 7.5                     | SIO            | 184/184                    |          |
| G3      | T           | 1.0                    | 3.75                    | WHOI           | 147                        | short    |
| G3      | T.POD       | 2.0                    | 20.0                    | SIO            | 184                        |          |
| G3      | TC          | 4.0                    | 2.0                     | SIO            | 184                        | 1        |
| G3      | TC          | 5.0                    | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 7.0                    | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 9.0                    | 2.0                     | SIO            | 184                        |          |
| G3      | VMCM/T      | 10.0                   | 7.5                     | SIO            | 183/183                    |          |
| G3      | TC          | 13.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 16.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 19.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 22.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 27.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 32.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 37.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 42.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 47.0                   | 2.0                     | SIO            | 184                        |          |
| G3      | TC          | 53.0                   | 2.0                     | SIO            | 184                        | chort    |
| G3      | ADCP/1      | 54.0                   | 7.3                     | 310            | 13/13                      | SHOL     |
| МЗ      | T           | 1.0                    | 7.5                     | WHOI           | 185                        |          |
| M3      | T.POD       | 2.0                    | 20.0                    | SIO            |                            | no data  |
| M3      | TC          | 4.0                    | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 5.0                    | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 7.0                    | 2.0                     | 510            | 184                        |          |
| M3      |             | 9.0                    | 2.0                     | 510            | 104                        |          |
| M3      | VMCM/1      | 12.0                   | 2.0                     | 510            | 185/185                    | no data  |
| Ma      | TC          | 15.0                   | 2.0                     | SIO            | 184                        | no data  |
| Ma      | TC          | 18.0                   | 2.0                     | SIO            | 184                        |          |
| MB      | TC          | 22.0                   | 2.0                     | SIO            | 184                        |          |
| MB      | TC          | 27.0                   | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 32.0                   | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 37.0                   | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 42.0                   | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 47.0                   | 2.0                     | SIO            | 184                        |          |
| M3      | TC          | 52.0                   | 2.0                     | SIO            | 184                        |          |
| М3      | ADCP/T      | 54.0                   | 7.5                     | SIO            | 22/22                      | short    |
| 19      | т           | 1.0                    | 60.0                    | SDSU           | 188                        |          |
| 13      | т<br>Т      | 1.0                    | 60.0                    | SDSU           | 188                        |          |
| 14      | L           | 1.0                    | 00.0                    | 5030           | 100                        | ]        |

Table 3: Moored Oceanographic Sensors Deployed during SMILE (Continued)

#### Abbreviations:

| VACM:  | Vector Averaging Current Meter    |
|--------|-----------------------------------|
| VMCM:  | Vector Measuring Current Meter    |
| ADCP:  | Acoustic Doppler Current Profiler |
| T.POD: | Temperature Logging Pod           |

Conductivity Pressure CD:

P:

T: Water Temperature

Thermistor Chain TC:

Note: The VMCM/T is the standard current meter and multiple entries in the record length indicates the individual sensors.

### 2.2 Surface Shear Measurement (SASS) Component

The Surface Acoustic Shear Sensor (SASS) shown in Figure 6 was designed and deployed by A. J. Williams (WHOI) and co-workers to obtain high-quality, high-frequency measurements of the three dimensional velocity vector at six levels within the top 6 m of the water column (see Montgomery and Santala, 1989, for a description of SASS as used in SMILE). The SASS platform was a triangular frame with large surface floats at each apex so that the platform would follow the sea surface even in wind waves and maintain the velocity sensors at fixed depths perpendicular to the sea surface. The water velocity measurements relative to the platform were made with small acoustic travel-time velocimeters (Williams et al., 1987). The motion of the platform was measured with a two-axis gyro motion sensing package and a VACM compass. The combination of the water velocity relative to the platform with the motion of the platform then gave absolute water velocity. The SASS platform was also equipped with two temperature/conductivity sensor sets and a wavestaff. SASS sampled at a rate of 4 Hz, and both sampling instructions and data were transmitted to ship or a shore station at Sea Ranch near Stewarts Point by a FM transceiver. The SASS mooring was placed as close as possible (about 500 m) to the C3 mooring (38°38.71'N, 123°29.56'W) so that the data from the two sets of instruments would nominally describe the same parcel of water and meaningful comparisons between the SASS and VMCM velocity measurements could be made. SASS was deployed for 12 days in the fall and 18 days in the winter. Data was selectively acquired for periods of 1-7 hours to sample a variety of conditions. Summary information for the SASS deployments and data return is given in Table 4.

| FALL DEPLOYMENT           |                                       |                            |                                             |  |  |  |  |
|---------------------------|---------------------------------------|----------------------------|---------------------------------------------|--|--|--|--|
| Position                  | Date Set/Recovered (GMT)              | Available Data             | Velocity Sensor Depths (cm)                 |  |  |  |  |
| 38°38.88'N<br>123°29.32'W | 27 Nov 1988@1600<br>03 Dec 1988 @1530 | 28 Nov 1988<br>182 minutes | 110.8, 165.8, 251.1,<br>311.1, 391.4, 584.6 |  |  |  |  |

| Table 4: | Summary | of | Availa | ble | SASS | Data |
|----------|---------|----|--------|-----|------|------|
|          | -       |    |        |     |      |      |

| FALL DEPLOYMENT (Batteries Recharged) |                                        |                            |                                             |  |  |  |  |  |
|---------------------------------------|----------------------------------------|----------------------------|---------------------------------------------|--|--|--|--|--|
| Position                              | Date Set/Recovered (GMT)               | Available Data             | Velocity Sensor Depths (cm)                 |  |  |  |  |  |
| 38°38.93'N<br>123°29.38'W             | 04 Dec 1988 @1530<br>09 Dec 1988 @1600 | 05 Dec 1988<br>59 minutes  | 110.8, 165.8, 251.1,<br>311.1, 391.4, 584.6 |  |  |  |  |  |
|                                       |                                        | 06 Dec 1988<br>101 minutes |                                             |  |  |  |  |  |

| SPRING DEPLOYMENT         |                                        |                                                                                       |                               |  |  |  |  |  |
|---------------------------|----------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|
| Position                  | Date Set/Recovered (GMT)               | Available Data                                                                        | Velocity Sensor Depths (cm)   |  |  |  |  |  |
| 38°38.83'N<br>123°29.27'W | 23 Feb 1989 @2140<br>13 Mar 1989 @1530 | 24 Feb 1989<br>260 minutes<br>26 Feb 1989<br>79 minutes<br>27 Feb 1989<br>365 minutes | 110.8, 251.1,<br>311.1, 584.6 |  |  |  |  |  |
|                           |                                        | 28 Feb 1989<br>404 minutes                                                            |                               |  |  |  |  |  |





#### 2.3 Hydrographic Component

Three hydrographic cruises were completed aboard the  $\mathbf{R}/\mathbf{V}$  Wecoma during SMILE: November 1988 following the mooring deployment; February/ March 1989 midway through the mooring deployment; and May 1989 during the spring transition and just before the mooring recovery operations. The three hydrographic cruises collected current profile data with a RD Instruments 150 kHz ADCP along most of the trackline and made a total of 860 CTD profiles using the ship's Neil Brown Instrument Systems Mark 3 CTD equipped with a SeaTech 25 cm beam transmissometer. CTD profiles were usually made to within 5 m of the bottom or to a maximum depth of 1500 m in deeper water. The hydrographic data base includes three large-scale surveys (consisting of four lines perpendicular to the coast extending from north of Pt. Arena to south of Pt. Reyes), seven small-scale surveys (consisting of five or more lines perpendicular to the coast concentrated in the region of the moored array), six additional sections along the central mooring line, and three sections along the 90-m isobath. Approximate CTD station locations for the large- and small-scale surveys are shown in Figure 7 and a listing of the different hydrographic sections is presented in Table 5. The large- and small-scale CTD survey data are summarized in three WHOI technical reports by Limeburner and Beardsley (1989a, b, and c).

SMILE Small Scale CTD Survey







| Section                                   | Date                 | Station Numbers        |
|-------------------------------------------|----------------------|------------------------|
|                                           |                      |                        |
| R/V Wecoma Cruise W8811:                  |                      |                        |
| C-Line                                    | 13 Nov 1988          | A1 – A6                |
| Small-Scale No. 1 (Lines A–E)             | 15–16 Nov 1988       | 1 - 36                 |
| C-Line                                    | 16 Nov 1988          | 37 - 43                |
| Yo-yo cast at mooring C3                  | 18 Nov 1988          | 44 - 53                |
| Along 93-m isobath                        | 18 Nov 1988          | 54 - 57                |
| Small-Scale No. 2 (Lines A–E)             | 19-20 Nov 1988       | 58 - 90                |
| Along 93-m isobath                        | 20 Nov 1988          | 91 - 92                |
| Large-Scale (N, CC, BB, PR)               | 20-22 Nov 1988       | 93 - 133               |
| Along 93-m isobath                        | 22 Nov 1988          | 134 - 136              |
| Small-Scale No. 3 (Lines A-E)             | 22-23 Nov 1988       | 137 - 167              |
| C-Line                                    | 23 Nov 1988          | 168 - 173              |
| Mooring C3 cast                           | 24 Nov 1988          | 174                    |
| Yo-yo cast at mooring C4                  | 24 Nov 1988          | 175 – 178              |
|                                           |                      |                        |
| R/V Wecoma Cruise W8902:                  | or of D-1 1000       | 1 44                   |
| Large-Scale (N, CC, BB, PR)               | 20-27 Feb 1909       | 1 - 44                 |
| Small-Scale (Lines A–E)                   | 27-28 Feb 1989       | 40 - 01                |
| C-Line (CTD stations C4–C8)               | 28 Feb - 01 Mar 1969 | 82 - 80<br>87 - 98     |
| Along 93-m isobath                        | 03 Mar 1969          | 00 - 201               |
| Yo-yo cast at mooring C3                  | 04-03 Mar 1909       | 99 - 201<br>202 - 206  |
| Along 93-m isobath                        | 05 Mar 1909          | 202 - 200<br>207 - 271 |
| Expanded Small-Scale (N, PL, A-E, BB, PR) | 07-07 Mar 1909       | 207 - 271<br>272 - 278 |
| Along 93-m isobath                        | 07-00 Mar 1909       | 212 - 210<br>270 - 327 |
| Yo-yo cast at mooring C2                  | 08 Mar 1909          | 219 - 321<br>228 - 360 |
| Yo-yo cast at mooring C4                  | $00 M_{-1} = 1000$   | 320 - 309<br>270 208   |
| Yo-yo cast between CTD stations C6 and C7 | 09 Mar 1989          | 370 - 390<br>200 405   |
| C-Line                                    | 09 Mar 1989          | 399 - 403              |
| Along 93-m isobath                        | 09–10 Mar 1989       | 400 - 419              |
| R/V Wecoma Cruise W8905:                  |                      |                        |
| Large-Scale (N, CC, BB, PR)               | 05–08 May 1989       | 1 - 44                 |
| Small-Scale (Lines A – E, BB)             | 08–09 May 1989       | 47 - 93                |
| C-Line                                    | 10 May 1989          | 94 - 100               |
| Yo-yo cast at CTD station C1              | 10–11 May 1989       | 102 - 121              |
| PL-Line                                   | 11 May 1989          | 123 - 128              |
| Small-Scale (Lines A – E, BB)             | 11-13 May 1989       | 129 - 170              |
| Yo-vo cast at mooring C3                  | 13–14 May 1989       | 171 - 255              |
| C-Line                                    | 14 May 1989          | 256 - 263              |

Table 5: Summary of CTD Observations Acquired During SMILE

## 2.4 Moored and Coastal Meteorological Component

#### 2.4.1 Moored Meteorological Array

Meteorological instruments were deployed on the five SMILE surface buoys (Figure 3; Table 2) to obtain time series observations of the surface wind field and other atmospheric variables over the shelf during the long-term moored oceanographic measurements. The C3 meteorological instrumentation included two VAWRs equipped to measure wind speed at four levels (2, 3.5, 5, and 7 m), wind direction at two levels (3.5 and 7 m), air temperature at 2 m, relative humidity at 3 m, insolation (short-wave radiation) and downward long-wave radiation at 3 m, barometric pressure at 2.7 m, and water temperature at depths of 1 and 1.8 m (see Figure 8 for a schematic view of the C3 buoy). The top two wind sensors were mounted on a thin cylindrical mast and a large rigid steering vane was used to keep the buoy oriented into the wind so that the various sensors would have good exposure to clear air. The four surrounding buoys each supported a basic VAWR equipped with a wind speed and direction sensor set at 3.5 m and a water temperature sensor at 1 m below the surface.

Data return from the moored meteorological array was mixed. As noted in Section 2.1, the C2 mooring went adrift and was redeployed in February 1989. The C4 VAWR was missing in May 1989, and a gouge in the aluminum stand for the VAWR suggests that the surface buoy was hit by a passing ship. One of the C3 VAWRs leaked which resulted in the total loss of the sea surface and air temperature data. Data from the other sensors attached to that VAWR were recorded but with many small timing gaps in the records probably due to the water in the instrument case. Drift in the C3 relative humidity sensor caused the maximum relative humidity to exceed 100%. The G3 VAWR had a clock problem which resulted in an increased sampling rate and a short record. The other VAWRs worked well and gave complete records.



Figure 8: Schematic of the C3 surface discus buoy showing locations of various meteorological and oceanographic sensors.

#### 2.4.2 Land-Based Meteorological Array

An array of meteorological stations was deployed along the coast of northern California from mid-November 1988 to mid-May 1989 to obtain better spatial information on the coastal wind field and other atmospheric variables during the moored array deployment (Figure 3; Table 2). This array consisted of five Portable Atmospheric Monitors (PAMs) designed to measure wind speed and direction at 10 m above ground, barometric pressure, air temperature, and dewpoint temperature at 2 m, and liquid precipitation (rainfall) at 1 m (see Figure 9 for a schematic view of a PAM and Militzer, 1987, for a detailed description). Data was collected from each sensor set every minute and transmitted directly to the National Center for Atmospheric Research (NCAR) for storage on 9-track tape via GEOS (Geostationary Operational Environmental Satellite). These units were developed at NCAR to support field experiments like SMILE, and the five PAMs used in SMILE were set up and maintained by NCAR technicians. The Stewarts Point PAM was modified to include insolation and downward long-wave radiation sensors (similar to those deployed on C3) to allow comparison of short- and long-wave radiation received at the coast and at mid-shelf (5 km offshore).

To augment the moored VAWR and coastal PAM coverage, atmospheric data were also obtained from existing coastal stations at Pt. Arena Light and the Bodega Bay Marine Laboratory and from NOAA Data Buoy Center (NDBC) environmental buoys NDBC 13 and NDBC 14 which bracket the SMILE moored array. The variables measured at these stations and buoys are listed in Table 6.

The PAM, coastal station and NDBC buoy data were obtained by C. Dorman (SDSU) and edited into basic hourly averaged time series before being sent to WHOI for final editing and inclusion in this report. The PAMs produced records with gaps of up to a few days for several reasons. Some sensor failures occurred, primarily due to air moisture. Small drifts in the wet and dry bulb sensors caused the computed relative humidity to exceed 100% at times. On a few occasions, there was a power or system failure of an individual PAM station which blocked all transmission from that station. On a few other occasions, the satellite signal was blocked or a system failure at NCAR resulted in the loss of all data from all PAMs. The coastal station data records also contain short gaps due mostly to individual sensor problems. The data return from the coastal and moored meteorological sensors is summarized in Table 6.



Figure 9: Schematic of the NCAR PAM II remote meteorological station showing locations of various meteorological sensors.

| Station | Variable<br>Type | Sensor<br>Height | Record<br>Bate | Data<br>Source | Record | Comments     |
|---------|------------------|------------------|----------------|----------------|--------|--------------|
|         | -JP*             | (m)              | (min)          |                | (days) | Community    |
| ar      |                  |                  |                | an ar 1        |        |              |
|         | WS               | 10.0             | 1.0            | SDSU           | 188    |              |
|         | WD .             | 10.0             | 1.0            | SDSU           | 188    |              |
|         | AI               | 2.0              | 1.0            | SDSU           | 150    | gaps         |
|         | BP               | 2.0              | 1.0            | SDSU           | 183    | gaps         |
|         | RF<br>DU         | 2.0              | 1.0            | SDSU           | 185    | gaps         |
| UL UL   | nn               | 2.0              | 1.0            | 5050           | 185    | gaps         |
| 14      | WS               | 10.0             | 60.0           | SDSU           | 114    |              |
| 14      | WD               | 10.0             | 60.0           | SDSU           | 114    |              |
| 14      | AT               | 2.0              | 60.0           | SDSU           | 114    |              |
| 14      | BP               | 10.0             | 60.0           | SDSU           | 114    |              |
| 14      | DP               |                  | 60.0           | SDSU           | 114    |              |
| PT      | WS               | 35.0             | 180.0          | SDSU           | 192    |              |
| PT      | WD               | 35.0             | 180.0          | SDSU           | 192    |              |
| PT      | AT               | 10.0             | 180.0          | SDSU           | 192    |              |
| PT      | BP               | 35.0             | 180.0          | SDSU           | 192    |              |
| GP      | WS               | 10.0             | 1.0            | SUSU           | 180    |              |
| GP      | WD               | 10.0             | 1.0            | SDSU           | 189    |              |
| GP      | AT               | 2.0              | 1.0            | SDSU           | 180    | gans         |
| GP      | BP               | 2.0              | 1.0            | SDSU           | 188    | gane         |
| GP      | RF               | 1.0              | 1.0            | SDSU           | 189    | gaps<br>gaps |
| GP      | RH               | 2.0              | 1.0            | SDSU           | 179    | gaps         |
| G3      | ws               | 3.5              | 3 75           | WHOI           | 188    |              |
| G3      | WD               | 3.5              | 3.75           | WHOI           | 188    |              |
| Ca      | WC               | 0 r              |                | WILOI          |        |              |
| C2      | WD               | 3.5              | 7.5            | WHOI           | 80     |              |
| 02      | WD               | 3.5              | 7.5            | WHOI           | 80     |              |
| C3(s1)  | WS               | 3.5              | 15.0           | WHOI           | 188    |              |
| °C3(s1) | WD               | 3.5              | 15.0           | WHOI           | 188    |              |
| C3(s1)  | WS               | 2.0              | 15.0           | WHOI           | 188    |              |
| C3(s1)  | SW               | 3.5              | 15.0           | WHOI           | 87     |              |
| C3(s1)  | LW               | 3.5              | 15.0           | WHOI           | 149    |              |
| C3(s1)  | BP               | 2.7              | 15.0           | WHOI           | 188    |              |
| C3(s1)  | RH               | 3.0              | 15.0           | WHOI           | —      | no data      |
| C3(s2)  | WS               | 7.0              | 15.0           | WHOI           | 188    |              |
| C3(s2)  | WD               | 7.0              | 15.0           | WHOI           | 188    |              |
| C3(s2)  | ws               | 5.0              | 15.0           | WHOI           | 188    |              |
| C3(s2)  | SW               | 3.5              | 15.0           | WHOI           | 188    | 1            |
| C3(s2)  | LW               | 3.5              | 15.0           | WHOI           | 174    |              |
| C3(s2)  | RH               | 3.5              | 15.0           | WHOI           | 184    |              |
| C3(s2)  | AT               | 2.7              | 15.0           | WHOI           |        | no data      |

Table 6: Summary of Coastal and Moored Meteorological Sensors Deployed in SMILE

1

-----

| Station | Variable<br>Type | Sensor<br>Height<br>(m) | Record<br>Rate<br>(min) | Data<br>Source | Record<br>Length<br>(days) | Comments |
|---------|------------------|-------------------------|-------------------------|----------------|----------------------------|----------|
| C1.     | WS               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| CA      | WD               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| CA      | AT A             | 2.0                     | 1.0                     | SDSU           | 187                        | gabs     |
| CA      | BP               | 2.0                     | 1.0                     | SDSU           | 186                        | gape     |
| CA      | BF               | 1.0                     | 1.0                     | SDSU           | 187                        | gaps     |
| CA      | RH               | 2.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SR      | ws               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| SR      | WD               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| SR      | AT               | 2.0                     | 1.0                     | SDSU           | 176                        | gaps     |
| SR      | BP               | 2.0                     | 1.0                     | SDSU           | 166                        | gaps     |
| SR      | RF               | 1.0                     | 1.0                     | SDSU           | 177                        | gaps     |
| SR      | RH               | 2.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | ws               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| SB      | WD               | 10.0                    | 1.0                     | SDSU           | 188                        |          |
| SB      | $\cdot$ AT       | 2.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | BP               | 2.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | $\mathbf{RF}$    | 1.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | RH               | 2.0                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | LW               | 1.2                     | 1.0                     | SDSU           | 188                        | gaps     |
| SB      | SW               | 1.2                     | 1.0                     | SDSU           | 188                        | gaps     |
| M3      | WS               | 3.5                     | 7.5                     | WHOI           | 188                        |          |
| М3      | WD               | 3.5                     | 7.5                     | WHOI           | 188                        |          |
| BB      | ws               | 15.0                    | 60.0                    | SDSU           | 176                        |          |
| BB      | WD               | 15.0                    | 60.0                    | SDSU           | 176                        |          |
| BB      | AT               | 9.1                     | 60.0                    | SDSU           | 176                        | gaps     |
| BB      | BP               | 2.1                     | 60.0                    | SDSU           | 176                        | gaps     |
| BB      | RH               | 9.1                     | 60.0                    | SDSU           | 176                        | gaps     |
| 13      | ws               | 10.0                    | 60.0                    | SDSU           | 192                        |          |
| 13      | WD               | 10.0                    | 60.0                    | SDSU           | 192                        |          |
| 13      | AT               | 10.0                    | 60.0                    | SDSU           | 192                        |          |
| 13      | BP               | 10.0                    | 60.0                    | SDSU           | 192                        |          |
| 13      | DP               |                         | 60.0                    | SDSU           | 192                        |          |

Table 6: Summary of Coastal and Moored Meteorological Sensors Deployed in SMILE (Continued)

#### Abbreviations:

- WS: Wind Speed
- AT:
- Air Temperature Short-Wave Radiation SW:
- **Relative Humidity** RH:
- Dew Point DP:

WD: Wind Direction

**Barometric** Pressure BP:

- LW: Long-Wave Radiation
- Rainfall RF:

In order to characterize the lower atmosphere during the intensive SMILE measurement period, atmospheric soundings were made at Stewarts Point by C. Dorman (SDSU) from February 6 to March 15, 1989. Four soundings a day were attempted (see Figure 2 and Table 7). At 0100 and 1300 PST (1700 and 0500 GMT), a National Center for Atmospheric Research (NCAR) Cross-chain Loran Atmospheric Sounding System (CLASS) was used to track a VIZ sonde carried aloft by a 100 gram balloon (see Lauristen *et al.*, 1986). This sonde measures air temperature, humidity and pressure while receiving LORAN-C radio signals. This information is transmitted to the ground receiving station every 10 seconds where the LORAN-C signal is used to derive horizontal wind velocity. This sounding system obtained atmospheric profile data at 30 m intervals from the surface to 3 km in about 30 minutes.

At 0700 and 1900 PST, one of two other types of soundings was taken. If winds were less than 8 m/s, a 5.5 m long tethered balloon was used to lift a tethersonde designed to measure air temperature, wet bulb temperature, air pressure, wind speed and direction. This system obtained data every 30 m from the surface to 1 km in about eight minutes. If winds were above 8 m/s, a PIBAL sounding was made. The PIBAL is a free ascent balloon which is tracked with an optical theodolite. Wind velocity is computed from the angular orientation data and the assumption of a constant known ascent rate. Data were obtained with this system from the surface to 3 km at 30 m intervals in about 15 minutes. A description of the three sounding systems and a graphical presentation of the sounding data are presented in an SDSU technical report by Dorman (1990).
| Date/Time    | Туре         | Max (m) | Comments                     |
|--------------|--------------|---------|------------------------------|
| (PST)        |              | Height  |                              |
|              |              |         |                              |
| 6 Feb 1304   | Р            | 2720    |                              |
| 6 Feb 1715   | P            | 2210    |                              |
| 7 Feb 0710   | P            | 2900    |                              |
| 7 Feb 1115   | Ť            | 855     |                              |
| 7 Feb 1805   | P            | 1710    |                              |
| 8 Feb 0705   | P            | 3007    |                              |
| 8 Feb 1302   | Ť            | 831     |                              |
| 8 Feb 1745   | P            | 977     | Lost balloon in cloud        |
| 0 Feb 1740   | P            | 800     | Lost balloon in cloud        |
| 9 Feb 0700   | I<br>D       | 577     | Lost balloon in cloud        |
| 9 Feb 1302   | Г            | 207     | Lost balloon in cloud        |
| 9 Feb 1900   | L L          | 301     | Lost balloon in cloud        |
| 10 Feb 1300  | г н<br>г     | 2320    |                              |
| 10 Feb 1600  | T            | 885     |                              |
| 10 Feb 1900  | $\mathbf{T}$ | 856     |                              |
| 11 Feb 0720  | Т            | 849     |                              |
| 11 Feb 1100  | Т            | 884     |                              |
| 11 Feb 1730  | Т            | 272     |                              |
| 11 Feb 2200  | Т            | 602     |                              |
| 12 Feb 0700  | Т            | 613     |                              |
| 12 Feb 1650  | C            | 6005    | First test, winds gappy      |
| 13 Feb 0109  | C            |         | Test bad, no data            |
| 13 Feb 1000  | Р            | 3008    |                              |
| 13 Feb 1205  | C            |         | Test bad, no data            |
| 13 Feb 1310  | P            | 3008    | · · ·                        |
| 13 Feb 1502  | -C           |         | Test bad, no data            |
| 13 Feb 1920  | Ť            | 844     |                              |
| 13 Feb 2200  | P            | 672     | Light separated from balloon |
| 14 Fab 0100  | P            | 1217    | Lost view of light           |
| 14 Esh 0700  | P            | 3010    | 2000 1101 01 2010            |
| 14 Feb 0/00  | <u>~</u>     | 1020    |                              |
| 14 Feb 1000  |              | 1020    |                              |
| 14 Feb 1300  |              | 905     |                              |
| 14 Feb 1900  |              | 982     | Lest halloon in aland hard-  |
| 14 Feb 2200  | P            | 2127    | Lost Dalloon in cloud Dank   |
| 15 Feb 0100  |              | 640     | Balloon burst                |
| 15 Feb 0700  | P            | 3007    |                              |
| 15 Feb 1010  | T            | 817     |                              |
| 15 Feb 1300  | P            | 2817    |                              |
| 15 Feb 1600  | Т            | 844     | Cloud base about 250 m       |
| 15 Feb 1832  | C            | 2950    | Winds poor                   |
| 15 Feb 1905  | Т            | 983     |                              |
| 16 Feb 0100  | P            | 1201    | Lost balloon in cloud        |
| 16 Feb 0700  | Т            | 1069    |                              |
| 16 Feb 1100  | Ī            | 942     |                              |
| 16 Feb 1300  | ÎŤ           | 914     |                              |
| 16 Feb 1050  | l ĉ          | 5223    | No winds 1400–1900 m.        |
| 10 1.60 1990 | Ĭ            | 0.20    | temp and humidity suspect    |
| 10 E.L 0000  | <b>_</b>     | 042     | tomp and namency suspect     |
| 10 FED 2030  |              | 2010    |                              |
| 17 Feb 0700  | P            | 3010    | No mindo holory 900 m        |
| 17 Feb 1300  | C C          | 7182    | INO WINDS DELOW OUU III      |
| 17 Feb 1310  | P            | 3008    |                              |
| 17 Feb 1900  | Т            | 856     |                              |

Table 7: Summary of Stewarts Point Atmospheric Soundings

------

-

-

| Date/Time<br>(PST)         | Туре   | Max (m)<br>Height | Comments                                                                                                         |
|----------------------------|--------|-------------------|------------------------------------------------------------------------------------------------------------------|
|                            |        |                   |                                                                                                                  |
| 18 Feb 0051                | С      | 4583              | and the second |
| 18 Feb 1251                | С      | 5740              |                                                                                                                  |
| 18 Feb 1900                | Т      | 865               |                                                                                                                  |
| 19 Feb 0033                | C      | 5740              |                                                                                                                  |
| 19 Feb 0700                | T      | 817               |                                                                                                                  |
| 19 Feb 1254                | C      | 4537              |                                                                                                                  |
| 19 Feb 1900                | T      | 859               |                                                                                                                  |
| 20 Feb 0142                | C      | 5830              |                                                                                                                  |
| 20 Feb 0700                | T      | 1010              |                                                                                                                  |
| 20 Feb 1045                | T      | 965               | M 1 000 1700                                                                                                     |
| 20 Feb 1254                | C      | 5713              | No winds 300-1700 m                                                                                              |
| 20 Feb 1930                | 1<br>T | 900               | Na winda halo- 500 -                                                                                             |
| 21 Feb 0108                | U<br>T | 5754              | Delloon suspersion problem                                                                                       |
| 21 Feb 0715                |        | 501               | Damoon suspension problem                                                                                        |
| 21 Feb 0803                |        | 5837              |                                                                                                                  |
| 21 Feb 1257                |        | 5843              | Last halloon in sloud                                                                                            |
| 21 Feb 2030                | r .    | 1230              | Lost Danoon in cloud                                                                                             |
| 22 Feb 0119                | D D    | 2977              | Last halloon in gloud                                                                                            |
| 22 Feb 0200                | P<br>C | 383               | Lost banoon in cloud                                                                                             |
| 22 Feb 0858                | č      | 4000              | System problem, no data                                                                                          |
| 22 FeD 1207                | T T    | 4233              |                                                                                                                  |
| 22 Feb 1900                |        | 609               | No windo 500-1500 m                                                                                              |
| 23 Feb 0038                | P      | 1760              | Lest balloon in cloud edge                                                                                       |
| 23 Feb 0/13                | r<br>C | 5646              | Lost Danoon in cloud edge                                                                                        |
| 23 Feb 1301                |        | 965               |                                                                                                                  |
| 23 Feb 1900                |        | 5756              |                                                                                                                  |
| 24 Feb 0047                | т<br>Т | 539               | Lost balloon in cloud                                                                                            |
| 24 Feb 0700                | P      | 2144              | Dest balloon in cloud                                                                                            |
| 24 Feb 1005                | л<br>Т | 628               |                                                                                                                  |
| 24 Feb 1000                | Ċ      | 5979              |                                                                                                                  |
| 24 Feb 1902                | т      | 716               |                                                                                                                  |
| 24 Feb 1300<br>25 Feb 0700 | Ť      | 911               |                                                                                                                  |
| 25 Feb 0100                | Ċ      | 5979              |                                                                                                                  |
| 25 Feb 1945                | Ť      | 208               |                                                                                                                  |
| 26 Feb 0048                | Ċ      | 5769              |                                                                                                                  |
| 26 Feb 0700                | Ť      | 975               |                                                                                                                  |
| 26 Feb 1312                | Ċ      | 3572              |                                                                                                                  |
| 26 Feb 1900                | Ť      | 733               |                                                                                                                  |
| 27 Feb 0056                | ċ      | 4701              |                                                                                                                  |
| 27 Feb 0700                | Ť      | 364               |                                                                                                                  |
| 27 Feb 0741                | Ċ      | 5865              |                                                                                                                  |
| 27 Feb 1052                | č      |                   | Bad sonde, no data                                                                                               |
| 27 Feb 1110                | P      | 527               | Lost balloon in sun                                                                                              |
| 27 Feb 1231                | Ċ      | 5748              |                                                                                                                  |
| 27 Feb 1850                | č      | 6116              |                                                                                                                  |
| 28 Feb 0046                | č      | 5618              |                                                                                                                  |
| 28 Feb 0656                | č      | 6303              |                                                                                                                  |
| 28 Feb 1000                | P      | 2657              | Lost balloon in cloud                                                                                            |
| 28 Feb 1306                | c l    | 6234              | No winds                                                                                                         |
| 28 Feb 1330                | P      |                   | No data                                                                                                          |
| 28 Feb 1859                | C      | 6394              | · · · · · · · · · · · · · · · · · · ·                                                                            |
| 201001000                  | Ľ.     |                   | · · · · · · · · · · · · · · · · · · ·                                                                            |

and a state of the

-14.755

Table 7: Summary of Stewarts Point Atmospheric Soundings (Continued)

| D.4. (T):   | Turne  | May (m)           | Commente                              |
|-------------|--------|-------------------|---------------------------------------|
| (PST)       | Tybe   | Max (m)<br>Height | Comments                              |
| (101)       |        |                   |                                       |
| 1 Mar 0113  | C      | 6013              |                                       |
| 1 Mar 0700  | T      | 974               |                                       |
| 1 Mar 1250  | Ċ      | 5858              |                                       |
| 1 Mar 1855  | Č      | 5823              |                                       |
| 2 Mar 0032  | C      | 2764              |                                       |
| 2 Mar 0658  | C      | 5144              |                                       |
| 2 Mar 1304  | С      | 6031              |                                       |
| 2 Mar 1856  | С      | 6594              |                                       |
| 3 Mar 0104  | C      | 4967              |                                       |
| 3 Mar 0659  | С      | 5771              |                                       |
| 3 Mar 1000  | P      | .—                | No data                               |
| 3 Mar 1258  | С      | 5788              |                                       |
| 3 Mar 1857  | С      | 5830              |                                       |
| 4 Mar 0041  | С      | 5698              |                                       |
| 4 Mar 0700  | Т      | 188               | Winds too fast, redo with PIBAL       |
| 4 Mar 0715  | P      | 2627              |                                       |
| 4 Mar 1249  | С      | —                 | No data                               |
| 4 Mar 1837  | С      | 5742              |                                       |
| 5 Mar 0043  | С      | 6812              |                                       |
| 5 Mar 0704  | C      | 6565              |                                       |
| 5 Mar 1247  | C      | 3547              |                                       |
| 5 Mar 1904  | C      | 5871              | · · · · · · · · · · · · · · · · · · · |
| 6 Mar 0040  | C      | 5669              |                                       |
| 6 Mar 0711  | C      | 5821              |                                       |
| 6 Mar 1309  | U<br>T | 5890              |                                       |
| 6 Mar 1900  |        | 813               |                                       |
| 7 Mar 0101  | T T    | 840               |                                       |
| 7 Mar 0700  | Ċ      | 049<br>5643       |                                       |
| 7 Mar 1207  | Ċ      | 6651              |                                       |
| 7 Mar 1908  | c      | 4520              |                                       |
| 8 Mar 0700  | Ċ.     | 4642              |                                       |
| 8 Mar 1325  | Ċ      | 3011              | No temp and humidity below 700 m      |
| 8 Mar 1848  | č      | 2995              | No winds 2600–2980 m                  |
| 9 Mar 0053  | č      | 4279              | Most winds missing                    |
| 9 Mar 1253  | č      | 3387              |                                       |
| 9 Mar 1857  | č      | 3536              |                                       |
| 10 Mar 0106 | c      | 5375              |                                       |
| 10 Mar 1300 | č      | 6493              |                                       |
| 10 Mar 1844 | C      | <u> </u>          | No data, very heavy rain              |
| 11 Mar 0046 | č      | 5647              |                                       |
| 11 Mar 1257 | Ċ      | 5364              |                                       |
| 12 Mar 0036 | С      | 5844              |                                       |
| 12 Mar 1235 | C      | 6535              |                                       |
| 13 Mar 0043 | C      | 6676              |                                       |
| 13 Mar 0655 | С      | 6717              |                                       |
| 13 Mar 1240 | C      | 6697              |                                       |
| 13 Mar 1912 | C      | 5976              |                                       |
| 14 Mar 0102 | C      | 5969              | No winds 900–1400 m                   |
| 14 Mar 1310 | C      | 5722              |                                       |
| 14 Mar 2157 | С      | 6916              |                                       |
| 15 Mar 0714 | С      | 5707              |                                       |
| 15 Mar 1251 | С      | 6399              |                                       |

#### Table 7: Summary of Stewarts Point Atmospheric Soundings (Continued)

C = CLASS sounding measuring wind, air temperature, humidity, and pressure every 30 m. P = PIBAL sounding measuring wind every 30 m. T = Tethered sounding measuring wind, air temperature, wet bulb temperature and pressure every 30 m.

#### 2.5 Aircraft Overflight Component

During the intensive SMILE meteorological observation period (Feb 6 to Mar 18, 1989), C. Friehe (UC Irvine) used the NCAR King Air aircraft to obtain measurements of the atmospheric structure, surface forcing by turbulent fluxes, and sea surface temperature over the coastal ocean between approximately Pt. Arena and Bodega Bay and offshore about 40 km. The King Air is a twin-engine research aircraft equipped to measure the threedimensional vector wind, air temperature and pressure, relative and absolute humidity, both up- and downward short- and long-wave radiation, rain and aerosol concentrations, and sea surface temperature. The King Air carries a very accurate inertial navigation system (INS) which allows the relative wind measurements made with a differential pressure system aboard the aircraft to be converted into absolute wind speed and direction. After the first two SMILE flights, the INS worked well and the total uncertainty in the wind data is about 1 m/s. Complete documentation of the aircraft fracility of NCAR (Boulder, CO 80307).

The King Air was based at the Sonoma County airport and made a total of 23 flights between February 8 and March 8, 1989. The dates and times of each flight are listed in Table 8. A timeline showing the intensive SMILE observation period is shown in Figure 2. The basic flight pattern included a) a horizontal ladder pattern flown at about 30 m height between NDBC 13 and NDBC 14 to measure surface conditions and b) either an ascending or descending sounding to examine the vertical structure of the marine layer. In some flights, additional tracks were flown near the WHOI meteorological buoys at M3, C3 and G3. Also on some flights, vertical profiles were made off Stewarts Point to help resolve the vertical structure of the boundary layer. The flight pattern for Flight 8 is shown in Figure 10 for illustration. The aircraft data are presented in a UC Irvine technical report by Friehe *et al.* (1990).

| Flt. No. | Date (1989) | Start-End Time<br>(PST) | Comments    |
|----------|-------------|-------------------------|-------------|
|          | · · · ·     |                         |             |
| 1        | Feb 8       | 11:34 - 15:24           | No INS data |
| 2        | Feb 10      | 10:55 - 15:03           | INS drift   |
| 3        | Feb 11      | 10:11 - 14:18           |             |
| 4        | Feb 13      | 10:13 — 14:10           |             |
| 5        | Feb 15      | 10:30 - 14:30           |             |
| 6        | Feb 17      | 10:03 14:20             |             |
| 7        | Feb 19      | 10:28 - 14:49           |             |
| 8        | Feb 20      | 09:54 — 14:13           | 1           |
| 9        | Feb 23      | 13:14 - 17:25           |             |
| 10       | Feb 26      | 11:16 — 15:25           |             |
| 11       | Feb 27      | 10:28 - 14:24           |             |
| 12       | Mar 2       | 10:17 - 14:37           | Tape out    |
| 13       | Mar 3       | 10:18 14:59             |             |
| 14       | Mar 5       | 10:06 - 11:28           |             |
| 15       | Mar 7       | 13:04 15:00             | No data     |
| 16       | Mar 8       | 12:00 - 16:42           |             |
| 17       | Mar 9       | 13:07 - 17:38           |             |
| 18       | Mar 11      | 11:06 — 14:03           |             |
| 19       | Mar 13      | 10:15 — 14:52           |             |
| 20       | Mar 14      | 11:44 - 15:56           |             |
| 21       | Mar 15      | 11:55 - 16:40           |             |
| 22       | Mar 16      | 10:24 15:05             |             |
| 23       | Mar 17      | 10:42 - 15:04           | •           |
|          |             |                         |             |

Table 8: Summary of NCAR King Air SMILE Flights



Smile Flight 8 Ø2-20-89

View Direction Long: -110, Lat: 25, Alt: 10000

Figure 10: Perspective view of King Air flight track for SMILE flight 8. This flight was conducted on February 20, 1989 between 0954 and 1413 PST.

#### 3. Complementary Field Programs: STRESS and NCCCS

In addition to SMILE, two other oceanographic field programs were conducted over this shelf region during the SMILE deployment period. The ONR-funded Sediment Transport Events on Shelves and Slopes (STRESS) was designed to make detailed bottom stress, velocity, and density measurements throughout the bottom boundary layer within the SMILE region to study sediment transport processes in this relatively simple sedimentary regime (see Nowell *et al.*, 1987, for a more complete description of STRESS and program objectives). In particular, two bottom tripods were deployed near C3 which supported either electromagnetic current sensors (Geoprobe) or acoustic travel-time velocimeters (similar to those on SASS) to obtain two and three dimensional velocity measurements respectively within the lowest 2–5 m of the water column above the bottom, and a subsurface string of five VACMs (three equipped with conductivity sensors) was deployed at C3 to observe the velocity, temperature and salinity structure over the lowest 25 m above the bottom (Figure 4). The combined STRESS and SMILE field program thus obtained high-quality, simultaneous, top-to-bottom ocean current measurements with the highest vertical resolution to date within the top and bottom boundary layers.

The MMS-funded Northern California Coastal Circulation Study (NCCCS) was a long-term physical oceanography program designed to describe the circulation over the shelf and upper slope between San Francisco and the California–Oregon border. As part of the main NCCCS field experiment conducted between March 1988 and October 1989, a moored array of near-surface current meters and bottom-pressure recorders was maintained along five cross-shelf transects, five regional hydrographic surveys were conducted, and four Lagrangian circulation experiments made using aircraft-tracked surface drifters. One mooring transect (the NCCCS C-line) was located about 5 km southeast of the SMILE cross-shelf subarray formed by C2, C3, and C4 (see Figure 3). While the NCCCS C-line was sparsely instrumented, each mooring did support a VMCM at 10 m, which returned current and temperature data. This data should be useful to compare with SMILE data to examine the horizontal structure of the circulation at 10 m depth on scales of 5–10 km. See EG&G (1989) for a detailed description of the NCCCS field program.

#### 4. Description of Data Presentation

The remainder of this report provides a statistical and graphical summary of the long-term array measurements described in sections 2.1, 2.4.1, and 2.4.2.

The data presented covers the time period between November 10, 1988 and May 20, 1989. All vector plots (hourly averaged and PL64 low-pass filtered) are subsampled every six hours. For display purposes, the vector and composite plots are shown on two pages, side by side. The time axis on each page spans approximately three months. The individual time series of the hourly averaged data for each instrument is shown on one page, the top half and lower half each cover approximately three months of data.

#### 4.1 Data Processing Methods

The data processing methods used to produce the final data sets (both atmospheric and oceanographic) presented in this report are described next. Greenwich Mean Time (GMT) is used throughout this report unless otherwise stated.

The moored array data collected with WHOI and USGS instruments (VAWRs, VMCMs, VACMs, and SeaCats) were recorded internally on standard magnetic cassette tapes and transcribed onto 9-track tapes at WHOI. The data were then converted to scientific units, and edited using the standard current meter processing system developed at WHOI (Tarbell *et al.*, 1988). This included a careful check of the time base, truncation to remove launch and retrieval transients, the removal of erroneous data cycles, and interpolation to fill any resulting short gaps in the data.

Preliminary processing of data collected with the SIO instruments (thermistor chains, Brancker temperature pods, VMCMs and ADCPs) was performed by L. Regier. The instruments were calibrated and the raw data converted into scientific units. The unedited data were then sent to WHOI on 9-track magnetic tape for further processing. The data were read from tape and the variables (east and north current, and temperature) were converted to common units. The data for each instrument were truncated to remove launch and retrieval transients, then plotted and checked for unrealistic data values. If a point was determined to be bad, it was filled using linear interpolation. The data for each ADCP profile were received from SIO in binary format output by the ADCP. These data were unpacked and scaled using a C program written by A. Plueddemann and M. Samelson at WHOI.

The PAM meteorological data were obtained from NCAR by C. Dorman and edited (removed bad points, flagged data gaps) at SDSU, forming basic hourly averaged time series

before sending the data to WHOI. The data were put into a standard format at WHOI and checked against other observations for consistency.

For all vector and scalar variables that were sampled at intervals less than one hour, hourly values were formed by vector or scalar averaging (computed using a running mean), centering time on the hour (e.g., the value assigned to 1200 is an average of data collected between 1130 and 1230). The resultant vector current and wind data collected in the SMILE region have been rotated into a standard coordinate system, with the north component aligned parallel with the coastline and local shelf topography near the central mooring line. This coordinate system is oriented 43° counter clockwise with respect to true north so that the alongshelf component is positive towards 317°T and the cross-shelf component is positive towards 47°T. For some purposes the hourly data were then filtered using the PL64 filter. The filter is symmetric with a total of 129 weights applied to the hourly time-series. The PL64 filter has a half-power period of 38 hours. A summary of the PL64 filter, including the generating function, can be found in the report by Beardsley *et al.* (1985).

#### 4.2 The Coastal and Moored Meteorological Observations

Presented in Section 7.1 of this report are the coastal and moored meteorological time series observations collected off northern California during SMILE from mid-November 1988 to mid-May 1989. The combined meteorological array consisted of five PAM stations, four VAWR moorings (C2, C3, G3, and M3), two NDBC meteorological moorings (NDBC 13 and 14), and two coastal stations (Pt. Arena Light, Bodega Bay Marine Lab). Information about these stations is summarized in Tables 2 and 6.

Basic statistics for the hourly averaged data are shown in Table 9. Composite vector plots of the PL64 low-pass filtered winds are presented in Figures 11–13. The time-series for each instrument have been stacked vertically on the same time base for easy comparison. The stations are plotted from north to south, onshore to offshore. The individual time series of the basic hourly averaged wind components, in the form of vector and line plots, are shown in Figures 14–27. Time series of the hourly averaged air temperature, long-wave and shortwave radiation, atmospheric pressure, relative humidity, scalar speeds and rainfall are shown as composite plots in Figures 28–32, respectively. All wind time series have been rotated into the standard coordinate system (along-shelf is positive towards 317°T, cross-shelf is positive towards 47°T).

#### 4.3 Moored Current Observations

Presented in Section 7.2 of this report are the moored current measurements made off northern California during SMILE from mid-November 1988 to mid-May 1989. The SMILE moored current observations consist of measurements made by VMCM and ADCP data collected from the five SMILE moorings and VACM data collected from the USGS STRESS mooring at C3. The mooring locations (C2, C3, C4, G3, and M3) are shown in Figure 3 and schematics of the moorings are shown in Figure 4. A cross-section of the shelf with the bottom bathymetry showing the instrument locations for the SMILE central mooring line (C2, C3, C4) is shown in Figure 5. The instrumentation for moorings G3 and M3 was similar to mooring C4. Additional information about the sensors and the basic recording rates for each type of oceanographic instrument are given in Table 3.

Basic statistics for the hourly averaged current components are given in Table 10. The ADCP sampled 2 m vertical bins and for completeness the statistics for each bin are presented in Table 10. However, the pulse length of the ADCP was 6 m, so individual 2 m bins are not independent; consequently, current time series plots are presented at depth intervals of 6 m rather than 2 m. Composite vector plots of the PL64 low-pass filtered currents are presented in Figures 33-47. The time series for each measurement depth have been stacked vertically on the same time base for easy comparison. The individual time series, in the form of vector and line plots, of the hourly averaged components are shown in Figures 48-101. All time series have been rotated into the standard coordinate system (along-shelf is positive towards  $317^{\circ}$ T, cross-shelf is positive towards  $47^{\circ}$ T).

#### 4.4 Moored Temperature and Conductivity Observations

Presented in Section 7.3 of this report are the moored temperature and conductivity data collected off northern California from mid-November 1988 to mid-May 1989. The SMILE moored temperature array consisted of temperatures measured on current meters (VMCMs, VAWRs, ADCPs, and VACMs) deployed by WHOI, SIO and USGS, SeaBird temperature/conductivity sensor pairs deployed by WHOI and USGS, and thermistor chains (T-Chains) and temperature logging pods (T-Pods) deployed by SIO. Additional information about the instrumentation and the basic recording rates for each type of oceanographic instrument are given in Table 3.

Basic statistics for the hourly conductivity and salinity are shown in Table 11. The basic statistics for hourly averaged water temperature are shown in Table 12. Composite (overlay) plots of PL64 low-pass filtered salinity and temperature records by mooring are presented in Figures 102–104. Composite stacked plots of the hourly averaged individual

salinity, temperature, and conductivity records are shown in Figures 105-112. Salinities were estimated from the SeaCat temperature and conductivity observations using the Sea Bird software. Salinity was estimated from the EG&G temperature and conductivity cell following Fofonoff and Millard (1983).

#### 5. Acknowledgments

The efforts of a great many people contributed to the success of the SMILE program. The authors would like to take this opportunity to express their appreciation to the WHOI buoy group and engineers for their part in the design and execution of the moored array component of SMILE. The officers and crew of the **R/V Wecoma** (Oregon State University) did a fine job of handling the ship for deployments and recoveries which contributed significantly to the success of the seagoing operations. The authors would like to express their appreciation to Anne-Marie Michael for her assistance in the final preparation of this report. The Shelf MIxed Layer Experiment was supported by the Ocean Sciences Division of the National Science Foundation under NSF Grant OCE 87-16937, and this support is gratefully acknowledged.

#### 6. References

- Beardsley, R. C., R. Limeburner, and L. K. Rosenfeld, 1985. Introduction to CODE-2 Moored Array and Large-Scale Data Report. WHOI Technical Report WHOI-85-35, CODE Technical Report No. 38, 234 pp.
- Beardsley, R. C., 1987. A comparison of the Vector-Averaging Current Meter and new Edgerton, Germeshausen, and Grier, Inc., Vector-Measuring Current Meter on a surface mooring in Coastal Ocean Dynamics Experiment 1. Journal of Geophysical Research, 92(C2), 1845-1859.
- Dean, J., R. Beardsley, S. Lentz, and C. Alessi. The Shelf MIxed Layer Experiment (SMILE): Moored array and coastal instrumentation. WHOI Technical Report, in preparation.
- Dorman, C. E., 1990. Atmospheric soundings at Stewarts Point, California during the Shelf
  MIxed Layer Experiment, SMILE, February-March 1989. CMS Technical Report 90 1, Center for Marine Studies, San Diego State University, San Diego CA 92182.
- EG&G, 1989. Circulation on the northern California shelf and slope: Final report of the Northern California Coastal Circulation Study (NCCCS). Prepared by EG&G Wash-

ington Analytical Services Center, Inc., Oceanographic Services Department, for U.S. Department of the Interior, Minerals Management Service, Los Angeles, California, 842 pp. May, draft.

- Fofonoff, N. P., and R. C. Millard, Jr., 1983. Algorithms for computation of fundamental properties of seawater. Unesco Technical Papers in Marine Science, No. 44, 53 pp.
- Friehe, C. A., A. Enriquez, and L. Tran, 1990. Aircraft data report: NCAR King Air in SMILE. University of California, Irvine Technical Report, 500 pp.
- Huyer, A., 1984. Hydrographic observations along the CODE central line off northern California, 1981. Journal of Physical Oceanography, 14(10), 1647-1658.
- Lauristen, D., Z. Malekmdani, C. Morel, and R. McBeth, 1986. The Cross-chain Loran Atmospheric Sounding System (CLASS). NCAR, Boulder, CO 80307-3000, 4 pp.
- Lentz, S. J. (Editor), 1990. CODE: A Collection of Reprints. Woods Hole Oceanographic Institution, Woods Hole, MA, 817 pp.
- Limeburner, R., and R. C. Beardsley, 1989a. CTD observations off northern California during the Shelf MIxed Layer Experiment, SMILE, November 1988. WHOI Technical Report WHOI-89-25, 272 pp.
- Limeburner, R., and R. C. Beardsley, 1989b. CTD observations off northern California during the Shelf MIxed Layer Experiment, SMILE, February/March 1989. WHOI Technical Report WHOI-89-41, 218 pp.
- Limeburner, R., and R. C. Beardsley, 1989c. CTD observations off northern California during the Shelf MIxed Layer Experiment, SMILE, May 1989. WHOI Technical Report WHOI-89-42, 239 pp.
- Militzer, J. W., 1987. Portable Automated Mesonet II (PAM II), Field Observing Facility, Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, CO 80307-3000.
- Montgomery, E. T., and M. J. Santala, 1989. The Surface Acoustic Shear Sensor (SASS) as used during the Shelf MIxed Layer Experiment (SMILE) November 1988–March 1989. WHOI Technical Report WHOI-89-34, 19 pp.
- Nelson, C. S., 1977. Wind stress and wind stress curl over the California current. NOAA Technical Report, NMFS SSRF-714, 87 pp.
- Nelson, C. S., and D. M. Husby, 1983. Climatology of surface heat fluxes over the California current region. NOAA Technical Report, NMFS SSRF-763, 155 pp.

- Nowell, A. R., P. A. Jumars, and J. H. Kravitz, 1987. Sediment TRansport Events on Shelves and Slopes (STRESS) and Biological Effects of Coastal Ocean Sediment Transport (BECOST). EOS, Transactions, American Geophysical Union, 68(35), 722-724.
- Pettigrew, N. R., J. D. Irish, and R. C. Beardsley, 1986. Field evaluations of a bottommounted acoustic Doppler profiler and conventional current meter moorings. Proceedings of the IEEE Third Working Conference on Current Measurement, G. F. Appell and W. E. Woodward, editors (New York: Institute of Electrical and Electronics Engineers, 1986), pp. 153-162.
- Tarbell, S. A., A. Spencer, and E. T. Montgomery, 1988. The Buoy Group Data Processing System. WHOI Technical Memorandum WHOI-3-88, 207 pp.
- Weller, R. A., and R. E. Davis, 1980. A Vector-Measuring Current Meter. Deep-Sea Research, 27A, 565-581.
- Williams, A. J. 3rd, J. S. Tochko, R. L. Koehler, W. D. Grant, T. F. Gross, and C. V. R. Dunn, 1987. Measurement of turbulence in the oceanic bottom boundary layer with an acoustic current meter array. Journal of Atmospheric and Oceanic Technology, 4(2), 312-327.

### 7. Data Presentation



## 7.1 Coastal and Moored Meteorological Observations

1

)

. .



|                      | Eleva-                               | GMT         | GMT         |             | Sensor   |         | Std    |         |              |  |  |
|----------------------|--------------------------------------|-------------|-------------|-------------|----------|---------|--------|---------|--------------|--|--|
| Sta                  | tion                                 | Start Time  | Stop Time   | Duration    | Height   | Mean    | Dev    | Max     | Min          |  |  |
|                      | (m)                                  | (y m d/hm)  | (y m d/hm)  | (Days)      | (m)      |         |        |         |              |  |  |
| Air Tomperature (PC) |                                      |             |             |             |          |         |        |         |              |  |  |
|                      |                                      |             | AII .       | remperatur  | e ( 0)   |         |        |         |              |  |  |
| CL                   | 15                                   | 881110/0000 | 890409/1000 | 150         | 2.0      | 9.24    | 2.86   | 17.86   | -3.89        |  |  |
| 14                   | 306                                  | 890112/2100 | 890506/1600 | 114         | 10.0     | 10.09   | 1.97   | 15.80   | 1.30         |  |  |
| PT                   | 19                                   | 881110/0000 | 890519/2300 | 191         | 10.0     | 9.34    | 2.48   | 15.70   | -1.50        |  |  |
| GP                   | 14                                   | 881110/0000 | 890508/2300 | 180         | 2.0      | 8.96    | 3.02   | 18.95   | -1.95        |  |  |
| CA                   | 83                                   | 881110/0000 | 890516/0700 | 187         | 2.0      | 10.45   | 6.36   | 35.55   | -5.51        |  |  |
| SU                   | 238                                  | 881110/0000 | 890505/1800 | 177         | 2.0      | 8.99    | 4.76   | 28.18   | -3.19        |  |  |
| SR                   | 28                                   | 881110/0000 | 890414/0400 | 155         | 2.0      | 9.26    | 2.85   | 19.44   | -0.55        |  |  |
| BB                   | 9                                    | 881110/0000 | 890504/1200 | 176         | 10.0     | 9.97    | 2.72   | 20.27   | 0.20         |  |  |
| 13                   | -125                                 | 881110/0000 | 890520/2300 | 192         | 10.0     | 10.50   | 1.91   | 17.30   | 2.30         |  |  |
|                      |                                      |             | Barom       | etric Press | ure (mb) |         |        |         |              |  |  |
| CL                   | 15                                   | 881110/0000 | 890512/0500 | 183         | 2.0      | 1017.88 | 5.55   | 1031.82 | 1002.92      |  |  |
| 14                   | -306                                 | 890112/2100 | 890506/1600 | 114         | 10.0     | 1019.26 | 5.47   | 1031.90 | 998.30       |  |  |
| PT -                 | 19                                   | 881110/0000 | 890520/2300 | 192         | 35.0     | 1019.92 | 5.44   | 1034.10 | 999.60       |  |  |
| GP                   | 14                                   | 881110/0000 | 890516/2300 | 188         | 2.0      | 1017.71 | 5.36   | 1029.99 | 998.25       |  |  |
| C3                   | -93                                  | 881112/1300 | 890519/1200 | 188         | 2.7      | 1019.51 | 5.46   | 1033.10 | 999.55       |  |  |
| CA                   | 83                                   | 881110/0000 | 890515/0900 | 186         | 2.0      | 1009.72 | 5.53   | 1024.27 | 990.65       |  |  |
| SU                   | 238                                  | 881110/0000 | 890511/1300 | 183         | 2.0      | 990.05  | 5.20   | 1002.84 | 970.92       |  |  |
| SR                   | 28                                   | 881110/0000 | 890424/2200 | 166         | 2.0      | 1016.77 | 5.24   | 1029.77 | 996.76       |  |  |
| BB                   | 9                                    | 881110/0000 | 890504/1200 | 176         | 10.0     | 1021.31 | 4.80   | 1033.47 | 1003.38      |  |  |
| 13                   | -125                                 | 881110/0000 | 890520/2300 | 192         | 10.0     | 1020.19 | 5.41   | 1033.60 | 1000.70      |  |  |
|                      |                                      |             | Relat       | tive Humidi | ity (%)  |         |        |         |              |  |  |
| CL                   | 15                                   | 881110/0000 | 890407/1000 | 148         | 2.0      | 88 99   | 11.85  | 119.96  | 26.39        |  |  |
| 14                   | 306                                  | 890201/0100 | 890309/1600 | 37          | 10.0     | 60.79   | 13.97  | 97 97   | 25.03        |  |  |
| GP                   |                                      | 881110/0000 | 890508/0200 | 179         | 2.0      | 86.00   | 12.17  | 117 79  | 23.62        |  |  |
| C3                   | -93                                  | 881112/1300 | 890515/0100 | 184         | 3.5      | 82.31   | 12.38  | 104.12  | 17.99        |  |  |
| CA                   | 83                                   | 881110/0000 | 890513/1800 | 185         | 2.0      | 77.45   | 21.37  | 104.21  | 13.85        |  |  |
| SU                   | 238                                  | 881110/0000 | 890501/1700 | 173         | 2.0      | 82.53   | 18.10  | 114.24  | 18.31        |  |  |
| SB                   | 28                                   | 881110/0000 | 890413/1200 | 155         | 2.0      | 81.78   | 13.90  | 103.57  | 20.14        |  |  |
| BB                   | 9                                    | 881110/0000 | 890504/1200 | 176         | 9.1      | 81.50   | 16.68  | 99.00   | 4.00         |  |  |
| 13                   | -125                                 | 890315/1600 | 890520/2300 | 66          | 10.0     | 83.89   | 12.83  | 100.00  | 43.62        |  |  |
| 10                   |                                      | 000010/1000 |             |             |          |         |        |         |              |  |  |
|                      |                                      |             | Long-Wave   | e Radiation | (watts/m | •)      |        |         |              |  |  |
| C3                   | -93                                  | 881112/1300 | 890410/0500 | 149         | 3.5      | 323.88  | 35.77  | 403.28  | 228.22       |  |  |
| C3                   | -93                                  | 881112/1300 | 890505/1400 | 174         | 3.5      | 308.49  | 40.28  | 388.03  | 160.75       |  |  |
| SR                   | 28                                   | 881110/0000 | 890426/2200 | 168         | 1.2      | 312.65  | 35.79  | 380.94  | 235.85       |  |  |
|                      | Short-Wave Radiation (watts $/m^2$ ) |             |             |             |          |         |        |         |              |  |  |
| Сз                   | -93                                  | 881112/1300 | 890207/0500 | 87          | 3.5      | 117.47  | 166.13 | 767.07  | 3.22         |  |  |
| C3                   | -93                                  | 881112/1300 | 890519/1600 | 188         | 3.5      | 143.74  | 209.76 | 1290.80 | 4.00         |  |  |
| SR                   | 28                                   | 881110/0000 | 890504/1700 | 176         | 1.2      | 154.19  | 239.99 | 1071.08 | 0.00         |  |  |
| BB                   | 9                                    | 881110/0000 | 890504/1200 | 176         | 10.0     | 193.09  | 246.17 | 1071.33 | 0.00         |  |  |
|                      |                                      |             | Wi          | nd Speed (  | m/s)     |         |        |         |              |  |  |
| C3                   | -03                                  | 881112/1300 | 890519/1200 | 188         | 20       | 4 36    | 2 46   | 19 99   | 0.61         |  |  |
| C3                   | -93                                  | 881112/1300 | 890519/1200 | 188         | 35       | 5.56    | 3.97   | 15 78   | 0.01<br>88 N |  |  |
| C3                   | -93                                  | 881112/1200 | 890519/1600 | 188         | 50       | 5.36    | 3.21   | 15.58   | 0.53         |  |  |
| C3                   | -93                                  | 881112/1300 | 890519/1600 | 188         | 7.0      | 5.87    | 3.53   | 17.10   | 0.62         |  |  |
| L                    |                                      |             |             |             |          |         |        |         |              |  |  |

Table 9: Statistics of Hourly-Averaged Meteorological Data

|     | Flour | CMT           | CMT         |             | Sancor |         | 5+4  |       |        |
|-----|-------|---------------|-------------|-------------|--------|---------|------|-------|--------|
| Sta | tion  | Start Time    | Stop Time   | Duration    | Height | Mean    | Dev  | May   | Min    |
| Dia | (m)   | (wmd/hm)      | (y m d/hm)  | (Dava)      | (m)    | TAICOTI | Dev  | MAA   | IVIIII |
|     | (ш)   | (y in d/iiii) | (y m d/mii) | (Days)      | (m)    | ·       |      |       |        |
|     |       |               |             |             |        |         |      |       |        |
|     |       |               | nai         | nian (mm)   |        |         |      |       |        |
| CL  | 15    | 881110/0000   | 890513/1100 | 185         | 1.0    | 0.13    | 0.57 | 11.59 | 0.00   |
| GP  | 14    | 881110/0000   | 890517/1100 | 189         | 1.0    | 0.14    | 0.60 | 8.51  | 0.00   |
| CA  | 83    | 881110/0000   | 890516/0700 | 187         | 1.0    | 0.12    | 0.53 | 9.54  | 0.00   |
| SR  | 245   | 881110/0000   | 890511/1300 | 183         | 1.0    | 0.16    | 0.63 | 8.75  | 0.00   |
| SB  | 28    | 881110/0000   | 890505/1600 | 177         | 1.0    | 0.12    | 0.59 | 10.29 | 0.00   |
|     |       |               | Cross-Sh    | elf Wind (r | n/s)   |         |      |       |        |
| CI  | 15    | 881110/0000   | 800511/2300 | 183         | 10.0   | 0.78    | 2 22 | 8'69  | -7.09  |
| 14  | -306  | 890112/2100   | 890506/1600 | 114         | 10.0   | -0.18   | 3 19 | 8.39  | -11.87 |
| PT  | 10    | 881110/000    | 890520/2300 | 102         | 35.0   | _1 04   | 2 64 | 9.25  | -11.25 |
| GP  | 14    | 881110/0000   | 890517/1100 | 189         | 10.0   | _0.92   | 1 75 | 6 56  | -7.31  |
| G3  | -93   | 881113/1300   | 890409/0200 | 147         | 3.5    | -1.99   | 2.90 | 7.99  | -12.11 |
| C2  | -80   | 890225/1300   | 890516/1200 | 80          | 3.5    | 0.22    | 1.60 | 7.10  | -5.96  |
| Č3  | -93   | 881112/1300   | 890519/1200 | 188         | 3.5    | 0.01    | 2.03 | 8.71  | -14.96 |
| C3  | -93   | 881112/1300   | 890519/1600 | 188         | 3.5    | -0.13   | 1.99 | 9.20  | -15.94 |
| CA  | 83    | 881110/0000   | 890516/0700 | 187         | 10.0   | 0.18    | 1.03 | 4.15  | -7.92  |
| SR  | 245   | 881110/0000   | 890511/1300 | 183         | 10.0   | -0.13   | 0.43 | 1.08  | -2.36  |
| SB  | 28    | 881110/0000   | 890429/0800 | 170         | 10.0   | -0.99   | 1.80 | 15.05 | -10.69 |
| M3  | 93    | 881113/1300   | 890517/1200 | 185         | 3.5    | -0.23   | 1.67 | 8.46  | -16.71 |
| BB  | 9     | 881110/0000   | 890504/1200 | 176         | 10.0   | -0.16   | 2.21 | 10.69 | -10.61 |
| 13  | -125  | 881110/0000   | 890520/2300 | 192         | 10.0   | 0.85    | 2.86 | 10.28 | -15.05 |
|     |       |               | Along-Sh    | elf Wind (1 | n/s)   |         |      |       |        |
| CL  | 15    | 881110/0000   | 800511/2300 | 183         | 10.0   | -0.15   | 4 01 | 12.23 | -13.53 |
| 14  | -306  | 800112/2100   | 890506/1600 | 100         | 10.0   | -0.10   | 5 54 | 16 27 | -14 78 |
| PT  | -300  | 881110/000    | 890520/1000 | 192         | 35.0   | -0.45   | 4.43 | 15.05 | -13.38 |
| GP  | 14    | 881110/0000   | 890517/1100 | 189         | 10.0   | -1.17   | 4.70 | 11.95 | -15.98 |
| G3  | _93   | 881113/1300   | 890409/0200 | 147         | 3.5    | -1.25   | 5.28 | 13.65 | -11.87 |
| C2  | -80   | 890225/1300   | 890516/1200 | 80          | 3.5    | -2.03   | 6.02 | 13.57 | -15.03 |
| C3  | -93   | 881112/1300   | 890519/1200 | 188         | 3.5    | -2.12   | 5.58 | 12.81 | -15.17 |
| C3  | -93   | 881112/1300   | 890519/1600 | 188         | 3.5    | -2.31   | 5.97 | 13.76 | -16.59 |
| CA  | 83    | 881110/0000   | 890516/0700 | 187         | 10.0   | -0.59   | 2.04 | 6.31  | -6.58  |
| SB  | 245   | 881110/0000   | 890511/1300 | 183         | 10.0   | -0.10   | 0.92 | 4.34  | -2.63  |
| SB  | 210   | 881110/0000   | 890429/0800 | 170         | 10.0   | -0.48   | 3.24 | 9.13  | -15.50 |
| M3  | -93   | 881113/1300   | 890517/1200 | 185         | 3.5    | -1.86   | 5.32 | 14.81 | -15.01 |
| BB  | 9     | 881110/0000   | 890504/1200 | 176         | 10.0   | -0.80   | 4.50 | 11.15 | -15.11 |
| 13  | -125  | 881110/0000   | 890520/2300 | 192         | 10.0   | -2.93   | 5.72 | 12.85 | -17.07 |
|     |       | · · · · · ·   |             | ·           |        |         |      |       |        |

Table 9: Statistics of Hourly-Averaged Meteorological Data (Continued)

5

1 1

1

1 ý



PL64 Low-Pass Filtered Winds (m/s) 317°T is up

 $\prod_{i=1}^{n}$ 

erer E

Figure 11



PL64 Low-Pass Filtered Winds (m/s) 317°T is up

Figure 11 (cont.)



PL64 Low-Pass Filtered Cross-Shelf Winds (m/s)

i.j

-

Figure 12



PL64 Low-Pass Filtered Cross-Shelf Winds (m/s)

Figure 12 (cont.)



PL64 Low-Pass Filtered Along-Shore Winds (m/s)

i. J

1.1.1.1

 $\int_{-1}^{\infty}$ 

Figure 13



PL64 Low-Pass Filtered Along-Shore Winds (m/s)

Figure 13 (cont.)









Figure





Figure 18







Figura

APR

MAY

MAR

-20.

FEB





6. 0. 317°T is up 0. **h** ዂ **U-Component -6.** Ó. V-Component -<u>6. Lu</u> 10 20 30 10 20 10 20 30 10 30 JAN FEB DEC NOV .6. 0. 317°T is up -6. ۵. 🗗 **U-Component** -6. 0. V-Component -6. 20 30 10 20 10 20 30 10 20 MAY MAR APR FEB

Figure 23




Figure 25







Temperature (°C) 10. 5. ·MM WP cl 0. 15. 10. 14 5. 10. 4444 10. 44444 5. -0. www.www.www.www. MM pt 15. [ 10. []<sup>WV</sup>WMWW 5. [-0. [] gp ca 15. 10. 5. 0. sr Mandellemanne Annum Manumanna 10. sb 15. MMAXXWH 10. -5. -0. -MMM MMMMM ьь 10. 5. 13 0. 30 20 10 20 30 10 JAN FEB NOV DEC

66



Figure 28 (cont.)

67

Atmospheric Pressure (mb)



.

Figure 29

Atmospheric Pressure (mb)



Figure 29 (cont.)







Figure 31



Figure 31 (cont.)

 $\square$ 

 $\bigcap$ 



Figure 32





Figure 32 (cont.)



## 7.2 Moored Current Observations

(\_\_\_\_\_)

 $\square$ 



| ~~~~····· |          |              |             | · ·          |        |       |              |       |         |
|-----------|----------|--------------|-------------|--------------|--------|-------|--------------|-------|---------|
|           | Water    | GMT          | GMT         |              | Sensor |       | Std          |       |         |
| Sta       | Depth    | Start Time   | Stop Time   | Duration     | Depth  | Mean  | Dev          | Max   | Min     |
|           | (m)      | (y m d/hm)   | (ymd/hm)    | (Days)       | (m)    |       |              |       |         |
| ·         |          | <u> </u>     |             |              |        |       |              |       |         |
|           |          |              | Cross-Sh    | elf Velocity | (cm/s) |       |              |       |         |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 4.0    | 0.15  | 8.03         | 26.85 | -18.57  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 6.0    | 0.70  | 8.76         | 28.93 | -21.28  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 8.0    | 1.04  | 8.82         | 29.36 | -24.95  |
| C2 vm     | 80       | 890225/1300  | 890516/1400 | 80           | 10.0   | -4.04 | 10.87        | 30.89 | -36.94  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 10.0   | 1.44  | 8.54         | 29.46 | -24.84  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 12.0   | 1.63  | 8.19         | 29.29 | -24.51  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 14.0   | 1.96  | 7.96         | 26.95 | -23.13  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 16.0   | 2.16  | 7.65         | 26.75 | -19.95  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 18.0   | 2.35  | 7.38         | 25.13 | -18.15  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 20.0   | 2.40  | 6.98         | 24.54 | -16.61  |
| C2        | 80       | 890225/1300  | 890516/1400 | .80          | 22.0   | 2.55  | 6.69         | 26.66 | -16.83  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 24.0   | 2.51  | 6.37         | 26.75 | -18.04  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 26.0   | 2.57  | 6.03         | 27.21 | -19.01  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 28.0   | 2.58  | 5.68         | 25.57 | -19.94  |
|           | 80       | 890225/1300  | 890516/1400 | 80           | 30.0   | 2.68  | 5.34         | 23.99 | -21.82  |
|           | - 20     | 890225/1300  | 890516/1400 | 80           | 32.0   | 2.65  | 5.06         | 23.23 | -19.67  |
|           | 90<br>90 | 800225/1000  | 890516/1400 | 80           | 34.0   | 2.68  | 4.76         | 18.16 | -14.85  |
|           | 00<br>90 | 80022071000  | 890516/1400 | 80           | 36.0   | 2.59  | 4.60         | 15.98 | -12.57  |
|           | 00       | 890223/1300  | 800516/1400 | 80           | 38.0   | 2.51  | 4.55         | 15.88 | -11.65  |
|           | 00       | 890225/1300  | 850510/1400 | 80           | 40.0   | 2.33  | 4.59         | 18.16 | -12.64  |
|           | 80       | 890225/1300  | 890510/1400 | 80           | 42.0   | 2 20  | 4.72         | 18.45 | -13.24  |
| 02        | 80       | 890225/1300  | 890516/1400 | 80           | 44.0   | 2.20  | 4 90         | 20.26 | -15.34  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 46.0   | 1 80  | 5 15         | 20.53 | -16.84  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 40.0   | 1 5 9 | 5 40         | 18 75 | -17.44  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 40.0   | 1.30  | 5.68         | 18.06 | -16.98  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 50.0   | 1.40  | 5.00         | 17 82 | -16.90  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 52.0   | 1.23  | 0.90<br>4 01 | 1917  | -18.30  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 54.0   | 1.07  | 0.21         | 10.00 | - 10.41 |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 56.0   | 0.91  | 6.50         | 19.00 | 20.03   |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 58.0   | 0.71  | 0.70         | 20.21 | -20.00  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 60.0   | 0.50  | 7.02         | 22.90 | - 23.40 |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 62.0   | 0.34  | 7.26         | 23.16 | 24.65   |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 64.0   | -0.09 | 7.19         | 23.25 | -24.73  |
| C2        | 80       | 890225/1300  | 890516/1400 | 80           | 66.0   | -0.21 | 6.80         | 21.70 | -25.12  |
| C3        | 02       | 881112/1300  | 881225/0500 | 43           | 4.0    |       | •            |       |         |
| C3 vm     | 02       | 800127/0100  | 890210/1700 | 15           | 4.0    | -2.28 | 10.62        | 30.04 | -36.19  |
| C3 Vm     | 93       | 890127/0100  | 800220/1700 | 22           | 4.0    |       |              |       |         |
| C3 vm     | - 93     | 001110 (1000 | 800020/1100 | 100          | 7.0    |       |              |       |         |
| C3 vm     | 93       | 881112/1300  | 890220/2300 | 100          | 7.0    | -2.04 | 8 53         | 20 00 | -34 42  |
| C3 vm     | 93       | 890302/0400  | 890502/0400 | - 01         | 7.0    | -2.04 | 0.00         | 20.00 | -01.12  |
| C3 vm     | 93       | 890503/0100  | 890519/1500 | 17           | 7.0    | 2 00  | 0 10         | 21.96 | _31.46  |
| C3 vm     | 93       | 881112/1300  | 890424/0500 | 163          | 10.0   | -2.00 | 0.20         | 31.00 | -31.40  |
| C3 vm     | 93       | 881112/1300  | 890126/1700 | 75           | 13.0   | -0.26 | 7.35         | 31.02 | - 29.32 |
| C3 vm     | 93       | 881112/1300  | 890412/2300 | 151          | 16.0   | -0.86 | 7.24         | 29.24 | -23.47  |
| C3 vm     | 93       | 881112/1300  | 890519/1500 | 188          | 19.0   | -0.09 | 6.94         | 27.26 | -25.42  |
| C3 vm     | 93       | 881112/1300  | 890329/1100 | 137          | 22.0   | -0.22 | 5.98         | 25.38 | -22.83  |
| C3 vm     | 93       | 881112/1300  | 890322/2300 | 130          | 27.0   | 0.72  | 5.49         | 21.52 | -19.77  |
| C3 vm     | 93       | 881112/1300  | 890519/1500 | 188          | 32.0   | 1.11  | 5.67         | 19.55 | -17.50  |
| C3 vm     | 93       | 881112/1300  | 890324/2300 | 132          | 37.0   | 1.85  | 4.73         | 18.06 | -16.74  |
| C3 vm     | 93       | 881112/1300  | 890519/1500 | 188          | 42.0   | 1.69  | 4.89         | 19.90 | -16.16  |
| C3 vm     | 93       | 881112/1300  | 890321/2300 | 129          | 47.0   | 1.96  | 4.60         | 17.86 | -14.78  |
| 1         |          | •            | -           |              |        |       |              |       |         |

| Sta                        | Water<br>Depth | GMT<br>Start Time | GMT<br>Stop Time | Duration  | Sensor<br>Depth      | Mean          | Std<br>Dev | Max            | Min     |  |  |
|----------------------------|----------------|-------------------|------------------|-----------|----------------------|---------------|------------|----------------|---------|--|--|
|                            | (m)            | (y m d/hm)        | (y m d/hm)       | (Days)    | (m)                  |               |            |                |         |  |  |
| Alongshore Velocity (cm/s) |                |                   |                  |           |                      |               |            |                |         |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 4.0                  | -6.33         | 18.91      | 50.79          | -56.75  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 6.0                  | -6.85         | 19.72      | 52.47          | -60.11  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 8.0                  | -6.67         | 19.83      | 52.02          | -62.07  |  |  |
| C2 vm                      | 80             | 890225/1300       | 890516/1400      | 80        | 10.0                 | -8.60         | 20.36      | 52.37          | -63.12  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 10.0                 | -6.43         | 19.59      | 51.57          | -62.51  |  |  |
| C2                         | -80            | 890225/1300       | 890516/1400      | 80        | 12.0                 | -6.10         | 19.26      | 48.92          | -61.94  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 14.0                 | -5.68         | 18.92      | 47.93          | -58.80  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 16.0                 | -5.24         | 18.57      | 48.67          | -58.61  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 18.0                 | -4.85         | 18.22      | 45.95          | -55.53  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 20.0                 | -4.33         | 17.82      | 45.68          | -55.27  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 22.0                 | -3.89         | 17.50      | 45.86          | -52.95  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 24.0                 | -3.38         | 17.16      | 45.86          | -52.00  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 26.0                 | -2.98         | 16.82      | 45.66          | -51.13  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 28.0                 | -2.53         | 16.45      | 44.65          | -49.83  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 30.0                 | -2.21         | 16.16      | 43.90          | -48.81  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 32.0                 | -1.85         | 15.81      | 43.89          | -46.86  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 34.0                 | -1.56         | 15.52      | 44.08          | -46.29  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 36.0                 | -1.24         | 15.10      | 42.35          | -40.43  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 38.0                 | -0.94         | 14.91      | 43.97          | -43.99  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 40.0                 | -0.69         | 14.62      | 44.28          | -43.83  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 42.0                 | -0.48         | 14.30      | 44.89          | -42.00  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 44.0                 | -0.27         | 12.07      | 44.40          | -43.13  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 46.0                 | -0.10         | 13.8/      | 44.07          | -44.17  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 48.0                 | 0.05          | 13.00      | 42.49          | -44.38  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 50.0                 | 0.15          | 12.40      | 41.00          | -46.11  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 52.0                 | 0.20          | 12.17      | 41.00          | -47.41  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 54.0                 | 0.33          | 12.54      | 37 70          | -47.12  |  |  |
| C2                         | 80             | 890225/1300       | 890516/1400      | 80        | 50.0                 | 0.43          | 12.10      | 37 58          | -47.17  |  |  |
| 02                         | 80             | 890225/1300       | 890516/1400      | 80        | 50.0                 | 0.40          | 12.40      | 35.85          | -47.64  |  |  |
| 02                         | 80             | 890225/1300       | 890510/1400      | 80        | 62.0                 | 0.34          | 11 74      | 34 49          | -45.98  |  |  |
| 02                         | 80             | 890225/1300       | 890516/1400      | 80        | 64.0                 | 0.34          | 11.07      | 34.72          | -43.03  |  |  |
|                            | 80             | 890225/1300       | 890516/1400      | 80        | 66.0                 | 0.14          | 10.05      | 33.81          | -41.04  |  |  |
| 02                         | 80             | 890223/1300       | 850510/1400      | 60        |                      | 0.11          | 10.00      | 00.01          |         |  |  |
| C3 vm                      | 93             | 881112/1300       | 881225/0500      | 43        | 4.0                  | 1.95          | 17 00      | 53 74          | _55 10  |  |  |
| C3 vm                      | 93             | 890127/0100       | 890210/1700      | 15        | 4.0                  | ~1.55         | 11.22      | 55.74          | -33.12  |  |  |
| C3 vm                      | 93             | 890227/0000       | 890320/1700      | 22        | 4.0                  |               |            |                |         |  |  |
| C3 vm                      | 93             | 881112/1300       | 890220/2300      | 100       | 7.0                  | 4 9 4         | 15 65      | 47 27          | 56.03   |  |  |
| C3 vm                      | 93             | 890302/0400       | 890502/0400      | . 61      | 7.0                  | -4.04         | 15.05      | 41.31          | - 30.03 |  |  |
| C3 vm                      | 93             | 890503/0100       | 890519/1500      | 17        | 7.0                  | 262           | 15 80      | 48.08          |         |  |  |
| C3 vm                      | 93             | 881112/1300       | 890424/0500      | 103       | 10.0                 | - 3.03        | 11.02      | 28 16          | _40.88  |  |  |
| C3 vm                      | 93             | 881112/1300       | 890126/1700      | (5<br>151 | 13.0                 | 3.54          | 1455       | JO.10          |         |  |  |
| C3 vm                      | 93             | 881112/1300       | 890412/2300      | 101       | 0.01                 | -1.10         | 14.00      | A1 A2          | -55.99  |  |  |
| C3 vm                      | . 93           | 881112/1300       | 890519/1500      | 188       | 19.0                 | - 2.03        | 14.74      | 41.40<br>37 K1 | _46.01  |  |  |
| C3 vm                      | 93             | 881112/1300       | 890329/1100      | 137       | 22.0                 | 7.13          | 11.85      | 40.50          | _47 31  |  |  |
| C3 vm                      | 93             | 881112/1300       | 890322/2300      | 130       | <i>∡(</i> .0<br>32.0 | 2.04<br>_0.31 | 13 30      | 42.00          | -47 20  |  |  |
| C3 vm                      | 93             | 881112/1300       | 990304 (0000     | 100       | 32.0                 | 2 63          | 11 26      | 40 93          | -40.81  |  |  |
| C3 vm                      | 93             | 881112/1300       | 890324/2300      | 100       | 42.0                 | 1 70          | 12.00      | 43 75          | -42.37  |  |  |
| C3 vm                      | 93             | 881112/1300       | 800301 /0300     | 100       | 42.0                 | 5.47          | 10.47      | 42.60          | -31.49  |  |  |
| C3 vm                      | 93             | 881112/1300       | 090321/2300      | 129       | 41.0                 | 0.41          | 10.11      | -10.00         | 01110   |  |  |

Table 10: Statistics of Hourly-Averaged Moored Current Observations

| Sta        | Water | GMT<br>Start Time | GMT<br>Stop Time | Duration     | Sensor<br>Depth | Mean  | Std<br>Dev | Мах   | Min     |
|------------|-------|-------------------|------------------|--------------|-----------------|-------|------------|-------|---------|
| 014        | (m)   | (y m d/hm)        | (y m d/hm)       | (Days)       | (m)             |       |            |       |         |
| ·          |       |                   | ·                |              |                 |       |            |       |         |
|            |       |                   | Cross-Sh         | elf Velocity | (cm/s)          |       |            |       |         |
| C3b va     | 97    | 881206/0300       | 890227/2200      | 84           | 67.0            |       |            |       |         |
| C3b va     | 95    | 890303/2100       | 890505/1600      | 63           | 65.0            | 1.47  | 5.88       | 20.98 | -19.74  |
| C3b va     | 97    | 881206/0300       | 890227/2200      | .84          | 73.0            |       |            |       |         |
| C3b va     | 95    | 890303/2100       | 890505/1600      | 63           | 71.0            | 0.79  | 6.21       | 21.40 | -20.12  |
| C3b va     | -97   | 881206/0300       | 890227/2200      | 84           | 79.0            | 0.00  | 0.55       | 00.00 | 01 10   |
| C3b va     | 95    | 890303/2100       | 890505/1600      | 63           | 77.07           | -0.08 | 0.00       | 20.62 | -21.12  |
| C3b va     | 97    | 881206/0300       | 890227/2200      | 84           | 85.0            |       |            |       |         |
| C3b va     | 95    | 890303/2100       | 890505/1600      | 63           | 83.0            | -0.76 | 5.72       | 19.38 | -23.14  |
| C3b va     | 97    | 881206/0300       | 890227/2200      | 84           | 91.0            |       |            | 10.10 | 00.47   |
| C3b va     | 95    | 890303/2100       | 890505/1600      | 63           | 89.07           | -0.97 | 6.60       | 19.12 | -30.47  |
| C4 vm      | 117   | 881113/1300       | 890516/1300      | 184          | 10.0            | -5.79 | 12.88      | 38.52 | -42.33  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 10.0            | -2.94 | 10.11      | 37.91 | -41.37  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 12.0            | -3.01 | 10.38      | 39.66 | -38.22  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 14.0            | -3.19 | 11.11      | 36.67 | -41.50  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 16.0            | -3.13 | 11.15      | 37.47 | -43.09  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 18.0            | -2.92 | 10.97      | 35.10 | -44.10  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 20.0            | -2.67 | 10.70      | 35.05 | -43.01  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 22.0            | -2.39 | 10.43      | 35.28 | -42.83  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 24.0            | -2.09 | 10.09      | 33.17 | -39.50  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 26.0            | -1.83 | 9.78       | 32.33 | -38.19  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 28.0            | -1.55 | 9.45       | 33.56 | -35.87  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 30.0            | -1.27 | 9.13       | 31.72 | -31.35  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 32.0            | -1.00 | 8.79       | 30.89 | -30.01  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 34.0            | -0.76 | 8.52       | 28.76 | -27.81  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 36.0            | -0.56 | 8.25       | 29.47 | -27.00  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 38.0            | -0.39 | 8.05       | 29.44 | -29.01  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 40.0            | -0.24 | 7.83       | 29.58 | -27.50  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 42.0            | -0.10 | 7.66       | 29.00 | -27.26  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 44.0            | 0.10  | 7.50       | 21.92 | - 20.40 |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 46.0            | 0.27  | 7.19       | 20.11 | -24.90  |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 48.0            | 0.13  | 7.12       | 20.02 | - 24.44 |
| C4         | 117   | 881113/1600       | 890516/1000      | 184          | 50.0            | -0.10 | 6.60       | 25.92 | - 24.21 |
| <u>C</u> 4 | 117   | 881113/1600       | 890516/1000      | 164          | 52.0            | 0.55  | 0.00       | 20.41 | -20.10  |
| G3 vm      | 93    | 881113/1300       | 890516/1300      | 184          | 10.0            | -3.54 | 9.70       | 33.89 | -32.18  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 10.0            | 1.06  | 6.84       | 20.58 | -18.52  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 12.0            | 0.63  | 7.25       | 22.56 | -18.17  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 14.0            | 0.41  | 7.92       | 22.11 | -20.32  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 16.0            | 0.57  | 7.70       | 22.71 | -20.40  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 18.0            | 0.75  | 7.18       | 20.70 | -15.97  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 20.0            | 0.88  | 6.80       | 21.83 | -15.76  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 22.0            | 1.01  | 6.51       | 21.87 | -16.16  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 24.0            | 1.32  | 6.33       | 22.05 | -15.36  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 26.0            | 1.74  | 6.22       | 22.67 | -14.40  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 28.0            | 2.05  | 6.18       | 22.09 | -13.10  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 30.0            | 2.42  | 6.23       | 22.37 | -12.31  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 32.0            | 2.63  | 6.14       | 21.29 | -11.47  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 34.0            | 2.89  | 6.24       | 20.14 | -10.00  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 36.0            | 2.93  | 6.24       | 19.71 | -10.30  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 38.0            | 2.95  | 6.19       | 19.71 | -10.74  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 40.0            | 2.74  | 6.17       | 21.57 | -12.95  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 42.0            | 2.69  | 6.08       | 19.88 | -13.07  |
| G3         | 93    | 881113/0100       | 881201/0300      | 15           | 44.0            | 2.45  | 5.94       | 19.14 | -14.16  |

| [              | Water | GMT         | GMT                            |              | Sensor       |              | Std   |       |         |
|----------------|-------|-------------|--------------------------------|--------------|--------------|--------------|-------|-------|---------|
| Sta            | Depth | Start Time  | Stop Time                      | Duration     | Depth        | Mean         | Dev   | Max   | Min     |
|                | (m)   | (y m d/hm)  | (y m d/hm)                     | (Days)       | (m)          |              |       |       |         |
| · ·            |       |             | · · · · ·                      |              |              |              |       |       |         |
|                | •     |             | Alongsh                        | ore velocity | (cm/s)       |              |       |       | -       |
| C3b va         | 97    | 881206/0300 | 890227/2200                    | 84           | 67.0         | 0.10         | 11.04 | 40.00 | 22.00   |
| C3b va         | 95    | 890303/2100 | 890505/1600                    | 63           | 65.07        | 3.13         | 11.94 | 43.29 |         |
| C3b va         | 97    | 881206/0300 | 890227/2200                    | 84           | 73.0         | 2 50         | 11 02 | 42.60 | 33.00   |
| C3b va         | 95    | 890303/2100 | 890505/1600                    | 63           | 71.07        | 3.30         | 11.23 | 43.09 | -32.50  |
| C3b va         | 97    | 881206/0300 | 89022772200                    | 84<br>62     | 79.0         | 3.67         | 10.81 | 44 02 | _33.00  |
| C3b va         | 95    | 890303/2100 | 890303/1000                    | 84           | 85.0 \       | 3.07         | 10.01 | 44.02 | -33.00  |
| Cob va         | 97    | 801200/0300 | 890221 / 2200<br>900505 / 1600 | 63           | 83.0         | 2 44         | 8 68  | 34.09 | -31.05  |
| C3D Va         | 95    | 890303/2100 | 800303/1000                    | 84           | 91.0 \       | 2.11         | 0.00  | 01.00 | 01.00   |
| Cob va         | 97    | 800202/0300 | 890505/1600                    | 63           | 89.0         | 2.43         | 8.75  | 35.73 | -27.29  |
| C3D Va         | 95    | 890303/2100 | 850505/1000                    | 00           | 00.0 /       | 2.10         | 0.10  | 00.70 |         |
| C4 vm          | 117   | 881113/1300 | 890516/1300                    | 184          | 10.0         | -11.72       | 18.26 | 51.42 | -70.25  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 10.0         | -10.42       | 15.79 | 45.39 | -59.61  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 12.0         | -10.43       | 16.23 | 48.21 | -62.36  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 14.0         | -10.74       | 17.31 | 51.51 | -65.54  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 16.0         | -10.74       | 17.70 | 52.00 | -67.29  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 18.0         | -10.42       | 17.70 | 52.26 | -68.06  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 20.0         | 9.96         | 17.50 | 52.05 | -67.66  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 22.0         | -9.48        | 17.27 | 52.65 | -00.03  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 24.0         | -8.99        | 16 70 | 51.90 | -03.18  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 26.0         | 8.59         | 16.79 | 51.31 | -01.30  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 28.0         | -8.18        | 10.00 | 51.42 | - 36.99 |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 30.0         | -7.01        | 16.02 | 50.70 | -60.43  |
| 04             | 117   | 881113/1600 | 890516/1000                    | 104          | 34.0         | -7.43        | 15.85 | 19 36 | -62.50  |
|                | 117   | 881113/1600 | 890516/1000                    | 104          | 36.0         | -6.64        | 15.60 | 43.00 | -64 27  |
|                | 117   | 881113/1000 | 890516/1000                    | 184          | 38.0         | -6.24        | 15.38 | 47.07 | -64.63  |
|                | 117   | 891113/1600 | 890516/1000                    | 184          | 40.0         | -5.77        | 15.15 | 46.31 | -65.34  |
|                | 117   | 881113/1600 | 890516/1000                    | 184          | 42.0         | -5.40        | 14.97 | 48.32 | -66.33  |
|                | 117   | 881113/1600 | 890516/1000                    | 184          | 44.0         | -4.97        | 14.82 | 49.55 | -64.67  |
|                | 117   | 881113/1600 | 890516/1000                    | 184          | 46.0         | -4.69        | 14.70 | 48.23 | -63.94  |
|                | 117   | 881113/1600 | 890516/1000                    | 184          | 48.0         | -4.16        | 14.34 | 48.99 | -63.19  |
|                | 117   | 881113/1600 | 890516/1000                    | 184          | 50.0         | -3.45        | 13.81 | 47.92 | -57.34  |
| C4             | 117   | 881113/1600 | 890516/1000                    | 184          | 52.0         | -4.19        | 14.22 | 50.96 | -58.81  |
|                |       | ····, ····  | <b>,</b> ·                     |              |              |              |       |       |         |
| G3 vm          | 93    | 881113/1300 | 890516/1300                    | 184          | 10.0         | -5.91        | 17.55 | 58.60 | -66.93  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 10.0         | 2.86         | 10.38 | 26.21 | -30.27  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 12.0         | 3.78         | 10.75 | 26.55 | -28.69  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 14.0         | 4.21         | 11.67 | 31.83 | 30.76   |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 16.0         | 4.14         | 11.46 | 31.36 | -30.08  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 18.0         | 4.24         | 11.33 | 30.66 | -30.32  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 20.0         | 4.43         | 11.12 | 31.23 | -27.96  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 22.0         | 4.65         | 11.11 | 30.68 | -27.05  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 24.0         | 4.91         | 11.14 | 31.05 | -27.40  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 26.0         | 5.16         | 11.24 | 31.71 | -24.41  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 28.0         | 5.43         | 11.33 | 32.44 | -23.67  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 30.0         | 5.72         | 11.52 | 31.66 | -24.43  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 32.0         | 6.01         | 11.60 | 32.00 | - 43.90 |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 34.0         | 6.26         | 11.66 | 32.45 | -22.74  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 30.0         | 0.40         | 11.04 | 33.20 | -10.05  |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 38.0         | 0.09<br>2 99 | 11.04 | 34 37 |         |
| G3             | 93    | 881113/0100 | 881201/0300                    | 15           | 40.0<br>49 0 | 7.07         | 11 45 | 34 94 | -20.90  |
| 63             | 93    | 001110/0100 | 001201/0000                    | 10           | 440          | 7 0.2        | 11 94 | 34 26 | -20.01  |
| <del>G</del> 3 | 93    | 001113/0100 | 001201/0300                    | 10           | 7.1.0        | 1.00         | ***** | 0     | 20101   |

| |\_\_\_\_

| Sta       | Water<br>Depth<br>(m) | GMT<br>Start Time<br>(y m d/hm) | GMT<br>Stop Time<br>(y m d/hm) | Duration<br>(Days) | Sensor<br>Depth<br>(m) | Mean  | Std<br>Dev | Мах   | Min    |
|-----------|-----------------------|---------------------------------|--------------------------------|--------------------|------------------------|-------|------------|-------|--------|
|           |                       |                                 | Cross-She                      | elf Velocity       | (cm/s)                 |       |            |       |        |
| 02        | 02                    | 881113/0100                     | 881201/0300                    | 15                 | 46.0                   | 2.37  | 5.81       | 17.77 | -13.40 |
| C3        | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 48.0                   | 2.00  | 5.59       | 17.44 | -13.89 |
| C3        | 03                    | 881113/0100                     | 881201/0300                    | 15                 | 50.0                   | 2.22  | 5.43       | 18.27 | -13.17 |
| G3        | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 52.0                   | 2.43  | 5.18       | 18.53 | -11.75 |
|           |                       | · · · · · ·                     | •                              |                    |                        |       |            |       |        |
| m3 vm     | 93                    | 881113/1300                     | 890517/1300                    | 185                | 10.0                   | -4.16 | 9.48       | 29.69 | -43.51 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 10.0                   | 1.50  | 7.45       | 23.49 | -22.45 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 12.0                   | 1.08  | 7.74       | 24.24 | -23.65 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 14.0                   | 1.05  | 7.94       | 23.97 | -24.54 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 16.0                   | 1.34  | 7.67       | 22.88 | -22.87 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 18.0                   | 1.62  | 7.37       | 24.32 | -21.29 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 20.0                   | 1.97  | 6.89       | 22.47 | -19.17 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 22.0                   | 2.40  | 6.61       | 23.54 | -16.07 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 24.0                   | 2.76  | 6.30       | 23.75 | -12.60 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 26.0                   | 3.13  | 6.23       | 22.37 | -11.17 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 28.0                   | 3.41  | 6.29       | 22.89 | -10.04 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 30.0                   | 3.55  | 6.40       | 21.62 | -10.93 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 32.0                   | 3.68  | 6.52       | 23.39 | -10.87 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 34.0                   | 3.62  | 6.58       | 23.95 | -11.47 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 36.0                   | 3.65  | 6.33       | 23.84 | -11.32 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 38.0                   | 3.67  | 6.24       | 25.21 | -10.99 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 40.0                   | 3.55  | 6.01       | 24.64 | -9.54  |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 42.0                   | 3.57  | 5.89       | 26.70 | -10.25 |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 44.0                   | 3.49  | 5.56       | 23.97 | -9.42  |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 46.0                   | 3.60  | 5.42       | 24.92 | -9.30  |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 48.0                   | 3.71  | 5.15       | 25.08 | -9.24  |
| m3        | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 50.0                   | 3.63  | 4.87       | 22.87 | -9.43  |
| <b>m3</b> | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 52.0                   | 3.46  | 4.69       | 19.78 | -9.41  |

## Abbreviations:

vm:Vector Measuring Current Meter (VMCM)va:Vector Averaging Current Meter (VACM)

| Sta   | Water<br>Depth<br>(m) | GMT<br>Start Time<br>(y m d/hm) | GMT<br>Stop Time<br>(y m d/hm) | Duration<br>(Days) | Sensor<br>Depth<br>(m) | Mean  | Std<br>Dev | Max   | Min    |
|-------|-----------------------|---------------------------------|--------------------------------|--------------------|------------------------|-------|------------|-------|--------|
|       |                       |                                 | Alongsho                       | ore Velocity       | (cm/s)                 |       |            |       |        |
| G3    | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 46.0                   | 7.26  | 11.00      | 33.29 | -19.20 |
| G3    | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 48.0                   | 7.15  | 10.52      | 33.45 | -18.34 |
| G3    | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 50.0                   | 7.28  | 10.41      | 32.00 | -17.57 |
| G3    | 93                    | 881113/0100                     | 881201/0300                    | 15                 | 52.0                   | 7.00  | 10.21      | 31.04 | -16.43 |
| m3 vm | ~ 93                  | 881113/1300                     | 890517/1300                    | 185                | 10.0                   | -4.14 | 18.79      | 49.69 | -67.30 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 10.0                   | 1.87  | 9.82       | 33.63 | -31.61 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 12.0                   | 2.52  | 9.80       | 33.43 | -29.51 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 14.0                   | 2.93  | 10.05      | 36.02 | -31.21 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 16.0                   | 3.21  | 9.90       | 34.33 | -30.87 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 18.0                   | 3.72  | 9.70       | 34.42 | -32.22 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 20.0                   | 4.02  | 9.49       | 32.57 | -29.81 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 22.0                   | 4.39  | 9.35       | 32.47 | -29.46 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 24.0                   | 4.70  | 9.34       | 30.99 | -28.35 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 26.0                   | 5.09  | 9.46       | 32.28 | -28.06 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 28.0                   | 5.42  | 9.64       | 32.91 | -26.38 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 30.0                   | 5.68  | 9.79       | 32.34 | -24.79 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 32.0                   | 6.03  | 9.81       | 33.98 | -22.28 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 34.0                   | 6.29  | 9.77       | 33.20 | -20.42 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 36.0                   | 6.63  | 9.59       | 31.60 | -19.01 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 38.0                   | 6.79  | 9.43       | 29.66 | -18.96 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 40.0                   | 6.92  | 9.16       | 31.01 | -16.81 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 42.0                   | 7.04  | 9.00       | 29.68 | -15.48 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 44.0                   | 7.12  | 8.78       | 31.13 | -15.15 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 46.0                   | 7.07  | 8.62       | 30.64 | -16.14 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 48.0                   | 6.97  | 8.34       | 30.07 | -13.53 |
| M3    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 50.0                   | 6.92  | 8.12       | 30.17 | -15.10 |
| МЗ    | 93                    | 881113/2100                     | 881205/1800                    | 22                 | 52.0                   | 6.96  | 8.02       | 29.72 | -13.90 |

## **Abbreviations:**

vm:Vector Measuring Current Meter (VMCM)va:Vector Averaging Current Meter (VACM)



Figure 33



Figure 33 (cont.)

## C2 Cross-Shelf Low-Pass Filtered (PL64) Currents







Figure 35

1.1



Figure 35 (cont.)

Low-Pass Filtered (PL64) Currents at C3

1





Figure 36 (cont.)



the statement of

Figure 37



Figure 37 (cont.)







Figure 38 (cont.)



Figure 39


Figure 39 (cont.)





Figure 40 (cont.)



 $\left[ \right]$ 

 $\bigcap_{i=1}^{n}$ 



Figure 41 (cont.)







Figure 43



Figure 43 (cont.)



Figure 44

DEC

20

NOV

30

30

JAN

FEB





L.J



Figure 45





**M** 

Π

 $\square$ 

10

FEB

<u>20</u>

30

Figure 46

DEC

11111

10

JAN

20 30 10 20 30

10

NOV



Figure 46 (cont.)



Figure 47



Figure 47 (cont.)

## 116 $\bigcap_{i=1}^{n}$



1

ĿÏ

الم ال

C2 Houriy Averaged Currents (cm/sec) at 4m (ADCP)





Figure 49

30

10

APR

30

10<sup>11</sup> MAY

0.

V-Component

20

FEB

10

20

MAR

-20.

-40.

ոհակակուն

ակական

ահահահ

<u>ماساساً 1</u>



-

## C2 Hourly Averaged Currents (cm/sec) at 10m (VMCM)



. مريخ

- A.T.

ê Y

1





 $\bigcap_{i=1}^{n}$ 

Figure 53









C2 Hourly Averaged Currents (cm/sec) at 46m (ADCP)

 $\left\{ \begin{array}{c} \\ \end{array} \right\}$ 







Figure 58



ξĴ



Figure 60





 $\left( \right)$ 


























. .







. . .

Ì

Å

đ



Figure 78

Ŋ

 $\square$ 





 $\tilde{k}$ 



-----

 $\square$ 





Figure 82











ر)

1

Figure 85







G3 Hourly Averaged Currents (cm/sec) at 28m (ADCP)





G3 Hourly Averaged Currents (cm/sec) at 40m (ADCP)













M3 Hourly Averaged Currents (cm/sec) at 10m (ADCP)











Figure 96










Figure 100



## 7.3 Temperature and Conductivity Observations



| Sta   | Water<br>Depth<br>(m) | GMT<br>Start Time<br>(y m d/hm) | GMT<br>Stop Time<br>(y m d/hm) | Duration<br>(Days) | Sensor<br>Depth<br>(m) | Mean  | Std<br>Dev | Max   | Min   |
|-------|-----------------------|---------------------------------|--------------------------------|--------------------|------------------------|-------|------------|-------|-------|
|       |                       |                                 | Cond                           | uctivity (s/1      | m)                     |       |            |       |       |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 7.0                    | 3.68  | 0.07       | 3.89  | 3.52  |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 13.0                   | 3.67  | 0.06       | 3.87  | 3.52  |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 19.0                   | 3.66  | 0.06       | 3.86  | 3.51  |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 27.0                   | 3.65  | 0.05       | 3.82  | 3.49  |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 37.0                   | 3.64  | 0.04       | 3.80  | 3.46  |
| C3    | 93                    | 881114/0400                     | 890519/1500                    | 187                | 47.0                   | 3.63  | 0.04       | 3.75  | 3.45  |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 47.0                   | 3.63  | 0.04       | 3.76  | 3.45  |
| СЗЪ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 67.0                   |       |            |       |       |
| Сзь   | 95                    | 890303/2200                     | 890505/1600                    | 63                 | 65.0                   | 3.62  | 0.03       | 3.70  | 3.60  |
| СЗЪ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 79.0                   |       |            |       |       |
| СЗЪ   | 95                    | 890303/1700                     | 890505/1100                    | 63                 | 77.0                   | 3.61  | 0.03       | 3.70  | 3.59  |
| СЗЬ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 91.0                   |       |            |       |       |
| СЗЬ   | 95                    | 890303/2200                     | 890505/1600                    | 63                 | 89.0                   | 3.60  | 0.04       | 3.68  | 3.56  |
|       |                       |                                 | Sa                             | linity (ppt)       |                        |       |            |       |       |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 7.0                    | 33.27 | 0.26       | 33.95 | 32.50 |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 13.0                   | 33.30 | 0.24       | 33.94 | 32.65 |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 19.0                   | 33.36 | 0.22       | 33.96 | 32.72 |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 27.0                   | 33.42 | 0.20       | 33.96 | 32.78 |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 37.0                   | 33.54 | 0.17       | 34.03 | 32.96 |
| C3    | 93                    | 881114/0400                     | 890519/1500                    | 187                | 47.0                   | 33.63 | 0.16       | 34.07 | 33.16 |
| C3 sc | 93                    | 881112/1300                     | 890519/1500                    | 188                | 47.0                   | 33.66 | 0.15       | 34.07 | 33.16 |
| СЗЪ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 67.0                   |       |            |       |       |
| СЗЬ   | 95                    | 890303/2200                     | 890505/1600                    | 63                 | 65.0                   | 33.69 | 0.12       | 34.01 | 33.33 |
| СЗЬ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 79.0                   |       |            |       |       |
| СЗЬ   | 95                    | 890303/1700                     | 890505/1100                    | 63                 | 77.0                   | 33.75 | 0.10       | 33.98 | 33.46 |
| СЗЬ   | 97                    | 881206/0400                     | 890227/2200                    | 84                 | 91.0                   |       |            |       |       |
| СЗЬ   | 95                    | 890303/2200                     | 890505/1600                    | 63                 | 89.0                   | 33.77 | 0.09       | 33.99 | 33.49 |

Table 11: Statistics of Hourly-Averaged Conductivity and Salinity

.....

\_\_\_\_

|                        | Water | GMT         | GMT                        |          | Sensor |         | Std  |       |      |  |
|------------------------|-------|-------------|----------------------------|----------|--------|---------|------|-------|------|--|
| Sta                    | Depth | Start Time  | Stop Time                  | Duration | Depth  | Mean    | Dev  | Max   | Min  |  |
|                        | (m)   | (y m d/hm)  | (y m d/hm)                 | (Days)   | (m)    | · · · . |      |       |      |  |
| Water Temperature (°C) |       |             |                            |          |        |         |      |       |      |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 1.0    | 10.63   | 1.19 | 14.00 | 7.67 |  |
| C2                     | 80    | 890225/1300 | 890516/1400                | 80       | 2.0    | 10.54   | 1.16 | 13.69 | 7.61 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 4.0    | 10.52   | 1.12 | 13.23 | 7.68 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | .80      | 5.0    | 10.50   | 1.11 | 13.23 | 7.66 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 7.0    | 10.44   | 1.07 | 13.22 | 7.62 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 8.0    | 10.37   | 1.04 | 13.19 | 7.59 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 10.0   | 10.29   | 0.99 | 13.15 | 7.56 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 13.0   | 10.19   | 0.92 | 12.90 | 7.56 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 15.0   | 10.11   | 0.87 | 12.79 | 7.56 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 18.0   | 9.98    | 0.80 | 12.51 | 7.40 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 23.0   | 9.77    | 0.70 | 11.79 | 7.17 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 27.0   | 9.64    | 0.65 | 11.76 | 7.12 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 32.0   | 9.49    | 0.62 | 11.23 | 7.05 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 42.0   | 9.27    | 0.61 | 10.72 | 7.01 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | .80      | 47.0   | 9.17    | 0.62 | 10.46 | 7.01 |  |
| C2                     | 80    | 890225/1300 | 890516/1100                | 80       | 53.0   | 9.05    | 0.62 | 10.27 | 6.97 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 4.0    | 10.55   | 0.94 | 13.40 | 7.97 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 7.0    | 10.49   | 0.91 | 13.07 | 7.94 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 7.0    | 10.49   | 0.90 | 13.03 | 7.94 |  |
| C3                     | 93    | 881112/1300 | 890425/0900                | 164      | 10.0   | 10.45   | 0.72 | 12.76 | 9.07 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 13.0   | 10.34   | 0.81 | 12.84 | 7.91 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 13.0   | 10.34   | 0.81 | 12.81 | 7.91 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 16.0   | 10.25   | 0.77 | 12.56 | 7.88 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 19.0   | 10.17   | 0.73 | 12.51 | 7.87 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 19.0   | 10.16   | 0.73 | 12.51 | 7.86 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 22.0   | 10.09   | 0.69 | 12.39 | 7.83 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 27.0   | 9.95    | 0.65 | 11.97 | 7.66 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 27.0   | 9.94    | 0.65 | 11.92 | 7.66 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 32.0   | 9.82    | 0.62 | 11.65 | 7.45 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 37.0   | 9.68    | 0.59 | 11.51 | 7.22 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 37.0   | 9.68    | 0.59 | 11.56 | 7.26 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 42.0   | 9.58    | 0.58 | 11.36 | 7.10 |  |
| C3                     | 93    | 881112/1300 | 890519/1500                | 188      | 47.0   | 9.46    | 0.57 | 11.17 | 7.04 |  |
| C3 sc                  | 93    | 881112/1300 | 890519/1500                | 188      | 47.0   | 9.46    | 0.57 | 11.17 | 7.04 |  |
| C3b                    | 97    | 881206/0300 | 890227/2200                | 84       | 67.0   | 0.21    | 0.45 | 10.64 | 0.00 |  |
| C3b C01                | 95    | 890303/2100 | 890505/1600                | 63       | 72.0   | 9.31    | 0.45 | 10.64 | 0.92 |  |
| C3D                    | -97   | 881206/0300 | 890227/2200                | 64       | 73.0   | 0.25    | 0.45 | 10 57 | 200  |  |
| COD                    | 95    | 890303/2100 | 890303/1600                | . 03     | 70.0   | 9.20    | 0.45 | 10.57 | 0.00 |  |
| Cab                    | 97    | 881200/0300 | 890227/2200                | 62       | 79.0   | 0 10    | 0.45 | 10 47 | 8 70 |  |
| Cab                    | 90    | 890303/2100 | 890303/1000                | 0.3      | 85.0   | 5.15    | 0.40 | 10.47 | 0.13 |  |
| Cob                    | 97    | 881200/0300 | 890221/2200<br>900505/1600 | 62       | 83.0   | 0 11    | 0.47 | 10 19 | 9.61 |  |
| COD                    | 95    | 890303/2100 | 890303/1000                | 84       | 01.0   | 5.11    | 0.47 | 10.10 | 0.01 |  |
| Cap                    | 97    | 800303/2100 | 890227/2200                | 63       | 89.0   | 9 04    | 0.48 | 10 16 | 840  |  |
| 030                    | 30    | 850505/2100 | 83030371000                |          | 00.0   | 0.04    | 0.10 | 10.10 | 0.40 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 2.0    | 10.77   | 0.95 | 13.88 | 8.51 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 4.0    | 10.69   | 0.93 | 13.57 | 8.45 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 5.0    | 10.68   | 0.92 | 13.46 | 8.45 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 7.0    | 10.65   | 0.91 | 13.44 | 8.45 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 9.0    | 10.63   | 0.89 | 13.44 | 8.45 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 12.0   | 10.63   | 0.87 | 13.49 | 8.5U |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 13.0   | 10.35   | 0.84 | 13.39 | 0.40 |  |
| C4                     | 117   | 881113/1300 | 890516/1200                | 184      | 10.0   | 10.49   | 0.80 | 13.21 | 0.40 |  |
| 04                     | 117   | 001113/1300 | 090310/1200                | 184      | 18.0   | 10.41   | 0.15 | 14.90 | 0.44 |  |

Table 12: Statistics of Hourly-Averaged Water Temperature

.

 $\prod_{i=1}^{n}$ 

 $\square$ 

| r   |          |             |             |          |              |       |      |       |      |
|-----|----------|-------------|-------------|----------|--------------|-------|------|-------|------|
|     | Water    | GMT         | GMT         |          | Sensor       |       | Std  |       |      |
| Sta | Depth    | Start Time  | Stop Time   | Duration | Depth        | Mean  | Dev  | Max   | Min  |
|     | (m)      | (y m d/hm)  | (y m d/hm)  | (Days)   | (m)          |       |      |       |      |
|     |          | 001110/1000 | 000510/1000 | 104      | 00.0         | 10.01 | 0.00 | 10.00 | 6 40 |
| C4  | 117      | 881113/1300 | 890516/1200 | 184      | 22.0         | 10.31 | 0.69 | 12.60 | 8.43 |
| 04  | 117      | 881113/1300 | 890516/1200 | 184      | 27.0         | 10.18 | 0.62 | 12.43 | 8.39 |
|     | 117      | 881113/1300 | 890516/1200 | 184      | 32.0         | 10.03 | 0.56 | 12.04 | 8.30 |
|     | 117      | 881113/1300 | 890516/1200 | 184      | 37.0         | 9.88  | 0.51 | 11.65 | 8.11 |
|     | 117      | 881113/1300 | 890516/1200 | 184      | 42.0         | 9.77  | 0.47 | 11.40 | 7.97 |
| 04  | 117      | 881113/1300 | 890516/1200 | 184      | 4/.U<br>52.0 | 9.04  | 0.44 | 11.17 | 7.01 |
| 04  | 117      | 001113/1300 | 890516/1200 | 104      | 53.0         | 9.30  | 0.43 | 0.06  | 654  |
| 04  | 117      | 881113/1000 | 890316/1000 | 104      | <b>04.</b> 0 | 6.50  | 0.41 | 9.90  | 0.34 |
| G3  | 93       | 881113/1300 | 890409/0200 | 147      | 1.0          | 10.49 | 0.69 | 12.53 | 9.13 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 2.0          | 10.55 | 0.90 | 13.45 | 8.38 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 4.0          | 10.53 | 0.88 | 13.19 | 8.39 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 5.0          | 10.52 | 0.87 | 13.07 | 8.39 |
| G3  | . 93     | 881113/1300 | 890516/1200 | 184      | 7.0          | 10.48 | 0.84 | 12.91 | 8.38 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 9.0          | 10.46 | 0.82 | 12.90 | 8.37 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 10.0         | 10.38 | 0.80 | 12.79 | 8.31 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 13.0         | 10.37 | 0.77 | 12.58 | 8.26 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 16.0         | 10.32 | 0.74 | 12.43 | 8.13 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 19.0         | 10.25 | 0.70 | 12.41 | 8.02 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 22.0         | 10.16 | 0.67 | 12.19 | 7.95 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 27.0         | 10.04 | 0.63 | 12.10 | 7.91 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 32.0         | 9.93  | 0.60 | 11.86 | 7.83 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 37.0         | 9.81  | 0.57 | 11.57 | 7.68 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 42.0         | 9.70  | 0.56 | 11.38 | 7.35 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 47.0         | 9.60  | 0.55 | 11.15 | 7.20 |
| G3  | 93       | 881113/1300 | 890516/1200 | 184      | 53.0         | 9.49  | 0.55 | 11.02 | 7.09 |
| G3  | 93       | 881113/0100 | 881128/0900 | 15       | 54.0         | 10.10 | 0.22 | 11.01 | 9.69 |
| Ma  | 02       | 991112/1200 | 800517/1200 | 195      | 10           | 10.66 | 0.96 | 13 05 | 814  |
| Ma  | 93       | 881113/1300 | 890516/1200 | 183      | 4.0          | 10.00 | 0.00 | 13.30 | 8 10 |
| Ma  | 93<br>02 | 881113/1300 | 890516/1200 | 184      | 4.0<br>5.0   | 10.57 | 0.91 | 13.49 | 813  |
| Ma  | 93       | 881113/1300 | 890516/1200 | 184      | J.0<br>7.0   | 10.57 | 0.50 | 13.40 | 813  |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 0.7          | 10.00 | 0.85 | 13.32 | 8.04 |
| M3  | 93       | 881113/1300 | 890517/1200 | 185      | 10.0         | 10.48 | 0.84 | 13.44 | 8.16 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 15.0         | 10.34 | 0.77 | 13.29 | 8.10 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 18.0         | 10.24 | 0.73 | 12.95 | 8.02 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 22.0         | 10.15 | 0.69 | 12.22 | 7.92 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 27.0         | 10.06 | 0.65 | 12.12 | 7.85 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 32.0         | 9.92  | 0.62 | 12.06 | 7.63 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 37.0         | 9.80  | 0.59 | 11.68 | 7.48 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 42.0         | 9.71  | 0.57 | 11.52 | 7.31 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 47.0         | 9.59  | 0.55 | 11.31 | 7.17 |
| M3  | 93       | 881113/1300 | 890516/1200 | 184      | 52.0         | 9.48  | 0.54 | 11.12 | 7.13 |
| M3  | 93       | 881113/2100 | 881128/0900 | 15       | 54.0         | 10.17 | 0.33 | 11.34 | 9.54 |
|     |          | ,           |             |          |              |       |      |       |      |
| 13  | 125      | 881110/0000 | 890520/2300 | 192      | 1.0          | 11.10 | 1.12 | 14.80 | 9.00 |
| 14  | 306      | 890112/2100 | 890506/1600 | 114      | 1.0          | 10.89 | 1.05 | 14.47 | 9.37 |

Table 12: Statistics of Hourly-Averaged Water Temperature (Continued)

Abbreviations:

sc: Self-contained temperature-conductivity unit, SeaCat



And a second second











 $\prod_{i=1}^{n}$ 







ĺ.





 $\left[ \right]$ 

Figure 105





Figure 105 (cont.)



Conductivity (s/m) at C3

[

Figure 106

Conductivity (s/m) at C3



Figure 106 (cont.)



Figure 107



ŝ

-

Figure 107 (cont.)





Figure 107 (cont.)



Figure 107 (cont.)







Figure 108 (cont.)



 $\left[ \right]$ 

T

ŧ.Ĵ

1.1

Figure 108 (cont.)



Ē

Figure 108 (cont.)





 $\left( \begin{array}{c} \\ \\ \end{array} \right)$ 



Figure 108 (cont.)



 $\bigcap$ 



Figure 109 (cont.)



Figure 109 (cont.)



Figure 109 (cont.)



Figure 110



Figure 110 (cont.)

į



Figure 110 (cont.)

) (...)

L.)







Figure 111

\_

 $\bigcap$


Figure 111 (cont.)

207



Figure 111 (cont.)

 $\square$ 

 $\left( \begin{array}{c} \end{array} \right)$ 

 $\square$ 



Figure 111 (cont.)

209







 $\left[ \right]$ 

 $\left[ \begin{array}{c} \\ \end{array} \right]$ 

9.

20 FEB

10

20

MAR

30

Figure 112 (cont.)

NDBC 14 Water Temperature (°C)

211

10 MAY

20

APR

10

30

20

## **DOCUMENT LIBRARY**

March 11, 1991

## Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade Documents Section Scripps Institution of Oceanography Library, Mail Code C-075C La Jolla, CA 92093

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Office of the International Ice Patrol c/o Coast Guard R & D Center Avery Point Groton, CT 06340

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Library Skidaway Institute of Oceanography P.O. Box 13687 Savannah, GA 31416

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Marine Resources Information Center Building E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Columbia University Palisades, NY 10964

Library Serials Department Oregon State University Corvallis, OR 97331 Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882

Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Library Virginia Institute of Marine Science Gloucester Point, VA 23062

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library R.S.M.A.S. University of Miami 4600 Rickenbacker Causeway Miami, FL 33149

Maury Oceanographic Library Naval Oceanographic Office Stennis Space Center NSTL, MS 39522-5001

Marine Sciences Collection Mayaguez Campus Library University of Puerto Rico Mayaguez, Puerto Rico 00708

Library Institute of Oceanographic Sciences Deacon Laboratory Wormley, Godalming Surrey GU8 5UB UNITED KINGDOM

The Librarian CSIRO Marine Laboratories G.P.O. Box 1538 Hobart, Tasmania AUSTRALIA 7001

Library Proudman Oceanographic Laboratory Bidston Observatory Birkenhead Merseyside L43 7 RA UNITED KINGDOM



| REPORT DOCUMENTATION<br>PAGE                                                | 1. REPORT NO.<br>WHOI-91-39                        | 2. | 3. Recipient's Accession No.           |
|-----------------------------------------------------------------------------|----------------------------------------------------|----|----------------------------------------|
| 4. Title and Subtitle                                                       | 5. Report Date<br>December 1991                    |    |                                        |
| Shelf MIxed Layer Experime<br>Data Report                                   | 6.                                                 |    |                                        |
| 7. Author(s)<br>Carol A. Alessi, Steven J. Lei                              | 8. Performing Organization Rept. No.<br>WHOI 91-39 |    |                                        |
| 9. Performing Organization Name and Address                                 |                                                    |    | 10. Project/Task/Work Unit No.         |
| The Woods Hole Oceanographic Institution<br>Woods Hole, Massachusetts 02543 |                                                    |    | 11. Contract(C) or Grant(G) No.<br>(C) |
|                                                                             |                                                    |    | (G) OCE-8/-1693/                       |
| 12. Sponsoring Organization Name and Address                                |                                                    |    | 13. Type of Report & Period Covered    |
| The National Science Foundation                                             |                                                    |    |                                        |
|                                                                             |                                                    |    | 14.                                    |
| 15. Supplementary Notes                                                     |                                                    |    | · · · · · · · · · · · · · · · · · · ·  |

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-91-39.

## 16. Abstract (Limit: 200 words)

The Shelf MIxed Layer Experiment (SMILE) was designed to study the response of the oceanic surface boundary layer over the continental shelf to atmospheric forcing. The SMILE field program was conducted over the northern California shelf between Pt. Arena and Pt. Reves from mid-November 1988 to mid-May 1989. The field program consisted of five main components: (a) a longterm moored array to obtain current, temperature, and conductivity time series observations in the upper ocean over the shelf; (b) a short-term moored instrument deployment to measure the vertical current shear and stratification in the top 6 m of the water column; (c) shipboard CTD and acoustic Doppler current profiler (ADCP) surveys over the shelf and adjacent slope to map regional water property and current distributions; (d) a long-term moored and coastal meteorological array including one sounding station to obtain time series observations of the atmospheric surface forcing and monitor the structure of the marine boundary layer; and (e) overflights with an instrumented aircraft to measure the spatial structure of the surface wind, wind stress, and heat flux fields under different atmospheric conditions.

This report has two objectives: (a) to describe the SMILE field program, including overviews of the five components, and (b) to present a statistical and graphical summary of the atmospheric (wind, air temperature, pressure, relative humidity, short- and longwave radiation) and oceanic (current, water temperature, and conductivity) long-term array measurements made as part of SMILE. A more detailed description of the instrumentation used in SMILE and an assessment of instrument performance and accuracy are presented separately by Dean et al. (1991).

17. Document Analysis a. Descriptors

1. moored meteorological/oceanographic observations

2. N. California coastal region

3. SMILE (Shelf MIxed Layer Experiment)

b. Identifiers/Open-Ended Terms

| c. COSATI Field/Group                             |                                                  |                             |
|---------------------------------------------------|--------------------------------------------------|-----------------------------|
| 18. Availability Statement                        | 19. Security Class (This Report)<br>UNCLASSIFIED | <b>21.</b> No. of Pages 221 |
| Approved for publication; distribution unlimited. | 20. Security Class (This Page)                   | 22. Price                   |
| See ANSI 720 10) Se                               | e Instructions on Reverse                        | OPTIONAL FORM 272 (4        |

