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Foreword

About this Manual

This report documents version 2.0 of WHOI Cable. While it is our intention to provide up-
to-date, comprehensive, accurate documentation, WHOI Cable remains a work in progress
and as such undergoes frequent change. If you find something that behaves differently than
the way this document says it should behave then please let us know.

This report is an updated version of WHOI Technical Report 97-15. It is presented
largely as a user’s guide for WHOI Cable and as such contains a complete description of the
WHOI Cable suite of programs as of version 2.0. It does not provide numerical or technical
details about the program. Technical information about many aspects of the program is
available in [2]. Other sources of information include the previous report [3], and the theses
that laid the groundwork for the original implementation of WHOI Cable [4, 8].
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Typographical Conventions

This report employs a number of typographical conventions to mark buttons, command
names, menu options, screen interaction, etc.

Bold Font Used to mark buttons, and menu options in graphical environments.
Italics Font  Used to indicate an application program name, e.g. resZ2mat.

Typewriter Font
Used to represent screen interaction at the shell prompt. Also used for
example input files, and keywords that belong in input files.

Key Represents a key (or key combination) to press, as in press to con-
tinue.



Chapter 1

Introduction

1.1 Overview of problem types

The types of systems that we classify as oceanographic mooring systems include simple teth-
ered buoys, towed and drifting systems, and complex strings of instrumentation suspended
in deep water. From an engineering design perspective it is important that we can predict
how these systems will respond to a variety of environmental factors, such as waves, wind,
and current. We might want to know just how much current it will take to pull a surface
buoy under water or what the maximum tension will be in a mooring line during a large
storm. The scientific purposes of a system might require that the motion of a particular
instrument not exceed a certain level in typical operating conditions. The unifying problem
behind analyzing these kinds of systems is one of nonlinear cable mechanics.

Typical oceanographic mooring systems consist of rope, wire, and chain connected to-
gether by shackles, instruments, and buoys and terminated at the ends with buoys, ships,
sinker weights, or anchors. WHOI Cable is a collection of computer programs for cable
mechanics designed specifically to solve this nonlinear problem for systems which can be
defined in these terms and which fit into one of several basic categories.

WHOI Cable was developed with usability by the operational community in mind. The
program can solve a wide range of problems all from within a single consistent interface.
The modeled system can consist of any combination of different cable, chain, and rope
segments, with instruments, floats, and connectors between segments. The geometry of
the system can be multiply-connected (multi-leg moorings and geometries with segments
dangling from other segments). The program can also solve towing and drifter problems.

In all cases WHOI Cable can produce solutions in either two or three dimensions and
can solve either the static (steady-state) problem given forcing by current, wind, and ship



speed, or the dynamic problem given forcing by waves and time varying wind, current, ship
speed, and cable pay-out rates.

1.2 WHOI Cable mathematical features

A detailed derivation of the governing equations for two- and three-dimensional, static, and
dynamic problems can be found in [2,8]. For all problem types the governing differential
equations for WHOI Cable include bending stiffness, material nonlinearities, coordinate
transformation based on Euler parameters, and a model for cable-bottom interaction. These
features provide important new capabilities compared to previous software programs used
for modeling oceanographic cable structures.

Incorporating the effects of bending stiffness eliminates the singularity associated with
slack tension [4]. Implicit codes without bending stiffness become unstable when tension
goes to zero anywhere in the system. For oceanographic applications a very small bending
stiffness is usually adequate to overcome this numerical instability. The incorporation of
bending stiffness also allows for the seamless modeling of systems with much larger mate-
rials, including offshore production risers.

Another instability in many three-dimensional codes arises from the use of three Eu-
ler angles to transform between local and global coordinates. Given a specific sequence of
rotations, the transformation matrix can become singular in this approach. In long time
simulations of geometrically nonlinear systems it is difficult to initialize the transformations
such that this singularity will not occur. By using four parameters and treating the trans-
formation as a single rotation about a principal axis, Euler parameter based transformations
avoid this problem [5, 8].

The model for the interaction of cable segments with the sea floor is based on a linear
elastic foundation [9]. This approach is very general and with appropriate care in selecting
parameters, is quite accurate [2]. It treats both bottom stiffness and damping and allows
for an arbitrarily varying elevation of the bottom.

1.3 WHOI Cable numerical features

For both static and dynamic problems, the mathematical problem is posed as a system of
coupled, nonlinear partial differential equations. The program solves this system numeri-
cally by discretizing the continuous (exact) forms of the governing equations using spatial
finite differences centered on the half-grid points (which makes the approximation second
order accurate [10]) and for dynamic problems, the generalized-a time integration algo-
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rithm [1]. The generalized-a algorithm offers superior accuracy and stability compared
to alternative algorithms such as the box method, trapezoidal rule, and backward differ-
ences [2]. Together with an adaptive time stepping algorithm, the generalized-a algorithm
produces very stable dynamic solutions.

At each step of the problem the discretized system of nonlinear equations is solved by
an iterative, implicit, adaptive relaxation technique [2,6]. The initial guess for the solution
in static problems is calculated using a shooting method. For the dynamic solution, the
initial guess at each time step is the solution from the previous time step. At each iteration
the equations are solved using a a sparse Gaussian elimination algorithm [7] for which the
computational effort scales linearly with the number of nodes.

1.4 'WHOI Cable implementation features

WHOI Cable is a suite of applications, all of which are centered around the primary solver
program, cable. cable is responsible for processing user input files and generating results
for all of the various problem types. For a given model system, a single input file is used
to define numerical settings, environmental parameters, system components, and system
geometry. Input files are constructed using an intuitive, object based syntax. Definitions
for commonly used components can also be contained in central database files. The input
syntax allows for the use of symbolic expressions in most assignment statements and for
variable expressions in many of the environmental and forcing function definitions. For
example, current can be defined as a function of depth using the symbolic variable H.

The program does not impose any restrictions on the units used in defining a problem.
The ability to use expressions in assignment statements allows for easy conversion from one
set of units into the base units chosen for a given problem.

The main post-processing program is animate. Solutions for three-dimensional problems
can be drawn and animated in perspective view, with controls for on-the-fly perspective ro-
tation and scaling. The program can also generate animated plots of the various independent
variables in the solution (velocities, forces, etc.). Plots are available both for the variable as
a function of Lagrangian coordinate along the system, updated at each time step, and for
the variable at a specific node as a function of time for the entire simulation. Spectra of the
temporal plots can be generated with the click of a button. All of the plots and drawings
provide controls for unlimited zooming. A mechanism for printing to postscript files is also
provided.

For more detailed access to the results, WHOI Cable also includes post-processors to
convert results to binary Matlab format or to ASCII text files. The Matlab file contains all
of the results generated by the solver, with conveniently assigned variable names. A result
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converted to a text file contains only those variables specifically requested by the user.

All of the component programs are written in the C programming language, making
them easily portable across platforms. The primary interface under Windows is an encap-
sulator that provides a graphical interface to all of the component programs. The animation
post-processor is written for the X Window environment commonly found on scientific work-
stations. Under Windows, the encapsulator communicates with the animation application
via an X server running locally on the PC. This approach to the development of WHOI
Cable allows a single code base to be used for both PC and workstation platforms. The addi-
tion of the encapsulator interface under Windows provides a more comfortable environment
for PC users who may be unfamiliar with command-line based workstation applications.

12



Chapter 2

Structure of a cable Problem

2.1 Notation and coordinate systems

The basic coordinate system for cable is shown in figure 2.1. Note that the origin of the
coordinate system is always located at the anchor and that the global z direction is positive
upwards, global x is positive to the right, and global y is positive into the page!. Current
can be defined as a function of depth and can flow in both the x and y directions. Currents
with vertical components (along the z axis) are not allowed. Depending on the problem
type under consideration the depth may or may not be required in the problem definition.

2.2 Basic language features

The input language for cable is meant to be as flexible and as forgiving as possible in terms
of the detailed structure of an input file. The file is broken into sections, with each section
containing definition statements for a particular aspect of the problem. In general, sections
can be specified in any order, as can definitions within a section. Multiple sections of the
same type can be included in a single input file.

White space (blank lines, spaces, tabs) does not affect the interpretaion of the problem
and can be used arbitrarily to suit individual tastes. Comments are denoted as in the
C programming language; anything between /* and */ will be ignored as a comment no
matter where it appears in the file.

!Note that cable uses a rotated internal coordinate system for calculations and results storage in which x
is up, y is right, and z is into the page. Both user and internal coordinate systems have their origin at the
anchor.

13




X current

Figure 2.1: Geometric definitions for cable.

Object names (i.e., the names you assign to specific buoy or material definitions) can-
not be keywords. They must begin with an alphabetic character and should contain only
alphabetic characters, numbers, and underscores. If a name has spaces in it then it must
be contained in double quotes The case of keywords (either upper, lower, or mixed) does
not matter. The capitalization of object names, however, is relevant.

2.2.1 Expressions
2.2.1.1 Constant expressions

As a convenience, wherever a floating point numeric value is required for a parameter you
can specify an arbitrary mathematical expression, including the operators +, -, *, /, %
(modulo) and the standard mathematical library functions sin, cos, tan, sqrt, hypot, pow,
ezxp, log, log10, floor, ceil, fabs and fmod. Note that arguments to the trigonometric functions
should be given in terms of radians just as if you were calling them from a C program using
the standard math library. Expressions can also contain the ternary conditional operator
as in the C programming language: “if a then b else ¢” is symbolized in a cable input file
asa ? b : c where a, b, and c are all valid expressions. The logical operators to use
in constructing a are the same as those in C (==, && (and), || (or), <=, <, >, >=, I=
(not equal)). The symbolic constant pi can be used in any expression as the value of 7 (to
20 places).

14



2.2.1.2 Variable expressions

For parameter specifications that require a functional dependence on a variable, these same
constructs can be used with symbolic variables. For example a current definition could
be written using the symbolic variable H to specify depth. Speed, thrust, and pay-rates
at terminal definitions, and wind and current modulation functions in the environment
definition can be specified as functions of time, t. The bottom elevation in the environment
definition can be written as a function of both x and y. Constitutive functions for nonlinear
materials can be written as a function of strain e.

For example, a ship speed that varies sinusoidally between -5 and +5 knots with a period
of 5 minutes could be written as

x-speed = 0.514x%5.0%sin(2.0%pi/300%t)
A bilinear stress-strain relationship could be written as

T =e < 0.01 7?7 50000 : 25000*e

2.2.1.3 Discrete functions

Because some functions (particularly currents) are easier to express in a discretized (as
opposed to continuous) form, the cable syntax also includes a mechanism for specifying a
discrete representation of a function. The basic specification consists of a series of pairs of
the form (x, £(x)) where f(x) is the value of the function at independent variable x. In
evaluating the function, cable will linearly interpolate between adjacent pairs for positions
that fall between two pairs. The following illustrates this idea for the case of a current
defined piecewise linear

x-current = (0, 0.4) (100, 0.4) (500, 0.2) (1000, 0.0)

From the surface (depth = 0.0) to a depth of 100, the current is constant at 0.4. Over
the interval from 100 to 500, the current decreases linearly from 0.4 to 0.2. From a depth
of 500 to 1000 the current decreases linearly from 0.2 to 0.0. Points below 1000 would be
extrapolated based on the last two pairs (in our example, extrapolation would result in
negative values for current at depths greater than 1000). Note that the pairs must be given
in order of increasing independent coordinate. You can express a periodic discrete function
simply by defining one period and then entering a + symbol at the end of the expression.

15



2.2.2 TUnits

There are no set units for the dimensional quantities that you specify in defining a problem
for cable. The important thing is to remain consistent in the units that you use; numerical
results will then be consistent with the input dimensions. Some examples of consistent
units would be lengths in meters, weights in Newtons, elastic moduli in Pascals (N m™2);
moments of inertia would be in m—%. Convenient English units are often pounds, feet, and
psf (pounds per square foot) or kips (kilopounds), feet, and ksf.

2.3 Components of an input file

A cable input file consists of a series of definition statements contained within eight distinct
sections. There are three sections which define the basic numerical and environment set-up
for the model (problem description, environment, analysis parameters), four sections
for defining the system components (materials, connectors, buoys, anchors) and a sin-
gle section to define how the system gets put together (layout). Detailed definitions for
all elements of the input syntax are provided below. Chapter 6 offers some suggestions
about how the various input elements can be manipulated to get fast, robust, and accurate
solutions for models that may initially prove difficult to converge.

2.3.1 Problem description °

The problem description section contains the most basic description of the system: a
descriptive title string and the definition of the problem type. It must be the first section
within the input file and cannot be repeated.

title = string
A character string containing the problem title to be used in the display of
results. If the title contains spaces it should be enclosed in double quotation
marks.

type = problem type
problem type can currently be one of general, surface, subsurface,

towing, drifter, positioned, tensiomed, riser.

general general problems are the simplest problem for cable to solve.
The second terminal can be either an anchor or buoy (an
anchor if the end is fixed in dynamics and a buoy if motions
or forces will be applied to the end). The static solution is

16



surface

subsurface

towing

drifter

positioned

based on forces applied at the second terminal which must
be specified directly with x-force=, y-force=, etc. defined.
Thus, while this type is simple for cable, it is not very useful
for real problems because the static forces are typically not
known a priori.

This is the type to use for single point surface mooring prob-
lems. The second terminal end must have a completely de-
fined buoy attached. cable will perform outer loop iterations
to solve for the static draft of the buoy. Oftentimes surface
mooring static solutions are difficult to obtain; automatic
dynamic relaxation often works well in such cases (see sec-
tion 6.2). With some care surface problems can also be used
to define multileg moorings.

This type is for subsurface single point moorings. The second
terminal end must also be a completely defined buoy but
cable can calculate the forces on that buoy without outer loop
iterations. Thus, these problems are typically much easier to
solve statically than surface problems. However, automatic
dynamic relaxation will work for these problems if difficulties
do arise.

towing problems must have buoys defined at both termi-
nals. The buoy description at the first terminal defines the
tow-body and must be complete. The buoy at the second
terminal does not need to be completely defined. Tow speeds
(x-speed=, etc) must be specified for the second terminal of
a towing problem.

drifter problems are terminated with buoys at both ends;
both buoy definitions must be complete. cable will use outer
loop iterations to calculate the steady state drift speed of the
system.

These problems were called horizontal in earlier versions
of WHOI Cable. In positioned problems, the second ter-
minal end must be positioned away from the first terminal
with x=, y=, z= definitions. cable will perform outer loop
iterations to calculate the appropriate reaction force at the
second terminal that brings the terminal to the required po-

17



riser

tensioned

deployment

sition. The terminal can contain either an anchor or a buoy,
depending on the whether motions are to be applied in the
dynamic problem. This is often the best choice of problem
type for multileg moorings (particularly if there is no surface
expression).

riser problems are nearly identical to positioned problems
except for the treatment of material above the free surface. In
positioned problems buoyant material above the surface is
made to float on the surface. In riser problems, the weight
of material above the surface is taken to be the air weight of
the material.

This problem type is useful for systems with a specified pre-
tension applied. Both tension= and z= (vertical position) of

the second terminal must be specified. ceble will use outer

loop iterations to calculate the angle at the top of the mooring
that brings the top node to the specified vertical position
given the applied tension.

This type is used to simulate anchor last deployment of single
point moorings. The first terminal should have a fully defined
anchor and a speed specification. The second terminal should
have a fully defined buoy specified. The static solution will be
calculated by assuming that the surface buoy is being towed
(at the speed given in the first terminal definition) with all
of the mooring paid out and only the anchor left on deck.
This is essentially a surface mooring solution where the tow
speed can be represented as a current flowing in the opposite
direction and the anchor is on the surface rather than the
bottom. At the beginning of the dynamic solution the anchor
is released from surface and the whole system begins to fall
towards the bottom. Once the anchor hits the bottom it is
fixed in place. Static solutions for these problems can be
difficult to obtain. Brute force with small static relaxation
factor and near unity outer relaxation typically works best if
problems are encountered.

18
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2.3.2 Analysis parameters

The analysis parameters section contains definitions that control the numerical algo-
rithms which are used in the solution of cable problems. The solution of a cable problem
can be broken down into two main phases: static and dynamic solutions. The dynamic
solution is actually quite straightforward from a user perspective. The static solution can
be more complicated.

Within the static solution process there is an initial guess solution, static iterations, and,
in many problems, static outer iterations. The first step in a static solution is always an
initial guess based on either a catenary or a shooting solution. Shooting solutions require
iterations and can fail to converge, but are quite accurate when they can be obtained.
Catenary solutions are nearly foolproof, but they are seldom a good guess and thus leave
much work for the following stages. After the initial guess is calculated the program uses an
iterative relaxation solver to calculate a static solution given a complete set of prescribed
boundary conditions (forces at buoys, anchor positions, etc.) Static outer iterations are
needed when the some of the boundary conditions are not known a priori. For example, the
forces on a buoy are dependent on the draft of the buoy, but the draft cannot be calculated
until all the forces are known. Thus, the boundary conditions must be solved for in this
outer loop of iterations. Once a final static solution is calculated, that solution is used as
the initial condition for the dynamic solution. The dynamic solution uses a single set of
iterations to find the instantaneous equilibrium solution at each time-step, with the solution
from the previous time-step as the initial guess.

2.3.2.1 Global options

relaxation = constant expression

The primary nonlinear solution technique within cable is known as relax-
ation. Using an initial guess at a solution vector, the algorithm calculates
an update to the solution that will bring the system closer to equilibrium.
The updated solution is then fed back into the algorithm and the process
repeats until some suitably close approximation of equilibrium is achieved.
The relaxation factor is used to speed or slow this iterative process. In highly
nonlinear problems the update to the solution may not be very accurate and
thus should not be fully applied. The relaxation factor allows this partial
application of the update. cable does have an adaptive relaxation algorithm
that will adjust the relaxation factor in troublesome portions of the solution
(see section 2.3.2.4 below).

tolerafnice = constant expression

19



The global convergence tolerance of the relaxation iterations to be used if
specific tolerances are not given for the separate phases of the problem. The
tolerance dictates the minimum acceptable relative error between iterations
for a solution phase to be considered converged.

max-iterations = integer
The global maximum number of iterations in all convergence loops. It pro-
vides a single default for the other iteration controls.

2.3.2.2 Static solution options

static-initial-guess = string
Determines the algorithm used to form the initial guess for the static solution
algorithm. Must be one of shooting or catenary. Defaults to catenary

if it is not explicitly given. shooting is often a better choice but shooting
solutions are not available for all problem types.

static-solution = string

Determines the algorithm used to calculate the final static solution to be used
as the initial condition in the dynamic solver. Must be one of relaxation,
shooting, or catenary. When dynamic solutions are desired it should al-
most always be relaxation and this is the default. The other options are
provided primarily for debugging purposes. Also, because shooting solutions
are often very fast and reasonably accurate, they can be useful in preliminary
design studies or when dynamic solutions are not desired.

static-relaxation = constant expression
The relaxation factor to be used in the static solution. In many problems, it
may be necessary to have different factors for static and dynamic solutions.
Dynamic solutions almost always proceed best with a relaxation factor of
1.0 (full update applied at each iteration), but many static problems (par-
ticularly those with complex geometry or cable lying on the bottom) are
only stable with a relaxation factor of 0.1 or smaller. If not given the static
relaxation factor will default to the value given by relaxation=. At least
one or the other must be given.

static-tolerance = constant expression
The convergence tolerance for static iterations. In some problems, it may
be desirable to have different tolerances for static and dynamic solutions. If
not given then it will default to the value given by tolerance=. At least one
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or the other must be given. For many static problems a tolerance of 0.01 -
0.0001 is adequate. In some rare cases a static tolerance that is too large
leads to poor resolution of boundary conditions and static outer iterations
can fail to converge.

static-iterations = integer
The maximum permitted number of relaxation iterations in the static so-
lution. This number may need to be quite high for problems with small
static-relaxation factors. It will default to max-iterations if not given
explicitly. At least one or the other must be given.

static-outer-relaxation = constant expression

The “relaxation” or “stiffness” factor to be used in static outer iterations.
This is not actually a relaxation factor in the same sense as described above.
It is really a scaling factor that has different uses depending on what type
of problem is being solved. In surface problems it is the factor by which
the trial draft of the buoy is multiplied at each outer iteration when the
algorithm is trying to bracket the solution between the maximum draft and
a minimum draft at which a solution can be obtained. It defaults to 0.95
in these problems; smaller values can speed outer loop convergence, but can
also lead to solution instabilities. For positioned problems it is the factor
by which distance errors are multiplied to generate an update to the applied
force vector at a positioned boundary. It defaults to 5.0 in these problems;
larger values can lead to faster convergence, but can also can cause solution
instabilities.

static-outer-tolerance = constant expression
The convergence tolerance for the outer loop of static iterations. This will
control the relative error in the iterations used to determine surface draft
(in a surface problem) or position of the second terminal (in a positioned
problem) for example. If not given then it will default to the value given
by tolerance= then to static-tolerance. At least one of these must be
given. A value of 0.01 is typically sufficient for an accurate solution.

static-outer-iterations = integer
The maximum permitted number of iterations to take in resolving the anchor
or buoy position in the static solution. Because the algorithms for finding the
position of the second anchor in a positioned problem or the surface buoy in
a surface mooring problem are quite conservative, they can often take many
hundreds of iterations to converge. This parameter gives you the capability
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to allow for large numbers of iterations in these outer convergence loops, but
not in the general relaxation iteration. It will default to max-iterations or
static-iterations in that order of preference.

shooting-iterations = integer
This is the maximum number of allowed iterations in shooting solution initial
guesses. If not given it will default to the maximum number of allowed static
iterations. Shooting solutions can require outer iterations similar to those for
regular static solutions. The limit determined by static-outer-iterations
is used for those iterations.

2.3.2.3 Dynamic solution options

duration = constant expression

The total length of the dynamic simulation. Must be given if a dynamic
solution is going to be performed.

time-step = constant expression

The time step of the dynamic simulation. Decreasing the time step is some-
times a good way to get around a singularity that may be occuring. Must
be given if a dynamic solution is going to be computed. cable does have
an adaptive time stepping algorithm that allows it to dynamically decrease
the time step if it encounters a singularity or a time step which exceeds the
dynamic iteration limit. The time step will be reduced by successive fac-
tors of ten up to a maxium of 5 times. If after the fifth nested reduction
a singularity is encountered the program will halt. Typical base time steps
range from 0.01 to 0.1 seconds for mooring problems to 0.5 to 1.0 seconds
for towing problems.

dynamic-tolerance = constant expression
The convergence tolerance for dynamic iterations. In some problems, it may
be desirable to have different tolerances for static and dynamic solutions. If
not given it will default to the value given by tolerance=. At least one or
the other must be given. This tolerance should generally be low (< 1079)
to prevent errors from building up as the solution progresses in time.

dynamic-relaxation = constant expression
The relaxation factor to be used in the dynamic solution. In some problems,
it may be necessary to have different factors for static and dynamic solutions
(see relaxation= above). If not given then it will default to the value given
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by relaxation=. At least one or the other must be given. The best choice
for this parameter is almost always 1.0.

dynamic-iterations = integer
The maximum permitted number of relaxation iterations at each time step.
Generally, static solutions can take more iterations than the dynamic solu-
tion at a single time step so this number can be set lower. It will default to
max-iterations if not given explicitly. At least one or the other must be
given. A value of 20 is appropriate for most problems.

ramp-time = constant expression
The time period over which the excitation amplitudes will be linearly ramped .
up to their full values. A non-zero ramp time is often used to minimize
numerical transients. If not specified or if given as 0.0 then the excitation
amplitudes will simply be at their full value right from the start of the
simulation. It is generally advisable to ramp the excitation over one or two
excitation or wave periods.

2.3.2.4 Advanced options

current-steps = integer
The number of steps to take in bringing the current up to its full value
in the static solution. For some problems with high currents it can help
convergence if the current is brought up to speed slowly. Use with caution
though, as other problems may converge most quickly at high current.

relax-adapt-up = constant expression
This is the amount by which the current relaxation factor will be multi-
plied when the iterative solution is progressing well. It will not grow be-
yond the base value. To turn off adaptive relaxation set this value and
relax-adapt-down to 1.0. relax-adapt-up defaults to 1.02.

relax-adapt-down = constant expression
This is the amount by which the current relaxation factor will be divided
when the iterative solution is not progressing well. The relaxation factor
can continue to shrink until it becomes so small that the solution stalls (see
relax-stall-limit below). When the solution starts to make progress
again relax-adapt-up will be applied and the relaxation factor will slowly
increase back to its baseline value or to an equilibrium value at which the
solution can make the best overall progress. To turn off adaptive relaxation
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set this value and relax-adapt-up to 1.0. relax-adapt-down defaults to
1.1.

relax-stall-limit = integer
This is the maximum number of iterations allowed with a non-progressing
solution before the relaxation factor will revert back to its baseline value.

mesh-smoothing-length = constant expression

This is the length over which the curvature will be averaged to compute the
the mesh distribution weighting function.

mesh-amplification = constant expression
The adaptive mesh distribution algorithm tries both to increase node density
in areas of high curvature and to keep nodes from being placed too far apart.
In that algorithm, this is the weight given to curvature effects (relative to
unity for spacing effects). A value of 20 appears to reasonable for chain
catenary moorings. '

dynamic-alpha-k = constant expression
This is the weighting factor for stiffness and force terms in the generalized-o
time integration algorithm.

dynamic-alpha-m = constant expression
This is the weighting factor for mass terms in the generalized-a time inte-
gration algorithm.

dynamic-gamma = constant expression
This is the generalized trapezoidal rule integration weighting factor in the
generalized-o time integration algorithm. The time integration will be sec-
ond order accurate so long as

Y+ am — o = 3. (2.1)

dynamic-lambda = constant expression _
This is the value of AT% in the generalized-a time integration algorithm. If
specified, values for ay, oy, and v will be calculated automatically from
A% 3A* +1

L 2.2
Ao — 1’ m = oxee — 3’ (22)

ap =

and the requirement that the integration be second order accurate (equa-
tion 2.1). Valid values are —1 < A{% < 1. The box method (the closest
thing to the algorithm in previous versions of cable) is defined by AP =-—L
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Useful values for the generalized-a algorithm are 0.5 to -0.8. It defaults to
-0.5.

dynamic-rho = constant expression

Same as dynamic-lambda.

2.3.3 Environmental parameters

The environment section is used to define the external conditions under which the simula-
tion is run. Density, gravity, depth, waves, current, and bottom parameters are all defined
here

gravity = constant expression

The acceleration of gravity expressed in appropriate units. Must always be
specified.

rho = constant expression

The density of the fluid medium. Must always be specified.

depth = constant expression

The depth of the water. Required for all problems except towing and
drifter.

input-type = string
Specifies the nature of the dynamic inputs, either regular (harmonic) or
random. regular type inputs treat the excitation as harmonic functions
with the given amplitude, period and phase. random inputs build a random
profile using the given amplitude as the significant amplitude and the given
period as the peak period. Input phase information is ignored in random
type inputs because the phase of each component is assigned randomly.

forcing-method = string

This must be specified for dynamic problems. The only currently acceptable
values are: wave-follower, morison, velocity, and force.

wave-follower
With wave following surface buoys the heave motion of the
buoy is governed by the instantaneous vertical displacement
of the wave field defined by x~wave=and y-wave= or wave-file=.
The buoy is unconstrained in the horizontal directions and is
free to respond to time-varying forcing by current and wind.
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X-wave

y-wave =

x-input

y-input

z-input

x-current

y-current

Horizontal motions are not forced by wave inputs.

velocity For velocity forcing the motion at the top of the system is
completely described by x-input=, y-input=, and z-input=
or velocity-file=.

force Like velocity but the inputs are taken to be forces rather
than motions.

morison morison forcing calculates drag and inertial forces on sub-
surface bodies based on wave particle velocity and accelera-
tion. This is the most physically realistic choice for subsurface
moorings.

(constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the surface wave traveling in
the global x direction. Used with wave-follower and morison forcing.

(constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the surface wave traveling in
the global y direction. Used with wave-follower and morison forcing.

(constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the dynamic input in the global
x direction. Only useful when forcing-method is velocity or force.

(constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the dynamic input in the global
y direction. Only useful when forcing-method is velocity or force.

(constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the dynamic input in the global
z direction. Only useful when forcing-method is velocity or force.

variable expression

The current in the global x-direction, possibly as a function of depth (using
either a discrete expression or a continuous expression with the symbolic
variable H).

= variable expression

The current in the global y-direction, possibly as a function of depth (using
either a discrete expression or a continuous expression with the symbolic
variable H).
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x-current-modulation = variable expression
The time varying modulation of the current in the x-direction, either as a
discrete expression or a continuous expression with the symbolic variable t.
Defaults to 1.0 (no modulation).

y-current-modulation = variable expression
The time varying modulation of the current in the y-direction, either as a
discrete expression or a continuous expression with the symbolic variable t.
Defaults to 1.0 (no modulation).

x-wind = variable expression
Wind, possibly as a function of time, in the x-direction.
y-wind = variable expression

Wind, possibly as a function of time, in the y-direction.

bottom-elevation = variable expression
The elevation of the bottom relative to the origin (the anchor in most prob-
lems). The elevation can be specified as a continuous function of both x and
y. It should always be defined such that the origin is at elevation zero. Dis-
crete expression syntax can only be used to describe elevations as a function
of x only.

bottom-friction = constant expression

The coefficient of static friction between mooring line and sea floor.

bottom-stiffness = constant expression

The spring stiffness of the bottom per unit length. For oceanographic appli-
cations values from 100 to 1000 (in MKS units) are typical.

bottom-damping = constant expression
The damping ratio of the bottom. The dashpot coefficient for the bottom
is calculated from this ratio using a natural frequency based on bottom
stiffness and cable mass. Setting this parameter too high can sometimes
lead to instabilities in the dynamic solution of a problem. A value greater
than 1.0 is seldom necessary.

wave—-file = string
The name of the data file containing a spectral description of the input wave
field in the x-direction. The file should be ASCII data with three columns
per line: radial frequency, spectral power, and phase.
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velocity-file = string
The name of the data file containing time series of input velocity. The
file should be ASCII data with four columns per line: time, x velocity, y
velocity, and z velocity. This is typically most useful for model validation
and calibration when trying to match experiment results given an observed
time series of input motions.

force-file = string

Same as velocity-file when forcing-method=force.

2.3.4 Cable, chain and rope materials

The materials section defines the cable materials that make-up the system. Each material
definition consists of a unique name followed by a series of material property definitions,
such as

wire EA = 4.4e6 EI = 500 GJ = 25
m= 0.160 am = 0.05 wet = 1.15
d = 0.0063 Cdt = 0.01 Cdn = 1.5

Remember that white space and ordering does not matter so these properties could be
arranged in many other ways.

m = constant expression

The mass per unit length of the material. Must be non-zero.

wet = constant expression

The wet weight (weight in the fluid characterized by the density defined in
the environment section) per unit length. If the wet weight for a material
is not specified (or is specified to be zero) then it will be calculated as wet
= mg — Apg where A is the cross-sectional area of the material based on
the specified material diameter, m is the specified material mass per unit
length, and g and p are the gravitational acceleration and density of the
fluid medium defined in the environment section. For neutrally buoyant
materials specify some very small number.

d = constant expression
The diameter of the material. This value is used in drag calculations for
projected area and to calculate wet weight and added mass when these values
are not explicitly given. For chains, this diameter is typically taken as the
outside width of a single link.

28



Cdn = constant expression
The drag coefficient in the normal (transverse) direction. Typically between

1.5 and 2.0 for standard circular oceanographic cables and 0.5 to 0.6 for

chain.
Cdt = constant expression
The drag coefficient in the tangential (longitudinal) direction. Typical values
for oceanographic cables range between 0.003 (for smooth cables) and 0.05
(for some faired cables). A typical value for chain is 0.01.
EA = constant expression
The axial stiffness of the material. Must be non-zero. For ropes and cables
this value should typically be less than the straight product of E (elastic
modulus) times A (cross-sectional area). It is best determined from the
slope of an experimentally derived load-elongation curve.
EI = constant expression
The bending stiffness of the material. Must be non-zero. For chains it should
be very small. For ropes and cables the value should probably be something
less than the the theoretical value for a solid rod given by
TR*
E—. 2.3
- (23)
GJ = constant éxpression

The torsional stiffness of the material. Must be non-zero, but is ignored in
2D problems and could thus be arbitrary in those cases. For ropes and cables
the value should probably be something less than the theoretical value for a
solid rod given by

nR*
G —5 (2.4)
am = constant expression

The transverse added mass per unit length of the material. If the added
mass for a material is not specified (or is specified to be zero) then the
added mass will be calculated as am = Ap where A is the cross-sectional
area of the material based on the specified material diameter and p is the
density of the fluid medium defined in the environment section.

amt = constant expression
The tangential added mass per unit length of the material. If not given it will

be taken to be 0.0. Generally only applies for chain and some instruments
that are modeled as material segments.

29



amn = constant expression

Same as am.

Cat = constant expression
The tangential added mass coefficient. If amt is not given and Cat is specified
the tangential added mass will be calculated as ApC,,.

Can = constant expression
The normal added mass coefficient. If amn is not given and Can is specified
the normal added mass will be calculated as ApC, .

Cmt = constant expression
The tangential virtual mass coefficient. If amt and Cat are not given and
Cmt is specified the tangential added mass will be calculated as Ap(Cy,, —1).

Cmn = constant expression
The normal virtual mass coefficient. If amn and Can are not given and Cmt
is specified the normal added mass will be calculated as Ap(Cp,, — 1).

bt = constant expression
Structural damping constant of the material for tangential motions. Negli-
gible in most applications.

bn = constant expression

Structural damping constant of the material for transverse motions. Negli-
gible in most applications.

type = string
Specifies the type of constitutive relationship to use for this material. Valid
values are linear and nonlinear. If the material is linear then EA will be
used for all tension-strain calculations. If nonlinear is specified T, Te, and
Tee must be given. Default is 1inear.

T = variable expression
For nonlinear materials this function defines the load-elongation curve as a
function of strain using the symbolic variable e. If this function is given
both Te and Tee must be given as well. In such cases these functions will be
used rather than EA to calculate the material’s tension response.

Te = variable expression
For nonlinear materials the first derivative of the load-elongation curve as a
function of strain, e. For linear materials the slope of the load-elongation
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curve is FA.

Tee = variable expression
For nonlinear materials the second derivative of the load-elongation curve
as a function of strain, e. For linear materials the second derivative of the
load-elongation curve is zero.

comment = string

Defines a string that can be used to identify the material definition more
fully than its symbolic name.

2.3.5 Connectors

The connectors section is used to define the shackles, floats, and instruments that are
placed between cable segments. A connector is defined by a unique name followed by a
series of property definitions.

wet = constant expression

The wet weight of the connector.

m = constant expression

The mass of the connector.

d = constant expression

The characteristic diameter used to calculate a drag area.

am = constant expression
The added mass of the connector. If it is not specified it will be calculated
based on the specified characteristic diameter.

Cdt = constant expression
The tangential drag coefficient of the connector. In global coordinates this
is the drag coefficient used for vertical motions.

Cdn = constant expression

The normal drag coefficient of the connector. In global coordinates this is
the drag coefficient used for horizontal motions.

comment = string

Defines a string that can be used to identify the connector definition more
fully than its symbolic name.
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All connectors are currently moment releasing — that is they cannot transmit a moment
between the segments which they are placed between. For shackle and pin-type connectors
this is a reasonable assumption.

2.3.6 Buoys

The buoys section defines the buoy or ship that is used at the top of the mooring. If
part of the solution involves calculating the static forces at the top of the mooring due to
buoyancy and drag, or if morison forcing was specified in the environment section then
buoy definitions must be complete. Buoys are also used to represent the towed vehicle end
of a towing problem or the sinker weight in a drifter problem. In this case they should
be defined as an equivalent sphere with the diameter and an explicitly specified buoyancy
(rather than an automatically calculated buoyancy based on the diameter of the sphere)
manipulated to simulate the proper drag area and wet weight.

type = string
The basic buoy type. Currently recognized values are sphere, cylinder,
capsule, axisymmetric, ship, platform.

d = constant expression
The diameter of the buoy for buoy shapes with pre-defined geometry (cylinder,
sphere, capsule).
h = constant expression
The total height of a cylinder buoy or the total length of a capsule buoy.
diameters = (x1, d1) ... (x,, dy)

The description of the geometry of an axisymmetric buoy from the bottom
up. Each pair of numbers represents a level and a diameter. The buoy
geometry is defined as an axisymmetric body of revolution formed by the
lines connecting these points.

buoyancy = constant expression
If given this will be used as the fully submerged displacement of the buoy.
If not given it will be computed based on buoy type and specified geometry.
This is not the same as the available buoyancy or wet weight.

m = constant expression

The mass of the buoy.
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am = constant expression
The added mass of the buoy. Currently only used when morison forcing
is active or for the motions of tow bodies. If it is not specified it will be
calculated based on buoy diameter.

Cdt = constant expression

The tangential drag coefficient of the buoy. Also used for vertical forces in
global coordinates.

Cdn = constant expression

The normal drag coefficient of the buoy. Also used for horizontal forces in
global coordinates.

Cdw = constant expression

The drag coefficient of the buoy in wind.

Sw = constant expression
The surface area of the buoy exposed to wind drag. If not given it will be
calculated from the buoy draft and shape, but this will only be accurate for
a small class of systems.

comment = string .

Defines a string that can be used to identify the buoy definition more fully
than its symbolic name.

2.3.7 Anchors

The anchors section defines the anchors that are used at one or both ends of the system.
The parameters are currently only used in deployment problems. For other problems you
must create a valid anchor name to be used in the terminal definitions of the layout
section for any problems that require it.

m = constant expression

The mass of the anchor.

wet = constant expression

The wet weight of the anchor.

d = constant expression
The characteristic diameter of the anchor. The forces on the anchor are
calculated assuming that the anchor is a sphere with this diameter.
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Cdn

constant expression

The normal drag coefficient of the anchor. Also used for forces in the global
horizontal directions.

Cdt

constant expression

The tangential drag coefficient of the anchor. Also used for forces in the
global vertical direction.

mu = constant expression
. The coeflicient of static friction between the anchor and the bottom. In
future versions of cable this may be used in calculating the holding power of
the anchor. It is currently unused in all problem types.

2.3.8 System layout
2.3.8.1 Single point, simply connected systems

The geometry of the most model systems is built from the bottom up as a series of segments
with optional connectors between segments and terminal points at the ends. Terminal points
can consist either of buoys or anchors. The layout section for a single point mooring with
just one shot of material looks like the following

Layout
terminal = { anchor = clump }
segment = {
length = 200
material = wire
nodes = (100, 1.0)
}

terminal = { buoy = snubber }

If there was a shot of nylon above the wire connected by a shackle then we simply add a
connector = statement and a second segment = statement

Layout
terminal = {
anchor = clump
3
segment = {
length = 200
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material = wire

nodes = (100, 1.0)
+
connector = shackle
segment = {
length = 50
material = nylon
nodes = (100, 1.0)
}

terminal = {

buoy = snubber

In both of these examples all of the named objects clump, wire, shackle, snubber need
to be defined in the above described sections of the input file.

If we wanted to define a problem with both ends anchored to the bottom then we simply
specify a different terminal at the second end of the system

Layout
terminal = {

anchor = clump

L
segment = {
length = 20
material = wire
nodes = (40, 1.0)
}
connector = glass_sphere
segment = {
length = 100
material = nylon
nodes = (50, 1.0)
}
connector = glass_sphere
segment = {
length = 20
material = wire
nodes = (40, 1.0)
b
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connector glass_sphere

connector shackle

40 m nylon

30 m nylon 30 m nylon

<—5 m nylon 20 m wire

anchor clump \b - anchor clump
uoy sinker

Figure 2.2: Geometry of the branched layout described in the text.

terminal = {
anchor = clump
z =0.0
x = 100.0

This would define a three segment system with both ends anchored; the second anchor is
located 100 units to the right of the first anchor.

2.3.8.2 Branched and multileg systems

Any system that cannot be described as a single, simply connected string of segments be-
tween two terminals must be described using branches. Branches can be used to describe
multileg systems and system that have strings of segments hanging from other segments.
Branches were originally added to cable to handle this latter case for horizontal array moor-

ings. The geometry shown in figure 2.2 is described by a modified version of the layout with
both ends anchored described above:

Layout
terminal = {

anchor = clump

}

segment = {
length = 20
material = wire
nodes = (40, 1.0)

}
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connector = glass_sphere

segment = {
length = 30
material = nylon
nodes = (30, 1.0)
}
connector = shackle
branch = {
segment = {
length = 5

material = nylon
nodes = (5, 1.0)
}
terminal = {

buoy = sinker

}

}
segment = {
length = 40
material = nylon
nodes = (40, 1.0)
}
connector = shackle
branch = {
segment = {
length = 5
material = nylon
nodes = (5, 1.0)
+
terminal = {
buoy = sinker
+
3
segment = {
length = 30
material = nylon
nodes = (30, 1.0)
}

connector = glass_sphere



segment = {

length = 20
material = wire
nodes = (40, 1.0)

b

terminal = {
anchor = clump
z=20.0
x = 100.0

The strings hanging off the horizontal member are defined by adding a branch= spec-
ification after a connector=. For multileg moorings multiple branches can leave from the
same connector by adding more branch= specifications. Within a branch definition seg-
ments and connectors are strung together to define the branch just as they are on the main
system. A branch definition must end with a terminal. The terminal can contain an anchor
or a buoy, or it can rejoin the main system to form a loop using node=.

2.3.8.3 Layout parameters

segment = { segment definition }
A segment definition consists of three required statements: length = ,
material = , and nodes = . The statement attachments

is optional.

length = constant expression

The length of the segment.

material = string

The material type to be used for this segment.

nodes = (integer, constant expression) (integer, constant expression) ...
The number and distribution of nodes to be used in discretiz-
ing the segment. In general a discretization will consist of
a series of pairs of the form (number of nodes, fraction of
length) where the total number of nodes for the segment is
derived from the number of nodes listed in each pair and
the length fractions of all pairs must add to 1.0. The con-
struct allows for increasing node density over portions of a
segment where high spatial gradients are expected (often-
times the endpoints of a segment). For instance a specifi-
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cation of the form nodes = (100, 0.1) (100, 0.8) (100,
0.1) will place 100 nodes in both the first and last 10% of
the segment and 100 nodes in the middle 80% of the segment.

attachments = string : (n%, n%, ... ), string : [ngtart, Dstep> Dstopls ---

Specifies an optional list of attached objects on this segment.
Attachments add mass, weight, and drag at a node. Each
attachment consists of an object defined in the connectors
section and a list of local node numbers (i.e., node numbers
referenced to the segment that is being defined) at which that
type of object should be placed. Multiple types of attach-
ments can be defined as shown. Any given node can only
have one type of object attached, however. For irregularly
spaced attachments the list of nodes can be given explicitly
inside parentheses. For regularly spaced attachments you can
use the square bracket construct to define the starting node,
interval, and ending node for the placement of an attachment.

connector = string

Specifies the optional connector that can be placed between segments. If
no connector is specified between segments then the joined ends of the two
segments simply overlap and the results for the two nodes located at that
point will always be identical. Omitting a connector between segments is one
way to model a connection that does not transmit moments. A connector
must precede a branch (i.e., moments must be released at a point where
more than two segments come together).

branch = { branch definition }
Specifies a branched series of segments and connectors that leaves from the
main system. Each branch definition must end with a terminal.

2.3.8.4 Terminal parameters

terminal = { terminal definition }
A terminal definition must come both at the beginning and end of the list
of segments and connectors and at the end of every branch. It can consist
of statements of the form anchor=, buoy=, x=, y=, z=, x~force=, y-force=,
z-force=, x—speed=, y-speed=, z-speed=, x-thrust=, y-thrust=, z-thrust=,
tension=, pay-rate= and release-time=. Main terminal definitions must

contain at least an anchor or buoy definition. Branch terminals must have
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an anchor, buoy or node= statement.

anchor = string

Specifies the anchor to use at this termination.

buoy = string \
For traditional single point moorings this defines the name of the buoy to be
used at the top terminal of the system. For drifter and towing problems, a
buoy = statement is used in the first terminal definition to define the mass
at the subsurface free end of the system (usually a depressor weight or a
vehicle).

N
I

constant expression

The z location (vertical) of an anchor in the global coordinate space.

e
n

constant expression

The x location (2D in-plane horizontal) of an anchor in the global coordinate
space.

<
n

constant expression

The y location (3D out-of-plane horizontal) of an anchor in the global coor-
dinate space.

z-force = constant expression
Optionally user provided static force on a buoy. If specified it is important
that it be large enough to support the weight of the mooring. If it is not large
enough the solution will either be upside down or the problem will not be
solvable. User specified static forces are only used for general problems. In
all other cases, cable automatically calculates end-point static forcing based
on currents and drag properties and weights and buoyancies.

x-force = constant expression

Optionally user provided static force on a buoy.

y-force = constant expression

Optionally user provided static force on a buoy.

x-speed = variable expression
Optionally user specified speed of the terminal in the global x direction. The
expression can be a function of t (time) or a discrete step-wise expression.
This is most commonly used to specify a tow speed or the speed of a sur-
face drifter. As functions of time, the x-speed and y-speed can be used to
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specify complex motions of a surface tow ship (for example, two sinusoidal
functions out of phase with one one another could be used to specify circu-
lar or elliptical tow patterns). In order to get a valid static (steady-state)
solution, at least one component of the speed should evaluate to non-zero
values at time t = 0.0.

y-speed = variable expression

Optionally user specified speed of the terminal in the global y direction.

z-speed = variable expression

¥

x-thrust

y-thrust

z-thrust =

pay-rate =

Optionally user specified speed of the terminal in the global z direction.

variable expression

This the time varying force applied on a buoy terminal in the global x di-
rection. It is intended to be used with ROV towing problems.

variable expression

Time varying thrust in the global y direction.

variable expression

Time varying thrust in the global x direction.

variable expression

The pay-out (or pay-in) rate of material off of the terminal. This is typically

most useful for towing problems. The expression can be a function of time

or a discrete expression. Positive rates indicate material being added to

the system; negative rates indicate material being taken out of the system.

Rates should be specified in units of length per time. Remember that for
problems with positive pay-rates the total number of nodes in the problem

will be greater than the total number defined by the sum of all nodes over

all segments defined in the layout section.

node = integer

release-time

In a branch terminal definition this option is used in lieu of an anchor or
buoy to specify that the branch rejoins the main segment string to form a
loop. The node number must be a valid global node number on the main
system.

= constant expression

The time point during the simulation at which the the buoy or anchor should
be released from the system. This can be used to simulate anchor release for
mooring retrieval problems and cable breaking for towing problems.
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2.3.9 The end statement

The final statement in any input file must be an end statement.
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Chapter 3

The cable Application

3.1 Basic operation

The basic way to solve a static problem with cable is simply to type
% cable -in foo.in -out foo.res -static

on the command line, where foo. in is the name of a cable input file and the output file will
be named foo.res!. For a dynamic problem, a typical command line might look like

% cable -in foo.in -out foo.res -nodes 50 100 -sample 0.1 -snap_dt 1.0

Like the static problem, the input and output files are required parameters on the command
line. The contents of the results file are determined by the remaining parameters; it will
contain information at nodes 50 and 100 at every 0.1 seconds and information at all nodes (a
“snapshot”) at every 1.0 seconds. Exactly what information gets saved at those time points
(and the information written for a static result) is controlled by additional parameters. By
default, as many variables as are applicable will be output for a given problem — you can
change this behavior by turning unnecessary variables off. In static solutions, available
information includes motion (position), forces, moments and Euler parameters; in dynamic
solutions, velocity is added to the list of available information.

For example, a static problem solved with the command

% cable -in foo.in -out foo.res -static +motion +moment +euler

!There are no enforced naming conventions for input or output files (i.e., there is no requirement that
input files have the extension .in or that output files have the extension .res).
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will contain only force (tension and shear forces) information because all other applicable
variables have been turned off (with the +motion, +moment, and +euler switches). If we
remove the static solution switch and add sampling information

% cable -in foo.in -out foo.res -snmap_dt 1.0 +motion +moment +euler

then cable will follow the static solution with a dynamic solution and the results file will
contain both force and velocity information, but only in snapshot form at 1.0 second inter-
vals. If we also wanted a detailed time history of the position of node 100 then the above
command line would become

% cable ;in foo.in -out foo.res -snap_dt 1.0 -sample 0.1 -nodes 100
+moment +euler

3.2 Using the run-time solution controls

By default, cable provides run-time feedback in the form of ASCII text output to the ter-
minal. This information consists of the current iteration number, time step, error tolerance
and any diagnostic messages. This information can be logged by redirecting the stdout
output stream to a file.

An alternative to this form of feedback is the graphical information and control dialog
pictured in figure 3.1. This control can be enabled by specifying -X on the cable command-
line. If this dialog is enabled then the textual output to the stdout stream of the terminal will
be suppressed and all diagnostic information is sent to the appropriate fields of the control
dialog. The status message window provides a 100 line circular buffer for algorithmic and
solution progress information. You can use the arrow buttons next to the message window
to scroll forward and backward through this buffer. Note that with the information and
control dialog enabled, cable does not automatically exit after the solution is complete.
The dialog will remain on the screen until the quit button is pressed unless the -quit
command-line option was specified.

The information and control dialog also allows certain aspects of the analysis param-
eters to be adjusted during the solution of the problem. The relaxation factor, tolerance
and iteration limit for all three iteration loops (static, static outer, and dynamic) can be
adjusted. A typical need for such an adjustment might be to allow for more iterations if
a problem is observed to be converging but not fast enough that it will reach the desired
tolerance by the iteration limit pre-set within the input file. Relaxation factors can also
sometimes be adjusted advantageously to speed-up convergence or to stabilize an iteration.
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Figure 3.1: cable’s graphical information and control dialog.

To adjust a parameter, the problem must be paused. With the probiem paused, changes
can be made within the grid of nine adjustable parameters. In order for these changes to
take affect, the update button must be pushed and the problem unpaused. The problem
can be paused and parameters adjusted any number of times. The restore button will
reset all fields to their original values.

In a dynamic problem, the time-step can also be changed while the solution is in progress.
Care must be taken so that the solution remains on the sampling grid. Also, changes to
the time-step do not take effect instantaneously. If the adaptive time-stepping algorithm
is active then the changed time-step will not take effect until the solution is back on the
original grid. When the solution is on the regular temporal grid, the updated time-step
takes effect one step after the change is made. So if the current time is 3.55 and the time-
step is changed from 0.01 to 0.05, the next solution will be at 3.56, not 3.60 as was probably
intended. You can pause and unpause the solution as needed to make sure that time-step
changes are made in the step prior to a step on the new solution grid.

3.3 Using the C pre-processor

Every input file that is run through cable is pre-processed by the C preprocessor. This allows
for the use of macro definitions and include files within an input file. This is a particularly
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powerful feature for users doing parametric design studies of a given system or for users
who have built up large databases of cable, buoy, and connector properties.

For the parametric design study, consider the case where we have written an input file
for a mooring system and we want to generate time series of the results at node 100 for a
variety of system inputs — say for sinusoidal vertical excitation at 3.0 m amplitude and 4.0,
6.0, 8.0, 10.0, and 12.0 second period. In our input file then we might have an environmental
description line (see chapter 2) that looks like

z-input = (3.0, PERIOD, 0.0)

When we run cable we just need to supply a C pre-processor macro to replace the PERIOD
variable with the actual period that we want to run

% cable -in foo.in -out foo.res -nodes 100 -sample 0.1 -DPERIOD=4.0

Running the full series of excitation periods is very simple with shell constructs such as
csh’s foreach command

% foreach T (4, 6, 8, 10, 12)

? cable -in foo.in -out foo_$T.res -nodes 100 -sample 0.1 -DPERIOD=$T
? end

This will run, one right after another, the model for each of the five periods and store the
results in files named foo.4.res, foo_6.res, eic.

To create a material database, simply create a file with just a materials section (the
same concepts apply to other objects as well: anchors, buoys, connectors) and definition
information for all of the material types that you regularly use. If you called that file
ropes.db then all you need to do to use the database information in any input file is to
include the line

# include "ropes.db"

in your input file (it must come after the problem description section, but other than
that it can be anywhere in the input file). Because sections can be repeated in an input file
you can include as many such databases as necessary and also have “local” sections defined
right in the file.
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3.4 Summary of command line parameters

The following are all of the available command line switches and parameter controls for

cable.

-in filename

the name of the cable input file.

-out filename

the name to use in creating the output results file.

-load filename

if given, indicates that the static solution should be read from the results file
given by filename (as opposed to the static solution being generated during
the current run). filename must contain a complete (all variables present)
static solution for the exact problem geometry defined by the current input
file. This option is most useful for problems which require time consum-
ing static solutions (surface problems, bottom interaction problems) and for
which numerous different dynamic inputs are being investigated. The output
filename and the load filename cannot be the same.

-initial filename

-twoD

-static

-quit

-auto

if given, indicates that the static solution should use the solution from
filename as the initial guess, foregoing catenary or shooting solutions. The
output filename and the initial filename cannot be the same. Like the load
filename the solution contained in filename must contain a complete static
solution for the exact problem geometry defined by the current input file.

boolean option to use the two-dimensional algorithm for static and dynamic

solutions of this problem. This is currently the default. To get the 3D solver
specify +twoD. ’

stops the solution process after the static solution is calculated, i.e., no
dynamic solution will be generated.

forces the program to exit without waiting for the quit button after an error
or once the solution is complete. This is only meaningful when the graphic
information and control dialog is enabled.

overrides the analysis parameters in the input file and forces an auto-mode
static solution. Only useful for surface or subsurface problems.
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—-dynstat filename

causes the final solution in a dynamic problem to be written as a static
solution in the separate output file given by filename. This is useful for
calculating static solutions using dynamic relaxation.

-nodes nl n2 n3 ...

-first

-last

-terminals

~connectors

~sample dt

—-snap.dt dt

specifies a list of node numbers at which temporal results will be written
to the output file. Remember that for problems with positive pay-rates the
total number of nodes in the problem will be greater than the total number
defined by the sum of all nodes over all segments defined in the layout
section of the input file.

boolean option that adds the first node to the list of output nodes at which
temporal results will be written to the output file.

boolean option that adds the last node to the list of output nodes at which
temporal results will be written to the output file. This can be useful for
problems for which it may be difficult to manually determine what the total
number of nodes will be in the problem (such as problems with positive
pay-rates).

boolean option that adds all terminal nodes to the list of output nodes at
which temporal results will be written to the output file. This can be useful
for branch problems.

boolean option that adds the top node of every segment with a connector
defined to the list of output nodes at which temporal results will be written
to the output file. This is typically the node below the connector. If you
want output at the node above the connector you must explicitly specify
that node number using the -nodes option.

specifies the time increment for writing temporal results to the output file. If
no value is given the sample rate will be set to the time step of the dynamic
analysis; this can result in the output file becoming much larger than is
necessary.

specifies the time increment at which spatial distributions of the output
variables will be written to the results file. These distributions are snapshots
of the output variables at all of the nodes in the problem and are generally
most useful for animations. If no value is given then no snapshots will be
recorded in the output.
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-decimate x specifies the increment to use when writing spatial (static and snapshot) re-

-motion

-vel

-force

-moment

-euler

-version

-help

—-debug

sults. The default is 1 (every node will be written). The decimation factor
must be set such that the node 1 and node n are included in the output. Dec- '
imation will produce possibly strange results in branched problems. Static
solutions cannot be loaded from a file containing a decimated result.

boolean option to include motion (x, y, z coordinate information) results in
the output file. The default is for this option to be on; to turn it off use

+motion.

boolean option to include velocity (u, v, w in local coordinates) results in
the output file. The default is for this option to be on; to turn it off use
+vel.

boolean option to include force (tension and shear forces) results in the
output file. The default is for this option to be on; to turn it off use +force.

boolean option to include moment (torsion and normal and bi-normal bend-
ing moments) results in the output file. The default is for this option to be
on; to turn it off use +moment.

boolean option to include Euler angle (2D problems) or Euler parameters
(3D problems) results in the output file. The default is for this option to
be on; to turn it off use +euler. Euler information must be included in the
results file if you want to do any rotations into global coordinates during
post-processing (see chapter 4).

display the current version number of cable and exit.

display a brief help message which lists all of the available command line
options.

will generate a cable file, that if all is working well, should look exactly like
the original input file. The generated file represents what the application
thinks it was given.

-cpp filename

-nocpp

substitute filename for the pre-processor to run on the input file.

do not run the input file through the pre-processor.

-Idirectory add directory to the standard search path for include files in the pre-

processor.
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-Uname undefine the macro name in the pre-processor.

—~Dname=value

define name to be the macro value in the pre-processor.

3.5 Interpreting the output from cable

The output files that come out of cable are written in a custom binary format outlined in
figure 3.5. The basic layout of the file is a static solution with the user specified result
variables at every node followed by an optional dynamic results section with node-time
histories interleaved with full system snapshots, again only for the user specified result
variables. Variables from the dynamic solution (except for absolute position: x, y, z) are
always stored as dynamic quantities. That is they represent the dynamic deviation from
the static value given by the static solution. Because the static solution is always present
in an output file the total quantity of any variable can always be reconstructed. Remember
that non-linearities in the equations of motion or boundary conditions can mean that the
static solution may not always represent the true DC value of the dynamic solution.

Note that the format was designed to be a complete and compact single file container for
the output from cable. Readability and ease of interpretation were not the primary design
goals. Auxiliary tools do exist which can either interpret this format directly or convert
this format into more user friendly form (see chapter 4).
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six character magic number

problem type indicator

dynamic

length

title string

{depth}

output map

{branch information}

8 bits used to indicate the way that the results should be interpreted. Least significant bit is always 1. Second
bit indicates that a depth is stored in the output. Third bit indicates a horizontal problem, i.e., that both ends
are anchored. Fourth bit indicates a towing problem, i.e., that the first end is not fixed on the bottom and that
the top end is a ship. Fifth bit indicates that the solution is from a 2D algorithm. Sixth bit indicates a muiti-leg
or branched problem. The last two bits are currently unused.

byte used as Boolean indicator for the presence of the dynamic solution in the file.
the number of nodes in the problem as a 4-byte integer

the number of characters in the title string as a 4-byte integer

the problem title string stored as an array of characters

water depth for this system as an 8-byte double. This is an optional entry - its presence is dependent on the
depth reference bit of the problem type indicator byte.

a length 10 array of bytes, each byte being a Boolean flag indicating the presence of a single variable type in the
file. The ordering is motion, velocity, force, moment, euler. The last five bytes are currently unused. Example:
{1 0 1 0 1] indicates that only motion, force, and Euler parameters are contained in this file.

Optional - only present if the branch info bit is set in the problem type indicator byte. The first four bytes are
the number of branches as an integer. The starting node of each branch is then given as a four byte integer.
Results are written sequentially by branch, with the mainline first. So if branch 1 starts at 101 and branch 2
starts at 201, then results for branch 1 are stored in array indices (unit offset) 101 through 200.

s(1) {=(1) y(1) =(1)} {T(1) Sa (1) Sp(1)} {M:(1) Mn(1) My(1)} {Bo(1) B1(1) B2(1) Ba(1)} ...

s(n) {z(n) y(n) 2(n)} {T(n) Sn(n) Sp(n)} {Mi(n) Mn(n) My(n)} {Bo(n) B1(n) Bz2(n) Ba(n)}

duration

dt

sample dt

snapshot dt

Mo

output nodes

array of 8-byte doubles containing the static solution. The only variable guaranteed to be present is s, the
Lagrangian coordinate of the node. The curly braces indicate variable groupings which may or may not be
present depending on the information in the output map. This is the end of the file if the dynamic solution is
not present.

the total time length of the simulation as an 8-byte double

the time step of the simulation as an 8-byte double

the sampling time step for the node—time histories as an 8-byte double

the time increment between system snapshots as an 8-byte double. If it is zero, then no snapshots are present

a 4-byte integer giving the total number of output nodes for which node-time histories are stored. If the number
is zero then no node-time histories are present.

a length 7, array of 4-byte integers giving the node numbers for which node-time histories are stored

't {=(1) y(1) (D} {u(1) v(1) w(D)} {T(Q) Sa (1) Sp(1)} {M:(1) M (1) My(1)} {Bo(1) B1(1) B2(1) B3(L)} ...

{z(no) y(no) 2(no)} {u(no) v(no) w(ne)} {T(no) Snino) Sp(no)} {Mi(no) Mn(n,) My(no)} {Bo(no) Bi(no) Ba(no) B3(no)}

s’ {2 (1) y(1) (1)} {u(1) v(1) w(B)} {T(1) Sn(1) Sp(1)} {M:(1) Mn(1) My(1)} {Bo(1) B1(1) B2(1) B3(1)} ...

{=z(n) y(n) z(n)} {u(n) v(n) w(n)} {T(n) Sa(n) Sp(n)} {Mi(n) Mn(n) My(n)} {Bo(n) B1(n)} Ba(n) B3(n)}

Type stamped result dumps. A dump of node-time histories will start with a single 't’ byte; a snapshot dump
will start with a single ’s’ byte. There is no time stamping of either dump ~ they should simply be written at
the appropriate time increment. The time stamp, if needed during post-processing, can be backed out from the
position of a given dump in the output and the known increment between dumps.

Figure 3.2: The binary file format for cable results files.
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Chapter 4

Post-processing cable Results

4.1 TUsing cable results with Matlab

The binary results files that cable produces can easily be converted into Matlab format using
the res2mat application. res2mat reads the available results information in the cable output
file and writes a Matlab (.mat) file containing symbolically named variables for all of the
results. The results can be written to Matlab format either in local (tangential, normal,
bi-normal) or global (x, y, z) coordinate system. res2mat can only do the transformation
to global coordinates if the Euler information was written into the results file.

4.1.1 Format of the Matlab file

res2mat will convert all of the appropriate information in the cable results file into the
Matlab file according to a few simple rules. Static information is written to variables with
no subscript (x, T, Mn, etc.). Node-time histories are written to variables with names
subscripted by t (x_t, T_t, Mn_t, etc.). Snapshots are given names subscripted with s (x_s,
T_s, Mn_s, etc.). The basic variable names that are used depend on whether or not the
results are written to Matlab format in local or global coordinates. The range of names is
detailed in table 4.1. Also included in the Matlab file are variables with the sample rate
(dt), snapshot rate (snap.dt), Lagrangian coordinate of each node (s), a list of output node
numbers (nodes) and a time vector appropriate for the node—time histories (t). The water
depth is stored in depth if it is available within the results file.
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2-D Results 3-D Results
information || local names | global names local names global names
position X, 2 X, Z X, ¥, 2 X, V¥, Z
velocity u, v U, W u, v, w U, Vv, W
force T, Sn Fx, Fz T, Sn, Sb Fx, Fy, Fz
moment Mb My Mt, Mn, Mb Mx, My, Mz
Euler phi phi BO, Bi, B2, B3 | BO, B1, B2, B3

Table 4.1: The names that res2mat assigns to Matlab variables. These same names are
used with the -variables option in res2asc to specify which variables to tabulate.

4.1.2 Example Matlab manipulations
The node-time history result for each variable is an n; x n, matrix, where n; is the number
of samples and 7, is the number of output nodes. Thus, each column of the variable contains

the full time series of that variable for one node, so

>> plot(t, Tt(:, 3));

plots the tension at the third ocutput node as a function of time.

The snapshot results for each variable are stored in an n X n, matrix, where n is the
number of nodes in the system and n; is the total number of snapshots that were written.
The tenth snapshot (at time t = (10 - 1)snap.dt) can be plotted simply as

>> plot(s, T.s(:, 10));

The geometric configuration of the system at every snapshot can be plotted as a “spaghetti”
plot of lines on a single graph with a command like

>> plot(x.s, z.s)

If we wanted to plot the total horizontal position of one of our output nodes we would
need to do the following

>> plot(t, xt(:, 3) + x(nodes(3)));

Unless otherwise requested with the -~totals command-line switch, variables are written to
the Matlab file in dynamic form (total - static value). Because the static variables contain
information at every node (they are simply an n x 1 vector) we need to use the nodes vector
to figure out what the actual node number of the third output node was.
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4.1.3

res2mat command line parameters

res2mat accepts the following command line switches to control its behavior.

-in results file ...

the name(s) of the file containing the cable results. Multiple input filenames
are allowed. If multiple inputs are given no output names can be explicitly
specified. They will be automatically constructed.

-out matlab file

-twoD

-global

-totals

-ft

-1bs

the name to use in creating the Matlab output file. The suggested extension
is .mat simply because this is what Matlab will look for. res2mat does not
enforce any naming convention. If no output names are provided, names will
be constructed from the input names.

specify that the results file came from the 2D solution algorithm. The op-
tion is not strictly necessary for 2D results but it will result in a smaller
Matlab file because the all zero 3D information from the results file will
not be written to the Matlab file. It is required if transformation to global
coordinates is requested because it affects the interpretation of the Euler
information used in the transformation. This is currently the default. If the
solution is from the 3D algorithm specify +twoD. This option is provided for
backward compatibility with older format result files which do not have this
information stored in the problem type indicator bit. Any specification of
this option will override the information stored in that bit.

Boolean option to write results to the Matlab file in global coordinates rather
than the default tangential, normal, bi-normal local coordinate system that
they are stored in within the results file. The transformation cannot be
performed if the results file does not contain the Euler information.

Boolean option to write dynamic results as totals (static + dynamic).

Boolean option to convert length units from meters to feet. Only useful if
the results in the input file are stored in meters.

Boolean option to convert force units from Newtons to pounds. Only useful
if the results in the input file are stored in Newtons.
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Figure 4.1: The main window of animate.

4.2 The animate post-processing application

On X11 based workstations, a second post-processing option exists in the form of the
animate application. animate reads cable results files directly and can produce animations
showing system spatial configuration in conjunction with the spatial distribution of force,
moment and velocity quantities along the cable and/or the temporal distribution of these
quantities at the specifically requested output nodes. Spectra of the time series quantities
can also be plotted.

4.2.1 The main animation window

On start-up the animate main window (figure 4.1) pops up with the static configuration of
the system drawn in the viewing area. Across the bottom of the window are controls for
creating plots and controlling the time rate of the animation. Along the right side are four
toggle button/slider pairs which control the placement of marker nodes. The marker nodes
are used to indicate which of the output nodes you want to view the results for. The toggle
button under each slider activates one of the markers; you can then use the slider to move
the marker between output nodes by clicking and dragging on the slider thumb with the
middle mouse button'. Each marker is identified with a unique color — this is the color with

'"Most X-server software can be configured such that for two button mice, clicking both buttons at the
same time emulates the middle button of a three button mouse
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time

Normal Shear Force

Figure 4.2: A time plot of the forces at marked nodes.

which the time series or spectral results for that node will be drawn.

Which variables get plotted is controlled by the five buttons D (displacements), V
(velocities), F (forces), M (moments), E (Euler information). If any of these buttons is
engaged, a plot of the spatial distributions of those variables at the current time step will
be generated. These plots show the value of a given variable as a function of Lagrangian
coordinate; this is the coordinate which measures distance along the system from the first
node. The first node always has Lagrangian coordinate 0 and the last node always has
Lagrangian coordinate L, where L is the total length of the system. If any of the marker
nodes are activated, then temporal distributions of those variables at the marked nodes will
also be generated. A temporal plot of the forces for the animation shown in figure 4.1 is
shown in figure 4.2. There is only one curve on each graph because we currently have only
one marked node. The vertical black bars on each graph indicate the current time point.
The results plotted here are the total force (static + dynamic value). Transformation
between total and dynamic only and local and global coordinates can be made by clicking
the appropriate button next to the plot controls. Spatial distribution plots are updated at
the same rate as the main animation. Plots can be popped down simply by disengaging the
appropriate lettered button in the main window.

Spectra for time series results can be generated by clicking on the spectrum button at
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the bottom of the plot window. A graph window with the frequency domain analog of the
time domain results plotted in that window will be automatically generated. The result for
each graph in a window is based only on the results currently viewed on that graph. For
zoomed graphs then, the spectra are computed using only that portion of the time series
which is currently showing. Spectrum plots can be dismissed by clicking on the dismiss
button at the bottom of the window. The length of the FFTs used in computing the spectra
is determined by fitting four windows over the data, with the data length padded to the
nearest power of 2. Thus, a 500 point time series will have a spectrum computed using four
128 point windows. The spectra are plotted semi-log so the values on the y axis represent

lOglo(S).

The rate of the animation is controlled by the tape player-type buttons at the bottom of
the main window (figure 4.1). From left to right they are: slow down (increase the time delay
between frames), play the animation in reverse, back up one frame, pause the animation,
go forward one frame, play the animation forward, and speed up (decrease the time delay
between frames). The animation can be sped up or slowed down while it is playing. It must
be paused before you can use the single frame forward and backward controls.

4.2.2 Coordinates and zooming

The coordinate pairs above the exit button give the x, y location of the cursor when it
is moved around the main viewing area. Note that in 3D perspective view the reported
coordinates are meaningless. The current time is always displayed on the right side of the
window just under the marker node toggle buttons.

Zooming in the main animation window is accomplished simply by clicking with the left
mouse button and dragging out a window which you want to zoom in on. Scrollbars will
appear on the bottom and right side of the viewing area so that you can scroll around over
the whole viewing area. The full view can be restored by clicking the right mouse button.

With the mouse in a graph window, you can click with the right mouse button to have
the ordinate and abscissa value of that point reported at the bottom of the plot window.
Zooming on plots is achieved by clicking the left mouse button and dragging out a rectangle
that encompasses the area that you want to zoom in on. The full scale of a graph can be
restored by clicking on the middle mouse button within the graph area or by pressing [r]
with the focus on the graph area and the mouse point on the appropriate graph (you may
need to use to get the focus on the graph area).
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4.2.3 Animate command line parameters

animate accepts the following command line options to control both how results are pre-
sented and some of the basic appearance parameters.

-in filename

the results file to interpret.

-global boolean option to draw plotted results in global coordinates rather than the
default tangential, normal, bi-normal local coordinate system that they are
stored in within the results file. The transformation cannot be performed if
the results file does not contain the Euler information. This option can also
be toggled while the program is running by clicking the globals button in the
main window.

-totals boolean option to plot quantities as static + dynamic result. In normal
operation only the dynamic portion is plotted for node-time histories. This
option can also be toggled while the program is running by clicking the totals
button in the main window.

-twoD boolean option to treat the Euler information as the angle ¢ rather than
the four Euler parameters — if results were written from the 2D solution
algorithm then this optioﬁ must be specified if rotations to global coordi-
nates are to be performed correctly. This is currently the default. If the
solution is from the 3D algorithm specify +twoD. This option is provided for
backward compatibility with older format result files which do not have this
information stored in the problem type indicator bit. Any specification of
this option will override the information stored in that bit.

-realtime specifies that the initial frame rate of the animation should match the snap-
shot increment. The default for this parameter is off.

-delay n specify that the initial frame rate should be based on a delay of n microsec-
onds. If no -delay option is specified and -realtime is off then the initial
delay is 60000 microseconds.

-thick specifies that all line drawing should be done with a thick line.

-box specifies that a reference box (in 3D) or surface and bottom (2D) should be
drawn as visual aids in interpreting the problem. The default is on; to turn
off box drawing use +box.
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—-drifter

~ship

-color

-threeD

-control

-depth H

specifies that the problem should be interpreted as a drifter or towing prob-
lem. A free surface, but no bottom, will be drawn if reference box drawing
is enabled. Any depth specification will be ignored; the free surface will be
drawn at the static position of the last node in the system. This option is
automatically activated if the appropriate bit in the problem type indicator
byte of the results file indicates that this is a towing problem.

boolean flag to enable tow ship drawing for drifter problems. This will place
a ship graphic at the last node in the problem. This option is automatically

~ activated if the appropriate bit in the problem type indicator byte of the

results file indicates that this is a towing problem.

boolean flag to indicate that contrasting colors should be used to draw the
backgrounds in the main animation window. The default is for this flag to
be on and sky to be white, water to be cyan and bottom to be brown (or
wheat). For problems where you know that you do not want print-outs in
color (or shades of grey when colors get translated by b/w laser printers)
you can turn colors off using +colors.

specifies that the animation should be done in 3D perspective view. The
default is off even if the solution is from the 3D solution algorithm. When
this parameter is on, an auxiliary control window with sliders for rotations
and scaling will pop-up along with the main window.

specifies that the 3D rotation and scaling controls should be activated for
problems drawn in 3D perspective view (—threeD). The default is on.

activates the drawing of a free surface at a depth H. This parameter over-
rides the information that may have been stored in the results file. If no
depth is specified and the results file does not contain a depth reference then
no free surface will be drawn. This option is provided for backward com-
patibility with older format result files which do not have this information
stored in the problem type indicator information.

—-anchors nl n2 ...

draw anchor symbols at the nodes given by n1, n2, etc. The anchor symbol
is currently a black rectangle. If no buoys or anchors are specified then
anchors will be drawn at nodes appropriate to the information stored in the
problem type indicator of the results file.

-buoys nl n2 ..

draw buoy symbols at the nodes given by n1, n2, etc. The buoy symbol is
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-1bs

-yz
-Xxrot X
-yrot y
-zrot z

-zscale s

currently a filled black sphere slightly larger than the circles used for node
markers. If no buoys or anchors are specified then anchors will be drawn at
nodes appropriate to the information stored in the problem type indicator
of the results file.

boolean flag to provide the very common conversion of force units from
Newtons to pounds. When this flag is activated all of the force quanti-
ties (tension, shear, global horizontal and vertical forces) will be scaled by
m. The default is off.

draw the 2D Y-Z plane of a 3D problem.

the initial x-axis rotation for 3D perspective view. The default is —20°.
the initial y-axis rotation for 3D perspective view. The default is 40°.
the initial z-axis rotation for 3D perspective view. The default is 0°.

the initial z-axis scaling (“eye distance”) for 3D perspective view. The de-
fault is 0.4.

4.3 ASCII output

The post-processing application res2asc can be used to convert binary cable results to tab-
ular ASCII data. Each of the results matrices (static, node-time histories, and spatial
snapshots) are saved to separate files. The variables that are output can be controlled using
the -~variables command-line option. The list of variables available for output depends on
whether the solution in the binary results file is from the 2D or 3D algorithm and whether
the —global command-line flag is given. The variable names for use with the -variables
option are the same as those listed in table 4.1. The variable s is also available for output
with static and snapshot results. The time is always output as the first column in node-time

history results.

4.3.1 res2asc command line parameters

res2asc accepts the following command line switches to control its behavior.

-in filename

the name of the file containing the cable results.
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-static filename

the name to use in creating the ASCII output file for static results.

-time filename

the name to use in creating the ASCII output file for node-time histories.

-snap filename

the name to use in creating the ASCII output file for time history snapshot
results.

-variables vl v2 v3 ...

list of variable names that you want output into the table.

-global Boolean option to write results in global coordinates rather than the default
tangential, normal, bi-normal local coordinate system that they are stored
in within the results file. The transformation cannot be performed if the
results file does not contain the Euler information.

-totals Boolean option to write dynamic results as totals (static + dynamic).

~-ft Boolean option to convert length units from meters to feet. Only useful if
the results in the input file are stored in meters.

-1bs Boolean option to convert force units from Newtons to pounds. Only useful
if the results in the input file are stored in Newtons.
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Chapter 5

cable’s Windows Interface

5.1 Introduction

The Windows version of WHOI Cable includes an encapsulator application for all of the com-
ponent programs discussed thus far. The encapsulator combines an editor for building prob-
lem description files with facilities for executing cable, animate, res2mat, and res2asc to solve
the problem and post-process the results, all from within a single Windows 95/98/2000/NT
based application. Figure 5.1 illustrates this interaction between the various component
programs.

The main editor window, with one of the example problems loaded, is shown in figure 5.2.
Across the top of the window is the main menu bar, with the usual menu entries for file
and edit control and some special entries for solving problems and viewing results. There
is also a toolbar below the main menubar which contains shortcut buttons for the items on
the File and Insert menus and for invoking the various component programs.

5.2 Building an input file

There are several ways to go about constructing an input file for a new model. Starting with
a blank editor (either at start-up or by selecting New from the File menu) you can write
the file from scratch, open an existing problem and modify it to match the new problem, or
you can build the file up from the template blocks or database objects that the encapsulator
provides.

You can insert objects from predefined databases by choosing Object browser from
the Insert menu or by choosing the toolbar button that has all four object types on it.
The object browser, pictured in figure 5.3 allows you to browse through all of the materials,
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X-Server Software

Animate
results Res2MAT| = Matlab

Res2Asc
WHOI Cable
for Windows
results
Cable
editor contents

Figure 5.1: The relationships between the WHOI Cable component programs.

ram Files\WHOI Cable\examples\towi

Problem Description
title = "Towing the Biomapper Vehicle™
type = towing

Analysis Parameters
duration = 1800
time-step = 0.5
dynamic-relaxation = 1.0
dynamic-iterations

static-relaxation

: static-iterations = 1000

H | :

: tolerance = le-6

JEnvironment

1 rho = 1025 /* no waves - just study tow dynamics */
gravity = 9,81
X-current = -0.5 /¥ about a 1 khot current against us */

towship
sled

Figure 5.2: The main window of the WHOI Cable Windows interface.
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DObject browser

p!
chain 1/4 proof coil
chain 3/16 proof coil
' /4 proof coil
chain 3/8 proof coil
chain 5/16 proof coil
chain 5/8 proof coil

chain_3_4 .3e+08 El = 1le-4
m = 8,643
d = 0,0681 Cdt = 0,05
comment = "3/4 Crosby Proof Coil"

Figure 5.3: The database object browser in the WHOI Cable Windows interface.

connectors, buoys, and anchors that are currently defined in the database files. To change
between object types click on the tabs at the top of the browser. Within each object type
the database may be divided into sections; the section can be changed by selecting from
the pull down list beneath the tabs. All of the objects defined in the current section for
the current object‘type are shown in the large list in the middle of the browser. In the
example in figure 5.3 the chain section of the materials database has been selected and all
of the predefined chain types are listed. The complete definition for the currently selected
object is shown in the text box beneath the main list. To use a definition highlight the
object and click Insert or double click on the object. The definition will be inserted at
the current cursor position in the main input file editor window. For objects not defined in
the database, you can insert a blank template for the current object type by clicking the
Template button.

Templates are also available from the Insert menu or from the toolbar. When selected,
a template is placed at the current insertion (cursor) point of the editor. Once placed,
the entries in the template must be edited to match the problem that you are describ-
ing. Templates are available for the basic sectional layout of a problem (complete problem
description and analysis parameters sections and section headers for buoys, anchors, con-
nectors, materials, and layout), object definitions (buoys, anchors, materials, connectors),
and the components of a layout (segments, connectors, branches, terminals). Once inserted,
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templates can be deleted, edited, and moved just like any other text in the editor.

Each assignment in a template that requires a value is marked with xxx for values that
require real numbers, nnn for values that require integer numbers, or x_ name_x for cases
where you must specify or assign a symbolic name (remember that names with spaces in
them must be enclosed in double quotation marks). In the analysis parameters and
environment sections that are placed by the sections template, several typical values have
already been set with actual numbers. These values should be acceptable for most cases,
but you should feel free to change them to better suit your exact problem.

You can get help on a keyword in a template by highlighting the word or words in the
main editor and selecting Keyword from the Help menu (or by pressing ) This will
display the WHOI Cable syntax and keyword help dialog with a paragraph or two describing
the highlighted keyword. If there are multiple ways in which the same keyword can be used,
press the Next button on the help dialog to move through them.

5.3 Solving a problem

In the command-line version of cable, described in chapter 3, the details of the solution are
controlled by command-line switches. In the Windows interface those switches are replaced
by the checkboxes and text fields of the solution control dialog pictured in figure 5.4. You
can view this dialog by selecting Controls from the Solutions menu.

The controls in the upper left frame determine the basic solution type — 2D or 3D, static
or dynamic. If you have a results file that already contains a valid static solution for the
current problem, then you can specify that cable should use that solution rather than gen-
erating a new static solution to use as the initialization for the dynamic solution. Checking
the AutoSolve static solution box is equivalent to the ~auto option in the command line
version of cable. The bottom left frame provides control over which variables are included
in the output file.

The controls in the Dynamic Results frame are only enabled when a dynamic solution
is requested and define the sampling rates and nodes for the dynamic output. The list of
output nodes is constructed by typing node numbers in the box at the top of the list and
pressing Add (or pressing [return]). Nodes can be deleted by highlighting them within
the list and clicking Remove. Clear deletes all entries in a list. The first node, last
node, terminal nodes, and nodes associated with a connector between segments can be
automatically included in the output list (without explicitly specifying their node numbers)
by clicking the check boxes below the list of output nodes. At least one form of dynamic
output control must be specified for any dynamic solution of a problem. If a time series
time step is given then a list of output nodes must also be specified. If no time series time

66



Figure 5.4: The solution control dialog available by selecting Controls from the Solutions
menu.

step is given then a snapshot time step must be specified.

The Solve button on the dialog is a shortcut to the Solve selection on the Solutions
menu. See sections 3.1 and 3.4 for additional information on what the various options
control.

Once a problem description is constructed, and the appropriate control options have -
been selected, you can solve the problem simply by selecting Solve from the Solutions
menu (also by pressing the Solve button on the control dialog, using the keyboard shortcut
, or using the menu shortcut followed by , see section 5.6 for a complete
list of the different ways to accomplish most tasks). This saves the current editor to a
temporary file and invokes cable on that file. cable’s output is directed to a second temporary
file. When the solution is complete, the temporary input file is deleted and program control
returns to the main editor. See section 5.5 for details on how and when you should save
files and how temporary files are used within the encapsulator.

5.4 Viewing and converting results

Post-processing the results of a solved problem is as easy as selecting Animate from the
Results menu. This will invoke the animate program with the current output file as input.
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esults Controls

Figure 5.5: The results control dialog available by selecting Controls from the Results
menu.

Details of using animate are provided in section 4.2. The dialog to control how animate is
invoked is shown in figure 5.5 and is raised by selecting Controls from the Results menu.

The controls in the upper left frame of figure 5.5 dictate the drawing and animation
parameters that animate will use to present the results. The 3D Drawing options control
whether a 3D problem gets drawn in 3D perspective view or is simply projected onto the
x-z plane. The controls in the Results Transformations frame govern how the result
variables should be plotted — local or global coordinate system, total (static + dynamic) or
just dynamic values, and whether force and length units should be converted from Newtons
to pounds and meters to feet (these only makes sense if the original force units are in
Newtons and meters of course). animate will draw additional anchor and buoy symbols at
the nodes indicated in the lists at the bottom right of the dialog. The Add, Remove, and
Clear buttons apply to both anchor and buoy lists, but only to one list at a time. The
active list is controlled by the Anchors and Buoys toggle buttons over the lists. To add
a node number to a list simply type the number into the box at the top of the list and

click Add (or press [return]). Nodes can be deleted by highlighting them within the list
and clicking Remove. Clear deletes all entries in a list.

The four check boxes for results transformations on this control are also used when
invoking res2mat. Conversion from cable results format to Matlab .mat format is done by
selecting Matlab conversion from the Results menu. A file selection dialog will appear
asking you to specify the name of the Matlab file to create.
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Tabulate Results

- Lagrangian coordinate

z - vertical coordinate [depth)
x - horizontal coordinate

- horizontal coordinate (3D]
T - tension
Sn - nommal shear force

Figure 5.6: The results tabulation dialog in the WHOI Cable Windows interface.

For more immediate access to numerical rather than graphical results, res2asc can be
used. Under the Windows interface, the ASCII tabulated results will appear directly in a
separate output window. From that window they can be saved or printed. To run res2asc
select Tabulate from the Results menu. The dialog pictured in figure 5.6 will appear
to allow you to specify what type of results you want tabulated (static, time series, or
snapshots) and what variables to include in each table. To add a variable select it from the
list on the right and click the Add button. The list of available variables can be changed
by toggling the local and global radio buttons.

5.5 Working with files

When working with the encapsulator it is important to keep track of two files. The first
is the current input file that is contained in the main editor. The contents of the editor
are saved to a temporary file during each solve procedure, but this temporary file should
never be used as your own record of the problem (it is deleted as soon as the solution is
completed). To assign a name to it and save it, select Save As from the File menu. If you
have already assigned a name and simply want to save (the current name is shown in the
titlebar of the main window, as in figure 5.2), then select Save from the File menu.

The second file type is the current output file. When a problem is solved the output is
directed to a temporary file. That file then defines the current result. If you want to assign
a name to the file and save it then select Save Result As from the File menu. If you have
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already defined a current output name then you can simply select Save Result. If you do
not explicitly save an output file before you execute another solve process then that output
file will be deleted and the result of the latest solve will become the current output. Note
that you do not need to assign a name to an output file to view or convert the results; you

only need to assign a name if you want to preserve results before doing additional solutions
or exiting the program.

You can define an existing file as the current result (i.e., without doing a solve) by
selecting Load Result from the File menu. Any post-processing selections will then refer
to this already existing file. Note that this name becomes the current output name for the
Save Result action so that any subsequent solves and solution saves will overwrite that
pre-existing result.

5.6 Command reference

Between the main menu, keyboard shortcuts, and the toolbar, there are generally several
ways to accomplish any one task from within WHOI Cable’s Windows interface. Table 5.1
details this complete command structure.

5.7 Installing WHOI Cable for Windows

5.7.1 System requirements

WHOI Cable for Windows is only available for 32-bit Windows (95/98/2000/NT), Intel-
based platforms. Some static problems can be solved in a reasonable amount of time on
any Pentium or even a fast 486 processor. Dynamic problems and some static problems
(notably those that use small static relaxation factors or require significant numbers of outer
iterations) are best solved on faster Pentium Pro/II/III architectures.

As illustrated in figure 5.1, PC X-server software must be installed if you want to take ad-
vantage of the animate post-processing program. Numerous companies market inexpensive
PC X-server software. There is a reasonably complete list of commercial vendors, along with
areview of four of them at http://www.sun.com/sunworldonline/swol-11-1995 /swol-11-pcx.html.
There is an effort underway to port the free servers from the XFree86 projects to Windows.

Check http://sourceware.cygnus.com/cygwin/xfree/ for the latest information on that ef-
fort.
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Menu Item Menu key Keyboard shortcut Toolbar icon Other
File New Alt-f, Alt-n
Open Alt-f, Alt-o Ctrl-o file folder
Save Alt-f, Alt-s Ctrl-s disk drive
Save As Alt-f, Alt-a Ctrl-a
Load Result Ale-f, Alt-1 Ctrl-d
Save Result Alt-f, Alt-r
Save Result As Alt-f, Alt-v
Print Setup Alt-f, Alt-u
Print Alt-f, Alt-p Ctrl-p printer
Exit Alt-f, Alt-x
Edit Undo Alt-e, Alt-u Ctrl-u
Cut Alt-e, Alt-t Ctrl-x
Copy Alt-e, Alt-o Ctrl-c
Paste Alt-e, Alt-p Ctrl-v
Find Alt-e, Alt-f
Find Next Alt-e, Alt-n F3
Insert Object browser Alt-i, Alt-w chain+buoy+-anchor+shackle
Section Template Alt-i, Alt-t pages
Buoy Alt-i, Alt-b buoy
Anchor Alt-i, Alt-a anchor
Material Alt-i, Alt-m chain
Connector Alt-i, Alt-c shackle
Layout segment Alt-i, Alt-s cable shot
Layout connector Alt-i, Alt-o shackle+shackle
Layout branch Alt-i, Alt-h triple point
Layout terminal Alt-i, Alt-1 buoy-+anchor
Solutions Controls Alt-s, Alt-¢ Ctrl-l
Solve Alt-s, Alt-s Ctrl-r go light button on control box
Results Animate Alt-r, Alt-a Ctrl-n movie button on results box
Matlab conversion Alt-r, Alt-m Ctrl-m matlab button on results box
Tabulate Alt-r, Alt-t Ctrl-b table
Controls Alt-r, Alt-c Ctrl-t
Setup Files Alt-u, Alt-f
Fonts Alt-u, Alt-n
Help Keyword Alt-h, Alt-k F1
About Alt-h, Alt-a

Table 5.1: Complete command structure for the WHOI Cable for Windows encapsulator.
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5.7.2 Installation instructions

Because the main Windows interface to WHOI Cable is simply an encapsulator for the
rest of the component programs, it requires that standard versions of the cable component
programs, compiled for 32-bit Windows, be installed on your computer. These programs
and the supporting DLLs are provided as part of the standard distribution of WHOI Cable
for Windows. They, along with the actual encapsulator application, examples, and support
files are installed using the provided setup utility. To install WHOI Cable download the file
wcb1XXX.exe from ftp.whoi.edu using the login name cable and the password provided
on your license agreement. Replace XXX in the filename above with the highest version
number available. Start the installation process by executing the downloaded file, either
by double clicking or selecting Run from the Windows Start menu. After installation you
can safely remove wcblXXX.exe.

Your PC X-server software should generally be running before you run WHOI Cable. At
startup, WHOI Cable will check to see that it can communicate with the server. If there is
a problem with the server the program will suggest possible remedies. If no communication
can be established the animate options will not be available. In order for the encapsulator to
interact with the X-server, you should check that your DISPLAY environment variable is set.
You can do this using the System icon followed by the Environment tab available under
the Control Panel of Windows NT or by adding the line set DISPLAY=foo:0.0 (where foo
is the name of your machine) to your autoexec.bat file under Windows 95.

5.7.3 Printing from animate under Windows

Printing directly to a printer from animate running under Windows requires that you specify
a valid print device (1pt1, 1pt2, coml, etc.) and that this device name be mapped to a
Postscript printer. If you use a network printer rather than a printer connected directly to
your computer then you must map the network printer name to one of the standard MS-
DOS printer device names. To do this under Windows NT you use the net use command
from a command prompt. For example,

net use 1lptl \\server\ps_printer /persistent:yes

maps the 1pt1 device to a printer named ps_printer that is connected to the computer
named server.

If you do not have a Postscript printer available to you then we recommend that you
use the print to file option in animate and install the freely available! ghostscript package
for printing and viewing Postscript files on non-Postscript devices.

'from ftp.cdrom.com in pub/simtelnet/win95/print for example
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5.7.4 Modifying the installation
5.7.4.1 File and pathnames

After installation, you can change the paths to any of the component programs or specify
replacement programs for those components by selecting Files under the Setup menu.
Using the file setup dialog you can specify locations for the cable, res2mat, animate, res2asc,
and cpp programs. You can also set the directory for database template (*.ctm) and object
(*.db) files (this is the directory that will be used as the C pre-processor search directory).
The directory for temporary files created during the solution of a problem can also be set.
Directory names should end with a trailing \.

5.7.4.2 Templates

The template blocks inserted by the selections on the Insert menu are contained in a series
of files located in the WHOI Cable database directory. These files can be customized with
any text editor as long as their filenames are not changed.

5.7.4.3 Database files

At startup, WHOI Cable reads four files from the database directory to load objects into
the object browser. The files are material.db, connect.db, buoy.db, and anchor.db.
Each database file contains regular WHOI Cable object definitions delimited by special
lines to provide descriptive names and sectioning information. There must be at least one
section in each file. Section headings are marked by the presence of ** at the beginning of
a line. Individual object definitions within a section are preceded by a line marked by a
single * and a descriptive phrase. Until another section line (marked by **) or object name
line (marked by *) is read, subsequent lines are assumed to be a part of a valid WHOI
Cable object definition. Additional sections and objects can be added to the database files
with any text editor so long as this formatting is maintained. Section names and object
descriptions within sections will be sorted by WHOI Cable upon insertion into the browser.
The database files are read only at program startup.
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Chapter 6

Solving a Problem with WHOI
Cable

In the following sections brief descri.ptions of a typical solution path for many different
problem types are provided. Throughout the descriptions references are made to the ex-
ample input files distributed with WHOI Cable. These files can be found in the examples
subdirectory of the WHOI Cable installation directory.

6.1 Subsurface single point moorings

Subsurface single point moorings are typically the easiest problems to solve with WHOI
Cable. Because the buoy is fully submerged the forces at the top of the mooring are easy
to calculate and outer iterations are not required. In the mine.cab example, the default
static solution procedure (catenary initial guess and a static relaxation solution) requires
just two iterations to converge. In subsurface problems with excess line on the bottom
static-relaxation may need to be reduced. For particularly complex geometries where
reducing the relaxation factor does not help or produces very slow convergence, automatic
dynamic relaxation is available. While this approach is very robust, it can take some time
to converge, particularly on very long moorings.

For dynamic solutions, Morison forcing is usually most appropriate for subsurface prob-
lems. mine.cab illustrates the application of Morison forcing with surface waves propagating
in both horizontal directions. In a two-dimensional simulation the out-of-plane propagating
wave is not used.
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6.2 Single point surface moorings

6.2.1 Taut moorings

Taut surface moorings with simple geometries and no excess line on the bottom are also
typically very easy to solve with WHOI Cable. The fastest solution path is usually a shooting
method initial guess followed by static relaxation. The static relaxation procedure will use
outer iterations to calculate the draft of the surface buoy. With a shooting method initial
guess the outer iterations are minimized because the calculated draft from the shooting
method is fairly accurate. This is the approach taken in taut.cab. When a catenary
solution is used to initialize the static relaxation procedure, the procedure to bracket the
draft can be very slow. Automatic dynamic relaxation solutions are also available for surface
moorings, but again can be slow to converge for very long moorings.

The dynamic forcing method for surface moorings is usually either velocity or wave-follower.

With velocity the motion of the buoy in all three directions can be specified with x~input,
y-input, and z-input. Remember that even though the forcing method is called velocity
the inputs are defined in terms of displacement amplitude and period. If a time series of
buoy velocities are known they can be specified in a separate file using velocity-file.
For wave-follower the vertical motion of the buoy is governed by the waves described by
x~wave and y-wave. The buoy is free to respond to horizontal forcing due to time varying
wind or current in each of the horizontal directions, but horizontal forces based on waves
are not part of the model. If you want to model pure heave motion with horizontal motions
constrained use velocity and z-input rather than wave-follower.

6.2.2 Catenary moorings

The most reliable static solution procedure for shallow water catenary moorings is automatic
dynamic relaxation. For swex.cab a chain catenary mooring in 40 m of water with a very
low current, this is the only procedure that works well. Because of the low current, the
curvature at the bottom is quite high. This makes the resolution of the touchdown point
difficult and thus complicates the static solution. Automatic dynamic relaxation works by
increasing the current until an easy static solution can be obtained (using a shooting method
and a one step static relaxation). This static solution is then used as the initial condition in
a dynamic solution with no waves and the current set to its real value. Over the course of
the dynamic solution the mooring will relax back to its true equilibrium position under the
imposed current. When the mooring has come to equilibrium the solution automatically
stops. During this process WHOI Cable specifies a set of analysis parameters that are
designed to make this process as robust as possible. After the procedure has converged the
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parameters will revert back to their original values.

When currents are higher, as in cmo.cab, regular static solutions are more reliable.
The example in cmo.cab can be solved with static relaxation using either a catenary or
a shooting initial guess. Automatic dynamic relaxation is relatively fast for these shallow
water moorings, however, and thus could be used even in this case without a significant
performance penalty.

Both swex.cab and cmo.cab demonstrate the use of experimentally recorded time series
of buoy motion in the dynamic simulations. During both the SWEX and CMO experiments
time series of acceleration were recorded at the buoy. The heave component of the accelera-
tion was then integrated into time series of velocity. These velocity time series are contained
in the files defined by the velocity-file statements.

6.2.3 S-tether, inverse catenary, and lazy wave moorings

Like catenary moorings, s-tether moorings are most difficult to solve when currents are very
low. In shallow water these difficulties can be avoided by using automatic dynamic relax-
ation as with catenary moorings. This is the best approach for the problem in shallow_s.cab
for example. Because these moorings are often employed in deep water, however, it can
sometimes be faster to employ regular static relaxation with carefully chosen analysis pa-
rameters. For deep_s.cab in 3500 m of water, the fastest solution uses a catenary initial
guess and static relaxation with outer iterations. The baseline static relaxation factor is set
to 0.1. Using this technique a solution is obtained in 44 outer iteration steps with between
approximately 20 and 1000 iterations at each step. A shooting initial guess will not work
for this problem. Automatic dynamic relaxation does work for this problem but because
of the long time scales associated with the motion of this very long mooring the procedure
takes a substantial amount of time (over 5000 seconds of simulation time).

6.2.4 Moorings with line floating on the surface

WHOI Cable can model moorings with line floating on the surface. Like other complex
geometry surface moorings these problems are most reliably solved with automatic dynamic
relaxation but may be solvable using regular static relaxation with a small relaxation factor
(< 0.1) and large numbers of iterations. Both seatex.cab and shallow.s.cab (which in
addition to an s-tether configuration has some line floating on the surface) are best solved
with automatic dynamic relaxation.

Dynamic solutions will not be accurate for most moorings with floating line because
WHOI Cable does not have a model for the wave induced motion of the line. However, if
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these moorings are properly designed then dynamic motions of the mooring are small and
are typically not a driving factor in design decisions.

6.3 Multipoint and branched moorings

6.3.1 Subsurface

Using branch definitions WHOI Cable can model both multipoint moorings and hor-
izontal array/aquaculture longline moorings. For both cases the problem type should
be set to positioned. In multipoint moorings like those defined in multileg.cab or
multileg 3d.cab all of the legs join at a central point. This point is defined by a con-
nector definition (rather than a buoy definition). Each branch leaving from this central
connector defines a leg, as do the segments running from the first terminal to the connec-
tor and the final segments running from the connector to the second terminal. Thus a
four-legged mooring will have two branches defined.

When defining horizontal array moorings branches are used to model the lines that hang
down off the horizontal member. In horiz.cab each of these hanging strings leaves from a
connector and is terminated with a sinker weight that is defined as a buoy. In loops.cab
the branches are used to form loops that run from one point on the mainline to a second
point on the mainline. Looped problems can be very difficult to solve because the force
at the second end of the loop must be adjusted until the end is colocated with the user
specified node on the mainline. To get a static solution for loops.cab adaptive relaxation
had to be turned off.

The only static solution procedure available when branches are present in a problem is
static relaxation with a catenary initial guess. Quter iterations are used to calculate the
reaction forces at each of the anchors so that they will be placed at the location specified
in the terminal definition. In these problems static-outer-relaxation is used after each
outer iteration to calculate a correction to the applied terminal forces based on the errors
in the anchor positions. A large relaxation factor will speed the solution but may lead to
instabilities when the forces change dramatically from step to step. It is generally safest to
set it small (between 5 and 20 maybe) initially and then increase it as the errors become
smaller.

The Morison forces caused by subsurface wave particle velocities and accelerations are
calculated for connectors. Just like a single point subsurface mooring then, the best choice
for dynamic forcing in these cases is morison.
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6.3.2 Surface

Both of the cases using branches described above were based on the positioned problem
type. In general, however, the problem type really just specifies the treatment of the second
terminal (at the end of the main string of segments). Thus, branches can be used with
other problem types as well. The position of anchored branch terminals are only resolved
in surface and positioned problems, however.

Multipoint moorings with a surface expression are most easily solved with a little bit
of trickery. We cannot simply use a connector as the buoy as with subsurface problems
because connectors floating on the surface are difficult to resolve in the static problem and
are not accurately forced in the dynamic problem. Instead we define the problem as we
would a regular surface problem with a dummy connector just below the surface buoy. A
very short segment runs from this connector to the buoy at the second terminal to define
the mainline of the problem. Additional legs can be defined as branches leaving from this
dummy connector. In some cases the resulting problem may be solvable using regular static
relaxation.

In many cases, however, the need to resolve both buoy draft and the anchor positions at
the branch terminals leads to convergence difficulties in the outer iterations. One approach
to overcoming these difficulties is to take advantage of symmetry and use a manual dynamic
relaxation process. This approach was used successfully for the surface bi-moor problem in
bimoor.cab. The static solution is obtained in three phases.

In the first phase the problem type is set to positioned, the current is turned off,
the branch (the second leg) is commented out, and the second terminal with the buoy is
placed at a horizontal position in the middle of the anchors and a vertical position at the-
approximate draft. An easy estimate of the draft can be calculated by balancing buoyancy
and the weight of all mooring legs. Solving this problem with regular static relaxation gives
the solution for one leg.

In the second phase, the branch is uncommented, the problem type is set to general,
the reaction forces calculated at the first anchor in phase one are applied to the second
anchor, and an appropriate vertical force is applied at the buoy. The appropriate force
is simply the reaction force from phase one multiplied by the total number of legs. This
problem is then solved with regular static relaxation.

Finally, the current is turned back on, the problem type is set to surface and the
solution from phase two is loaded as the initial condition (with -load) in a dynamic re-
laxation solution using the -dynstat option. With the problem type reset to surface the
actual buoy draft will be used to calculate topside forces and the system will come to a true
equilibrium state.
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With a complete static solution from the dynamic relaxation procedure the dynamic
problem with waves can be solved just as if this was a regular surface problem. The entire
process is obviously more complicated than any of the previously described static solution
paths. It is described here both as an example of a path for this particular kind of problem

and also to illustrate the wide range of possibilities that exists for determining the solution
to complex problems.

6.4 Towing problems

6.4.1 Ship maneuvering

Steady towing problems are solved as static problems. They are typically very quick to
solve with either catenary or shooting initial guesses and static relaxation. For maneuvering
problems with time varying x-speed and/or y-speed at the second terminal (ship end) the
steady state (static) solution is based on the speed at ¢ = 0. The initial cable length is
the summed length of all the segments in the problem. A pay-rate specification changes
the length of the cable in the dynamic simulation. The example problem towing.cab
illustrates varying the depth of the tow body (tow-yow’ing) using either sinusoidally varying
x-speed or pay-rate. In tow3d.cab a circular ship maneuver is used in a three-dimensional
simulation to quickly drop the tow body in depth without changing speed or paying out.

6.4.2 Tow body maneuvering

In many towing applications the ship is held fixed and the tow body is maneuverable
under its own power. By specifying a current profile and zero ship speed it is possible
to calculate the motions of such a vehicle given time varying thrust in the three global
directions at the first terminal (tow body end). The example rov.cab illustrates using a
thrust definition to calculate the steady state position of a deployed ROV when it is applying
100 pounds of thrust against the imposed current. In some three dimensional problems
these sorts of problems can be difficult to solve with regular static relaxation. Because
the steady state information is typically more interesting than dynamic results, shooting
method solutions are often a good choice as the final static solution. In cases where the
steady state configuration is two-dimensional, but three-dimensional dynamic results are
desired you can use a two-dimensional static solution to initialize the three-dimensional
dynamic solver.

80



6.4.3 Cable laying

Cable laying or anchor lowering problems can be defined just like any other towing problem
with pay-out. A depth must be defined and variations in the bottom topography can be
specified with bottom-elevation. Once the tow body (which must be defined as a buoy)
at the first terminal strikes the bottom it is assumed to be anchored to the bottom and
cannot move. An example of this kind of problem is given in lowering.cab.

6.5 Launch, recovery, and failure problems

6.5.1 Mooring deployment

Mooring deployment problems are defined with the problem type deployment. During a
static solution these problems are actually treated as a special case of surface problems.
The anchor is defined at the first terminal and is initially located on the surface. The speed
givén at the first terminal (the ship must be making some headway or there must be some
current running) will be used to calculate the steady state configuration of the system,
including buoy draft. For forward speed into the current that configuration will have the
system streamed out behind the anchor. All of the static solution paths are available for
deployment problems. For relatively short systems automatic dynamic relaxation is usually
a good choice. It is also a good choice when a mooring has subsurface buoyancy elements
that will float on the surface when the mooring is paid out but the anchor has not been
released. Regular static relaxation (sometimes with a small relaxation factor) can also work.
Either method works for the example in deploy.cab.

As soon as the regular dynamic solution starts the anchor is released from the ship
and begins to fall. Because the dynamics and hydrodynamics of the anchor are a critical
part of the system response during deployment, these problems are the only type in WHOI
Cable that require a completely defined anchor. Once the anchor hits the bottom it is
fixed to bottom. These simulations can take a significant amount of time simply because
the physical response of these systems is such that they can take a long time to come to
equilibrium once the anchor hits the bottom. Also, in deep water the anchor can take many
minutes of simulation time to reach the bottom.

6.5.2 Cable breaking and mooring release

Cable breaking and mooring release problems are implemented by specifying a release-time
at either terminal in any kind of dynamic simulation. After that point the buoy or anchor
at that end will be dropped from the simulation and there will be a zero force boundary
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condition imposed. The example breaking.cab illustrates this for the case of breaking
ROV tow cable. For mooring release problems remember that the top (buoy) end is only
free to move in the horizontal directiongs if forcing-method is morison or wave-follower.
Note also that breaks can currently only occur at the two main terminals.

6.6 General tips and tricks

Regardless of problem type there are some general tricks that are helpful when convergence
failures, singularities and instabilities occur. In this section these tricks are broken down
into suggestions for static and dynamic problems.

6.6.1 Static problems

e Bad initial guess

For any problem in which the initial guess based on the catenary solution for a homo-
geneous, inextensible material with drag forcing only at the two ends is a very poor
guess, consider using a small static-relaxation (maybe 0.1 — 0.2). You can also
try to setting static-initial-guess to shooting if shooting method solutions are
available for your problem type. '

e Strong currents cause solution instabilities

If the current is sufficiently large to render the initial catenary guess a very poor
solution, or if there is current in both horizontal directions and the static solution
will have a complex non-planar shape, consider using current-steps to ramp the
current slowly to its full value. 5 or 10 steps usually does the trick. At each step the
initial guess is the solution from the previous step; a greater number of steps means a
smoother transition from the catenary solution with no current to the actual solution
with the full current.

e Low currents cause solution instabilities

For problems with very little horizontal forcing and curves in the shape, the bend-
ing radius at the curves can be quite small, leading to difficulty in resolving static
solutions. An effective solution technique for these problems is dynamic relaxation in
which the the current is artificially magnified to obtain an initial solution and then
set to its true value in a dynamic solution so that the system will come to the proper
equilibrium position using the physical damping in the problem to smooth the solution
progress. You can use the command line option ~dynstat to achieve this manually
or for many problem types you can use the —auto flag to automate the process.
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e Cable on the bottom causes singularity or cohvergence failure

Problems with cable lying on the bottom will almost certainly require that static-relaxation
be set to something on the order of 0.1 or possibly even smaller. Remember to allow

for lots of static-iterations with small static relaxation factors. These problems

are also a good candidate for automatic dynamic relaxation (use the -auto command

line flag with cable).

e Surface buoy draft is difficult to converge

If the outer-iteration loop to find the draft of a surface buoy seems to be oscillating
but never converging or if it goes down to very small guessed drafts which cause
instabilities or singularities, use a larger static-outer-relaxation (but keep it less
than 1.0, consider going to something like 0.98 or 0.99). You may need to raise
the static-outer-iterations limit as well. Using a the shooting method for the
static-initial-~guess can also speed things.

e QOuter-iterations convergence is slow

You can usually speed up outer-iterations by raising the static-outer-tolerance to
something on the order of 0.01. This tolerance translates directly to a percentage error
in the guessed draft or position of the second anchor and so usually means an answer
that is good to a couple of centimeters. A second option is to raise static-tolerance
{o speed the inner-iterations at every outer-iteration.

e 2D solution is fine, but 3D solution is difficult

If the steady state configuration of the mooring is planar (2D) then you can use the
2D static solver to get a solution. A solution from the two-dimensional static solver
can be used with the -1load option to initialize a three-dimensional dynamic problem.
This does not work going the other way. Static solutions from the 3D solver cannot
be used to initialize a two-dimensional dynamic problem.

6.6.2 Dynamic problems

e Time step is always adapting

If cable is constantly adapting the time step downward (but always makes progress
at the smaller time step) then it is best to simply set the base step (time-step=) to
something smaller.

e The adaptation limit is exceeded

Exceeding the adaptation limit can be a sign of an unstable problem. Sometimes
you will find that setting a base time-step that is 10% of the original base re-
sults in no adaptive reductions and reliable results. In other cases try lowering
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dynamic-relaxation to give cable more ability to work through a problem spot at the
larger time steps. Going too low can dramatically slow the solution down, however;
0.5 is a reasonable lower limit. If cable is adapting because it is hitting the iteration
limit, raise dynamic-iterations (particularly if you lowered dynamic-relaxation).
In very rare cases you may need to adjust the parameters of the generalized-a time
integration algorithm. Useful values of dynamic-lambda are typically in the range
—0.8 <A, < 0.3. Af% = —0.5 is the default.

There is a DC drift in solution variables

If the time histories of the result variables seem to have a large DC drift component,
consider adding nodes to the problem (throughout the system, not just at spots of high
gradient) and using ramp-time to slowly bring the excitation level to its full value.
In some cases these errors can also be eliminated by changing dynamic-lambda. AT%
controls the frequency response of the time integration; depending on the properties
and forcing conditions in your system it may be desirable to change the filtering by
changing this parameter.

Cable impacting the bottom causes singularities

A damping ratio that is too high can cause dramatic convergence problems. If the
system has cable which is being lifted and lowered from the bottom and the problem
is not converging well, use a smaller bottom-damping value.

2D solution is fine, but 3D solution is difficult

If a problem solves with the 2D algorithm, but runs into singularities or exceeds the
adaptation limit with the 3D algorithm, use a smaller dynamic-relaxation and a
smaller base value for time-step when using the 3D algorithm.

Problems with areas of high curvature, sharp bends, or slack regions are unstable

Most of these types of instabilities can be related to the bending stiffness of the
material. Try setting EI to a larger value. For most oceanographic materials EI can
be as high as 10 - 100 Nm? without affecting the accuracy of the overall solution.
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